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Abstract

Building on the idea of Tolman and Ehrenfest that heat has weight, Luttinger established
a deep connection between gravitational fields and thermal transport. However, this
relation does not include anomalous quantum fluctuations that become paramount in
strongly curved spacetime. In this work, we revisit the celebrated Tolman-Ehrenfest and
Luttinger relations and show how to incorporate the quantum energy scales associated
with these fluctuations, captured by gravitational anomalies of quantum field theories.
We point out that such anomalous fluctuations naturally occur in the quantum atmo-
sphere of a black hole. Our results reveal that analogous fluctuations are also observ-
able in thermal conductors in flat-space time provided local temperature varies strongly.
As a consequence, we establish that the gravitational anomalies manifest themselves
naturally in non-linear thermal response of a quantum wire. In addition, we propose a
systematic way to identify thermal analogues of black hole’s anomalous quantum fluctu-
ations associated to gravitational anomalies. We identify their signatures in propagating
energy waves following a thermal quench, as well as in the energy density of heating Flo-
quet states induced by repeated quenches.
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1 Introduction

Luttinger realized that if a gravitational field did not exist in nature, one could have invented
it for the purposes of calculating thermal responses [1]. This idea can be traced back to the
work by Tolman and Ehrenfest in the advent of general relativity, who noticed that in a time-
independent curved spacetime, the temperature of black-body radiation is not spatially uni-
form even in thermal equilibrium [2,3]. Such a space-dependent temperature profile is known
as the Tolman-Ehrenfest temperature. The insight of Luttinger was to suggest that thermal
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transport, thought of as a linear response of matter to a thermal gradient, can be derived
by considering a counter-balancing weak gravitational field to restore equilibrium [1]. The
Luttinger relation follows from the Tolman-Ehrenfest temperature, and is the groundbreaking
idea that established the gravitational field as a key concept in the study of heat transport in
materials [4–6].

A central idea behind Luttinger’s and Tolman-Ehrenfest’s relations is that heat has weight.
Therefore heat contributes to the energy density, adding up to the energy density due to the
rest-mass of a massive particle [7]. The consequences are particularly remarkable for relativis-
tic massless particles which lack any intrinsic energy density scale. The only relevant energy
density scale is set by the temperature, whose variations follows from those of spacetime.

However, in a strongly curved spacetime new energy density scales, that are absent in
Luttinger’s and Tolman-Ehrenfest’s relations, appear. They manifest the anomalous thermo-
dynamic behavior of quantum fluctuations induced by spacetime curvature. This interplay
between geometry and vacuum fluctuations is analogous to Casimir effect, induced by a ge-
ometrical confinement instead of curvature [8, 9]. The fluctuations break the symmetries of
the classical equation of motions, a phenomenon known as the gravitational anomalies. The
appearance of these anomalous scales of energy density challenges us to understand their role
in the equivalence relations between temperature and gravitational gradients, and their ob-
servable consequences for energy transport. Moreover, if these relations are modified, it is
not evident what are their consequences beyond black-hole physics, for example in condensed
matter. These are the questions that we address in this work.

In this work, we quantitatively evaluate the quantum corrections to the Tolman-Ehrenfest
temperature, which in turn modify the celebrated Luttinger relation. We exemplify the im-
portance of these corrections by focusing on 1+1 dimensional systems. Therefore, our results
apply to the effective dynamics in reduced 1+1 dimension of quantum wires, but also of rota-
tionally invariant systems such as isotropic black-holes, edge states of 2+1 dimensional topo-
logical gapped states of matter, or higher-dimensional systems in a strong magnetic field (see
Fig. 1). We show that the Luttinger equivalence has to be corrected either when the curvature
of spacetime is significant or, equivalently, when the local spatial variation of temperature is
sizable. This equivalence allows us to observe that in several condensed matter systems the role
of gravitational anomalies has been previously overlooked, and manifests through observable
consequences. Consequently, we show that the seemingly elusive anomalous quantum fluctua-
tions associated to the gravitational anomalies are detectable in experiments in flat-spacetime,
beyond Weyl semimetals [10,11] or the thermal Hall effect [12]. In the outset we discuss that
there is no fundamental obstruction to generalize our results to higher dimensional systems
that possess gravitational anomalies.

At the technical level, in a relativistic massless theory in 1+ 1 dimensions there is a sin-
gle classical scale of energy density, set by the temperature T . As a consequence the en-
ergy density, ε, and pressure, p, are classically equal to each other. In other words the trace
of the momentum-energy tensor, which quantifies the variation of energy upon a change of
distance in space or time, vanishes. Incorporating the effects of anomalous fluctuations in-
duced by spacetime curvature is achieved through the scale and Einstein anomalies. They
generate two new scales of energy density ε(1)q and ε(2)q . The first scale, ε(1)q , enters the non-

vanishing trace of the momentum-energy tensor, ε − p∝ ε(1)q , a phenomenon known as the
scale anomaly [13–16].

For massless particles, the energy density is set by the black-body radiation given by the
Stefan-Boltzmann law ε = p∝ γT2 [17,18]. The second energy density scale introduced by
the scale anomaly, ε(2)q , is an additive correction to ε+ p. As a consequence, the appearance of
this energy density scale leads to a redefinition of the Tolman-Ehrenfest equilibrium temper-
ature entering the Stefan-Boltzmann law. Remarkably, the exact same modified temperature
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is deduced from the correction of the off-diagonal component of the momentum-energy ten-
sor, the energy current, by the so-called Einstein anomaly [19–21]: each chiral component of
the current carries an energy proportional to the corrected equilibrium temperature instead
of the bare Tolman-Ehrenfest temperature. Hence the effects of quantum fluctuations, cap-
tured either by the scale or by the gravitational anomaly correction to the momentum energy
tensor, conspire to redefine the local equilibrium temperature in a curved spacetime. As a con-
sequence, the Luttinger equivalence between a given temperature profile and a gravitational
field has to be modified.

While field theory anomalies have been known to constrain non-Fermi liquids [22], and to
be at the origin of various transport properties in condensed matter [23, 24], their interplay
with the Luttinger equivalence was largely unexplored until now. When do these corrections
matter? Strong spacetime curvature occurs naturally in the neighborhood of a black-hole. This
curvature changes the nature of vacuum fluctuations in its vicinity, which ultimately lead to a
radiating current of energy (Fig. 1(a)). Within 1+1 dimensional field theory, the relation be-
tween this Hawking’s radiation and the anomalous quantum fluctuations was described using
either the scale anomaly [25] or the Einstein anomaly [26]. We recall how both anomalies
allow to define consistently a corrected equilibrium temperature [27], which vanishes at the
black hole’s horizon, as well as an outgoing energy current induced by the quantum fluctua-
tions and whose asymptotic values identify with Hawking’s radiation. The atmosphere of the
black hole [28] corresponds to the soup of strong quantum fluctuations in which anomalous
quantum corrections are strong.

Given that vacuum thermal effects close to a black hole are beyond experimental detection,
we then consider anomalous fluctuations in condensed matter analogous to those in the black
hole atmosphere. We show that, as a consequence of the modified Luttinger relation, such
anomalous fluctuations occur where spatial variations of the temperature are large. First, we
consider the historical domain of application of Luttinger’s relation: that of thermal response
theory. We show that a Kubo formula perturbative in the gravitational potential and its deriva-
tive accurately captures the effect of scale and gravitational anomalies. When translated in
terms of temperature gradients, these anomaly-generated corrections are found to affect non-
linear thermal conductivities.

Stronger effects of anomalous fluctuations are expected beyond the realm of perturba-
tive response theory. Inducing locally large fluctuations of energy reminiscent of those of a
black hole’s atmosphere requires strong local temperature variations. We consider a thermal
quench occurring at the contact between two regions of different temperatures (Fig 1(c)).
We show that local energy density’s oscillations, as well as propagating heat waves resulting
from the quench, recently identified within the conformal field theory framework [29–32], are
a manifestation of the thermodynamics related to the anomalous Tolman-Ehrenfest temper-
ature. Finally, we focus on a periodic sequence of metric quenches applied to a relativistic
fermions (Fig 1(d)). This procedure induces a Floquet state recently described within Floquet
conformal field theory [33–39]. While the total energy of this state increases exponentially, it
concentrates on a few points [35,36] which effectively behave as black holes [36]: the rate of
increase of their energy is strongly corrected by quantum anomaly corrections, and the energy
density is negative in their vicinity as in a black hole atmosphere.
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Figure 1: Four situations considered in this work where gravitational anomalies play
a role through the anomalous Tolman-Ehrenfest temperature. (a) A black-hole’s
Hawking temperature at spatial infinity is fixed by an outgoing heat current Jε is
determined by the gravitational anomalies: it originates from strong quantum fluctu-
ations in a region close to the the horizon (xH), a quantum atmosphere. (b) The edge
of a 2D quantum Hall system hosts a 1+1 dimensional chiral edge mode. The differ-
ence between an externally imposed temperature profile, and the equilibrium tem-
perature of the edge-mode is set by the anomalous Tolman-Ehrenfest temperature.
(c) A quantum wire undergoes a quantum quench when an external temperature
profile is suddenly switched off at time t = 0. The energy density profile following
this quench displays oscillating features determined by gravitational anomalies. (d)
A periodic dynamic is implemented by repeating over a period tp the previous ther-
mal quench procedure. Within a heating phase, the energy density of the quantum
wire increases exponentially, showing imprints of gravitational anomalies at spatially
localized at points acting as black-hole analogues.
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2 Anomalous Tolman-Ehrenfest temperature

2.1 Canonical Luttinger relation

We begin by recalling the derivation of Luttinger’s relation [1, 7] from Tolman-Ehrenfest’s
work [3]. Tolman and Ehrenfest realized that in a curved spacetime, the temperature of black-
body radiation, and more generally of massless particles of velocity vF , is not spatially uniform
even in thermal equilibrium. In essence, thermal equilibrium in the presence of a gravitational
field requires a non-uniform temperature profile to compensate for the red-shift experienced by
radiation as it moves in the gravitational field. They showed that the equilibrium temperature
can be inferred from a constant of motion with units of temperature, T0, defined as

T (r)
q

ξµ(r)gµν(r)ξν(r) = T0 , (1)

where gµν is the stationary background metric which depends on spatial coordinates r, and
ξµ is the time-like Killing vector. The constant T0 is a reference temperature which has to be
set, e.g. by boundary conditions. The Luttinger relation

∇rφ = −
∇rT

T
, (2)

is obtained from Eq. (1) by considering a time-independent metric

ds2 = e2φ(r) v2
F dt2 − dr2. (3)

The metric is parametrized by a small dimensionless gravitational factor φ ≡ Ψ/c2 � 1,
expressed, in a weak-gravity limit, in terms of a static gravitational potential Ψ and the speed
of light c.

By substituting Eq. (3) into Eq. (1), we obtain T2(r)g00(r) = T2
0 which defines the Lut-

tinger temperature (see Section 27 of [40]):

T2(r)e2φ(r) = T2
0 , (4)

Upon spatial differentiating with respect to position we recover the Luttinger relation (2)
This paves the way towards the correspondence within linear response framework between a
perturbative parameter ∇φ and the perturbative parameter ∇T/T .

Neither Luttinger’s nor Tolman-Ehrenfest’s relations account for possible quantum anoma-
lies. Our first goal is to show how these relations, widely used to identify the energy density
and energy current of matter fields [4–6,41–44], are modified in the presence of anomalies.

2.2 Tolman-Ehrenfest temperature of massless particles in D = 1 + 1 curved
spacetime

For the sake of clarity, let us now restrict ourselves to a 1+1 dimensional space with coordinates
xµ = (x0, x1)≡ (vF t, x). We consider a general metric,

ds2 ≡ gµνd xµd xν = f1(x)v
2
F d t2 − f2(x) d x2, (5)

defined in terms of two, time-independent, real and positive-valued functions f1,2(x) of the
one-dimensional spatial coordinate. For convenience, we included the Fermi velocity vF of
massless particles in the definition of the metric (5). In particular, the Luttinger metric (3) is
recovered by considering the metric in the Fermi coordinate system:

f1 ≡ g00 = e2φ ; f2 ≡ −gx x = 1 , (6)
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which corresponds to a general relativistic generalization of an inertial coordinate frame [45].
A black-hole metric can also be captured by Eq. (5) by setting f1 = 1/ f2 = f with f vanishing
at the horizon.

We consider massless relativistic particles propagating with velocity vF in a curved 1+1
dimensional spacetime. The energy and momentum densities of these particles, as well as their
associated current densities, are encoded in the energy-momentum tensor Tµν. Spacetime
translation invariance implies the conservation of this tensor at the classical level:

∇νT νµ ≡
1
p
−g

∂

∂ xν

�

T νµ
p

−g
�

−
1
2

∂ gαβ
∂ xµ

T αβ − 1
2

∂ gµα
∂ xν

[T να − T αν] = 0. (7a)

Moreover, the scale invariance of the theory implies that its trace vanishes:

T µµ = 0. (7b)

The diagonal components of this energy momentum tensor are the energy density ε = T 0
0 and

the pressure p = T x
x . Hence, scale invariance implies the equality p = ε. Finally, the Lorentz

invariance implies the symmetry of the energy-momentum tensor:

T µν = T νµ, (7c)

manifesting that the density of the energy current Jε is proportional to the momentum density
Π: Jε = v2

FΠ.
We consider a general stationary solution of equations (7):

[T (x)]µν =





C0
f1

C1p
f1 f2

− f2
f1

C1p
f1 f2

− C0
f1



 , (8)

where C0, C1 are two constants. If we restrict ourselves to massless particles at equilibrium
with a single local temperature, the only scale of density of energy or pressure is set by this
equilibrium temperature through the extended Stefan-Boltzmann law [46–49]. The energy
density ε is obtained by summing the independent contributions ε± of left and right moving
particles with respective central charges c±

ε = ε+ + ε− , ε± =
1
2

c±γT2 , γ=
πk2

B

6ħhvF
. (9)

Comparison with the diagonal terms of Eq. (8) leads to the relation

C0

f1(x)
= T 0

0 ≡ ε = −T x
x ≡ p . (10)

The solution of Eq. (9,10) satisfies T2
TE
(x) f1(x) = 2C0/[γ(c+ + c−)], which is independent of

x . This turns out to be exactly the definition by Tolman and Ehrenfest of the equilibrium
temperature (4):

TTE = T0

Æ

f1(x0)/ f1(x), (11)

where T0 = T (x0) is an arbitrary reference temperature, commonly chosen where the metric
is locally flat with f1(x0) = 1.

Alternatively, we can obtain this relation from the off-diagonal components of Eq. (8):

Jε ≡ vF

Æ

f1 f2T x0 = vF

√

√ f2
f1
T x

0 = vF
C1

f1
(12)
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Π≡
1
vF

Æ

f1 f2T 0x = −
1
vF

√

√ f1
f2
T 0

x =
1
vF

C1

f1
(13)

During their ballistic evolution, right and left moving particles don’t exchange energies with
each other. Each chiral species allows to define the local temperature through its local equi-
librium chiral currents Jε,± = ±vF ε±. Combining this definition with Eq. (9) and Eq. (12) we
again recover the Tolman-Ehrenfest relation (11). The net equilibrium current vanishes unless
c+ 6= c−, for which

Jε = v2
FΠ= (c+ − c−)

γvF

2
T2 = (c+ − c−)

π

12ħh
(kB T )2 . (14)

As a result, the equilibrium form of the classical momentum energy tensor (8) is expressed
as follows:

[Tcl(x)]
µ
ν =





Cw Cg

r

f1
f2

−Cg

r

f2
f1

−Cw



×
γ

2
T2

TE
(x) (15)

where we denoted
Cw = c+ + c− , Cg = c+ − c− . (16)

2.3 Gravitational anomalies

Through (15), the previous section showed that both the equilibrium energy density, and
the equilibrium chiral energy currents define the same classical Tolman-Ehrenfest temper-
ature. Quantum mechanically, the density and currents are themselves constrained by the
scale, translation and Lorentz invariances of the massless theory. All three symmetries are
broken by quantum fluctuations of the matter field in a curved spacetime, a phenomenon
known as a gravitational anomaly. Let us discuss the three gravitational anomalies affecting
the momentum-energy tensor of massless matter in a curved spacetime.

Trace anomaly. The first is the scale anomaly which signals that the scale invariance of the
single particle theory is broken by quantum fluctuations. The scale symmetry is a part of
a larger, conformal symmetry group. Therefore, this anomaly is also called the conformal
anomaly and, in different contexts, the Weyl or trace anomaly. As a consequence, Eq. (7b) no
longer holds; the trace of the energy-momentum tensor of a scale-invariant classical theory
does not vanish at the quantum level in a curved spacetime1 [19, 59, 60]. The gravitational
contribution to the trace anomaly is exact (it has no radiative corrections), and is determined
by the Ricci scalar R as follows:

T µ
µ
= Cw
ħhvF

48π
R . (17)

For the metric (5), R simplifies to

R=
∂ 2

x f1
f1 f2

−
1
2
∂x f1
f1 f2

�

∂x f1
f1
+
∂x f2

f2

�

. (18)

1Notice that the trace anomaly can also appear in the flat spacetime in (self)interacting field theories as the
consequence of energy dependence of the interaction couplings acquitted due to quantum fluctuation [50–52].
Contrary to the free theories in curved backgrounds that generate the exact trace anomaly (17), the interaction-
induced trace anomaly involves the appropriate beta functions which are, in general, not one-loop exact [14].
We do not consider this manifestation of the trace anomaly while noticing that it may lead to various transport
effects [53] including the Nernst-type thermal phenomena [54, 55] and non-topological boundary currents [56–
58].
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Einstein anomaly. Similarly, the spacetime translation invariance of the classical massless
theory is broken at the level of the quantum field theory in a curved spacetime. It manifests
the non-conservation of the energy current. In the case of a pure Einstein anomaly, i.e. while
conserving Lorentz symmetry T µν = T νµ, Eq. (7a) has to be replaced by

∇µT µν =
ħhvF

96π

Cg
q
�

�det
�

gρσ
��

�

ενµ∇µR , (19)

with ε0x = 1.

Covariantly conserved tensor. Finally, the Lorentz invariance of the classical theory, which
results in the symmetry (7c) of the momentum-energy tensor, is also broken at the quantum
level. However, the gravitational contribution of a pure Lorentz anomaly turns out to be equiv-
alent to the graviational contribution of a pure Einstein anomaly, allowing to enforce either
the Lorentz or the Einstein symmetry at the quantum level (see Sec. 12 of [19]). To show this
equivalence, define a modified momentum-energy tensor T̃ µν from the T µν resulting from the
pure Einstein anomaly, given in of Eq. (19), according to

T̃ µν = T µν + ħhvF

96π

Cg
q
�

�det
�

gρσ
��

�

εµνR. (20)

In this way we obtain a momentum-energy tensor satisfying the pure Lorentz anomaly, i.e.
satisfying the energy-momentum conservation law ∇µT̃ µν = 0, but with an anti-symmetric
part that violates (7c):

T̃ µν − T̃ νµ = ħhvF

48π

Cg
q
�

�det
�

gρσ
��

�

εµνR. (21)

These relations establish the equivalence between the Einstein and Lorentz anomalies.

2.4 Anomalous Tolman-Ehrenfest temperature

As shown in Sec. 2.2, the equilibrium temperature for massless matter in curved spacetime can
be consistently defined (i) from thermodynamic quantities, the energy density and pressure,
provided by the diagonal components of the momentum energy tensor, or (ii) from kinematic
quantities, the density of energy current and momentum of left and right movers, given by
the off-diagonal components of the momentum energy tensor. At the quantum level, diagonal
and off-diagonal components get independently corrected by the scale anomaly on one side,
and the Einstein - Lorentz anomalies on the other side. This immediately raises the question
of whether a revised Tolman-Ehrenfest temperature can be defined incorporating the effects
of quantum fluctuations. Quite remarkably, in this section we show that all three gravitational
anomalies, while of different technical origins, concur to redefine the equilibrium temperature
in a coherent manner, leading to an extended Luttinger equivalence.

Anomalous momentum-energy tensor. From the discussion in Sec. 2.3, we can choose
without restriction to enforce the Lorentz symmetry at the quantum level, focusing on Einstein
and Scale anomalies. Solving equations (17,19) for a symmetric tensor, we obtain

T = Tcl + Tq , (22)

9
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where Tcl is the classical momentum energy tensor given by Eq. (15) and the quantum correc-
tion components are

[Tq(x)]
µ
ν
=





Cw
2

�

ε(1)q + ε(2)q

� Cg
2

r

f1
f2
ε(2)q

− Cg
2

r

f2
f1
ε(2)q

Cw
2

�

ε(1)q − ε
(2)
q

�



 , (23)

where ε(1)q and ε(2)q are the two new scales of energy density set by the quantum anomalies:

ε(1)q =
ħhvF

48π
R ; ε(2)q =

ħhvF

48π
(R− 2R) , (24)

with

2R=
1

f1(x)

∫ x

x0

dy R(y)∂y f1(y) . (25)

With the help of the expression (18) for the curvature R, we obtain

R− 2R=
∂ 2

x ln ( f1(x))

f2(x)
+

1
2
∂x

�

1
f2(x)

�

∂x ln ( f1(x)) . (26)

Anomalous temperature Let us now focus on the explicit expression of the energy-momentum
tensor corrected by the gravitational anomalies T = Tcl + Tq with both components given in
Eqns. (15,23). Using Eqns. (10,12,13), we obtain the expression for the density of energy,
pressure, momentum and energy current:

ε =
1
2

Cw

�

γT2(x) + ε(1)q

�

, (27a)

p =
1
2

Cw

�

γT2(x)− ε(1)q

�

, (27b)

Jε = v2
FΠ= Cg

π

12ħh
k2

B T2(x) . (27c)

Remarkably, only two scales of energy set these values: the temperature T (x), which incorpo-
rates ε(2)q as we will see below in Eq. (28), and the quantum scale ε(1)q defined in Eq. (24). This

new scale ε(1)q signals that in the presence of gravitational anomalies, the Stefan-Boltzmann
law (9) is modified. The additive correction in (27a) signals a correction to the vacuum energy
density at T = 0. This energy shift of pure geometrical origin is set by the local spacetime cur-
vature R as opposed to the analogous Casimir effect set by confinement [9]. It renormalizes
pressure p and energy density ε in opposite directions.

The temperature T−1 = ds/dε is now set by the sum ε+ p = Ts = CwγT2, where s denotes
the entropy density. Equivalently, for each chiral branch of particles this temperature can
be deduced from the off-diagonal components of the energy momentum tensor, the energy
current and momentum in Eq. (27c). While the diagonal components of T including ε+ p are
corrected by the trace anomaly, the off-diagonal components Jε and Π are corrected by by the
Einstein anomaly. Yet, the same temperature is defined consistently from both diagonal and
off-diagonal quantities: both the trace and Einstein anomalies contribute coherently to correct
the Tolman-Ehrenfest temperature into a generalized equilibrium temperature

γT2(x) = γT2
TE
+ ε(2)q , (28)

where the additive quantum correction ε(2)q is defined in Eq. (24). Note that in defining this
temperature, we restricted ourselves to the natural case where the entropy density s is positive,
which warrants that the right hand side of Eq. (28) is positive.
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Anomalous covariantly conserved momentum-energy tensor. As we discussed in Sec. 2.3,
the Einstein anomaly can be traded for the Lorentz one, at the expense of a transformation (20)
of the momentum-energy tensor. Such an expression describes the situation where the Lorentz
invariance of quantum fluctuations is not enforced, as occurs naturally in condensed matter.
The corresponding quantum correction to the momentum-energy tensor is now expressed as

[T̃q(x)]
µ

ν
=





Cw
2

�

ε(1)q + ε(2)q

� Cg
2

r

f1
f2

�

ε(2)q − ε
(1)
q

�

− Cg
2

r

f2
f1

�

ε(1)q + ε(2)q

�

Cw
2

�

ε(1)q − ε
(2)
q

�



 . (29)

In this case, the momentum-energy tensor is no longer symmetric. As a consequence, the
momentum density Π and the density of energy current Jε are now distinct quantities. The
chiral currents and momenta satisfy Jε,± = ±vF p± and Π± = ±

1
vF
ε± corresponding to the

expressions

ε =
1
2

Cw

�

γT2(x) + ε(1)q

�

, (30a)

p =
1
2

Cw

�

γT2(x)− ε(1)q

�

, (30b)

v−1
F Jε =

1
2

Cg

�

γT2(x)− ε(1)q

�

, (30c)

vFΠ=
1
2

Cg

�

γT2(x) + ε(1)q

�

. (30d)

2.5 Anomalous Luttinger relation

The quantum anomaly correction to the Tolman-Ehrenfest relation Eq. (1) raises the question
of whether this correction translates also to the Luttinger metric (5) with f1(x) = e2φ and
f2 = 1. While the connection between the gravitational anomaly and the energy current was
discussed [61–63], its interplay with the Luttinger equivalence has been elusive so far. By
inserting the Luttinger metric in Eqs. (18) and (25) we obtain

ε(1)q =
ħhvF

24π

�

∂ 2
x φ + (∂xφ)

2
�

; ε(2)q =
ħhvF

24π
∂ 2

x φ, (31)

corresponding, via Eq. (28), to a Luttinger temperature corrected by a second derivative of φ:

T2(x)
T2

0

= e−2φ(x) +λ2
T0
∂ 2

x φ , λT =
ħhvF

2πkB T
, (32)

where T0 is the reference temperature introduced Eqs. (1) and (11), and which is now chosen
as T0 = T (x0) at a point x0 such that φ(x0) = ∂ 2

x φ(x0) = 0. Multiplying Eq. (32) by T2
0 e2φ

and then differentiating with x we obtain a correction to the original Luttinger relation (2) by
an additional term induced by quantum anomalies:

∂x T
T
= −∂xφ +λ

2
T (x)

�

(∂xφ)∂
2
x φ +

1
2
∂ 3

x φ

�

. (33)

Notice that, since the equilibrium temperature T (x) is inhomogeneous, the thermal length λT
is a coordinate-dependent quantity.

The energy density, pressure, energy currents and momentum are provided by Eqs. (27)
or Eqs. (30). By using the explicit expression (31) for the corrections, we get

ε =
Cw

2

�

γT2
0 e−2φ(x) +

ħhvF

12π
∂ 2

x φ +
ħhvF

24π
(∂xφ)

2
�

, (34a)
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p =
Cw

2

�

γT2
0 e−2φ(x) −

ħhvF

24π
(∂xφ)

2
�

, (34b)

Jε = v2
FΠ= Cg

�

π

12ħh
(kB T0)

2e−2φ(x) +
ħhv2

F

48π
∂ 2

x φ

�

, (34c)

when Lorentz invariance is enforced. Alternatively, if we relax Lorentz invariance while im-
posing diffeomorphism symmetry, the thermal current and momentum no longer identify, and
are expressed as

Jε = Cg

�

π

12ħh
(kB T0)

2e−2φ(x) −
ħhv2

F

48π
(∂xφ)

2

�

, (35a)

v2
FΠ= Cg

�

π

12ħh
(kB T0)

2e−2φ(x) +
ħhv2

F

48π

�

2∂ 2
x φ + (∂xφ)

2
�

�

. (35b)

2.6 Anomalous potentials for a constant temperature profile

The non-linearity of the anomalous Luttinger relation (32) and (33) between temperature
and the gravitational field φ has profound consequences. In particular, a fixed temperature
profile T (x) corresponds to a continuum of fields φ(x), contrarily to the case of the standard
Luttinger relation (4) or (2). This leads to an additional freedom in the choice of φ for a given
T profile, typically imposed by additional boundary conditions. Let us illustrate this point by
considering a constant temperature T (x) = T0. The standard Luttinger relation (4) imposes
a coordinate-independent gravitational potential corresponding to a constant φ = const. In
contrast, the anomalous relation (33) allows a constant temperature to be realized, in a weak
φ field limit, |φ| � 1, by a class of dilation fields of the form:

φ(x) = φ0 +φ+e
p

2x/λT0 +φ−e−
p

2x/λT0 , (36)

valid provided the anomalous corrections to Eq. (36) are small, subjected to the condition
|x | � λT0

. The arbitrary coefficients φ± highlight the degeneracy of the gravitational zero
modes (36) which parametrizes the anomalous isothermal surfaces in the metric space. Note
that in the case of a finite system with periodic boundary conditions, imposing the smoothness
of the gravitational potential allows to recover a unique gravitational potentialφ(x) = φ0 = const.

In the case of an arbitrary metric and for a constant temperature profile T (x) = T0, the
anomaly-corrected Luttinger relation (33) translates into the following differential equation
for the gravitational zero modes:

∂ 3
ξφ + 2∂ξφ ∂

2
ξφ − 2∂ξφ = 0 . (37)

where we introduced the rescaled coordinate ξ = x/λT0
. The third-order differential equa-

tion (37) on the gravitational zero modes possesses one trivial degeneracy corresponding to
a global coordinate-independent shift of the gravitational potential φ → φ + φ0, and two
physically important degeneracies which label the space of possible zero modes. Each mode
is labelled by the value of the first and second derivatives of the factor φ at a spatial refer-
ence point x0. Hence a unique choice of field φ(x) for a given profile T (x) require fixing
these higher derivatives with a boundary condition, such as periodic boundary conditions on
smooth fields.

12
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Figure 2: Quantum atmosphere of a D = 1 + 1 Schwarzschild black hole. (a) the
dimensionless energy density ε, pressure p and energy current Jε, rescaled by their
asymptotic values εH =

1
2γT2

H and JH = (π/12ħh)k2
B T2

H where TH is the Hawking
temperature, are represented as a function of the distance x to the center of the
black hole, in units of its horizon xH . Far from the horizon, all three quantities are
proportional to T2

TE
(x), where TTE(x) is the classical Tolman-Ehrenfest equilibrium

temperature. Close to the horizon, quantum fluctuations strongly affect this classical
behavior: an anomalous equilibrium temperature T2(x) is set by both ε + p and
Jε. (b) The difference between the anomalous T2(x) and the classical T2

TE
(x) is set

by a quantum scale ε(2)q . The divergence of T2
TE

at the horizon is counterbalanced

by a diverging correction ε(2)q , leading to a vanishing T2(x). Simultaneously, the

difference ε(1)q between ε and p sets an independent quantum scale which remains
finite at the horizon. These results illustrate the generation by a large spacetime
curvature R of a finite density of energy and asymptotic energy currents, which are
captured by the trace and gravitational anomaly corrections to the thermodynamic
quantities. In (a) and (b) The region where T2(x) 6= T2

TE(x) defines the quantum
atmosphere. Within it, we defined the quantum stratosphere, where ε(1)q ≈ ε(2)q ,

and the quantum troposphere, where ε(1)q 6= ε(2)q , color-coding the smooth crossover
between them. The vertical dotted line in (a) indicates where ε = 0.

3 Quantum atmosphere of a black hole

We start our discussion of physical consequences of the anomalous Tolman-Ehrenfest rela-
tion (28) by revisiting the Hawking radiation from a black hole. This corresponds to the
generic situation of a spacetime background with a large curvature R which induces large

13
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anomalous quantum corrections ε(1)q and ε(2)q , that are even comparable with the classical
Tolmann-Ehrenfest temperature. For this purpose we consider a generic black hole charac-
terized by a metric (5) with f1 = 1/ f2 = f . Such a metric encompasses both Schwarzschild
black holes [64] for f (x) = 1− xH/x , with xH the black hole horizon, as well as evanescent
Callan–Giddings–Harvey–Strominger (CGHS) black holes [65], initially introduced in the con-
text of string theory [66], for f (x) = 1− exp[−α(x − xH)]. Generically, we consider a metric
f (x) which is asymptotically flat limx→∞ f (x) = 1 and vanishes linearly as x approaches the
event horizon xH : f (x → x+H)≈ 2κc−2(x − xH) where κ is its surface gravity.

Anomalous fluctuations and Hawking radiation. We focus on the outgoing chiral flux of
particles of velocity vF = c. Their momentum energy tensor is given by Eqs. (8,23) with
Cw = Cg = 1. The two anomalous scales are deduced from Eqs. (18,24,25,):

ε(1)q =
ħhc

48π
∂ 2

x f ; ε(2)q =
ħhc

48π

�

∂ 2
x f −

(∂x f )2

2 f

�

. (38)

The corresponding thermal current, identical to the momentum, is deduced from Eqs. (27c,28),
with a temperature T (x) satisfying

k2
B T2(x) =

k2
B T2

H

f
+

6ħhc
π
ε(2)q , (39)

where we deduced T2
TE
= T2

H/ f (x) from Eq. (11) where TH is the asymptotic temperature at
x →∞.

In both the Israel-Hartle-Hawking and Unruh vacua, the momentum tensor for the outgo-
ing particles is regular at the horizon x = xH [67]. Therefore the divergence of Jε or T2(x) at
the horizon, induced by the vanishing of f (x → xH), has to be cancelled. The classical tem-
perature k2

B T2
H/ f always diverges at the horizon. On the other hand, the temperature (39)

corrected by anomalous fluctuations remains finite at the horizon, provided we counterbal-
ance the diverging classical temperature with the second contribution to ε(2)q in Eq.(38). This
amounts to imposing the condition

kB TH =
ħh

2πc
κ . (40)

The above reasoning demonstrates that anomalous fluctuations are essential close to the hori-
zon given that the associated energy ε(2)q corrects the spurious classical temperature diver-
gence. Moreover, this subtle interplay between classical thermal and quantum fluctuations is
at the origin of the asymptotic value of the temperature and energy variation. Quite remark-
ably, this implies that this radiation originates from these quantum fluctuations outside of the
horizon. Indeed, plugging (40) into Eq. (39), we find that T (x) and thus Jε,+ vanish at the
horizon [68], irrespective of the specific form of f (x). No thermal current exits from inside
the horizon. The asymptotic Hawking radiation JH =

π
12ħh k2

B T2
H = ħhκ

2/(48πc2) originates from
a region outside of the black hole’s horizon, its quantum atmosphere [28]. Let us now focus
more closely on this region of strong anomalous fluctuations outside of the black hole.

Quantum troposphere and stratosphere. In Fig. 2 we illustrate the behavior of the energy
density, pressure and energy current around the quantum atmosphere of a Schwarzschild black
hole by choosing the metric f (x) = 1− xH/x . The thermodynamic quantities are rescaled by
their asymptotic values εH =

1
2γT2

H and JH for x →∞. Between the horizon and x ' 4xH
the effects of quantum fluctuations lead to sizable departure of ε, p, Jε,Π from their classical
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values. This is the quantum atmosphere of the black hole which hosts strong quantum fluctu-
ations. Its extension depends on the specific black hole, corresponding to a choice of metric
f (x).

In the outer part of this atmosphere, anomalous corrections grow but the classical values
still dominate: in particular the energy density remains positive. We denote this region the
quantum stratosphere. Close to the horizon, irrespective of the choice of metric f (x), the
energy density ε(x) always becomes negative. Indeed, from the decay of the gravity with x , we
deduce that ∂ 2

x f (x)< 0, corresponding to a negative curvature R in (24) and thus a negative
scale ε(1)q in (38). Given that T (x) vanishes at the horizon, the energy density (27a) is negative

close enough to the black hole, with an asymptotic value ε = −p = (ħhc/96π)∂ 2
x f (xH) < 0.

This negative energy density is a hallmark of a region dominated by anomalous quantum
fluctuations: classical fluctuations satisfy a Stefan-Boltzmann law (9) with an energy density
always larger than that of the vacuum in flat spacetime ε > 0. We denote the region of
ε < 0, where thermodynamic quantities are dominated by anomalous quantum fluctuations,
the quantum troposphere.

Our analysis shows that the quantum atmosphere can be interpreted as the cradle of strong
anomalous quantum fluctuations. In the quantum troposphere, the gravitational anomalies
even dominate the thermodynamics. Signatures of such dominant quantum fluctuations are a
negative energy density and large relative ε−p compared to the average ε+p. In practice, the
amplitude of the Hawking temperature is of the order of a few 10−8K for the smallest observed
black holes [69], rendering the direct detection of these anomalous quantum phenomena elu-
sive in real black hole. In the remaining of this paper, we will use the anomalous Luttinger
equivalence that we derive to explore analogues of the black hole quantum atmosphere occur-
ring in situations where spacetime curvature is set by a temperature variations.

Before turning to these thermal analogues, let us briefly comment on historical references
of the description of these anomalous quantum fluctuations. The relation between the Hawk-
ing radiation and quantum anomalies in D = 1+ 1 was pioneered by Christensen and Fulling
who focused on the trace anomaly [25]. Robinson and Wilczek followed an alternative route by
considering the consequences of the Einstein anomaly on an effective chiral theory [26,70,71].
The associated modified equilibrium temperature (28) was first derived in Ref. [72] while its
relation to ballistic energy current (27c) through the Einstein anomaly was unnoticed. As we
showed in section 2.4, both anomalies should be treated on the same footing when considering
the effects of quantum fluctuations for a generic theory. The notion of quantum atmosphere
of the a black hole, beyond its horizon, and at the origin of the Hawking radiation was re-
cently discussed by Giddings [28] on CGHS black holes using conformal field theory techniques
within the tortoise coordinates representation of the momentum energy tensor. This analysis
was complemented in [27] by a general analysis of the Stefan-Boltzmann law accounting for
the anomalous Tolman-Ehrenfest temperature.

4 Ballistic thermal response theory

The initial Luttinger relation (4) between a temperature profile and a gravitational potential
has been instrumental in the description of thermal transport within linear response theory
[1]. Having extended the Luttinger relation to incorporate anomalous quantum contributions,
it is natural to explore its consequences on the linear and non-linear [73] response theory
of thermal transport. This is further motivated by concerns [74, 75] on the applicability of
a Green-Kubo approach of heat transport for large temperature gradients, questioning the
equivalence between temperature and gravitational analogs [76].

Our goal in this section is to show that the anomalous relation (32) allows to relate the
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out-of-equilibrium energy current of Dirac fermions in an inhomogeneous temperature profile
T (x) to the energy current of Dirac fermions in a curved spacetime at finite homogeneous
temperature. This curved spacetime is defined by a Luttinger metric of the form (3) with a
gravitational potential φan[T (x)] satisfying the anomalous relation (33).

Following this route, the out-of-equilibrium energy current is determined within linear
response theory in the small field φan. Because (33) is nonlinear, one may wonder to what
extent a perturbative response theory to linear order in φan can capture non-linear effects of
temperature gradients. This section addresses this question.

In the following, we consider a ballistic conductor: by definition, chiral particles are not
allowed to exchange energy with each other. Hence the energy density, current, pressure and
momentum decompose into contributions of these left and right movers: each chiral species
is considered independently from the other. For simplicity, we thus focus on a single chiral-
ity, e.g. right movers. Such a chiral conductor is realized either as a single component of a
ballistic non-chiral conductor, or the edge channel of a Chern insulator such as a quantum
Hall phase, represented in Fig. 1b. These right moving particles experience a local tempera-
ture T+(x). At equilibrium, T+(x) = T0, leading to a steady energy current and momentum
J (0)ε,+ = v2

FΠ
(0)
+ = c+

π
12ħh(kB T0)2.

To drive the system out-of-equilibrium, we typically heat one side of the conductor. Con-
sidering a conductor if size L extending from x = −L/2 to x = L/2, we set T (−L/2) = TL .
Allowing these energy carriers to exchange energy with a bath of phonons of the material, we
expect their temperature to be inhomogeneous:

T (x) = T0(1+ a x/L) , (41)

where the quantity a = L∂x T/T0 is typically set by the rate of energy exchange between
the carrier (electrons) and the phonons. This inhomogeneous temperature induces an excess
current Jε,+ − J (0)ε,+ that we study in lowest orders in a.

4.1 Kubo formula and gravitational anomalies

We start by demonstrating the equivalence between the expression (35) for the energy current
and that obtained by direct calculation within response theory linear in the gravitational po-
tential φ . Hence, we consider a D = 1+ 1 chiral Dirac Hamiltonian in curved space is given
by

H =
∫

dx eφ(x) ĥ+(x), (42)

where, in terms of second quantized fields Ψ+(x),Ψ
†
+(x), the Hamiltonian density operator is

ĥ+(x) = −
iħhvF

2
Ψ†
+(x)

↔
∂ xΨ+(x). (43)

where
↔
∂ x =

−→
∂x−
←−
∂x . From Eqs. (35), we learned that energy density and momentum operators

have to be treated separately when quantum fluctuations are accounted for. Indeed, the mo-

mentumΠ+ = −
iħh
2 〈Ψ

†
+

↔
∂ xΨ+〉=

1
vF
ε+ identifies with the energy current Jε,+ =

iħhvF
2 e−φ(x)〈Ψ†

+

↔
∂ tΨ+〉

only for classical fields satisfying the equation of motion.
For simplicity we focus on the momentum density which only involves the equal time

Green’s function:

Π+(x) =

∫

dkdq
(2π)2

eiqx
D

Ψ†
+,k− q

2
ħh kΨ+,k+ q

2

E

= −i

∫

dkdq
(2π)2

dω
2π

eiqxħh kG<
k+ q

2 ,k− q
2
(ω) (44)
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where the lesser green functions G< is defined by

G<k,k′(ω) = i

∫ ∞

0

dt eiωt〈Ψ†
+,k(0)Ψ+,k′(t)〉. (45)

Working in perturbation theory at first order in the gravitational potential φ(x), we expand
the Green function using the Dyson equation

G<k′,k(ω) =
�

G<0
�

k′,k

+

∫

dx ei(k−k′)xφ(x)
�

�

GR
0

�

k′,k′ hk′,k

�

G<0
�

k,k +
�

G<0
�

k′,k′ hk′,k

�

GA
0

�

k,k

�

(46)

expressed in terms of the retarded Green’s functions in flat spacetime

GR
k,k′(ω) = −i

∫ ∞

0

dt eiωt〈{Ψ†
k(0),Ψk′(t)}〉. (47)

the advanced Green’s function GA
k,k′(ω) = (G

R
k,k′(ω))

∗ and the lesser Green’s function (45).

The equilibrium energy current density, corresponding to the the term of 0th order in φ, is

Π
(0)
+ (x) = Π+ +

π

12ħhv2
F

k2
B T2

0 +O
�

(kB T0)
4
�

, (48)

where Π+ is the Fermi sea contribution to the momentum. We obtain a first order in φ correc-
tion to this momentum leading to the expression

Π+(x) = Π+ +
π

12ħhv2
F

k2
B T2

0 (1− 2φ) +
ħh

24π
∂ 2

x φ(x) +O
�

(kB T0)
4
�

. (49)

This expression identifies with (35b) to lowest order in φ and its derivatives. This demon-
strates that gravitational anomalies corrections to the expression of the energy current and
momentum are captured by a standard Kubo-Green expansion perturbative in the gravitational
potential φ.

4.2 From a temperature profile to an equivalent gravitational potential: non-
linear thermal conductivity

Having established the equivalence between the Eqs. (35) and standard linear in φ response
theory, we need to express these relations in terms of the temperature profile T (x). This aim
is achieved by solving the equation (32) perturbatively in a = L∂x T/T0 for the temperature
profile (41) (see Appendix D). We obtain a gravitational potential

φan[T (x)] = φLutt +δφ , (50)

where φLutt = ln(T0/T (x)) is the potential deduced from the standard Luttinger equivalence
(4), and δφ encodes the corrections induced by the gravitational anomalies:

δφ = a2
λ2

T0

2L2
− 2a3

λ2
T0

L2

x
L
+O(a4) . (51)

We now express the chiral energy current and momentum of chiral Dirac fermions in a tem-
perature profile T (x) using the expression (50,51) of the equivalent gravitational potential.
From Eqs. (35) they identify with v2

FΠ+/J0 = T2/T2
0+ε

(1)
q /(γT2

0 ); Jε,+/J0 = T2/T2
0−ε

(1)
q /(γT2

0 )
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with J0 = vFγT2
0 /2. The quantum anomalies corrections are encoded solely in ε(1)q . which in-

duce a modification of the the thermal current at non-linear order in the temperature gradient
a = L∂x T/T0. At this stage, we realize that δφ of Eq. (51) are at least of order (a/L)4. Hence,
to second order in the temperature gradient, we can indeed neglect the modification of this
gravitational potential due to the anomalous Luttinger relation. Inserting the bare Luttinger
potential φLutt in the expression (31) ε(1)q , we obtain the following expression for the current

Jε,+
J0
= 1+ 2x

∂x T
T0
+
�

x2 + 4λ2
T0

�

�

∂x T
T0

�2

+O
�

∂x T
T0

�3

, (52)

with a thermal lengthscale λT0
defined in (32) at the reference temperature T0.

This expression encodes the effects of the gravitational anomaly within a regime of small
thermal gradients. Note that it is non-linear in thermal gradient∇T/T0, although it originates
from an expression linear in φ and its derivative. This illustrates that linear response theory in
the gravitational potential φ can apply beyond the regime linear in ∇T/T0. In the remaining
section of this paper, we will focus on consequences of the quantum anomalies on transport
beyond this regime of small temperature gradient, far from equilibrium, where we expect their
effects to be even more pronounced.

5 Far from equilibrium energy transport

A quench procedure, in which external parameters controlling an equilibrium system are sud-
denly changed, allows to explore dynamics of quantum systems beyond the realm of linear
response theory. The rich possibilities offered by experiments using ultra-cold atoms have
triggered a recent interest in such an out-of-equilibrium dynamics [77].

In this section, we focus on the situation of a finite size quantum system connected to a
thermal bath, whose temperature is varied rapidly. In a standard partition procedure, two
halves of the conductor are maintained at different temperatures TR/L = T0 ∓ ∆T/2, see
Fig. 3(a). The corresponding external temperature profile T (x) maintains the conductor in
an out-of-equilibrium state. The temperature profile is then later released at t = 0: in the
equilibration process between different regions of the conductor, local heat currents appear.
Remarkably, an oscillating heat wave was observed in a pioneering numerical study on spin
chains [32], later described analytically [29,31].

In this section, we demonstrate that these oscillations, as well as an associated pressure
discontinuity at time t = 0, are measurable signatures of the gravitational and trace anoma-
lies. They originate from the energy density characterizing the steady out-of-equilibrium state
at time t < 0 which we describe first. In a later refinement of this quench physics, we con-
sider Floquet states generated by periodically imposing and releasing an external temperature
profile.

5.1 Anomalous Luttinger relation on a ring

5.1.1 From generalized Gibbs measure to curved spacetime

We consider a generic interacting gas on a ring of size L, described at low energy by a relativistic
Luttinger liquid [78–82]. For time t < 0, this system is spatially modulated either by a variation
of the interactions or by an external temperature. In the resulting inhomogeneous out-of-
equilibrium steady state, physical observables 〈O〉 are assumed to be described by statistical
averages with a generalized Gibbs measure

〈O〉= Tr O e−G

Tr e−G
; G =

∫ L

0

d x
1

kB T0ξ(x)
H(x) , (53)
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where H(x) is the Hamiltonian density and ξ(x) the parameter of the spatial modulation. It
is natural to expect that the local equilibrium temperature of the wire is set by

T (x)
?
=TTE(x) = ξ(x)T0 . (54)

However, we show below that this is not the case. To engineer a given temperature profile,
gravitational anomalies corrections have to be accounted for to determine the equivalent pro-
file ξ(x). Besides, our results demonstrates that equivalence between modulating the velocity
or the inverse temperature of relativistic excitations require some particular care.

To identify the local equilibrium temperature corresponding to the generalized Gibbs mea-
sure (53), we start by interpreting it as a Gibbs measure at constant temperature T0 but in
a curved spacetime with the metric2 (6) associated to the Luttinger gravitational potential
φLutt(x) = − lnξ(x):

G = 1
kB T0

∫ L

0

d x
Æ

f1H(x). (55)

We can now use our results of section 2.4: the equilibrium temperature T (x) in this curved
spacetime does not identify with the standard Tolman-Ehrenfest TTE(x): the difference is a
direct measure of the amplitude of the corrections due to the trace and gravitational anomalies.
More precisely, let us recall the relation (28): γT2(x) = γT2

TE
+ε(2)q where the quantum energy

scale

ε(2)q =
ħhvF

24π

�

−
∂ 2

x ξ

ξ
+
�

∂xξ

ξ

�2�

=
ħhvF

24π`2
T

. (56)

depends on the length `T which encodes the local variation of the metric:

`T (x) =
�

�∂ 2
x lnξ(x)

�

�

− 1
2 . (57)

The relative correction to the temperature is thus set by a ratio of lengths:

T2(x)
T2

TE(x)
= 1+

�

λT (x)
`T (x)

�2

. (58)

where the thermal length λT = ħhvF/(2πkB TTE(x)), see Eq. (32).
From Eqs. (34) we obtain the energy density and pressure3

ε =
1
2
(c+ + c−)

�

γT2 + ε(1)q

�

, (59)

p =
1
2
(c+ + c−)

�

γT2 − ε(1)q

�

. (60)

with the anomalous quantum scale

ε(1)q =
ħhvF

24π

�

−
∂ 2

x ξ

ξ
+ 2

�

∂xξ

ξ

�2�

=
ħhvF

24π

�

`−2
T + ˜̀−2

T

�

, (61)

whose amplitude is set by both the length `T from Eq. (57) and a second length scale parametriz-
ing temperature variations:

˜̀
T (x) =

�

�

�

�

ξ

∂xξ

�

�

�

�

. (62)

2We should be careful to express thermodynamic quantities in the laboratory frame when using the curved
spacetime representation.

3Here, and in the following, we neglect an additive finite size correction [83] εC = −πħhvF/(24L2) to both ε
and p. We consider situations where this correction is negligible with respect to ε(1)q ,ε(2)q .
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Similarly, the energy current and momentum densities read

Jε,± = ±
vF

2
c±
�

γT2 − ε(2)q

�

= ±c±

�

π

12ħh
(kB T0)

2ξ2 −
ħhv2

F

48π

�

∂xξ

ξ

�2�

, (63)

Π± = ±
1

2vF
c±
�

γT2 + ε(1)q

�

= ±c±

�

π

12ħhv2
F

(kB T0)
2ξ2 +

ħh
48π

�

3
�

∂xξ

ξ

�2

− 2
∂ 2

x ξ

ξ

��

. (64)
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Figure 3: Quantum corrections to the out-of-equilibrium steady state imposed by a
temperature jump. (a) Two halves of a close ring of non-interacting particles
(c+ = c− = 1) are set at two temperatures TR/L = T0∓∆T/2. (b) At the two contacts,
the temperature smoothly varies over a region of size δ. We consider a Fermi velocity
vF = 106m·s−1 typical for relativistic materials, a cryogenic temperature T0 = 100
mK and a small relative temperature jump∆T/T0 = 0.2. (c) and (d) for a size of the
contact region δ = 10 µm, the pressure, shown relative to its means value ε0 = γT2

0 ,
follows the classical law p = γT2. On the other hand the energy density ε(x) departs
from this classical law : the amplitude of the corresponding corrections, represented
by the shaded area, are set by a quantum energy scale ε(1)q . This energy scale origi-
nates from quantum fluctuations, at the origin of scale and gravitational anomalies,
or similar origin that that in the black hole’s atmosphere. In the present case the
curvature R of spacetime is set by the imposed temperature through the Luttinger
equivalence relation. (e) and (f) for a smaller size δ = 1 µm„ two quantum energy
scales ε(1)q and ε(2)q have to be distinguished. While (ε(1)q +ε

(2)
q )/2 still appears as the

amplitude of the oscillating corrections to ε, the difference ε(1)q −ε
(2)
q manifests itself

both in the asymmetry of these corrections around the temperature jump, as well as
a departure of the pressure from the classical law.

5.1.2 Inhomogeneous temperature

Let us evaluate the amplitude of the corrections by quantum fluctuations encoded in the trace
and gravitational anomalies by considering a non-chiral wire with central charges c+ = c− = 1,
maintained in an out-of-equilibrium state by a temperature profile T (x). This temperature is
constant in two regions with values TR/L = T0∓∆T/2, and smoothly interpolates over a length
δ between them, at positions x = 0, L/2 as displayed in Fig. 3(a). Although our approach
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applies to a generic temperature profile, for the sake of clarity we choose a profile:

T (x) = T0 −
∆T
2

tanh
�

L
2πδ

sin
�

2π
x
L

�

�

. (65)

Given this temperature profile, we identify the equivalent energy density modulation ξ(x)
by inverting numerically the relation (58). This functions ξ(x) is then used to calculate the
amplitudes of the quantum corrections ε(1)q and ε(2)q and the corresponding densities and cur-
rent. The results are shown on Fig. 3. We expect the gravitational anomalies to alter the
classical properties of the steady state in regions where λT (x) ® `T (x), i.e. close to the tem-
perature jumps for strong enough relative variation of this temperature. Therefore we focus
on the temperature jump around x = 0 of the temperature profile (65), as shown in Fig. 3(b).
For a steady state, Jε and Π vanish.

The parameters of Fig. 3 are motivated by relativistic electronic conductors. In graphene
[84], Carbon nanotubes [85] and Dirac and Weyl semimetals [86], the Fermi velocity of Dirac
particles is of the order vF ∼ 106 ms−1, yielding a thermal length λT0

× T0 ' 7.64 × 10−6 K
×m for a dilution refrigerator temperature of T0 = 100 mK. We choose a relative temperature
jump ∆ξ= 0.2. For smooth temperature jump over a length δ = 10µm, we obtain from (58)
∆ξ � 1: ˜̀

T (x) is very large and `T (x) � ˜̀
T (x). A single length scale `T (x) ' |ξ/∂ 2

x ξ|
1/2,

set by the Ricci scalar R, characterizes the anomalous fluctuations. Correspondingly, gravita-
tional anomaly corrections involve a single quantum energy scale ε(1)q ≈ ε

(2)
q ≈ −ħhvF/(24π`2

T ).
Both the pressure and the energy density display small departures from the classical law
ε = p = 1

2(c+ + c−)γT2, as shown in Fig. 3(d). The amplitude of this correction, symmet-
ric around the temperature jump, corresponding to the shaded area, is a direct measure of the
quantum correction ε(1)q set by the anomalies. For sharper temperature jump over δ = 1µm,
we observe that the corresponding Gibbs or Tolman-Ehrenfest temperature TTE(x) is much
smoother, as shown in Fig. 3(e). This illustrates that an inhomogeneous temperature induces
analog gravitational potentials that are smoother than those induced by variations of the ve-
locity, e.g. by varying interactions. Remarkably the energy density display some deep and
spike around the temperature jump, represented in Fig. 3(e), which are signatures of the
gravitational anomaly corrections. In that situation, the two lengthscales `Text

(x) and ˜̀
Text
(x)

slightly differ, corresponding to two different quantum energy scales ε(1)q and ε(2)q . However,

in practice, only ε(1)q leads to experimentally measurable corrections through the difference

ε − p = (c+ + c−)ε(1)q .

5.2 Temperature quench as a metric quench

In practice, maintaining a conductor in a steady out-of-equilibrium state is difficult and not
practical: it is often easier to study the dynamics following a corresponding quench. As we
show below, the dynamics reflects the quantum corrections to the initial steady state. Thus we
consider a situation where the the temperature profile (65) is imposed up to time t = 0, and
released afterwards.

The out-of-equilibrium dynamics occurs in a closed system, but a ballistic evolution forbids
exchange of energy between left and right movers. Given that the equilibrium temperature of
such a system is uniform, the Tolman-Ehrenfest equivalence implies that this dynamics occurs
in a flat spacetime, with vanishing curvatures R = 0 and R = 0. In this flat spacetime, ε = p
and v2

FΠ= Jε.
Following the extended Luttinger correspondence that we developed in section 5.1, the out-

of-equilibrium dynamics at time t > 0 can be viewed as resulting from a quench of the space-
time metric at t = 0 from the Luttinger metric to a flat metric. Continuity conditions on the
momentum energy tensor, derived in Appendix F, imply that both the energy density ε as well
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Figure 4: Quantum corrections to energy traveling waves imposed by a temperature
quench. (a) Two halves of a wire of non-interacting particles (c+ = c− = 1) with
Fermi velocity of vF = 106 ms−1 are set at two temperatures TR/L = T0 ±∆T/2 fol-
lowing the same protocol as in Fig. 3. The average temperature is T0 = 100mK,
and the ramp of temperature of amplitude ∆T = 20mK is imposed over a length
δ = 1µm. At time t = 0 this external temperature difference is released. Follow-
ing this quench, two traveling waves of energy appear. (b) The non-monotonous
behavior of the density of energy profile is a manifestation of the anomaly correc-
tions originating from quantum fluctuations of similar nature than close to a black
hole. The amplitude of the corrections, represented by the shaded area, is a di-
rect measure of the new quantum scale of energy ε(1)q ' ε(2)q set by gravitational
anomalies. In between the two waves, appears a region of homogeneous density
of energy ε̄ = 1

2γ(c+T2
L + c−T2

R ) = γ(T
2
0 + ∆T2). (c) and (d) This intermediate

region is not in equilibrium: it is crossed by right moving particles at tempera-
ture TL and left moving particles at temperature TR, leading to a steady current
J̄ε =

1
2γvF (c+T2

L − c−T2
R ) = 2γvF T0∆T and momentum Π̄ = v−2

F J̄ε. The oscillating
corrections to the momentum or energy current close to the interface between the
three regions, shown in (b) and (c) as shaded areas, are also an accessible manifes-
tation of corrections due to quantum fluctuations due to the trace and gravitational
anomalies, similarly to those at the vicinity of a black hole. In the present case they
originate from the local strong curvature of the effective spacetime accounting, fol-
lowing Luttinger equivalence, for the temperature variation.

as the momentum Π are continuous during this quench of metric: ε(t = 0+) = ε(t = 0−) and
Π±(t = 0+) = Π±(t = 0−). On the other hand the energy current density is discontinuous, with
Jε±(t = 0+)− Jε±(t = 0−) = c±vFε

(1)
q resulting in a pressure discontinuity ∆p = (c+ + c−)ε(1)q ,

where ε(1)q is set by (61).
Given that low-energy excitations of our system evolve ballistically, we obtain for time

t > 0 Jε±(x , t) = v2
FΠ±(x , t) = v2

FΠ±(x ∓ vF t, 0+) where the momenta at t = 0+ are defined
in (64). The resulting energy density and momentum are represented in Fig. 4 for the same
parameters than Fig. 3(e) and (f). The quantum corrections characterizing the energy density
and pressure of the steady state at t < 0 now manifests themselves as traveling waves of energy
after the quench, as shown in Fig. 4(a) and (b). In between the two traveling waves emerges
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a region of homogeneous density of energy

ε̄ =
1
2
γ
�

c+T2
L + c−T2

R

�

= γ
�

T2
0 +∆T2/4

�

, (66)

where the average temperature T0 is defined in Fig. 3(b). In this region, right moving particles
carry an energy density 1

2 c+γT2
L while left moving particles carry an energy density 1

2 c−γT2
R

, resulting in a steady-state value of the current J̄ε =
1
2γvF (c+T2

L − c−T2
R ) = 2γvF T0∆T and

momentum Π̄= v−2
F J̄ε. This expression agrees with the pioneering study on interacting chains

[32] and [49] as well as a Landauer-Büttiker approach for non-interacting fermions [87].
The traveling waves of energy, shown in Fig. 4(a) and (b), reflect as traveling waves of mo-

mentum shown in Fig. 4(c) and (d). The amplitudes of the quantum corrections, represented
as the shaded area, is equal to that of the energy density before the quench, shown in Fig. 3:
it is set by (ε(1)q +ε

(2)
q )/2 where the two scales are defined in (61,56). The asymmetry of these

corrections around the wave front is set by ε(1)q − ε
(2)
q .

These results, which we derived from gravitational anomaly corrections in a curved space-
time as well as continuity conditions following a metric quench, were previously derived us-
ing series expansions and conformal field theory techniques in [29, 31]. The presence of a
Schwarzian derivative in the expression for the density of energy and energy current can in-
deed be traced back to a manifestation of the trace anomaly identified in the present paper.
Through the (extended) Luttinger equivalence, a thermal quench can be treated as a quench
of metric which appears seemingly identical to a quench imposed by the release of an ex-
ternal confining potential considered in [88]. In both case, anomalies capture the quantum
corrections induced by large spacetime curvatures.

5.3 Spacetime periodic modulation : Floquet states

In this section, building on the above study of single thermal quench, we explore how anoma-
lous quantum fluctuations appear on periodic sequences of quantum quenches. While periodic
thermal quenches realize the same physics, for technical reasons we follow the protocol re-
cently proposed in [35–38] by implementing directly a quench of metric ξ(x), see Eq. (53).
This choice allows to bypass the numerical determination of a metric equivalent to a thermal
profile as done in section 5.1. By interpreting time-periodic, or Floquet, change in the spatial
dependence of the system’s parameters as metric quench (Fig. 5(a)), we highlight the role
that gravitational and trace anomalies play in the phenomenology of the resulting Floquet
conformal field theories [33,34].

The peculiarity of Floquet conformal field theories relies on the striking, but analytic, ther-
malization properties [35–38] occurring when periodically modulating the system between
two inhomogeneous states. This two-step periodic drive is obtained when the dynamics of
particles on a circle of size L is alternatively described by a uniform and an inhomogeneous
Hamiltonian:

H =
∫ L

0

d x
1

ξ(x , t)
h0(x), (67)

where

ξ(x , t) =

¨

ξ(x) for t ∈ [0, t1]
1 for t ∈ [t1, t1 + t2 ≡ tp],

(68)

where tp is the period. While initially ξ(x) was chosen to be an inverse sine squared de-
formation ξ−1(x) = 2 sin2(πx/L) [33, 34], we consider more general profiles in the follow-
ing [37, 38]. For concreteness the results of Fig. 5 are obtained for a profile deduced from a
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Figure 5: Floquet heating state. (a) and (b) We consider a ring of free relativis-
tic fermions with a spatially modulated velocity ξ(x)vF = 1. The modulation ξ(x)
is periodic in time with a period tp = t1 + t2, such that (i) during time t1 set to
the smooth profile shown in (a), and (ii) during time t2 no modulation is applied
and ξ(x) = 1,∀x . The two times Lt1/vF = 0.1 and Lt2/vF = 0.45, are chosen
such that the period coincides with the time of flight of particles around the ring:
L = vF t1 + ṽF t2 where ṽF is the averaged effective velocity over the profile ξ(x).
(c) and (d) As a function of time, both the energy density ε and the momentum
Π become highly inhomogeneous, and concentrate on a few trajectories. They are
represented rescaled by the classical values ε0 = vFΠ0 = γT2

0 . The energy and mo-
mentum profiles are represented after two and four periods in panels (f) and (g),
illustrating the localization mechanism. (e) Besides being focused spatially, the net
energy of the ring Etot =

∫ L
0 ε d x = Lε̄ increases: the Floquet state is heating. This

is represented by monitoring the stroboscopic dynamics at times tn = ntp of the
ring for which Etot increases exponentially. Remarkably the rate of increase of this
energy is not classical: quantum fluctuations, responsible for the trace and gravi-
tational anomaly corrections, have a growing energy. The two focusing trajectories
behave as heating black holes: in their neighborhood the energy density becomes
negative, as shown in the inset of panel (f). This is an additional manifestation of
the effects of quantum fluctuations induced by a local large curvature similar to those
in a black-hole atmosphere.

simple metric proposed in [37]:

ξ(x) = 1+
1
3

sin
�

4πx
L

�

+
1
3

cos
�

2πx
L

�

, (69)
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represented in Figs. 5(a) and (b). Note that such a profile is slowly varying, and does not yield
abrupt changes of metric: we do not expect the type of anomalous corrections due to quantum
fluctuations discussed in the previous section after a single quench. Yet, we will see that the
succession of such quenches leads to manifestations of the gravitational anomaly.

For a period tp comparable with the time of flight for particles across the system, two
distinct dynamical phases are reached at long-time depending on the relative magnitudes
t2/t1 [35, 36]. A heating and non-heating phases are characterized by the evolution of the
total energy Etot = Lε̄ of the closed system, which either grows exponentially or oscillates.
Furthermore in the heating phase the energy density becomes highly inhomogeneous, localiz-
ing exponentially around a few spatial fixed points [35,36]. First, following the discussion in
Sec. 5.1, we realize that the periodic modulation of energy density of Eq. (68) can be realized
by a periodic sequence of thermal quenches, with a profile T (x) obtained by solving Eq. (58),
provided this profile is always positive. Let us now notice that the Floquet drive Eq. (68)
enforces a time-periodic quenches of a metric (5) with f2(x , t) = 1 and

f1(x , t) =

¨

1 for t ∈ 0< t < t1

1/ξ2(x) for t ∈ t1 < t < tp
(70)

Proceeding as in the single quench of the previous section, we solve the time-evolution of the
energy momentum tensor stepwise, and apply suitable continuity equation. In doing so we
access the energy and momentum density which are plotted in Fig 5(c) and (d), respectively,
up to t = 4tp. Three stroboscopic times are shown in Figs. 5(f) and (g). In these plots, the
Hamiltonian H0 was chosen as that of free Dirac fermions, with the duration of the two steps
of metric chosen such that Lt1/vF = 0.1 and Lt2/vF = 0.45. Note that during step 2, the
average velocity v̄F is defined as 1/v̄F =

∫ L
0 d x/v(x) =

∫ L
0 d xξ(x)/vF such that the time of

flight across the circle of the particles is exactly one period: L = vF t1+ v̄F t2, corresponding to
the conditions to realise a heating phase [35,37] .

Focusing on the heating phase, we show that several of its features are manifestations of
quantum fluctuations and can be traced back to gravitational anomalies. Indeed the gravita-
tional anomaly contributes to the exponential growth of the average energy density. To show
this we plot the total energy density Etot = ε̄L at stroboscopic times in Fig. 5(e), extracted
from Fig. 5(c). Plotted in Log scale, it shows a clear linear trend as a function of time. To
highlight the contribution of the gravitational anomaly, in Fig. 5(e) we have separated two
contributions: that arising from the classical Tolman-Ehrenfest temperature, and that directly
linked to the gravitational anomaly. We observe that both have the same order of magnitude
at large times.

A second signature of the gravitational anomaly is apparent in the spatial profile of the
energy density, shown in Fig. 5(f) for stroboscopic times. The inset shows that the energy den-
sity can be locally negative, while satisfying that the total energy is always positive (Fig. 5(e)).
Without quantum effects, the classical Tolman-Ehrenfest contribution ε > 0 for all x . This can
be seen by noting that without the anomalous contribution ε(1)q to (27a) the energy density is
always positive for all x . However, in Fig. 5(f) we see that this is not the case, a clear manifes-
tation of the gravitational and scale anomaly, reminiscent of the negative energy density close
to the horizon of a black hole, as shown in Fig. 2.

We expect this relation between quantum properties of black holes and Floquet heating
states to be generic. Indeed, the authors of Ref. [36] noted the relation between the effective
metric of a sine squared Floquet CFT and that of two black holes at the accumulation points.
This is in agreement with the manifestation of the trace and gravitational anomalies that we
identified, and in particular with the negative density of energy close to these accumulation
points, reminiscent of the black hole atmosphere.
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6 Discussion

Let us start this discussion by commenting the conditions of application of our approach. Cru-
cially, the notion of local temperature T (x) requires some local energy relaxation, on scales
smaller that the characteristic scales of variations of T (x). In the context of the black hole,
discussed in section 3, this local equilibration is assumed to occur locally, on a scale smaller
that the curvature radius

p
R from (18). While close to the black hole only the outgoing

flux of Hawking’s radiation need to be locally equilibrated, in the condensed matter exam-
ples of sections 4 and 5, we have assumed a single local temperature T (x) common to left
and right moving excitations, while still describing their motion as ballistic. This corresponds
to a situation where the forward inelastic scattering occurs on scales much smaller that the
backscattering between left and right movers, effectively neglected in this paper. This imposes
a condition on the scattering potential, whose 2kF components should be negligeable com-
pared to the q ' 0 components. In more detail, denoting by ` f and `b the forward and back
scattering lengths, a sufficient condition for the excitations to be at a local thermal equilibrium
amounts to consider a small enough thermal gradient satisfying ` f � l̃T � `b in terms of the
length l̃Tex t

defined in (62). In practice, in a system with a fixed velocity vF temperature T
and scattering time τ, and size L our theory will apply if the temperature difference between
both end of the system satisfies ∆T

T̄ �
L

vFτint ra
. The situation where left and right movers are

equilibrated at two different temperatures amounts to introduce a chiral temperature and thus
a chiral metric, which goes beyond the scope of the present paper and will be presented in a
forthcoming work.

Probing experimentally the quench dynamics described in section 5 requires monitoring in
time a local temperature which remains challenging. Such heat waves can be addressed within
Pump-Probe microscopy measurements, which consists in heating locally a material with a e.g.
a laser pulse and unveiling the resulting heat dynamics by measuring the diffusion of a probe
laser signal, see e.g. [89,90]). In the case of weak electron-phonon couplings, the dynamics of
the electronic-excitation will be approximatively described by a quench procedure analogous
to that of sec. 5.

In this work we have discussed that observable imprints on the thermal current and en-
ergy densities of anomalous quantum fluctuations at the origin of gravitational anomalies in
field theory. These imprints manifest naturally in curved spacetime, such as the neighbor-
hood of black-holes. However, extending Luttinger’s correspondence beyond the realm of
perturbative response theory, we have shown how they emerge, as naturally, in a flat space-
time when subjected to a single or periodic temperature quenches. The reason is that the
equilibrium temperature profile in all the above situations can be phrased as an anomalous
Tolman-Ehrenfest temperature, an equilibrium temperature profile that upgrades the classical
result by Tolman and Ehrenfest by incorporating the quantum energy scales originating from
gravitational anomalies. By using the anomalous Tolman-Ehrenfest temperature we were able
to derive a modified Luttinger relation equivalence between strongly curved spacetime and
large temperature variations. Within the realm of response theory, the historical playground
for the Luttinger equivalence, we showed that the relation between thermal and gravitational
field gradients becomes non-linear when thermal gradients vary too strongly. This leads to
new contributions to non-linear thermal conductivities.

It is important to stress that our results are not specific to 1+1 dimensional systems. The
anomalous Tolman-Ehrenfest temperature can be defined in any dimension (see Appendix C).
However, the case 1+1 dimensions is special, as gravitational anomalies alone specify the
energy-momentum tensor. In higher dimensions the energy-momentum tensor is not suffi-
ciently constrained by the gravitational anomalies. Additional requirements from e.g., sym-
metries of the problem, have to be analyzed in a case to case basis [91] and deserve a separate
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study.
Beyond response theory, our work provides further insight on a variety of questions. For

example, the precise connection between anomalies, the Luttinger relation and the magneto-
thermal transport in Weyl semimetals was a matter of debate [10, 11]. Specifically, it was so
far unclear what was the relation between the Luttinger trick, and the gravitational anomaly
contribution to thermal transport. Our work clarifies the situation by exemplifying how the
T2 contribution to the thermal current, induced by the gravitational anomaly, coincides with
the anomalous Tolman-Ehrenfest temperature.

Additionally, our work shows how the role played by anomalous fluctuations induced by
spacetime curvature was overlooked in a variety of physical situations. Notably, this includes
periodic space-dependent shaping of interactions in closed 1D systems [35–38]. More gen-
erally, the mapping between space dependent quenching of the Hamiltonian parameters and
thermal quenches that we identify and exploit in this work, serves as a systematic way to find
new situations where gravitational anomalies play a role in flat-spacetime. In this work we
have discussed a thermal quench and Floquet conformal field theories, but we expect quite
generally that any system with sufficiently strongly varying temperature or parameter profiles
will display properties of anomalous fluctuations similar to those inside a black hole’s quan-
tum atmosphere. This open new perspectives to experimentally test signatures of gravitational
anomalies, and study Hawking radiation in a controlled environment.

Indeed, the largest Hawking temperature of the smallest astrophysical black holes are typ-
ically in the 50nK range: their anomalous thermal properties are difficult to detect. To ob-
serve black hole related phenomena, it is often appealing to resort to acoustic [69, 92–94],
optical [95] or quantum fluid [96] black-hole analogues. Using of the extended Luttinger
equivalence our work points to a new class of less obvious candidate systems. In the main
text we discussed Floquet thermal drives, whose timescales suggest they could be realizable
in ultra-cold atomic experiments [36,97] or in quantum wires heated by laser pulses.
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A momentum energy tensor and gravitational anomalies

In 1977, Christensen and Fulling [25] computed the stationary momentum energy tensor for
both a 3+1 and a 1+1 dimensional Schwarzschild black hole. In this section, we show how
their method allows to determine the stationary momentum energy tensor of a chiral field in
any background 1+1 dimensional static metric. We highlight consequences of gravitational
anomalies on these results.
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A.1 Gravitational anomalies

Focusing on a symmetric momentum energy tensor, the energy conservation of chiral fields, in
the presence of a background metric, can be written (see also Eq. (19)) as

∇µT µν = Cg
ħhvF

96π
1

q
�

�det
�

gρσ
��

�

ενµ∇µR, (71)

where R represents the Ricci scalar curvature, εµν is the totally antisymmetric tensor with
ε01 = 1, and Cg is the gravitational anomaly coefficient

Cg =
∑

χc (72)

with c the central charge and χ the chirality. In other words, this corresponds to Cg = c+− c−,
as defined in (16). This coefficient needs to be distinguished from the Weyl anomaly coefficient
Cw =

∑

c = c+ + c− defined in (16). A simple proof of the formula (71) is derived in [21] for
free chiral fermions with Cg = +1 and Cg = −1.

A.2 Background metric properties

As mentioned in the main text, for convenience we will focus on the case of a diagonal, static
metric given by

ds2 = f1(x)v
2
F dt2 − f2(x)dx2. (73)

Even though in two dimension and for any 1+1 dimensional manifold, there exist global co-
ordinates in which the metric is of the form

ds2 = Ω(x , t)2
�

v2
F dt2 − dx2

�

, (74)

we will stick to the diagonal metric (73), convenient to express the results in the original
laboratory coordinates.

In the metric (73), the non zero Christoffel symbols
�

ν

ρµ

�

=
1
2

gνσ
�

∂ρ gσµ + ∂µgρσ − ∂ρ gρµ
�

, (75)

are
�

0
x0

�

=

�

0
0x

�

=
1
2
∂x f1

f1
,

�

x
00

�

=
1
2
∂x f1

f2
,

�

x
x x

�

=
1
2
∂x f2

f2
.

(76)

The corresponding non-zero Riemann tensor coefficients

Rµνρσ = ∂ρ

�

µ

νσ

�

− ∂σ

�

µ

νρ

�

+

�

λ

νσ

��

µ

λρ

�

−
�

λ

νρ

��

µ

λσ

�

(77)

are

R0
x0x = −R0

x x0 (78)

= −
1
2

�

∂ 2
x f1
f1
−

1
2

�

∂x f1
f1

�2

−
1
2
∂x f1

f1

∂x f2
f2

�

,
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Rx
0x0 = −Rx

00x (79)

=
1
2

�

∂ 2
x f1
f2
−

1
2
(∂x f1)

2

f1 f2
−

1
2
(∂x f1) (∂x f2)

f 2
2

�

.

Hence the curvature Ricci scalar reads

R= gρνRµνµρ

=
∂ 2

x f1
f1 f2

−
1
2
∂x f1
f1 f2

�

∂x f1
f1
+
∂x f2

f2

�

. (80)

A.3 Momentum energy tensor

Let us now consider the conservation equation (71) in this curved spacetime. Considering the
stationary solution (∂0Tµν = 0), we rewrite the two equations (for ν= 0, x) in the coordinates
(73) as

∂xT x
0 +

1
2
∂x f2

f2
T x

0 −
1
2
∂x f1

f2
T 0

x = Cg
ħhvF

96π

√

√ f1
f2
∂xR, (81)

∂xT x
x +

1
2
∂x f1

f1
T x

x −
1
2
∂x f1

f1
T 0

0 = 0. (82)

Using the symmetry properties Tµν = Tνµ, expressed as

T 0
x = −

f2
f1
T x

0 (83)

and, the trace anomalies in 1+1 dimension, relating the trace of the energy momentum tensor
to the spacetime geometry for conformal theories in 1+1 dimensions

T αα = T 0
0 + T x

x = Cw
ħhvF

48π
R, (84)

we simplify (81,82) into

∂x

�
Æ

f1 f2T x
0

�

= Cg
ħhvF

96π
f1∂xR, (85a)

∂x

�

f1T x
x

�

= Cw
ħhvF

96π
R∂x f1. (85b)

These equations imply that the most general momentum energy tensor is

T µν =
�

Tµν
�

0 +
�

Tµν
�

an , (86)

�

T µν
�

0 =





C0
f1

C1p
f1 f2

− f2
f1

C1p
f1 f2

− C0
f1



 , (87)

�

T µν
�

an =
ħhvF

96π





Cw

�

2R− 1
f1

∫

dxR∂x f1
�

Cg

r

f1
f2

�

R− 1
f1

∫

dxR∂x f1
�

−Cg

r

f2
f1

�

R− 1
f1

∫

dxR∂x f1
�

Cw
1
f1

∫

dxR∂x f1



 , (88)

with C0 and C1 two constants to be fixed by boundary conditions.
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B Dirac fermions in d = 1+ 1 curved spacetime

Although our considerations in the main text are applicable to any 1+1 dimensional confor-
mal field theory, straightforward realizations of 1+1 dimensional fields appearing in the edge
modes of 2+1 dimensional topological insulators or in Luttinger liquids are described by a
free, massless Dirac Hamiltonian. Therefore, it is worth considering this case in more detail.

B.1 Lagrangian

We consider a curved spacetime of metric

ds2 = f1(x)dt2 − f2(x)dx2. (89)

The Lagrangian describing Dirac fermions in curved spacetime is given by

Lg =
iħhvF

2
eµa (x)

�

ψ̄γa
↔
∂ µψ

�

, (90)

with the associated action

Sg =

∫

dx2 det
�

ea
µ

�

Lg (91)

where ψ is a Dirac spinor, ψ̄ = ψ†γ0, eµa denotes the zweibein defined by eµa gµνeνb = ηab,
eµa eb

µ = δ
b
a , and eµa ea

ν = δ
µ
ν . In this symmetrized version of the Lagrangian, the spinor connec-

tion

ωa
bµ = ea

ν∇µeνb = ea
ν

�

∂µeνb +

�

ν

ρµ

�

eρb

�

(92)

does not appear.
An equivalent action (up to a boundary term) is obtained by an integration by parts:

L̃g = iħhvFψ̄γ
a
�

eµa (x)∂µ +
1

2det (e)
∂µ
�

eµa det (e)
�

�

ψ , (93)

restoring the dependence in the spinor connection since

L̃g = iħhvFψ̄γ
aeµa (x)

�

∂µ +Ωµ
�

ψ , (94)

Ωµ =
1
8
ωabµ

�

γa,γb
�

, (95)

where in 1+1 dimensions

γaeµa Ωµ =
1

2det (e)
∂µ
�

eµa det (e)
�

(96)

In the case of the metric (89), the above action simplifies into

Sg =
iħhvF

2

∫

dx2
�

p

f2
vF
ψ†
↔
∂ tψ+

Æ

f1

�

ψ†γ0γx
↔
∂ xψ

��

. (97)

B.2 Hamiltonian

The conjugate momentum associated to ψ and ψ† is defined, respectively, by

π† =
δS
δ∂0ψ

=
iħhvF

2
det(e)ψ†γ0γae0

a, (98)
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π=
δS
δ∂0ψ†

= −
iħhvF

2
det(e)γ0γae0

aψ. (99)

The Hamiltonian density is therefore defined by

H(x) = π†∂0ψ+ ∂0ψ
†π− det(e)L

= −det(e)
iħhvF

2
ex

a

�

ψ̄γa
↔
∂ xψ

�

.
(100)

For the above metric, we thus get a momentum operator

π† =
iħhvF

2

Æ

f2ψ
†, π= −

iħhvF

2

Æ

f2ψ, (101)

and a Hamiltonian density

H(x) = −
Æ

f1
iħhvF

2

�

ψ†γ0γx
↔
∂ xψ

�

. (102)

B.3 Scalar product and density

In a curved spacetime, the scalar product between two spinors φ and ψ is defined through

〈φ|ψ〉=
∫

dx det
�

ea
µ

�

φ̄ e0
aγ

aψ, (103)

where e0
aγ

a is the curved spacetime matrix γµ=0. From the total number of particles expressed

as the scalar product 〈ψ|ψ〉, we deduce the particle density at position x , n(x) = det
�

ea
µ

�

ψ†γ0e0
aγ

aψ,
which reads for our metric

n(x) =
Æ

f2 ψ
†ψ. (104)

B.4 momentum energy tensor

B.4.1 Symmetrized version

The momentum energy tensor is defined as

Tµν =
1

2det(e)

�

δS

δeµa
eνa +µ↔ ν

�

. (105)

From the Dirac action (91), we obtain

Tµν =
iħhvF

4

�

eνa(x)
�

ψ̄γa
↔
∂ µψ

�

+µ↔ ν

�

− gµν

�

iħhvF

2
eρb (x)

�

ψ̄γb
↔
∂ ρψ

��

. (106)

Four our specific metric (89), this reduces to

det(e)T 0
0 = −

Æ

f1
iħhvF

2

�

ψ†γ0γx
↔
∂ xψ

�

≡H(x), (107)

det(e)T 0x = det(e)T x0

=
iħhvF

4

�

1

vF
p

f1

�

ψ†γ0γx
↔
∂ tψ

�

−
1
p

f2

�

ψ†
↔
∂ xψ

�

�

, (108)

det(e)T 1
1 = −

Æ

f2
iħh
2

�

ψ†
↔
∂ tψ

�

. (109)
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B.4.2 Non-symmetric version

A non-symmetric version of this tensor, obtained by varying the action with respect to the
tetrad while keeping the spinor connection fixed, is defined as

T µa = −
1

det(e)
δS
δea
µ

=
iħhvF

2
eρa eµb

�

ψ̄γb
↔
∂ ρψ

�

− eµa

�

iħhvF

2
eρb (x)

�

ψ̄γb
↔
∂ ρψ

��

. (110)

Alternatively, we can use the related quantities

T a
µ =

1
det(e)

δS

δeµa
≡ ea

ρT
ρ

beb
µ. (111)

When working in curved space, it is often useful to express the non-symmetric version of the
momentum energy tensor with only curved spacetime indices, corresponding to

T̃ µν = T µaea
ν, (112)

from which we deduce the expression of the energy, the density of current of energy, etc. Note
that the symmetrized version (105) can be recovered as

Tµν = T̃µν + T̃νµ. (113)

For our metric (89) we obtain :

det(e)T̃ 0
0 = −

Æ

f1
iħhvF

2

�

ψ†γ0γx
↔
∂ xψ

�

, (114)

det(e)T̃ 1
0 =

Æ

f1
iħhvF

2

�

ψ†γ0γx
↔
∂ 0ψ

�

, (115)

det(e)T̃ 0
1 =

Æ

f2
iħhvF

2

�

ψ†
↔
∂ xψ

�

, (116)

det(e)T̃ 1
1 = −

Æ

f2
iħhvF

2

�

ψ†
↔
∂ 0ψ

�

. (117)

While this tensor may no longer look symmetric, its averages on-shell are indeed symmetric
(i.e. for fields satisfying the equation of motion).

The operators for the density energy, momentum, energy current and pressure are there-
fore

ε = T̃ 0
0 = −

1
p

f2

iħhvF

2

�

ψ†γ0γx
↔
∂ xψ

�

, (118)

Jε = vF det(e)T̃ 10 =
1
p

f1

iħhv2
F

2

�

ψ†γ0γx
↔
∂ 0ψ

�

, (119)

Π=
1
vF

det(e)T̃ 01 = −
1
p

f2

iħh
2

�

ψ†
↔
∂ xψ

�

, (120)

p = −T̃ 1
1 =

1
p

f1

iħhvF

2

�

ψ†
↔
∂ 0ψ

�

. (121)
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C Trace anomaly and thermodynamics in d+1 dimensions

In this appendix, we consider the consequences of a non-vanishing energy momentum trace
on the thermodynamics of an isotropic medium with a single radiative pressure p.

From the thermodynamic relation dE = T dS − pdV , we deduce the relation between
densities

ε =
dE
dV

�

�

�

�

T
= T

dS
dV

�

�

�

�

V
− p ⇒ ε + p = T

dS
dV

�

�

�

�

T
= T

dp
dT

�

�

�

�

V
. (122)

In d+1 dimensions, the trace of the momentum energy tensor T µµ is expressed in terms of the
energy density ε and pressure p as ε = d p+ T µµ. In 1+ 1 dimension, this trace is defined in
(17) in terms of an energy density ε(1)q of (24) as T µµ = Cwε

(1)
q . Combining this relation with

(122), we get

(d + 1)p+ T µµ = T
dp
dT

�

�

�

�

V
. (123)

Given that T µµ is independent on temperature, by integration of the above equation, we get

p = λ T d+1 −
1

d + 1
T µµ (124)

ε = λd T d+1 +
1

d + 1
T µµ (125)

These relations identify with the equations (27) for d = 1.
Let us now consider the entropy of the system, defined as S = (E + F)/(T V ) = (ε + p)/T .

From Eqs. (124,125) we get

S = λ(d + 1)T d (126)

= λ(d + 1)
�

ε

λd
−

1
λd(d + 1)

T µµ
�

d
d+1

(127)

Temperature and entropy are related through the relation T−1 = dS/dε. Indeed, we check
that the temperature entering the relations (124,125) satisfy this equality:

dS
dε
=
�

ε

λd
−

1
λd(d + 1)

T µµ
�− 1

d+1

=
1
T

. (128)

Specifying these relations to d = 1, from the equations (27a,27b), the entropy reads

S = (ε+p)/T = 2γT = 2
Ç

γ(ε − ε(1)q ). From this, we check that dS/dε =
Ç

γ/(ε − ε(1)q ) = 1/T .
This shows that whenever a temperature can be defined through the relations (124,125), it
can be associated to a standard thermodynamics with a positive entropy. In the present pa-
per, from the relation (28) it corresponds to the condition γT2

TE
> −ε(2)q . The fate of a system

escaping this condition goes beyond the scope of the present paper.

D Explicit solution of the anomalous Luttinger equivalence

In this appendix, we show how to identify a generic solution of eq. (32).
We consider the bulk of a thermal conductor, away from boundaries, where we assume the

local temperature to vary as T (x) = T0(1+a τ(x)). In a region of size L, settingτ(±L/2) = ±1/2,
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we get T0 = (TL + TR)/2, a = 2(TR − TL)/(TR + TL) where TL = T (−L/2), TR = T (+L/2). We
will derive the energy current perturbatively in the parameter a. First, this amounts to identify
the gravitational potential φ equivalent to this temperature profile, which satisfy

T2(x)
T2

0

= e−2φ(x) +λ2
T0
∂ 2

x φ(x) , (129)

with a thermal lengthscale λT0
= ħhvF

2πkB T0
.

A generic solution φ(x) =
∑∞

n=0 anφ(n)(x) of eq. (129) satisfies

φ(n)(x) = an sinh

�

p
2

x
λT0

�

+ bn cosh

�

p
2

x
λT0

�

+
1

p
2λT0

∫ x

0

sinh

�

p
2

x − x ′

λT0

�

α(n)(x ′)d x ′ . (130)

With α(n) a source term which is set by τ(x) and the lower orders φ(m) with m< n.
Let us focus on linear temperature profile, for which τ(x) = x/L, such as a ≡ L∂x T/T0. From
(130) we get

φ(1)(x) =

�

a1 +
λT0p

2L

�

sinh

�

p
2

x
λT0

�

+ b1 cosh

�

p
2

x
λT0

�

−
x
L

. (131)

Imposing a finite gravitational potential in the thermodynamic limit L� λT0
sets a1 = −λT0

/(
p

2L)
and b1 = 0, leading to φ(1)(x) = − x/L. Recursively, we get

φ(1)(x) = −
x
L

, (132)

φ(2)(x) =
1

2L2

�

x2 +λ2
T0

�

, (133)

φ(3)(x) =
1
L3

�

−
1
3

x3 − 2xλ2
T0

�

, (134)

φ(4)(x) =
1

4L4

�

x4 + 20x2λ2
T0
+ 21λ4

T0

�

, (135)

which corresponds to φ(x) = φLutt+δφ where φLutt = − ln(T0/T (x)) is the potential deduced
from the standard Luttinger equivalence, and δφ encodes the modifications of this equivalent
potential induced by the gravitational anomalies, corresponding to the last term on eq. (129):

δφ =
a2

2L2
λ2

T0
− 2

a3

L2
xλ2

T0
+

a4

4L4

�

20x2λ2
T0
+ 21λ4

T0

�

+O(a5) . (136)

E Gravitational anomaly and linear response

E.1 Momentum operator in a static gravitational potential

Here we compute the current in a system at a reference temperature T0 > 0, in the curved
space described by the Luttinger metric, for a simple Hamiltonian density in real space

ĥ= −iħhvF

←−
∂x +

−→
∂x

2
. (137)
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The D = 1+ 1 Dirac Hamiltonian in curved space is given by

H =
∫

dx eφ(x) h(x), (138)

where

h(x) = −iħhvF Ψ
†(x)
←−
∂x +

−→
∂x

2
Ψ(x). (139)

The expression of the momentum operator is then deduced from Eq. (120) with f2 = 1,
Π̂= ĥ/vF , expressed in Fourier components as:

Π̂(x) =

∫

dkdq
(2π)2

eiqxΨ†
k− q

2
Π̂k− q

2 ,k+ q
2
Ψk+ q

2
, (140)

with,
Π̂k− q

2 ,k+ q
2
= ħhk . (141)

E.2 Average Momentum

The average momentum at zero temperature can be computed equation from eqs. (140) and
(141) as

Π(x) = 〈Π̂(x)〉= −i

∫

dkdq
(2π)2

dω
2π

eiqx Π̂k− q
2 ,k+ q

2
G<

k+ q
2 ,k− q

2
(ω), (142)

where the lesser Green’s functions g< and G< are defined (for t > 0) by

g<k−q,k+q(t) = iΘ(t)
¬

Ψ†
k−q(0)Ψk+q(t)

¶

, (143)

and

G<k−q,k+q(ω) =

∫

dt eiωt g<k−q,k+q(t) . (144)

This lesser Green’s function is related to the retarded one, defined as

gR
p,q(t) = −iΘ(t)

¬¦

Ψ†
q(0),Ψp(t)

©¶

, (145)

through the relation
G<p,q(ω) = −2i f (ω) Im

�

GR
p,q(ω)

�

(146)

with
f (ω) =

1

1+ e
ω

kB T
. (147)

Working in perturbation theory at first order in the gravitational potential φ(x), we develop
the Green’s function using the Dyson equation

G<k′,k(ω) =
�

G<0
�

k′,k

+

∫

dx ei(k−k′)xφ(x)
�

�

GR
0

�

k′,k′ ĥk′,k

�

G<0
�

k,k +
�

G<0
�

k′,k′ ĥk′,k

�

GA
0

�

k,k

�

, (148)

where the dependence on the fixed frequency indexω has been omitted for clarity in the r.h.s.
of the equation, and with (G0)k,k′(ω) the Green function in absence of perturbation

(GR/A
0 )k,k′(ω) = δk,k′[ω− ĥk,k ± i0+]−1, (149)
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(G<0 )k,k′(ω) = 2iπδk,k′ f (ω)δ(ω− hk,k). (150)

By using the Dyson expansion of the Green’s function (148) into the expression (142) we
obtain the perturbative expansion in φ of the energy current. At temperatures kB T0 small
compared to the energy range over which the system is well described by the Dirac linear
Hamiltonian, we can develop the Fermi-Dirac distribution as

f (ω) = Θ(−ω)−
π2

6
k2

B T2
0 ∂ωδ(ω) +O

�

(kB T0)
4
�

. (151)

The equilibrium energy current density, corresponding to the the 0th order term, can therefore
be written as

Π(0)(x) = −i

∫

dk
2π

dω
2π
Π̂k,k f (ω)

�

1

ω− ĥk,k − i0+
−

1

ω− ĥk,k + i0+

�

= Π+
sign(vF )

v2
F

π

12ħh
k2

B T2
0 +O

�

(kB T0)
4
�

, (152)

where Π is the Fermi sea contribution to the momentum density. The first order in φ contri-
bution to the momentum density is given by

Π(1)(x) = −i

∫

dkdq
(2π)2

dω
2π

dy Π̂k− q
2 ,k+ q

2
eiq(x−y)φ(y)

n

�

GR
0

�

k+ q
2 ,k+ q

2
ĥk+ q

2 ,k− q
2

�

G<0
�

k− q
2 ,k− q

2

+
�

G<0
�

k+ q
2 ,k+ q

2
ĥk+ q

2 ,k− q
2

�

GA
0

�

k− q
2 ,k− q

2

o

= −2

∫

dkdq
(2π)2

dω
2π

dyφ(y) f (ω) Im



eiq(x−y)
Π̂k− q

2 ,k+ q
2
ĥk+ q

2 ,k− q
2

�

ω− ĥk+ q
2 ,k+ q

2
+ i0+

��

ω− ĥk− q
2 ,k− q

2
+ i0+

�





(153)
The long range physics dominating the linear response theory is given by the first order in the
development of

Π̂k− q
2 ,k+ q

2
ĥk+ q

2 ,k− q
2

�

ω− ĥk+ q
2 ,k+ q

2
+ i0+

��

ω− ĥk− q
2 ,k− q

2
+ i0+

� =
vF (ħhk)2

(ω− vFħhk+ i0+)2

+
vF (ħhk)2

(ω− vFħhk+ i0+)4
(vFħhq)2

4
+O

�

(ħhq)4
�

.

(154)

The gradient expansion of the regularized current can therefore be written, after integration
by parts on the variable y ,

Π(1)(x)≈ −2

∫

dkdq
(2π)2

dω
2π

dyφ(y) f (ω)

Im

�

vF (ħhk)2

(w− vFħhk+ i0+)2
eiq(x−y) −

ħh2v2
F

4
vF (ħhk)2

(w− vFħhk+ i0+)4
∂ 2

y

�

eiq(x−y)
�

�

≈ −2

∫

dkdq
(2π)2

dω
2π

dy f (ω)

Im

�

eiq(x−y)

�

vF (ħhk)2

(w− vFħhk+ i0+)2
φ(y)−

ħh2v2
F

4
vF (ħhk)2

(w− vFħhk+ i0+)4
∂ 2

y (φ(y))

��

≈ −2

∫

dk
2π

dω
2π
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.
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By using

Im
�

(−1)nn!
(ω− x ± i0+)n+1

�

= ∓π∂ n
ω [δ (ω− x)] , (155)

we can express this momentum density as

Π(1)(x)≈ −
∫

dk
2π

dω

�

Θ(−ω)−
π2

6
k2

B T2
0 ∂ωδ(ω)

�

�
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�

ω− hk,k

�
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−
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24
∂ 2

x φ(x)v
3
F (ħhk)2 ∂ 3

ωδ
�
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�

�
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2π

dω δ (ω)

�

vF (ħhk)2δ(ω− hk,k)φ(x)−
ħh2v2

F

24
∂ 2

x φ(x) vF (ħhk)2 ∂ 2
ωδ
�

ω− hk,k

�

�

−
π2

6
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B T2
0
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2π

dω δ (ω)

�
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−
ħh2v2

F

24
∂ 2

x φ(x) vF (ħhk)2 ∂ 4
ωδ
�

ω− hk,k

�

�

. (156)

Using the replacement ∂ωδ(ω− hk,k) = −
1
ħhvF
∂kδ(ω− hk,k), we can integrate on ω to get

Π(1)(x)≈ −
∫

dk
2π

�

vF (ħhk)2δ(hk,k)φ(x)−
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≈ sign (vF )
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π
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. (157)

Gathering the different terms, we obtain, at linear order in the gravitational field φ(x),
that the momentum reads

Π(x) = Π̄+ sign(vF )

�

π

12ħhv2
F

k2
B T2

0

�

1− 2φ(x)
�

+
ħh

24π
∂ 2

x φ(x)
�

, (158)

which identifies, with the first order in φ of the full result (35b).

F Floquet quench dynamics and evolution of the momentum en-
ergy tensor

F.1 Continuity equation during a metric quench

In this section, we study the continuity equation of the Lorentz symmetry breaking momentum
energy tensor (21) during a quench of metric. For the sake of simplicity, and sticking to the
protocols detailed in the main text, we consider a metric of the form

ds2 = f (x , t)v2
F dt2 − dx2 (159)
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which is changed abruptly at t = 0:

f (x , t) =

¨

fI(x) for t < 0,

fI I(x) for t > 0.
(160)

Injecting these expression in the conservation equations (7a), together with the anomalies
(17,21) leads to the conservation equations

∂0T 0
0 +

1
p

f
∂x

�

T x
0

p

f
�

+
ħhvF

96π

Cg
p

f
R∂x f = 0,

∂0

�

T 0
x

p

f
�

+
1
p

f
∂x

�

T x
x f
�

−
ħhvF

96π
Cw
p

f
R∂x f = 0.

(161)

where we recall that R(x) =
∂ 2

x f
f −

1
2

�

∂x f
f

�2
. Integrating these equations between t = 0− and

t = 0+, we deduce that the variables which are continuous across the quench are both the
energy density ε = T 0

0 and the momentum density Πx =
1
vF
T 0

x

p

f :

T 0
0(0
−, x) = T 0

0(0
+, x) , (162)

1
vF

Æ

fI(x)T 0
x(0
−, x) =

1
vF

Æ

fI I(x)T 0
x(0

+, x) . (163)

F.2 Time evolution in a curved spacetime

The conservation equations (161) of ε and Π, which are continuous at metric quenches, can
be explicitly written using anomalies expressions (17,19) as:

p

f ∂0ε − vF∂x (Π f ) =
ħhvF

48π
Cg

�

f ∂xR+
1
2

R∂x f
�

=
ħhvF

48π
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�

f
�

R− R
��

, (164)

vF

p

f ∂0Π− ∂x (ε f ) = −
ħhvF

48π
Cw∂x

�

f
�

R− R
��

. (165)

Defining T ± = ε ± vFΠ, we get

p

f ∂0T ± ∓ ∂x

�

f
�

T ± − ħhvF

48π
c±
�

R− R
�

��

= 0 (166)

where

R(x) =
1

2 f

∫ x

0

R∂x f =
1
4

�

∂x f
f

�2

. (167)

Hence, the evolution of ε and Π are deduced from two rules:

1. At the quenches, T ± is continuous.

2. Between quenches, since f (x) does not depend on time, T ± satisfies the following equa-
tion of motion

�

∂0 ∓ ∂y

�

�

f
�

T ± − ħhvF

48π
c±
�

R− R
�

��

= 0 (168)

with a rescaled coordinate

y(x) =

∫ x

0

1
p

f (u)
du. (169)
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F.3 Floquet stroboscopic evolution

We now derive the stroboscopic time evolution of T ± in a Floquet system from the previous
equations of motion. We consider a metric (159) with

f (x , t) =

¨

1 for t ∈
�

ntp, ntp + t1

�

,

f (x) for t ∈
�

ntp + t1, (n+ 1)tp

�

.
(170)

where tp = t1 + t2 and n ∈ Z . Calling T ±n (x) = T ±(x , ntp) and applying the previous rules
we get

T ±(x , ntp + t1) = T ±(x ± vF t1, ntp)

= T ±n (x ± vF t1)
(171)

and therefore,

T ±n+1(x)≡ T ±(x , ntp + t1 + t2)

=
f (x±)
f (x)

�

T ±n (x± ± vF t1)−
ħhvF

48π
c±
�

R(x±)− R(x±)
�

�

+
ħhvF

48π
c±
�

R(x)− R(x)
� (172)

with
x±(x) = y−1 (y (x)± vF t2) . (173)

We can rewrite the equation (172) in more compact form:

T ±n+1(x) =
�

∂x x±
�2 T ±n

�

x±
�

−
ħhvF

24π
c±
�

x±, x
	

(174)

where
�

x±, x
	

denotes the Schwarzian derivative of x± with respect to x ,

{ f , x}=
∂ 3

x f

∂x f
−

3
2

�

∂ 2
x f

∂x f

�2

. (175)
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