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The search for robust topological superconductivity and Majorana bound states continues, ex-
ploring both one-dimensional (1D) systems such as semiconducting nanowires and two-dimensional
(2D) platforms. In this work we study a 2D approach based on graphene bilayers encapsulated in
transition metal dichalcogenides that, unlike previous proposals involving the Quantum Hall regime
in graphene, requires weaker magnetic fields and does not rely on interactions. The encapsulation
induces strong spin-orbit coupling on the graphene bilayer, which opens a sizeable gap and stabilizes
fragile pairs of helical edge states. We show that, when subject to an in-plane Zeeman field, armchair
edges can be transformed into p-wave one-dimensional topological superconductors by contacting
them laterally with conventional superconductors. We demonstrate the emergence of Majorana
bound states (MBSs) at the sample corners of crystallographically perfect flakes, belonging either to
the D or the BDI symmetry classes depending on parameters. We compute the phase diagram, the
resilience of MBSs against imperfections, and their manifestation as a 4π-periodic effect in Josephson
junction geometries, all suggesting the existence of a topological phase within experimental reach.

Majorana bound states (MBSs) were predicted by Ki-
taev in 20011 as the fractionalized, zero-energy, pro-
tected fermion states that develop at the boundaries of
one-dimensional (1D) topological superconductors. In-
terest in these states quickly grew past fundamental
research, as it was realized that their spatial wave-
function non-locality could enable, in principle, scal-
able protection of quantum information2–7. A practi-
cal proposal to engineer MBSs in proximitized Rashba
nanowires was made by Oreg. et al. and Lutchyn
et al. a few years later8,9, soon followed by the first
experiments10, which revealed promising hints of poten-
tial MBSs. Since these hallmark results the story of
MBSs in nanowires has grown increasingly complex11,12.
Remarkable fabrication improvements and careful exper-
imental characterization13,14 have now clearly confirmed
the existence of zero modes in these systems15, but have
also revealed significant interpretation issues and depar-
tures from theoretical expectation in their behavior11.
The reasons are varied, and are thought to include
disorder16,17, electrostatics18,19, metallization20 and non-
topological near-zero energy states due to confinement ef-
fects, including quantum dot formation21,22 and smooth
potentials23–26. One decade after their theoretical pro-
posal, proximitized nanowires have evolved into the most
studied and advanced solid state platform for topologi-
cal superconductivity. However, we have still not been
able to conclusively demonstrate the predicted topologi-
cal MBSs, let alone harness their potential for quantum
computation.

This state of affairs has pushed numerous researchers
to explore alternative experimental platforms for
topological superconductivity (TSC), including atomic
chains27,28, 2D semiconducting heterostructures29,30,
planar Josephson junctions31,32, full-shell nanowires22,33,
graphene-based platforms34,35, several 2D crystals36–38

and van der Waals heterotructures39. Many of the
proposals for 1D TSCs start from the basic Fu-Kane
recipe40,41: couple an s-wave superconductor to a 1D
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FIG. 1. Lateral and top views of proposed device config-
urations A and B for the generation of Majorana bound
states (MBSs) (schematically represented in red). The de-
vice is composed of a graphene bilayer (black), encapsulated
in a transition metal dichalcogenide (TMDC) (orange) and
laterally contacted with conventional s-wave superconductors
(purple). The superconductor split in (b) creates a weak link
that allows to phase-bias the junction.

spinless electron liquid with finite helicity (i.e. to
non-degenerate 1D modes with some degree of spin-
momentum locking, such as the edge states of a 2D Quan-
tum Spin Hall system42,43). The s-wave pairing opens a
finite p-wave TSC gap on the helical liquid4, and gives
rise to zero-energy MBSs at boundaries with trivial gaps.
The various implementations of this recipe typically dif-
fer in the mechanism that generates the spinless helical
phase. For example, in the original 1D Rashba nanowires
proposal8,9 it is a combination of Rashba spin-orbit cou-
pling (SOC), Zeeman field and low electron densities.

We focus here on graphene-based approaches to MBSs.
Graphene allows for exquisitely clean electronics44,45 and
good superconducting proximity effect under magnetic
fields46–49, properties that could help overcome some of
the material-specific problems of Majorana nanowires.
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In Ref. 50 it was experimentally demonstrated that
the ν = 0 quantum Hall state of monolayer graphene
behaves, under a strong in-plane magnetic field, as a
quantum spin Hall state, an observation explained as
the result of Zeeman polarization of an antiferromag-
netic ground state induced by strong electron-electron
interactions51,52. In Ref. 34 it was shown that a 1D TSC
could be created on such a polarized ν = 0 quantum Hall
state by proximitizing its edges. The proposed configura-
tion, while conceptually correct for the purpose of gener-
ating Majoranas, was experimentally problematic, since
s-wave pairing breaks down quickly under the required
magnetic fields, thus making the proximity effect of the
ν = 0 state challenging. A subsequent proposal was put
forward that does away with the need of strong in-plane
magnetic fields by employing twisted bilayer graphene
in the QH regime under a strong perpendicular electric
field35,53. The latter is used to transform the bilayer QH
edge states into a spinless helical phase by tuning each
layer to an opposite filling factor ν = ±1. This proposal,
however, still requires strong electron-electron interac-
tions to trigger the helical spin structure, as it exploits
the ferrimagnetic sublattice polarization induced by in-
teractions to stabilize ν = ±1 QH plateaus. Further-
more, it presents other potential problems such as a re-
duced topological gap and a required electron-hole char-
acter of the bilayer, which could hinder superconduct-
ing pairing by a nearby superconductor. Other proposed
avenues towards MBSs based on electronic interactions
include the use of intrinsic superconducting correlations
in magic-angle twisted graphene bilayers in combination
with other 2D crystals54.

In this work we present a third kind of approach to
MBSs in graphene that does not rely on the QH effect
or electron-electron interactions. Instead, it exploits the
strong spin-orbit coupling (SOC) induced onto a Bernal-
stacked graphene bilayer when it is encapsulated in a
semiconducting transition metal dichalcogenide (TMDC)
such as WSe2, see Fig. 1(top). The SOC gaps the bulk
of the bilayer55–60, and is thought to be responsible for
anomalies observed in different graphene-based Joseph-
son junctions61,62. In the bilayer, the induced SOC pro-
duces Kramers pairs of counterpropagating topologically
fragile edge states at the boundaries, see red and blue
lines in Fig. 2(a,b). We show that some of these bound-
aries can develop spinless helical 1D modes under small
Zeeman fields. We use here the term spinless helicity, as
is conventional, to denote the existence of an odd number
of pairs of non-degenerate counterpropagating modes at a
given energy and edge, whose spin depends on the direc-
tion of propagation. The development of spinless helicity
depends on edge crystallographic orientation. It is opti-
mal for armchair edges and is absent for zigzag edges. A
spinless helical edge can be gapped into a p-wave super-
conductor by side-contacting it to an s-wave supercon-
ductor40. MBSs then arise at the corners of the sample
(see Fig. 1) above a Zeeman field comparable to the in-
duced superconducting gap, as in Majorana nanowires.

Despite their dependence on the crystallographic orien-
tation of the edges, we show that MBSs are resilient to
a certain amount of contact disorder and misalignment,
and exhibit the expected 4π-periodic topological Joseph-
son effect41,63. Our analysis also reveals the appearance
of an intriguing regime with pairs of near-zero modes
at each corner, analogous to the approximate BDI-class
MBSs of narrow multimode nanowires64,65, that occu-
pies a large portion of parameter space around charge
neutrality.

I. EDGE MODES IN ENCAPSULATED
BILAYER GRAPHENE

TMDCs are semiconducting 2D crystals, such as WSe2
or MoS2, with strong spin-orbit. The possibility of induc-
ing a strong SOC on graphene monolayers by placing it in
contact to a TMDC was demonstrated using a variety of
theoretical66–68 and experimental techniques55–60. Two
main types of SOC are generated on the low-energy sec-
tor of monolayer graphene close to the neutrality point:
Ising and Rashba59,60,67. At low energies these two cou-
plings can be written as

HI =
λI

2
τzsz, (1)

HR =
λR

2
(σxτzsy − σysx). (2)

in terms of the valley (τ ), spin (s) and pseudospin (σ)
Pauli matrices, which act on the subspace of the K and
K ′ valleys, the physical electron spin and the carbon sub-
lattices within the graphene unit cell, respectively.
The expected magnitude of the couplings is rather

sizable, of the order of λR ≲ λI ≈ 2 − 3 meV in
the case of WSe2

59 (possibly larger for WS2
55,56) and

depends strongly on the interlayer rotation angle with
graphene66. The low-energy model for graphene becomes
H = H0 +HI +HR, where H0 = vF (τzkxσx + kyσy) is
the Dirac Hamiltonian for an isolated graphene mono-
layer and vF is the Fermi velocity.
In the case of a graphene bilayer encapsulated on

both sides with lattice-aligned WSe2, each layer acquires
the above couplings, with the peculiarity that the cor-
responding λI and λR have an opposite sign on each
layer59,69. In the low-energy sector of bilayer graphene
the pseudospin is equal to the layer quantum num-
ber70, so that the low-energy effective model for bilayer
graphene with a simple Bernal interlayer hopping t1 (i.e.
neglecting trigonal warping70) becomes

H =
vF k

2

t1
(τzσxkx + σyky)

2 +
λ̃I

2
τzszσz +O(k3),

λ̃I =

(
1− 2

v2F k
2

t21

)
λI . (3)

Note that HR does not contribute to the low-energy bulk
modes to this order. The HI , in contrast, becomes a
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FIG. 2. Dispersion and spin structure of edge modes along
armchair (a,c) and zigzag (b,d) edges of a graphene bilayer
flake where a full TMDC encapsulation opens a gap λI = 10
meV. Red and blue denote subgap modes propagating along
a given edge with opposite out of plane spin polarization (⊙
and ⊗), which is locked to momentum as shown in the in-
sets. |P±⟩ and |Q±⟩ denote an additional quantum numbers
due to orbital symmetries P and Q, see text. On the bottom
row we show the effect of an in-plane Zeeman field EZ on
the edge modes. On an armchair edge (c) EZ opens helical
windows around the ky = 0 (Γ-point) band crossings [black
arrows in (a)], while on a zigzag edge (d) it opens an insu-
lating gap around zero energy. The different combinations of
armchair/zigzag phases are encoded in each energy interval
by a white, purple, salmon and yellow background (see also
Fig. 3).

Kane-Mele coupling42, which in the monolayer would
open a topological QSH gap at the Dirac point of mag-
nitude ∼ λI . Here, λI is much larger than the (impracti-
cally small) intrinsic Kane-Mele term of the monolayer,
but is expected to open a topologically trivial gap due to
the 2π Berry phase of each valley in the bilayer (as op-
posed to π in the monolayer) with pairs of topologically
fragile helical modes on each edge inside it69. We confirm
this expectation below. Despite their technically fragile
nature, we note that the helical edge states are robust
against a wide range of disorder, in particular any form
of spin-independent disorder on the lattice, including va-
cancies or other valley-mixing perturbation (see App. A).
The reason is that, as will be shown promptly, their he-
licity is exact, in the sense that counterpropagating edge
states have opposite out-of-plane spin sz on any edge, so
backscattering requires a spin-active perturbation.

To understand the structure of SOC-induced edge

states we numerically simulate the bandstructure of
graphene bilayer nanoribbons with both armchair and
zigzag edges. The bilayer is modeled with a Bernal-
stacked tight-binding Hamiltonian70. To reach experi-
mental sizes (particularly important in the next section)
we use a scaled lattice constant, with hopping parame-
ters also scaled to keep low-energy observables scaling-
independent71. On each layer we add the SOC terms
HI and HR with opposite sign. The resulting bandstruc-
tures are show in Fig. 2 for armchair nanoribbons (left
column) and zigzag nanoribbons (right column).
The effective low-energy Kane-Mele coupling is indeed

found to open a SOC gap, with two pairs of counterprop-
agating states on each edge. Spin-symmetry is broken,
with two distinct propagating modes of opposite spin out-
of-plane for each edge and propagation direction. These
states are shown in Fig. 2(a,b), with red and blue denot-
ing their spin orientation. Despite the fact that Rashba
SOC HR does not enter the low-energy Hamiltonian of
bulk modes, it does affect the edge modes. For armchair
edges, in particular, it constitutes a weak, time-reversal-
symmetric, gap-opening perturbation around zero energy
(charge neutrality point), see Fig. 2(a).
If we neglect Rashba, we find that armchair edge states

|ky⟩ have a second (orbital) quantum number, indepen-
dent of the spin and associated to their behavior under
the parity operator P = σxK, where K is conjugation
and σx exchanges layers and sublattices. This quantum
number is η = ⟨−ky|P |ky⟩ = ±1, and its value for each
mode is indicated by |P+⟩ (even) and |P−⟩ (odd) in Figs.
2(a,c). In the zigzag case all subbands are even under
parity, but at the M -point crossings (kxa0/2π = 0.5 in
Fig. 2), edge states |M⟩ can be classified by a second or-
bital symmetryQ = σy, where σy is now defined to act on
the two columns of sites in the unit cell perpendicular to
the edge. Unlike P , the Q symmetry is just approximate,
but quickly becomes exact in the limit of small a0. The
corresponding quantum number η′ = ⟨M |Q|M⟩ = ±1
of each band is denoted in Figs. 2(b,d) as |Q±⟩. These
orbital symmetries are important to understand the split-
ting of the edge modes under an in-plane Zeeman field.

Let us focus first on the Γ-point crossing at finite en-
ergy in the armchair edge states, see the black arrows in
Fig. 2(a). Both of these are crossings between states of
equal parity η. The addition of a Zeeman field along the
y direction

HZ = EZσy (4)

preserves parity but breaks the time-reversal symmetry,
and immediately turns the crossings into anticrossings.
This is illustrated in Fig. 2(c). The reason is the oppo-
site (helical) out-of-plane spin orientation of the armchair
states crossing at ky = 0, see the inset sketch. The out-
of-plane spin polarization is due to the dominant Ising
SOC HI of Eq. (1). The in-plane Zeeman HZ mixes
the crossing modes, opening energy windows inside the
SOC gap (shaded in purple and salmon color) wherein
armchair edges support spinless helical edge modes. In



4

contrast, for the crossings at ky ̸= 0 and zero energy,
the crossing modes have opposite parity, which prevents
their splitting (unless Rashba is non-zero).

Zigzag edge modes behave in the opposite way, ac-
quiring a full gap around zero energy, while the crossings
at the M point remain unsplit owing to the opposite η′

of the crossing modes. Depending on the value of the
chemical potential inside the SOC gap, zigzag edges can
therefore be either insulating or metallic (i.e. with spin-
ful edge modes as in the absence of Zeeman field), but
never spinless. There are then four distinct combina-
tions possible in a vacuum terminated (normal) sample,
corresponding to either spinless helical or metallic arm-
chair edges and to insulating or metallic zigzag edges.
We encode these four phases in white, purple, yellow and
salmon throughout this work, see Fig. 2. The sample
can be tuned to any of the four by adjusting Zeeman and
chemical potential. Note that here and in the following,
we use the term ‘metallic’ to denote edges where an even
number of counterpropagating edge modes coexist at a
given energy, in contrast to the case of a spinless helical
edge with an odd number of them.

II. SUPERCONDUCTING PROXIMITY
EFFECT AND MAJORANAS

For the purposes of implementing a Fu-Kane approach
to generate MBSs in this system we need to introduce
superconducting pairing correlations on the spinless he-
lical edge modes. We follow the conventional route
of inducing superconductivity externally by contacting
a conventional superconductor laterally to the encap-
sulated bilayer, a technique that has been extensively
demonstrated46–49. We analyze two distinct geometries,
see Fig 1. Configuration A, Fig. 1(a), has proximitized
armchair and vacuum-terminated zigzag edges, while in
B, Fig. 1(b), the zigzag edges are also contacted to a su-
perconductor (possibly with a weak link to allow phase-
biasing the junction, though this detail can be ignored
until Sec. V). The superconducting proximity effect is
modeled as a pairing term ∆ on the boundary sites of
each edge, although the results are qualitatively simi-
lar with a more elaborate model where a square-lattice
superconductor is explicitly incorporated in the tight-
binding lattice.

We compute their corresponding phase diagrams in
each configuration, see Figs. 3(a,b), by locating
Γ-point band inversions in sufficiently wide infinite
nanoribbons, with either armchair/superconductor or
zigzag/superconductor edges. We find that proximitized
edges of any type develop a trivial s-wave gap at zero
Zeeman field (white region in the phase diagrams). On
proximitized armchair edges tuned to their spinless heli-
cal window, a Zeeman energy above the effective induced
pairing ∆∗

AC (here ≈ 0.21meV for the chosen value of
∆ = 0.3meV), creates a band inversion into a topologi-
cal p-wave phase (purple and salmon-colored regions), as
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FIG. 3. Phase diagrams of an encapsulated bilayer with in-
duced SOC λI = 5 meV versus Zeeman and chemical poten-
tial. Panels (a) and (b) correspond to configurations A and
B in Fig. 1, respectively. Each region is defined by differ-
ent types of edge states along armchair (AC) and zigzag (ZZ)
edges, terminated with either vacuum (vac) or a supercon-
ductor (SC), see legend for each configuration. An induced
pairing ∆ = 0.3 meV is applied to any edge sites in direct con-
tact to a SC. Dashed (dash-dotted) lines are metallic/helical
(metallic/insulating) boundaries in AC/vac (ZZ/vac) edges.
Vertical dotted lines indicate effective induced gaps ∆∗ in
AC and ZZ edges. In the salmon-colored regions of both
phase diagrams, the system develops a D-class MBS at each
sample corner [where a p-wave AC/SC edge and an insulat-
ing ZZ/vac (insulating ZZ/SC) meet in configuration A (B)].
In the purple region, corner MBSs also appear in configura-
tion B, whereas Majorana states delocalize along the ZZ/vac
metallic edges in configuration A. In the yellow region, BDI-
class pairs of MBSs develop at each corner for both configu-
rations if Rashba SOC is neglected (see text for details).
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FIG. 4. (a,b) Low-energy spectrum as a function of Zeeman
splitting EZ of a rectangular sample in the two configurations
A and B of Fig. 1 and with the same parameters as Fig. 3.
Background colors match Fig. 3. (c,d) Local density of states
across the sample corresponding to the four lowest eigenstates
[red curves in (a,b)] at the vertical dashed line in (a,b) (p-
wave armchair phase). In configuration A (a,c), the zigzag
edges are metallic, so the MBSs become spatially delocalized
and merge into a quasi-continuum of zigzag states, while in
configuration B (b,d) zigzag edges have a trivial s-wave gap,
so the MBS remain localized at the corners.

predicted by Fu and Kane4,40. In contrast, on a prox-
imitized zigzag edge close to neutrality, µ = 0, a Zee-
man that exceeds the corresponding ∆∗

ZZ ≈ 0.27meV
transforms the s-wave phase into an insulator [yellow and
salmon-colored regions in Fig. 3(b)]. As a result, a device
in configuration A or B within the salmon-colored region
(strong Zeeman fields) should localize a MBS at each of
its armchair/zigzag corners, as these are boundaries be-
tween topological (p-wave) and trivial (insulating) edges.
However, within purple regions (weaker Zeeman) only
configuration B should host localized corner MBSs (cor-
ners become p-wave/s-wave boundaries). Configuration
A should instead delocalize its corner MBSs along the
metallic zigzag edges.

These predictions are readily confirmed by numerical
simulations of large but finite-size rectangular samples in
both A and B configurations. In Fig. 4 we show the
low-energy eigenvalues for A and B samples (top row) as
a function of EZ , and the local density of states (LDOS,
bottom row) corresponding to the lowest (red) eigen-
states. For both configurations (left and right columns)
we choose a point within the purple region (marked with
a red dot in Fig. 3). As anticipated, the LDOS ex-
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FIG. 5. Low-energy spectrum as a function of EZ of a
2µm × 2µm device similar to Fig. 4d but with λR set to zero
and ∆ increased to 1meV. Panels (a-c) correspond to µ = 0
(a), µ = 0.6meV (b) and µ = 1.2meV (c). Background colors
correspond to different regions of the phase diagram, similar
to Fig. 3(b) but with phase boundaries pushed to larger EZ

due to the increased ∆. For EZ ≳ ∆∗
ZZ, in the yellow re-

gions, unexpected pairs of Majorana zero modes at each sam-
ple corner appear that correspond to a BDI-class Z-invariant
νAC
BDI = 2 for the AC edge and νZZ

BDI = 0 for the ZZ one.
The zero-energy eigenvalues in the yellow region are therefore
eightfold-degenerate. These become near-zero modes as the
BDI symmetry is slightly broken by a finite Rashba coupling
λR (d). In the regions with salmon-colored background of (b)
and (c) the armchair edge has a νAC

D = νAC
BDI = 1 invariant, re-

gardless of symmetry class. Thus, the four zero-energy MBSs
(red lines), one at each sample corner, remain insensitive to
Rashba (e). Vertical dashed lines in (b,c) correspond to the
EZ used in (d,e), respectively.

hibits spatially localized/delocalized MBSs in the B/A
configurations as described above. The energy of local-
ized MBSs in Fig. 4(d) remains pinned to zero within
the purple region, but eventually becomes finite in the
salmon-colored region due to finite-size effects (splitting
due to MBS overlap). In contrast, delocalized MBSs in
configuration A, purple region, strongly hybridize along
the zigzag edge with the MBS at the opposite corner,
splitting and merging into a quasi-continuous set of fi-
nite energy Andreev bound states.

III. BDI-CLASS MAJORANA PAIRS

To complete the analysis of the phase diagram we
now show the spectrum within the yellow regions of
Fig. 3(a,b). Focusing on configuration B at zero chem-
ical potential µ = 0, one would expect an s-wave gap
along the armchair edge, and an s-wave or insulating gap
for EZ < ∆∗

ZZ and EZ > ∆∗
ZZ, respectively. In both

cases, the generic expectation is therefore to have no
zero-modes. Surprisingly, however, the spectrum shows
a multiply-degenerate near-zero mode at EZ > ∆∗

ZZ (in-
sulating zigzag edge). These states become exact zero
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modes when we remove the Rashba coupling, λR = 0.
The results are shown in Fig. 5 at µ = 0 (a), µ = 0.6
meV (b) and µ = 1.2 meV (c), and as a function of λR

(d,e), for the same parameters as in Figs. 3 and 4 but for
a longer 2µm junction along x and an increased ∆ = 1
meV.

To understand the nature of these unexpected zero
modes we must recall the phenomenology of multimode
Rashba nanowires, which may also exhibit multiple near-
zero modes at either end when an even number of modes
become topological. When the number of inverted modes
is even, the wire is technically in a trivial D-class phase
with νD = 0 invariant (νD ∈ Z2), so no protected zero
energy MBSs are expected. It was shown65,72, how-
ever, that a hidden BDI-symmetry73 emerges if the SOC-
induced inter-mode coupling vanishes, which is a good
approximation for nanowires of width much smaller than
the spin-orbit length. In such limit the nanowire Hamil-
tonian can be cast into a real matrix belonging to the
BDI symmetry class, albeit one where time-reveral sym-
metry (TRS) T = isyK is broken by Zeeman, and a

pseudo-TRS T̃ = K (conjugation) takes its place. The
BDI invariant in 1D is νBDI ∈ Z. The total number of
zero modes at a nanowire boundary then becomes the
difference in νBDI at either side of the boundary, which
can be more than one65,72. In nanowires the value of νBDI

actually matches the total number of spinless modes that
have undergone a topological transition. For small but
finite EZ , such that no modes have transitioned yet, it is
therefore νBDI = 0 (like in vacuum). This trivial invari-
ant can also be physically understood as a consequence
of the opposite helicity of two pairs of modes weakly split
by Zeeman in a Rashba nanowire.

A similar situation applies to the armchair edge in our
encapsulated bilayer. The low-energy Hamiltonian Eq.
(3) for a nanoribbon with proximitized armchair edges
and zero Rashba λR = 0 can be cast into a real form, so
its symmetry class effectively becomes BDI in this limit,
with invariant νAC

BDI ∈ Z when TRS is broken by a finite
Zeeman field. A crucial difference with nanowires, how-
ever, is that the spinful edge modes along a given arm-
chair edge do not have zero net helicity: the two pairs of
modes in a given edge have an equal (instead of opposite)
helicity, determined by the sign of λI [see inset in Fig.
2(a)]. As a consequence, the Z BDI invariant in an arm-
chair edge at small EZ (and actually all throughout the
white and yellow regions of Fig. 3) is νAC

BDI = 2, not zero.
This has the dramatic implication that pairs of localized
MBSs will arise at each corner as soon as the zigzag edge
becomes insulating, and hence trivial, with zero BDI in-
variant νZZBDI = 0 (yellow region). This phenomenon is
shown in Fig. 5(a). In Fig. 5(b) we see that at finite µ we
can cross from the νAC

BDI = 2 regime (yellow region, metal-
lic armchair) to the conventional D-class νAC

D = νAC
BDI = 1

regime (salmon-colored region, spinless helical armchair),
whereupon the number of MBSs per edge is halved, from
two to one, following a band inversion. Degenerate BDI-
class MBSs are expected to survive as near-zero modes

if the BDI-breaking effect of Rashba coupling λR on the
armchair edge states is finite but small, as is the case
for typical experimental values of λR ∼ 1 − 5 meV, see
Fig. 5(f). In contrast, increasing λR leaves the MBSs in
the salmon-colored region completely unaffected in large
enough samples, see Fig. 5(d), since in this case the D-
class armchair edge remains topologically non-trivial.

IV. EFFECT OF DISORDER AND
MISALIGNMENT

Up to this point all our results have assumed perfect
crystallographic armchair and zigzag edges. In real sam-
ples it is impossible to avoid a certain degree of misalign-
ment when fabricating the superconducting contacts, or
to create some amount of disorder. Since MBSs are topo-
logically protected states, they should withstand such
perturbations to a certain extent, but it is far from clear a
priori if they are resilient to a realistic degree of misalign-
ment and disorder. In this section we attempt to address
this question by simulating the spectrum of a sample in
configuration B with a fraction of vacancies along each
edge and a finite rotation of the lattice.
Figure 6 compares the spatial localization of BDI-class

and D-class MBSs on pristine, unrotated samples (a, b)
and in samples with a 1% contact disorder and with a
2◦ contact misalignment (c, d). Disorder is introduced in
our simulation in the form of vacancies at the given frac-
tion of terminal sites along contact edges, removing any
dangling bonds that are produced. While disorder and
misalignment degrade MBS localization, for the device
parameters considered they are found to remain spatially
decoupled at this level of contact imperfections. Disor-
der above ∼ 2% or misalignments above 7◦ leads to a
splitting of MBSs due to edge leakage and overlap. We
also quantitatively show in panels (e, f) the size of the
minigap and degree of MBS splitting in contacts without
disorder, purely as a function of the misalignment an-
gle. We find that, at least in the regimes explored in our
simulations, the BDI-class MBS minigap is actually more
resilient to misalignment than the one of D-class MBSs.
The latter tend to delocalize faster and to exhibit a mini-
gap that becomes quickly polluted by low-lying states as
the angle is increased. Above a 5◦−7◦ misalignment, the
MBSs in both cases are found to quickly merge into an
edge-state quasicontinuum.

V. JOSEPHSON EFFECT

A hallmark consequence of an odd number of MBSs at
either side of a Josephson junction is the development of
an anomalous 4π-periodic Josephson effect41,74 in the su-
perconducting phase difference ϕ across the junction. A
short (in x) and wide (in y) junction in configuration B,
with a superconductor split as in Fig. 1(b), can be oper-
ated by tuning ϕ across the split weak link. As the junc-
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FIG. 6. Spatial profile of MBSs, both in pristine (a,b) and
imperfect (c,d) samples in configuration B. Left and right
columns correspond, respectively, to BDI-class and D-class
MBSs [for parameters marked with dashed lines of Figs. 5(b)
and 5(c)]. In (c,d) contact disorder is 1% and misalignment
angle is 2◦. (e,f) Misalignment angle dependence of the low-
energy spectrum in otherwise clean samples. In the BDI-class
we depict the two Majoranas at each corner in blue and red,
while the lone MBSs in the D-class are shown in red. The
scaling of the lattice constant in the simulation has only a
small effect on the magnitude and evolution of the topologi-
cal gap in (e,f).

tion is assumed much wider than the size of the MBSs, it
should behave as two Josephson junctions in parallel (one
along each zigzag edge).75 In the D-class (λR ̸= 0) the
device can be tuned to host either one or zero Majoranas
per corner, which should produce an Andreev spectrum
and Josephson current with 4π- or 2π-periodicity in ϕ,
respectively. In the BDI-class (λR = 0), Majorana pairs
at a given corner will be decoupled from each other, so
they should produce a 4π-periodic spectrum and super-
current.

We confirm these expectations, first for λR = 0, both
for νAC

BDI = 2 MBSs per corner, Fig. 7(a), and νAC
BDI =

νAC
D = 1 MBS per corner, Fig. 7(b). Breaking BDI
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FIG. 7. Andreev levels as a function of superconducting phase
bias in a Josephson junction similar to Fig. 1(b), for λR = 0
(a,b) and λR = 2 meV (c,d). The value of EZ is fixed to the
vertical dashed line of Fig. 5(b) (a,c) and Fig. 5(c) (b,d).
The width of the junction is W = 2.5µm, but the length
is shortened to L = 0.2µm to increase the phase-dependent
MBS hybridization across the junction. Both the pairs of
BDI-class MBSs in (a) and the lone D-class MBSs in (b) give
rise to an approximate 4π Josephson effect. Increasing λR

breaks the BDI symmetry of (a), making the Josephson effect
from corner Majorana pairs (near-zero modes) 2π-periodic,
and hence trivial (c). The 4π case of a single MBS per corner
is however unaffected by Rashba (d).

symmetry with a finite λR = 2 meV makes the invari-
ant trivial, νAC

D = 0, so the Josepshon effect becomes
2π-periodic, Fig. 7(c). Again, D-class Majoranas are un-
affected by Rashba, and remain 4π-periodic, Fig. 7(d).

VI. CONCLUSION

We have shown that bilayer graphene, proximitized by
laterally contacted superconductors and vertically encap-
sulated in transition metal dichalcogenides, exhibits a
phase diagram with several topological phases below the
spin-orbit bulk gap induced by the encapsulation. It in-
cludes non-trivial phases with single or pairs of MBSs at
each armchair/zigzag corners, depending on the induced
Rashba coupling. The system’s phase can be controlled
by tuning the chemical potential and an in-plane Zeeman
field in ranges of the order of the bulk spin-orbit gap
and the induced superconducting gap, respectively. The
mechanism behind the topological phases is directly con-
nected to the distinct properties of armchair and zigzag
edges and the type of boundary modes they develop as a
result of the SOC induced by the encapsulation. Despite
the requirements of concrete arcmhair/zigzag crystallo-
graphic edges, a finite tolerance of around ∼ 5◦ in contact
misalignment and ∼ 1% in contact disorder is predicted,
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making experimental realizations feasible.
A brief comparison of the above proposal to Majorana

nanowires, as the current leading platform for MBSs, is
in order. The two approaches exhibit interesting dif-
ferences. One disadvantage of graphene is the g-factor,
which is smaller (∼ 2) than in semiconducting nanowires
(∼ 2 − 18, depending on details such as degree of met-
allization). As both approaches require a Zeeman en-
ergy comparable or greater than the induced supercon-
ducting gap, this demands stronger magnetic fields for
comparable induced gaps. It has been shown, however,
that highly controllable contacts and induced gaps are
possible in graphene by using robust Type-II supercon-
ductors such as MoRe, that have much larger critical
fields than Aluminum (the superconductor of choice for
Majorana nanowires). This makes graphene’s reduced
g-factor potentially less of an issue. The problem of
disorder also exhibits very different characteristics. In
nanowires, charged defects and other sources of disorder
are considered one of the most important challenges to-
wards realizing MBSs16,17. In graphene-based van der
Waals heterostructures, a very good control of puddles
and bulk disorder is now possible using particular 2D
crystals as substrates, such as hBN and graphite76,77. It
is also to be expected that potential disorder will scatter
electrons very differently in graphene than in semicon-
ductors. Potential puddles are non-confining in mono-
layer or bilayer graphene78, so will likely not give rise to
the type of quasi-MBSs that often obfuscate topological
MBSs in nanowires with smooth disorder11. Finally, the
scale of energies that trigger multimode physics in our
proposal is λI ∼ 2 − 10 meV, which is larger than in
typical low-density nanowires (ℏ2/[2m∗R2] ∼ 0.5 meV).
All these differences suggest that encapsulated graphene
is worth exploring as a potential alternative to Majorana
nanowires.

METHODS

All our tight-binding simulations were performed using
Quantica.jl79. All the code is available at Zenodo80.

DATA AVAILABILITY

All data presented here is available at Zenodo80.
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Appendix A: Resilience of helical modes in the
presence of arbitrary edge orientation and scalar

disorder

In the main text we have analyzed the emergence of he-
lical edge modes in the armchair and zigzag edges by ana-
lyzing their respective bandstructures. Their robustness
against disorder and edge misalignement is also studied,
but only at the level of the p-wave phase and the asso-
ciated MBSs in an SC-N contact. This does not directly
address, however, the question about the general stabil-
ity of the original helical states even before proximitiza-
tion with a superconductor. We have argued that the
induced SOC does not open a true topological-insulator
gap, whose edge modes would be protected against any
time-reversal-invariant perturbation by virtue of the bulk
topology. Instead, the 2π Berry phase of the bilayer spec-
trum makes the SOC gap topologically fragile, mean-
ing that time-reversal-symmetric perturbations such as
Rashba may in principle destroy the associated pairs of
helical edge states. In this appendix we demonstrate
that this is not the case, at least for conventional spin-
independent graphene imperfections, such as invervalley
scattering at the edges or charge puddles.
As discussed in the main text, counterpropagating edge

states have exactly opposite out-of-plane spin sz in both
the armchair and zigzag cases. This is true even if we
include realistic Rashba couplings, to a good approxima-
tion, due to its subleading contribution in the low-energy
sector. Hence, backscattering of the edge states requires
a spin-flip for both crystallographic orientations. Con-
ventional scalar disoder should then be unable to localize
edge states. We now show that this is also true for any
other edge orientation, even in the presence of disorder.
Figure 8(a) shows the total density of states (DOS) in

a sample of encapsulated bilayer graphene, with zero Zee-
man and Rashba, and shaped like a circular strip. It is
computed using the Kernel Polynomial Method81. The
circular geometry has edges that vary across all possi-
ble crystallographic orientations. Figure 8(b) shows the

corresponding spin-resolved current densities J⃗↑,↓ in real
space for all states within an energy window around neu-
trality (yellow box). The states were obtained by exact
diagonalization using the Arnoldi method.

We see that despite the varying edge orientation
around the circular strip, the DOS remains finite (un-
gapped) throughout the SOC gap (here from -10meV
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since localization would require spin-flip-backscattering. Curved arrows indicate current direction, and colored circles encode
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even though the DOS around and above the gap edge is strongly affected.

to 10meV). All these subgap states are spatially local-
ized at the boundaries of the sample, and carry a net
spin current, just as in the armchair and zigzag cases.
This shows that edge states remain robust and gapless
in the presence of arbitrary variations of edge orienta-
tion. The analysis can be extended by adding disor-
der. We apply strong Anderson disorder througout the
whole circular strip, uniformly distributed in the interval

[−2meV, 2meV]. The result is presented in Fig. 8(c,d).
While disorder has a strong effect on the DOS outside
the gap, the subgap DOS remains unperturbed. Like-
wise, the edge current remains insensitive to the disorder.
We thus find that the helical edge states behave as true
topological modes protected against arbitrary perturba-
tions, as long as they are spin-independent, or at most
commute with sz.
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Wees, and I. J. Vera-Marun, Rev. Mod. Phys. 92, 021003
(2020).

68 M. J. Pacholski, G. Lemut, J. Tworzyd lo, and C. W. J.
Beenakker, (2021), 2103.15615.

69 M. P. Zaletel and J. Y. Khoo, (2019), 1901.01294.
70 E. McCann and M. Koshino, Rep. Prog. Phys. 76, 056503

(2013).
71 M.-H. Liu, P. Rickhaus, P. Makk, E. Tóvári, R. Mau-
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