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Abstract: We show that very simple theories of abelian gauge fields with a cubic Chern-

Simons term in 5d have an infinite number of non-invertible codimension two defects. They

arise by dressing the symmetry operators of the broken electric 1-form symmetry with a

suitable topological field theory, for any rational angle. We further discuss the same theories

in the presence of a 4d boundary, and more particularly in a holographic setting. There we

find that the bulk defects, when pushed to the boundary, have various different fates. Most

notably, they can become codimension one non-invertible defects of a boundary theory with

an ABJ anomaly.
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1 Introduction and Summary

A modern notion of symmetry, first presented in [1], defines a symmetry by a set of topological

operators and their fusion rules. Usual symmetries are generated by topological operators of

codimension 1, Ug(Σd−1), obeying a group fusion law Ug1(Σd−1)×Ug2(Σd−1) = Ug1·g2(Σd−1).

By relaxing these two properties (codimension and group law), symmetries can be generalized

in several ways. In particular, we will be interested in p-form symmetries G(p) generated by

codimension (p + 1) operators that may obey a group law or a more general non-invertible

fusion law.

Symmetries obeying a non-invertible fusion law, usually called non-invertible symmetries,

have been studied in 2d QFT’s [2–14]. They have also been recently realized in higher di-

mensions by introducing duality defects, a generalization of the usual Krammers-Wannier

duality defect [15–20], and condensation defects from gauging p-form symmetries in submani-

folds [21]. Further examples in higher dimensions have been studied in [22–26]. Interestingly,

absence of non-invertible symmetries in Quantum Gravity has been shown to be necessary

to argue for the completeness hypothesis [27, 28], see also [29], suggesting that the relevant

notion of symmetry in Quantum Gravity is the one proposed in [1].

A particular instance of condensation/dualization defects was presented in [30, 31], where

theories with an infinite number of such non-invertible defects were discussed. In those works

they studied 4d theories with a global symmetry U(1)
(0)
A suffering from an ABJ anomaly

d ⋆ j
(1)
A =

k

8π2
f (2) ∧ f (2) , (1.1)

– 1 –



and showed that while U(1)
(0)
A is broken to a Z(0)

k subgroup, more symmetries remain. Trans-

formations by rational angles α ∈ 2πQ are still implemented by topological operators, once

dressed by an appropriate TQFT. The price to pay is that the fusion algebra of the new oper-

ators becomes non-invertible. In the remainder of this text we will denote such non-invertible

set of operators, together with their fusion algebra as ΓQ for convenience.

In this note we present a generalization of this construction to theories in 5d with a mixed

anomaly between a 1-form symmetry U(1)(1) and a gauged 0-form symmetry U(1)(0)

d ⋆ j(2) =
k

8π2
f (2) ∧ f (2) . (1.2)

The simplest such model, which we present in Section 3.1, is a U(1) gauge theory with action

S =

∫
−1

2
f (2) ∧ ⋆f (2) +

k

24π2
a(1) ∧ f (2) ∧ f (2) . (1.3)

We find that the electric symmetry U(1)
(1)
e is not broken by the CS term to just Z(1)

k , rather

there is a full Γ
(1)
Q remnant. The non-invertible defects for α = 2π/N are given by

D1/N (Σ3) ≡
∫

Dĉ
∣∣∣
Σ3

exp

(
i

∮
Σ3

2π

N
⋆5 j

(2)
e +

N

4π
ĉ(1) ∧ dĉ(1) − 1

2π
ĉ(1) ∧ f (2)

)
, (1.4)

while for generic α = 2πp/N one replaces the Fractional Quantum Hall state theory with a

AN,p topological field theory [32], as in [30, 31].

An additional focus of this work is the realization of non-invertible symmetries in AdS5
holography.1 Previous works studying generalized symmetries in holographic bottom-up

setups include [35–41]. A particularly nice example, which we study in Section 5, is a

U(1)a × U(1)c gauge theory with action

S =

∫
−1

2
f (2)
a ∧ ⋆f (2)

a − 1

2
f (2)
c ∧ ⋆f (2)

c +
k

8π2
a(1) ∧ f (2)

c ∧ f (2)
c . (1.5)

In a compact space this theory has two non-invertible symmetries Γ
(1)
Q,a × Γ

(1)
Q,c arising as

remnants of the explicitly broken electric 1-form symmetries. By putting this theory in AdS5

we show that in bottom up holography, with appropriate boundary conditions, this model is

dual to U(1) gauge theory with a global symmetry U(1)(0) and an ABJ anomaly, one of the

examples presented in [30, 31].

The rest of the paper is organised as follows. In Section 2 we review earlier constructions

in 4d. In Section 3 we present a general discussion of how non-invertible 1-form symmetries

arise in 5d theories with a mixed anomaly. We also consider two examples of our general

construction. In Section 4, we carry out, as an appetizer to the holographic discussion, a

general discussion of our models in the presence of boundaries. In Section 5 we present the

holographic realization of our models, making precise connections between the symmetries in

the bulk and those in the boundary.

1Note that global symmetries are believed to be absent in Quantum Gravity [33]. Hence, any top-down

holographic setup lacks global symmetries in the bulk, see [34] for a thorough discussion. The models we

present are understood as effective theories, where these concerns do not apply.
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2 Non-invertible symmetries from ABJ anomalies in 4d

In this section we set the stage by reviewing the main aspects of the recent constructions

[30, 31] in four dimensions. The case of study are U(1) gauge theories possessing a 0-form

U(1)(0) global symmetry broken by an ABJ anomaly. Note that simple examples of this

kind are easy to find, ranging from QED-like models to effective descriptions along Coulomb

branches in supersymmetric theories. On general grounds, one may regard these models as

coming from a parent theory with two ordinary global symmetries U(1)
(0)
A , U(1)

(0)
C linked

through the following mixed anomaly

d ⋆ j
(1)
A =

k

8π2
F

(2)
C ∧ F

(2)
C , (2.1)

with j
(1)
A the (classically) conserved Noether current of U(1)

(0)
A and F

(2)
C ≡ dC(1) with C(1) a

background field for U(1)
(0)
C . The coefficient k is in principle an arbitrary integer number.2

Assuming that the current j
(1)
C is exactly conserved, one may gauge this symmetry and

ask about the fate of the U(1)
(0)
A global symmetry, now suffering a more severe anomaly

d ⋆ j
(1)
A =

k

8π2
f (2) ∧ f (2) =

k

2
⋆ j(2)m ∧ ⋆j(2)m . (2.2)

For future convenience, we emphasized in the last equality that the anomalous conservation

equation can be rephrased in terms of the magnetic symmetry current j
(2)
m = (2π)−1 ⋆ f (2),

which emerges after gauging U(1)c. By explicitly constructing the topological symmetry

defects, one may easily check that there is a discrete worth of global symmetry that survives

the gauging procedure, Z(0)
k ⊂ U(1)

(0)
A . Since this will not be our main focus here, we can

simplify our discussion further by taking k = 1.

Due to (2.2),3 there is a natural obstruction to performing U(1)
(0)
A transformations, or

equivalently to define the symmetry defects realizing such transformations in subregions of

spacetime. For instance, under a global rotation by a constant angle α ∈ [0, 2π), the effective

action acquires a phase

δS =
α

8π2

∫
M4

f (2) ∧ f (2) , (2.3)

where the integration is performed on the whole spacetime M4. The above shift stands as

a symptom of the complete breaking of U(1)
(0)
A by the ABJ anomaly (2.2). However, one

may try to insist on keeping (a subset of) these rotations by looking for a further operation

which may compensate (2.3), such that the joint action remains a symmetry of the theory.

This additional operation should be non-trivial but mapping the theory to a dual theory.

These sort of operations have a longstanding history in quantum field theory and are known

2This number is usually constrained depending both on the detailed structure of the theory and the global

features of spacetime. We will not delve into these particularities here, trying to keep the discussion as simple

as possible.
3We are assuming that the spacetime topology has enough structure so as to allow for non-trivial bundles

of the gauge field, as it is standard in these kind of analysis.
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as duality transformations, with a simple realization in the classical electromagnetic duality.

Certain duality maps can be attained by gauging a subgroup of the global symmetry of a given

theory. As such, they generically modify the global structure of the theory, hence not standing

as a proper symmetry, but mapping to a different (dual) theory. A simple manifestation of

this fact is that, under a generic duality transformation, the effective action may produce a

phase just like (2.3) (albeit for certain values of α), which is precisely what we are looking for.

The combined action of this operation and the anomalous global rotation maps the theory to

itself, hence being a self-duality.

In order to make this more precise, we will explicitly implement the duality transformation

appropriate for a U(1) gauge theory in four dimensions. As mentioned already, a crucial

role is played by the magnetic U(1)
(1)
m 1-form symmetry. This symmetry can be coupled to

background fields by turning on a 2-form U(1) gauge field B
(2)
m . In particular, the duality

transformation we are interested in arises by gauging a Z(1)
N subgroup of U(1)

(1)
m . In order to do

this, we single out a flat 2-form connection b(2) ∈ B
(2)
m , with the ZN condition imposed by a 1-

form gauge field Lagrange multiplier ĉ(1). Moreover, this gauging is usually sensitive to certain

global choices, such as the addition of discrete counterterms (sometimes referred to as discrete

torsion elements). Finally, the gauged theory possesses an emergent quantum symmetry Ẑ(1)
N

which we might couple to a background field B̂(2) (with some discrete counterterms for this

field as well). This field will not play a crucial role in the following,4 so we will set it to

zero for simplicity. Putting all together, the discrete gauging is implemented by adding the

following term to the effective action5

δS =

∫
M4

N

2π
b(2) ∧ dĉ(1) +

1

2π
b(2) ∧ f (2) +

Np′

4π
b(2) ∧ b(2) . (2.4)

In the above expression, ĉ(1) is a Lagrange multiplier setting b(2) to have ZN periods, as it

should. In addition, we introduced the integer p′, which is defined mod N , and whose role

will become clear in a moment.

By “completing squares” and integrating out ĉ(1) and b(2), it is easy to show that,

δS = − p

4πN

∫
M4

f (2) ∧ f (2) , (2.5)

where p is such that pp′ = 1 mod N . We therefore conclude that the above phase can be

used to cancel (2.3) for any given rational phase of the form α = 2πp/N . The joint action of

4Ultimately, one would like to regard this operation as a symmetry transformation. A necessary condition

for this to be so is for the emergent global symmetry to agree with the global symmetry of the ungauged theory.

In general spacetime dimension d, gauging a Z(q)
N q-form symmetry leads to an emergent (d− q − 2)-form ZN

global symmetry [32]. In order for these to match, the condition 2q = d− 2 must be satisfied, for which q = 1,

d = 4 corresponds to the example considered here. We will comment on this again when studying the five

dimensional theories of our concern in this paper.
5See [30] for a detailed implementation of this operation in terms of modular transformations S, T ∈ SL(2,Z)

composed with charge conjugation.
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the anomalous U(1)
(0)
A rotation (restricted to rational phases) and the gauging (2.4) may be

then regarded as a symmetry of the theory.

In order to further characterize this exotic symmetry, we need to construct the topological

defects that implement it. A possible way to do it, which naturally comes out from the above

procedure, is to follow the same steps but restricting ourselves to a transformation defined

over half of spacetime. This will produce a duality defect implementing the symmetry. A

configuration of this kind is readily obtained by defining a codimension 1 submanifold Σ3

such that it splits M4 into two disjoint sets ML
4 and MR

4 . We then proceed as explained in

this section, but only over MR
4 .6 The main outcome of the gauging procedure is that now

it also induces a non-trivial TQFT localized on Σ3. Formally, this three dimensional theory

is denoted by AN,p and has the following defining property: it possesses a 1-form global

symmetry Z(1)
N with an anomaly characterized by inflow as

S(N,p)
anom = −2πp

2N

∫
X4 /. ∂X4=Σ3

P
(
B̃(2)

)
, (2.6)

with B̃(2) a proper ZN 2-cocycle coupled to the 1-form symmetry and P denotes the standard

Pontryagin square. Upon identifying 2πB̃ = f mod N , this is precisely the anomalous

shift (2.3) for α = 2πp/N . In general, the topological theories AN,p do not have a precise

Lagrangian representation in three dimensions. However, for p = 1 (p′ = 1), one can get such

a representation of AN,1 by integrating out b(2) in (2.4) and keeping the Lagrange multiplier

ĉ(1). In fact, neglecting the anomalous shift proportional to f ∧ f one obtains∫
MR

4

N

2π
dĉ(1) ∧ dĉ(1) − 1

2π
dĉ(1) ∧ f (2) =

∫
Σ3

N

2π
ĉ(1) ∧ dĉ(1) − 1

2π
ĉ(1) ∧ f (2) ≡ S(N,1) , (2.7)

where one can recognize the gauge invariant description of the Fractional Quantum Hall State

(FQHS) at filling fraction ν = 1/N .

We then conclude that the joint action of an anomalous U(1)
(0)
A rotation (with α =

2π/N) and the gauging of Z(1)
N ⊂ U(1)

(1)
m defines a symmetry implemented by the following

topological defect

D1/N =

∫
Dĉ

∣∣∣
Σ3

exp

(
i

∫
Σ3

2π

N
⋆4 j

(1)
A +

N

2π
ĉ(1) ∧ dĉ(1) − 1

2π
ĉ(1) ∧ f (2)

)
, (2.8)

where we made explicit that the integration over the gauge field ĉ(1) is now restricted to Σ3.

Let us mention that the same structure can be attained by explicitly constructing a topological

and gauge invariant defect consistent with the anomalous non-conservation equation (2.2).

We will follow this constructive way when turning to five dimensions, subsequently making a

connection with the notion of higher gauging [21].

Finally, let us briefly comment on the fusion algebra closed by elements of the form (2.8).

It can be seen that they do not form a standard unitary algebra associated to a group action,

6The boundary conditions for b(2) on Σ3 are Dirichlet. These, together with the flatness condition imposed

by ĉ(1), are enough to show that the dependence on Σ3 is topological, as it should [21, 30].
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but instead a more general structure described by a category. We will not delve into a detailed

description of this structure, but only limit ourselves to highlighting its most salient features.

On the one hand, it can be checked that Dα (α ∈ Q) does not have an inverse, but instead

DαD†
α = Cα , (2.9)

with D†
α ≡ D−α the hermitian conjugate defect of Dα, and Cα a so-called condensation defect.

Roughly speaking, Cα can be regarded as a codimension 1 surface at which a ZN subgroup of

the magnetic symmetry is gauged by coupling it anti-diagonally with two dynamical gauge

bundles. As such, it is transparent to local operators (for which it does close an invertible

algebra) but it has a non-trivial action over magnetic lines [21]. The latter action can be

deduced already at the level of Dα and can be easily understood from the perspective of

gauging in half-spacetime, as reviewed above. In fact, it is clear that, as soon as a magnetic line

crosses Σ3 toM
R
4 , it ceases to be a gauge invariant object, due to the gauging of Z(1)

N ⊂ U(1)
(1)
m .

Defining the magnetic line over a closed curve γ, this can be amended by attaching a surface

Σ2 with boundary γ. More precisely, denoting the ’t Hooft line by T (γ) then, upon crossing

the symmetry defect, it gets modified as7

T (γ) → T̃ (γ,Σ2) = T (γ)e
−i

∫
Σ2

b(2)
. (2.10)

Let us mention that the integral over Σ2 can be phrased in terms of fractional magnetic flux

once the connection b(2) is integrated out.

This concludes our brief review of how an infinite set of non-invertible symmetries stems

from an anomalous conservation equation of the form (2.2) in four dimensions. In the next

section, we will apply these tools to derive a similar structure in certain five dimensional

gauge theories.

3 Non-invertible 1-form symmetries in 5d

In this section, we will argue that analogous sets of non-invertible symmetry defects can be

constructed in five dimensions, though presenting some marked differences with respect to

their four dimensional counterpart. The most salient one is that these defects are codimension

2, that is, they realize a non-invertible 1-form symmetry. Related to that, we will resort to

a modified version of the gauging procedure described in the previous section, now restricted

to a codimension 1 submanifold along the lines of [21].

Let us describe the general setup before going to the explicit description of some examples

in section 3.1. In five dimensions, one may consider the following mixed anomaly between a

1-form symmetry U(1)
(1)
B and a 0-form symmetry U(1)

(0)
C

d ⋆ j
(2)
B =

k

8π2
F

(2)
C ∧ F

(2)
C . (3.1)

7We will always assume (unless explicitly said otherwise) that the curve γ is contractible. For non-

contractible γ, gauge invariance can be obtained by attaching a slightly different surface connecting the line

to the defect. These subtleties will not be crucial in neither of the examples studied in this paper.
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Again, assuming that d ⋆ j
(1)
C = 0, we can gauge this symmetry and ask ourselves about the

fate of the 1-form symmetry U(1)
(1)
B , whose current now satisfies

d ⋆ j
(2)
B =

k

8π2
f (2) ∧ f (2) =

k

2
⋆ j(3)m ∧ ⋆j(3)m , (3.2)

where in the last equality we introduced the current of the magnetic symmetry U(1)
(2)
m (note

that it is a 2-form symmetry in five dimensions). As usual, one may check that there is a

global Z(1)
k ⊂ U(1)

(1)
A that is preserved by the anomaly. As we will not focus on this symmetry,

we will take k = 1 in the following.

We will now follow a heuristic, constructive argument to show that a model featuring

(3.2) actually hosts an infinite number of non-invertible codimension 2 symmetry defects.

The generators of the (broken) 1-form symmetry U(1)
(1)
B are extended operators supported

on codimension 2 surfaces Σ3 which act on line operators L(γ), with γ a given (closed) curve

in spacetime [1]. In order for the action to be non-trivial, γ must have non-vanishing linking

with Σ3. Let us, for the sake of concreteness, consider a fixed time slice M4 and place the

U(1)
(1)
B defect

Uα(Σ3) = e
iα

∫
Σ3

⋆j
(2)
B , (3.3)

such that it splits M4 into two disjoint regions. In addition, place a line operator L(γ)

such that γ pierces M4 at least once (one may think of this as the worldline of a static

heavy particle). In Euclidean signature, this setup can be deformed to locally look like

Figure 1a. The insertion of the line operator manifests as a delta function source along γ for

the conservation of j
(2)
B . It is then clear that the action of the symmetry defect on L(γ) is

accounted for by attaching an auxiliary surface Σ4 ⊂ M4, such that ∂Σ4 = Σ3 and integrating

d ⋆ j
(2)
B over Σ4. Note that the dependence on Σ4 is topological in the sense that, as long as

it is attached to Σ3, any smooth deformation of it is equivalent. However, due to (3.2), there

is an additional contribution to the naive fusion of Uα(Σ3) and L(γ). Formally,

Uα(Σ3)L(γ) = L(γ)eiαe
i α
8π2

∫
Σ4

f (2)∧f (2)

, (3.4)

where we have chosen L(γ) to have unit charge. From the above action, we see that in order

to define a proper action on line operators, we need to stack Uα(Σ3) with a TQFT. The

latter must couple to the magnetic current in such a way that it cancels the unwanted term

in (3.4). Again, this cannot be achieved for arbitrary phases α, but only for the ones of the

form α = 2πp/N . Of course, cancelling such a term is precisely done by the AN,p theory. We

therefore get, for the particular case of p = 1,

D1/N ≡
∫

Dĉ
∣∣∣
Σ3

exp

(
i

∮
Σ3

2π

N
⋆5 j

(2)
B +

N

4π
ĉ(1) ∧ dĉ(1) − 1

2π
ĉ(1) ∧ f (2)

)
. (3.5)

Let us try to interpret this construction along the lines of section 2, namely we must look

for an operation that cancels the unwanted phase in (3.4). This operation should comprise the
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(a) (b)

Figure 1: a) A non-invertible topological operator D1/N generating a non-trivial holonomy

on the linking cycle γ has a surface Σ4 attached to it. b) A magnetic surface T (Γ2) intersects

Σ4 along γ′. A flux is attached in Σ2 such that ∂Σ2 = γ′.

gauging of (a subgroup of) the magnetic symmetry. In five dimensions, such a gauging does

not lead to any notion of self-duality (see footnote 4), hence one would not expect to obtain a

symmetry transformation by following the exact same steps as in four dimensions. However,

the fact that the anomalous phase in (3.4) has support on a codimension 1 submanifold Σ4

hints to the fact that the appropriate gauging should be also restricted to codimension 1.

The notion of gauging a global symmetry within lower dimensional submanifolds of space-

time has been recently explored in [21], where it was dubbed as higher gauging. A discrete

q-form symmetry is said to be p-gaugeable if one can consistently sum over all possible inser-

tions of its corresponding (d− q − 1)-dimensional symmetry defects restricted to lie within a

codimension p submanifold. An obvious constraint for this to be possible is that p ≤ q + 1.

There are further constraints for the symmetry in question to be p-gaugeable, the so called

higher anomalies, but those will not be relevant for our construction, as will become clear

below.

On general grounds, p-gauging of a q-form symmetry, say ZN for concreteness, amounts

to summing over all non-trivial symmetry defects classified by elements in Hd−q−1(Σd−p,ZN ).

By Poincare duality (restricted to a codimension p submanifold), this is equivalent to summing

over elements of Hq−p+1(Σd−p,ZN ), which we identify with the corresponding discrete gauge

field. From this perspective, gauging a q-form symmetry on codimension p closely resembles

the gauging of a (q − p)-form symmetry.

We are particularly interested in gauging a Z(2)
N subgroup of the magnetic 2-form sym-

metry over a codimension 1 manifold Σ4, hence p = 1 < q + 1. In addition, one should check

that the symmetry in question is free of higher anomalies. In the case at hand this conclusion

is direct, stemming from the absence of ’t Hooft anomalies for the magnetic symmetry, so
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making it already 0-gaugeable8 (a fact that holds in any spacetime dimension).

We then proceed as follows. According to the general discussion above, we need to sum

over 2-form ZN connections b(2), coupled to the magnetic symmetry along Σ4. We then find

that the problem maps to its four dimensional analog described in section 2. The appropriate

operation then amounts to adding the following action supported on Σ4

δS =

∫
Σ4

N

2π
b(2) ∧ dĉ(1) +

1

2π
b(2) ∧ f (2) +

Np′

4π
b(2) ∧ b(2) (3.6)

= −2πp

N

∫
Σ4

f (2) ∧ f (2) + S(N,p)[Σ3] .

In the last equality we integrated out the field b(2) thus obtaining the corresponding term

that cancels the unwanted phase in (3.4) for α = 2πp/N . In addition, we formally denote by

S(N,p)[Σ3] the resulting AN,p TQFT stacked with Uα(Σ3) at Σ3. For the particular case of

p = 1, we explicitly reproduce (3.5).

Let us briefly comment on the topological nature of the defect. As emphasized above, we

only require Σ4 to satisfy ∂Σ4 = Σ3. Besides this, the actual embedding of Σ4 ⊂ M5 is totally

irrelevant. One can be easily convinced about this fact by direct evaluation. Concretely,

consider a four dimensional manifold Σ′
4, such that ∂Σ′

4 = Σ3, differing from Σ4 by a small

smooth deformation in the bulk. The difference between (3.6) evaluated in Σ′
4 and Σ4 is

then obtained by computing the partition function of the topological field theory on the

closed manifold Σ′′
4 ≡ Σ′

4 ∪ Σ̄4. The deformation being smooth implies in particular that the

topology of Σ′′
4 is that of the S4. Finally, being a well defined topological field theory, the

partition function of the theory in (3.6) is trivial on the 4-sphere.9 In this sense, we say that

the dependence on Σ4 is topological. Moreover, the sum over b(2) is performed by imposing

Dirichlet boundary conditions over Σ3. This conditions, together with the fact that b(2) is flat,

are enough to guarantee that Σ3 can be deformed freely as a boundary of Σ4 (see footnote

6). Putting this two facts together, one concludes that the dependence of Σ3 is topological

on M5, as it should be.

Finally, we argue that non-invertible symmetry defects of this kind may act non-trivially

on magnetic surfaces. The reasoning is totally analogous to the one in four dimensions. In

order to make it more concrete, let us focus on the following configuration. Place a symmetry

defect, say D1/N , and a magnetic surface T (Γ2) as shown in 1b (Γ2 ∈ H2(M5,Z)). Recall

that 3- and 2-manifolds do not have non-trivial linking in d = 5, hence the action of D1/N

over T (Γ2) is more subtle and lies beyond the standard definition in [1]. The surface operator

intersects the attached codimension 1 surface Σ4 along a curve γ′. Within Σ4, a ZN subgroup

of the magnetic symmetry is gauged. In analogy to the four dimensional case, a consistent

8In the absence of fundamental charged matter, U(1) gauge theories feature a mixed anomaly between the

magnetic and the electric 1-form symmetry. However, this does not prevent gauging one of them.
9Equivalently, there is no non-trivial U(1) instanton in the S4 sourcing the second line of (3.6). Of course,

these considerations do not hold if the deformation intersects a bulk magnetic surface, hence not being smooth

anymore.
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fusion rule demands dressing the operator by attaching a surface Σ2 ⊂ Σ4 such that ∂Σ2 = γ′,

hence the modified operator

T2(Γ2) → T̃2(Γ2,Σ2) ≡ T2(Γ2)e
−i

∫
Σ2

b(2)
(3.7)

is gauge invariant when intersecting Σ4.

3.1 Simple examples in Maxwell-Chern-Simons theory

We now proceed to describe some five dimensional theories featuring the set of non-invertible

1-form symmetries described above. The simplest example is a U(1) gauge theory with a

Chern-Simons term

S =

∫
−1

2
f (2) ∧ ⋆f (2) +

k

24π2
a(1) ∧ f (2) ∧ f (2) . (3.8)

The integral is performed over an arbitrary 5-manifold M5 such that there is no additional

constraint on k besides k ∈ Z (otherwise we should set k ∈ 6Z, see for instance [42] for

some discussion about this fact). Let us momentarily take ∂M5 = ∅ in order to keep the

discussion simple. The presence of a boundary has deep consequences to which we will turn

our attention in section 4.

Recall that this theory possesses two higher form symmetries. On the one hand, there

is a topological magnetic 2-form symmetry U(1)
(2)
m generated by j

(3)
m = (2π)−1 ⋆ f (2). On

the other, a free U(1) gauge theory has a U(1)
(1)
e electric 1-form symmetry, with current

j
(2)
e = f (2), accounting for conservation of electric charge. Turning on background fields for

these symmetries, it is easy to show that they are related by a mixed anomaly accounted for

by inflow as10

1

2π

∫
X6

B(2)
e ∧ dB(3)

m . (3.9)

For the theory (3.8), the electric symmetry is broken to Z(1)
k by the equations of motion

d ⋆ j(2)e =
k

8π2
f (2) ∧ f (2) . (3.10)

10For completeness, let us describe the anomaly corresponding to this theory, for which the electric symmetry

is broken to Z(1)
k . The corresponding 2-cocycle B̃

(2)
e ∈ H2(M5,Zk) can be embedded in B

(2)
e as usual, kB

(2)
e =

2πB̃
(2)
e . Moreover, for general k, one might be interested in gauging ZN subgroups of the magnetic symmetry

which preserve Z(1)
k . Restricted to these discrete subgroups, the anomaly reads

2π

k

∫
X6

B̃(2)
e ∪ β(B̃(3)

m ) ,

with β : H3(BZN ,ZN ) → H4(BZN ,Zk) the Bockstein homomorphism associated to the short exact sequence

0 → Zk → ZNk → ZN → 0 and we left implicit in our notation that the inputs in the above expression are

mapped to cocycles in spacetime through the usual pullback defined by the background fields. Hence the

condition for the anomaly to trivialize is gcd(N, k) = 1.
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Equation (3.10) is precisely of the form (3.2) and arises already at the classical level in this

context. As explained in the previous subsection, such a non-conservation equation leads to

a set of symmetries closing on a non-invertible fusion algebra, as we will now show.

For the sake of simplicity we will set k = 1 in the following. Let us consider again the

configuration depicted in Figure 1a. An electric 1-form symmetry transformation can be

implemented by shifting the dynamical gauge field by a flat connection, locally described by

a(1) → a(1) + dλ(0) , λ(0)(θ + 2π) = λ(0)(θ) +
2πp

N
. (3.11)

In this sense, the parameter λ is not globally defined, but induces a non-trivial holonomy along

the curve γ, locally parametrized by the angular variable θ. Note that we already restrict

ourselves to rational values of the induced holonomy. The actual value of θ at which the

discontinuity happens determines the orientation of the auxiliary surface Σ4. However, the

topological nature of this embedding becomes manifest by realizing that it can be shifted by a

trivial gauge transformation λ → λ+ ϵ with a constant ϵ ∈ [0, 2π). It is then straightforward

to check that the transformation (3.11) induces the following shift in the action

δS
∣∣∣
Σ4

=
p

4πN

∫
Σ4

f (2) ∧ f (2) , (3.12)

hence being cancelled by the appropriate gauging of Z(2)
N ⊂ U(1)

(2)
m within Σ4, as explained

previously.

The symmetry defects obtained this way then read

Dp/N ≡ Uα= 2πp
N

(Σ3)A(N,p)(Σ3) , (3.13)

which for p = 1 is written more explicitly as

D1/N =

∫
Dĉ

∣∣∣
Σ3

exp

(
i

∮
Σ3

2π

N
⋆5 f

(2) +
N

4π
ĉ(1) ∧ dĉ(1) − 1

2π
ĉ(1) ∧ f (2)

)
. (3.14)

Let us end our discussion on Maxwell-Chern-Simons by noting that it also has a higher group

structure, similar to the one found in axion electrodynamics [43], and a related model in 3d

[41]. Indeed upon coupling the theory to the backgrounds B
(2)
e (which we take to be Zk-

valued) and B
(3)
m , one is forced to modify the field strength H

(4)
m of the magnetic symmetry

as

H(4)
m = dB(3)

m − k

4π
B(2)

e ∧B(2)
e . (3.15)

The topological defects of Maxwell-Chern-Simons hence have both non-invertible and higher

group fusion rules.

Another simple example, which will be relevant when discussing holography, is the follow-

ing. Consider two U(1) gauge fields in five dimensions a(1) and c(1), mixed together through

a Chern-Simons term

S =

∫
−1

2
f (2)
a ∧ ⋆f (2)

a − 1

2
f (2)
c ∧ ⋆f (2)

c +
k

8π2
a(1) ∧ f (2)

c ∧ f (2)
c . (3.16)

– 11 –



The equations of motion can be phrased as non-conservation equations for the electric currents

j
(2)
e,a = f

(2)
a and j

(2)
e,c = f

(2)
c

d ⋆ j(2)e,a =
k

8π2
f (2)
c ∧ f (2)

c , d ⋆ j(2)e,c =
k

4π2
f (2)
a ∧ f (2)

c . (3.17)

Setting again k = 1, α = 2π/N for simplicity, and following the same steps as before, one can

construct two sets of non-invertible operators, namely11

Da
1/N ≡

∫
Dĉ

∣∣∣
Σ3

exp

(
i

∮
Σ3

2π

N
⋆5 f

(2)
a +

N

4π
ĉ(1) ∧ dĉ(1) − 1

2π
ĉ(1) ∧ f (2)

c

)
, (3.18)

Dc
1/N ≡

∫
DĉDv̂

∣∣∣
Σ3

exp

(
i

∮
Σ3

2π

N
⋆5 f

(2)
c +

N

2π
v̂(1) ∧ dĉ(1) − 1

2π
ĉ(1) ∧ f (2)

a − 1

2π
v̂(1) ∧ f (2)

c

)
.

(3.19)

Note that the defects described by (3.19) come equipped with two auxiliary gauge fields, ĉ(1)

and v̂(1). This is a consequence of the non-conservation equation for j
(2)
e,c which involves two

different magnetic currents, respectively j
(3)
m,a and j

(3)
m,c. In fact, for general p and N , the

defects can be obtained from the following combined gauging along Σ4∫
Σ4

−Np′

2π
b(2) ∧ b̃(2) +

N

2π
b(2) ∧ dĉ(1) +

N

2π
b̃(2) ∧ dv̂(1) − 1

2π
b(2) ∧ f (2)

c − 1

2π
b̃(2) ∧ f (2)

a , (3.20)

where p′ is the inverse mod N of p. Note that non-invertible defects analog to eqs. (3.18)

and (3.19) exist in axion electrodynamics. In particular the codimension 1 analog to (3.18)

was considered in [31]. It is also easy to show that codimension 2 operators like (3.19) exist

in that theory.

4 Adding boundaries

In this section, we will be concerned with the dynamics of the models described above when

placed on a five dimensional manifold with boundary N4 = ∂M5. Before delving into the

particularities pertaining to each model, let us make a few general comments about the scope

of the analysis presented below. For a general gauge theory with gauge group Ggauge in a

manifold with boundary, there are two notions of global symmetry that we want to distinguish.

Firstly, there is a subgroup of the center Γ ⊂ Z(Ggauge) that generates a 1-form symmetry

Γ(1), depending on the global structure of Ggauge and on the presence of charged matter.12

We will assume that Γ(1) ̸= ∅, as it is the case of the examples studied below. Note that

Γ(1) might be either broken or preserved depending on the boundary condition imposed on

the gauge bundle. Secondly, there is a special subset of the gauge transformations that act

11We hope there will be no confusion between the bulk gauge field c(1) and the gauge field ĉ(1) living on Σ3

(and its extension Σ4), which have no relation.
12Of course, for non simply connected gauge groups (π1(Ggauge) ̸= 0), there is also a (d− 3)-form magnetic

symmetry. Similar considerations apply to it, as we will mention later in this section.
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non-trivially on N4, denoted by G∂ . These have a natural incarnation as the asymptotic

gauge symmetries in holography, also referred to as long range gauge symmetries [34] (see

Section 5).

The question about whether G∂ defines a sensible notion of global symmetry strongly

depends on the choice of boundary conditions. In particular, boundary conditions that fix the

gauge field at N4 give G∂ a physical meaning. They are not redundancies anymore, as they

act on the boundary conditions. We may regard the boundary data as a given configuration

of background fields, subjected to G∂ transformations. Let us emphasize that symmetry

defects associated to G∂ are genuine boundary operators and, under generic circumstances,

they cannot be defined away of N4. On the same note, local operators charged under G∂

are well defined only at the endpoints of bulk line operators. This is the natural perspective

taken in holographic realizations, hence we will take this point of view in the following.

Finally, even if as sets, Γ ⊂ G∂ , one in general does not expect a correspondence between

the 1-form symmetry Γ(1) and G∂ (now regarded as a boundary global symmetry). However,

as we will point out in the following sections, it is possible to establish a well defined relation

between both symmetries whenever the gauge group is Ggauge = U(1). More precisely, the

action of a subset G̃∂ ⊂ G∂ can be defined in terms of the action of Γ(1) over lines ending at

the boundary. This map is generally not isomorphic and depends on the choice of boundary

conditions. A recurrent situation that we find in presence of CS terms in the bulk is that Γ(1)

becomes non-invertible. However, depending on the choice of boundary conditions, Γ(1) may

still be mapped to invertible elements in G̃∂ .

4.1 Maxwell Theory

Let us start considering 5d Maxwell theory on a manifold M5 with boundary N4 = ∂M5.

Once boundaries are included one needs to specify boundary conditions that fix the class of

solutions one wishes to consider. A consistency condition is that variations of the fields should

leave boundary conditions invariant. In the present case, a variation of the fields generates a

boundary term that should vanish

δS
∣∣∣
N4

=

∫
N4

δa(1) ∧ ⋆5f
(2) . (4.1)

Thus, there are two choices of boundary conditions that yield a well posed variational principle

Dirichlet: δa(1)
∣∣∣
N4

= 0 , Neumann: ⋆5 f
(2)

∣∣∣
N4

= 0 . (4.2)

Dirichlet Boundary Conditions (DBC’s) fix the gauge field a(1) at the boundary, where it

becomes a non-dynamical background. Neumann Boundary Conditions (NBC’s), on the

other hand, preserve gauge invariance on the whole system and a(1) is still a dynamical gauge

field in the boundary.

Five dimensional Maxwell theory enjoys a U(1)
(1)
e and a U(1)

(2)
m electric and magnetic

symmetries. The electric symmetry acts on Wilson Loops W = ei
∮
γ a(1) and can be imple-
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mented by shifting the gauge field by a flat connection a(1) → a(1) + Λ(1). It is clear that

Dirichlet boundary conditions, which fix a(1)|N4 , break this symmetry.

Since U(1)
(1)
e is now broken at the boundary, we expect that imposing DBC’s makes the

Wilson Loops endable. Indeed, Wilson Lines are now allowed to end on the boundary while

being gauge invariant, since gauge transformations13 must leave a(1)|N4 invariant. A Wilson

Loop deep in the bulk may then move towards the boundary and open up.14 Notice though

that Wilson lines cannot open anywhere else in the bulk, so that the 1-form symmetry is not

explicitly broken outside of the boundary. Instead, points at which Wilson lines end define

objects naturally charged under the boundary 0-form symmetry U(1)
(0)
∂ (see the discussion

above). For the particular case of free U(1) gauge theory, there is a one to one correspondence

that we can establish between the symmetry defects generating U(1)
(1)
e and U(1)

(0)
∂ . This can

be achieved by noting that the action of a codimension 1 defect on a charged local operator O
at N4 can be defined in terms of the action of a codimension 2 bulk 1-form symmetry defect

linked to the Wilson line ending at O. This is consistent because, due to gauge invariance,

the charge of the line under U(1)
(1)
e and of O under U(1)

(0)
∂ must agree. Moreover, both sets

of operators close to isomorphic fusion algebras with U(1) group law. It is in this sense that

we may identify the defects of both symmetries, even if U(1)
(1)
e is realized in the bulk while

operators of U(1)
(0)
∂ are only meaningful at N4.

15 Therefore, for the free Maxwell theory on

M5, we have a bijective map between Γ(1) and G∂ , namely Γ(1) → G̃∂ ≃ G∂ = U(1)
(0)
∂ . A

more illustrative but less precise way to phrase it would be that, in this particular case, 1-form

symemtry generators become identified with boundary 0-form symmetry ones when pushed

to the boundary. Note that this picture does not need to hold in general, but it becomes

manifestly realized in holography, where the asymptotic structure of the solutions allows to

map explicitly the charges corresponding to either symmetry (see the discussion around Eq.

(5.9)). For a pictorial representation of this discussion see Figure 2. As we will see next,

these considerations get drastically modified in the presence of Chern-Simons terms.

In the bulk the theory also has a U(1)
(2)
m symmetry. Magnetic surfaces charged under

this symmetry cannot end on the boundary hence U(1)
(2)
m is unbroken and it does not give

rise to any sensible symmetry in N4.
16

Neumann boundary conditions are best understood in the magnetic dual picture. We

introduce a dual 2-form gauge potential ã(2) related to the original one as f̃ (3) = ⋆f (2). The

U(1)
(2)
m symmetry becomes an electric symmetry in this frame, shifting ã(2) → ã(2) + Λ̃(2).

Neumann boundary conditions in the original picture become Dirichlet in this frame, breaking

13With gauge transformations we mean gauge redundancies. Transformations acting on the boundary are

physical in this case, since they modify the boundary conditions.
14Formally, electric line operators are classified by the relative homology groupH1(M5, N4,Z) which classifies

cycles closed in M5 modulo its boundary.
15Of course, one may introduce additional matter fields restricted to the boundary, then G∂ acquires ad-

ditional structure which has no correlation with any feature of Γ(1). We are not considering this situation in

this paper.
16More precisely, one might define magnetic symmetry defects restricted to the boundary, but the DBC’s

precludes the presence of any non-trivial charged operator.
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Figure 2: Artistic impression of 5d Maxwell Theory with boundaries. Wilson lines WR

charged under U(1)
(1)
e may end on the boundary, generating U(1)

(0)
∂ .

the U(1)
(2)
m symmetry at the boundary and preserving U(1)

(1)
e . All the discussion above goes

through interchanging the two symmetries.

4.2 Maxwell-Chern-Simons Theories

Let us now include a CS term and consider the theory discussed in section 3:

S =

∫
−1

2
f (2) ∧ ⋆f (2) +

k

24π2
a(1) ∧ f (2) ∧ f (2) . (4.3)

This theory is, generically, not gauge invariant in manifolds with boundaries. There are two

ways to make it gauge invariant. A first approach, consists in coupling the theory to certain

degrees of freedom in the boundary that cancel the gauge variation. We will not consider this

possibility and will content ourselves with setting boundary conditions that guarantee gauge

invariance. It is clear that this theory must be compatible only with DBC’s, which restrict

gauge transformations to not act on the boundary. Indeed, Neumann boundary conditions

generate a dynamical gauge field in the boundary that would be anomalous by the CS term

in 5d. This conclusion can also be reached by explicitly imposing the variation of the action

to vanish on the boundary

δS[a(1), δa(1)]
∣∣∣
N4

=

∫
N4

δa(1) ∧ ⋆5f
(2) − k

12π2
δa(1) ∧ a(1) ∧ f (2) . (4.4)

Clearly the only boundary conditions making this variational problem well posed are Dirichlet.

As we will mention in section 5, this obstruction is made very explicit in holography.

As detailed in section 3 the CS term already breaks U(1)
(1)
e down to a non-invertible

1-form symmetry Γ
(1)
Q with topological operators given by eq. (3.13). Naively, by extending

the arguments presented in Section 4.1 for the free theory, one is tempted to conclude that the

U(1)(0) symmetry on the boundary suffers a similar fate. There are several ways to argue that
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this is not the case and one has the standard U(1)
(0)
∂ at N4. Firstly, the gauge field becomes a

background on the boundary, rendering the anomalous conservation eq. (3.8) harmless. There

is no need to attach a TQFT to the symmetry defects located at the boundary. Furthermore,

as explained in section 2, the non-invertibility of the fusion algebra arises from condensation

defects having a non-trivial action on magnetic operators. With DBC’s these are expelled

from N4 and boundary symmetry defects close to an invertible U(1) algebra.

From the operator point of view, the picture is the following. In the bulk, there are

symmetry defects Dαr acting with rational phases αr ∈ 2πQ on Wilson Loops and generating

Γ
(1)
Q . An obvious consequence of this fact is that there will not be a surjective map between

Γ(1) = Γ
(1)
Q and G∂ = U(1)

(0)
∂ (irrational phases are not accounted for in Γ

(1)
Q ). Accordingly,

the fusion algebras do not match either. In particular, if we insist on pushing a given element

of Γ
(1)
Q , Dαr , to the boundary, due to the absence of magnetic lines at N4 the non-invertible

fusion rules trivializes, and the category realizes a group law. We therefore see that the map

between the 1-form symmetry and the boundary symmetry is more subtle for this theory. In

particular, the non-invertible Γ(1) = Γ
(1)
Q maps to a G̃∂ with the latter comprising the subset

of elements of U(1)
(0)
∂ accounted by rational phase rotations and, moreover, these elements

have invertible fusion rules in G̃∂ . The remaining elements of U(1)
(0)
∂ , namely rotations by

irrational phases, are genuine boundary operators and do not necessarily map to any global

structure in the bulk.

Let us consider now the model in Equation (3.16), whose action we reproduce here

S =

∫
−1

2
f (2)
a ∧ ⋆f (2)

a − 1

2
f (2)
c ∧ ⋆f (2)

c +
k

8π2
a(1) ∧ f (2)

c ∧ f (2)
c . (4.5)

Note that the CS term, even if still not invariant under U(1)a gauge transformations, is

gauge invariant with respect to U(1)c in a manifold with boundary. We thus expect both

DBC’s and NBC’s to be allowed for c while a should still come with DBC’s and become a

fixed background at N4. We will denote these two boundary conditions as (D,D) and (D,N),

respectively. As described in Section 3.1 this theory has Γ
(1)
Q,a × Γ

(1)
Q,c × U(1)

(2)
m,a × U(1)

(2)
m,c

symmetry in the absence of boundaries. We now explain how these symmetries fare with the

different boundary conditions. The discussion is analogous to the one for the single vector

model:

• (D,D): Both Γ
(1)
a = Γ

(1)
Q,a and Γ

(1)
c = Γ

(1)
Q,c symmetries are broken by the boundary con-

ditions. Also like in Maxwell CS, one recovers a full U(1)
(0)
a ×U(1)

(0)
c on the boundary,

and the picture for each field is similar to Figure 2. The only difference is that there is

a mixed anomaly between the two global symmetries on the boundary U(1)
(0)
a ×U(1)

(0)
c

obtained by inflow from the mixed CS term.

• (D,N): In this case Γ
(1)
a = Γ

(1)
Q,a is broken by the boundary condition, while Γ

(1)
c = Γ

(1)
Q,c

is preserved. The latter does not map to any relevant global symmetry at the boundary,

since U(1)c Wilson lines cannot end atN4. Regarding the magnetic symmetries, U(1)
(2)
m,a
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and U(1)
(2)
m,c are respectively preserved and broken at the boundary. Importantly, there

is now a U(1)c gauge symmetry, in N4. This gauge symmetry gives rise to a U(1)
(1)
m,c

symmetry on the boundary which is just the restriction of U(1)
(2)
m,c to N4, as explained

for free Maxwell theory. Magnetic surfaces in the bulk may end in magnetic lines on the

boundary and a similar picture to Figure 2 applies. It is due to the presence of these

magnetic lines that the global 0-form symmetry G∂ becomes non-invertible. Indeed, in

this case we fail to recover an U(1)
(0)
∂ at the boundary due to an ABJ anomaly, precisely

as described in the introduction. Hence, we have a Γ
(1)
a = Γ

(1)
Q,a symmetry in the bulk

that maps bijectively to the boundary 0-form symmetry, namely G̃∂ ≃ G∂ = Γ
(0)
Q,a.

Finally, we recognise the boundary theory to be just the U(1) gauge theory with an

ABJ anomaly introduced in [30, 31].

5 Implications for holography

In this section we want to investigate the relation between the non-invertible symmetries in

the 5d bulk, and the symmetries with similar non-invertible structure in the boundary theory

from a holographic point of view, i.e. when the bulk is AdS5.

Let us begin by making a brief remark in connection with the discussion presented at

the beginning of Section 4. As in a generic manifold with boundaries, in a given holographic

setup, the mapping between bulk 1-form symmetry and boundary 0-form symmetry does not

hold in general. In [34], the distinction between these two concepts is sharpened by the notion

of long range gauge symmetries, associated to large gauge transformations at the boundary

of AdS. In our context, Gasympt ≃ G∂ . When Dirichlet boundary conditions are imposed,

G∂ ≃ Ggauge, acting on operators localized at the boundary. This is a more precise phrasing

of the usual lore that boundary global 0-form symmetries are mapped to gauge symmetries

in the bulk.

As mentioned in Section 4, there is no necessary connection between G∂ and the putative

1-form symemtry Γ(1) that the bulk system might enjoy. A notable exception is the U(1)

gauge theory in AdS, which is an instance in which the generators of G∂ (i.e. localized on

the boundary) can be described by pushing the symmetry defects of the 1-form symmetry all

the way to the ∂AdS. However, this correlation is usually broken (or at least modified) in

presence of bulk Chern-Simons terms.17

This being said, we will proceed to discuss simple setups in which a clear connection

between the 1-form symmetry and (a subset of) the boundary 0-form symmetry can be

established.
17An even more decisive difference occurs when considering non-abelian gauge groups in AdS, say SU(Nf ).

As usual, this is interpreted as the presence of an SU(Nf ) global 0-form symmetry in the dual CFT. On the

contrary, for SU(Nf ), the bulk 1-form symmetry is just the center ZNf , hence it is clear that operators in

Γ(1) cannot coincide with the generators of G∂ . This can also be understood considering the fact that G∂ can

be non-abelian, while Γ(1) can only be abelian. Indeed, two codimension one defects on the boundary have

a specific ordering, but as soon as one can slide them into the bulk, they become codimension two and their

order can be inverted without crossing each other.
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Let us consider first of all the holographic interpretation of the simplest model with one

vector field. We rewrite the action for simplicity

S =

∫
−1

2
f ∧ ⋆f +

k

24π2
a ∧ f ∧ f , (5.1)

where now it is understood that the integral is over a fixed AdS5 background (we set its

radius to unity)

ds2 =
1

r2
dr2 + r2dxidx

i . (5.2)

The equations of motion in components are

∂ν
√
−gfµν = − k

32π2
ϵµνρσαfνρfσα . (5.3)

The bulk field aµ has an expansion near the boundary that is dictated by the free equation

(i.e. it does not depend on k)

aµ(r, x) = αµ(x) +
1

r2
βµ(x) +

1

r2
log r γµ(x) + . . . (5.4)

We impose Dirichlet boundary conditions, which means that, after fixing the radial gauge

ar = 0, αi acts as the source for a current which is given in terms of βi. As we will see

instantly, the latter statement receives corrections due to k. One gets the following relation

from the radial equation

∂iβ
i = − k

16π2
ϵijkl∂iαj∂kαl , (5.5)

while the current on the boundary is identified as the coefficient of δαi in the variation of the

properly renormalized action, to be

ji = −2βi −
k

12π2
ϵijklαj∂kαl . (5.6)

Together, these two relations yield the anomalous conservation equation

∂iji =
k

24π2
ϵijkl∂iαj∂kαl , (5.7)

which is the one of a global current in 4d with a cubic ’t Hooft anomaly of (integer) coefficient

k.

Now we would like to see if it is possible to switch to alternative quantization, that when

k = 0 would amount to fixing βi instead of αi. The latter would then become a dynamical

gauge field on the boundary, and βi its conserved current source.

When k ̸= 0, we immediately see that there is a problem. It is not possible to add

counterterms to the renormalized action in such a way to write its variation as an expression

proportional to δβi. This is the same conclusion as what we observed above, that it is
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impossible to impose Neumann boundary conditions on the gauge field because of the cubic

Chern-Simons term.

Another way to go to alternative quantization, i.e. Neumann boundary conditions, is to

go to a bulk description in terms of a dual gauge field (which is then considered in ordinary

quantization). In our case, we would have to describe the bulk theory in terms of a 2-

form gauge field. However, it is easy to convince oneself that the cubic CS term prevents

one from doing that. Therefore we conclude that the impossibility to impose Neumann

boundary conditions on the vector, or to dualize it in the bulk, are holographically dual to

the impossibility to gauge a symmetry with a ’t Hooft anomaly.

The relation between the 1-form symmetry defects in the bulk and the 0-form ones on

the boundary goes as follows. For simplicity we start with the easier case of k = 0. In the

bulk the charge for the electric 1-form symmetry is

Qe =

∫
Σ3

⋆Je =

∫
Σ3

⋆f . (5.8)

We now orient the surface Σ3 parallel to the boundary. The components of f that we should

integrate over are then fri = ∂rai, taking into account the radial gauge. We thus have

Qe =

∫
Σ3

d3xijk
√
−gϵijklr∂ral =

∫
Σ3

d3xijkr3ϵijklr

(
−2

βl
r3

)
=

∫
Σ3

⋆j , (5.9)

where we have used (5.6). Note that the potentially log-divergent term actually integrates to

zero on the closed surface Σ3, since γi ∝ ∂jfij . We thus observe that the bulk 1-form charge

exactly reduces to the charge for the 0-form symmetry on the boundary.18

When k ̸= 0, the bulk defect operator is modified as described in the previous sections,

and it is gauge invariant only for rational angles. When pushed to the boundary, (5.6)

informs us that a similar modification is also implemented on the boundary defect operator.

However at the boundary the modification is actually physically irrelevant since it is in term

of background fields. The effect of the attached TQFT is to multiply the standard symmetry

operator Uθ = e
iθ

∮
Σ3

⋆j
by an irrelevant phase. For the same reason, at the boundary one can

define defect operators for any angle, i.e. also irrational. The latter are genuine boundary

operators, i.e. they must stick to the boundary since they cannot be made gauge invariant in

the bulk. We then have a proper U(1)(0) symmetry at the boundary.

What we learn here is the following. A 4d theory on the boundary which has a U(1)

symmetry with a cubic ’t Hooft anomaly, possesses 3d symmetry operators that, for rational

angles, can be pulled into the bulk as non-invertible defects for the electric 1-form symmetry

associated to the U(1) gauge bundle in the bulk (this assignation being understood in the

18One could also define a charge for the magnetic symmetry in the bulk Qm =
∫
Σ2

⋆Jm =
∫
Σ2

f . Taking

again Σ2 to the boundary and parallel to it, one ends up with Qm =
∫
Σ2

d2xij∂iαj , which is an expression

purely in terms of background fields, and that hence acts trivially on any object in the boundary theory. We

thus confirm also in this way that the bulk magnetic symmetry does not lead to any symmetry in the boundary

theory.
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precise sense described in Section 4). For non-rational angles, the symmetry defects cannot

be pulled into the bulk, since they would cease to be gauge invariant, and hence topological.

These are therefore genuine boundary operators, generating symmetries only asymptotically

[34].

If we want to describe symmetry defects that are non-invertible in the boundary theory,

we need to enlarge the bulk theory to the one with two vector fields.

We consider then a gauge theory in AdS5 with action

S5 =

∫
5d
−1

2
fa ∧ ⋆fa −

1

2
fc ∧ ⋆fc +

k

8π2
a ∧ fc ∧ fc . (5.10)

The EOM are

∂ν
√
−gfµν

a = − k

32π2
ϵµνρσαfc,νρfc,σα , ∂ν

√
−gfµν

c = − k

16π2
ϵµνρσαfa,νρfc,σα . (5.11)

With an expansion for c similar to the one for a, we get from the radial equations

∂iβ
i
a = − k

16π2
ϵijkl∂iαcj∂kαcl , ∂iβ

i
c = − k

8π2
ϵijkl∂iαaj∂kαcl , (5.12)

while the induced currents on the boundary are

jia = −2βi
a , jic = −2βi

c −
k

4π2
ϵijklαaj∂kαcl . (5.13)

We finally get the following conservation equations

∂ij
i
a =

k

8π2
ϵijkl∂iαcj∂kαcl , ∂ij

i
c = 0 . (5.14)

So we see that jic is conserved and generates a U(1)
(0)
c global symmetry on the boundary,

along the lines of the previous discussion. On the other hand, jia is not conserved in the

presence of a background for U(1)
(0)
c , precisely reproducing the effect of the anomaly in the

boundary theory. Hence, we may gauge U(1)
(0)
c , but this implies an ABJ anomaly for the

would-be U(1)
(0)
a symmetry in the boundary.

Gauging the U(1)
(0)
c symmetry on the boundary amounts to imposing Neumann boundary

conditions for the bulk field c. This is always possible, as long as one keeps imposing Dirichlet

boundary conditions on a. Equivalently, one can dualize c to a bulk 2-form potential. This

has been performed recently in [40] with the aim of achieving a hydrodynamical description

of the chiral anomaly. There, the breaking of the U(1)(0) global symmetry by the anomaly

becomes manifest in the absence of U(1)a gauge symmetry for the dual system. It would be

nice to look for a precise realization of the non-invertible symmetry defects in this formulation.

We note here that in the current presentation of the CS term, it is not possible to impose

Neumann boundary conditions for a (or to dualize it). However this state of affairs changes

if one integrates by parts the CS term (i.e. adding a boundary local counterterm) so that it

becomes ∝ c ∧ fa ∧ fc. Now one can impose Neumann boundary conditions on a but not on
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(a) (b)

Figure 3: A non-invertible symmetry defect placed at the boundary of AdS. a) The auxiliary

surface is extended through the bulk. b) The auxiliary surface is pushed to the boundary.

c. Equivalently, one can now dualize a. This is the holographic dual of gauging U(1)
(0)
a in

the boundary theory, which leads to a 2-group structure [39, 44].

Going back to the framework where we are gauging U(1)
(0)
c , we see that now on the

boundary we are exactly in the situation where the global symmetry is broken by the ABJ

anomaly. We can nevertheless build non-invertible symmetry defects in the boundary theory

for any rational angle, as reviewed in section 2. It is now clear that any such defect can

be pulled into the bulk, to become a non-invertible defect for the electric 1-form symmetry

related to the bulk field a. Note that, in the bulk, there are also non-invertible defects for the

electric 1-form symmetry related to c. Those however do not generate any global symmetry

at the boundary, as explained above, due to the Neumann boundary conditions on c.

Let us conclude with one more comment. If we decide to build the non-invertible defects

in the boundary theory by gauging a discrete subgroup of the magnetic symmetry in half

of spacetime, this means that we are effectively gauging the magnetic symmetry on a four

dimensional surface which ends on the defect and lies along the boundary. However as we

discussed in the previous sections, the four dimensional surface can be freely moved in the

bulk, as long as it ends on the defect. From this point of view, we see again that the

codimension one non-invertible defects in the 4d boundary theory are just a restricted case of

the codimension two defects in the 5d theory. A pictorial version of this argument is depicted

in Figure 3.
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