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Abstract

Natural optical activity is the paradigmatic example of an effect originating
in the weak spatial inhomogeneity of the electromagnetic field on the atomic
scale. In molecules, such effects are well described by the multipole theory of
electromagnetism, where the coupling to light is treated semiclassically beyond
the electric-dipole approximation. That theory has two shortcomings: it is
limited to bounded systems, and its building blocks – the multipole transition
moments – are origin dependent. In this work, we recast the multipole the-
ory in a translationally-invariant form that remains valid for periodic crystals.
Working in the independent-particle approximation, we introduce “intrinsic”
multipole transition moments that are origin independent and transform co-
variantly under gauge transformations of the Bloch eigenstates. Electric-dipole
transitions are given by the interband Berry connection, while magnetic-dipole
and electric-quadrupole transitions are described by matrix generalizations of
the intrinsic magnetic moment and quantum metric. In addition to multipole-
like terms, the response of crystals at first order in the wavevector of light
contains band-dispersion terms that have no counterpart in molecular theo-
ries. The rotatory-strength sum rule for crystals is found to be equivalent to
the topological constraint for a vanishing chiral magnetic effect in equilibrium,
and the formalism is validated by numerical tight-binding calculations.
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1 Introduction

As the wavelength of optical radiation is large compared to atomic dimensions, the inter-
action of light with matter is generally well described by taking the long-wavelength limit
(electric-dipole approximation). In that approximation, the response of the medium to
an electromagnetic perturbation is treated as local in space. When nonlocality is taken
into account, the response acquires a dependence on the wavevector q of light, and this is
known as spatial dispersion [1, 2].

Although the effects of spatial dispersion can often be treated as small corrections,
they are significant in that they lead to qualitatively new phenomena. One example is
natural optical activity [1], whose most familiar manifestation is the rotation of the plane
of polarization of linearly-polarized light travelling through chiral molecules in solution.
Lesser-known manifestations of spatial dispersion include gyrotropic birefringence and
nonreciprocal directional dichroism [3–6]; these are magneto-optical effects that occur in
acentric magnetic materials without requiring a net macroscopic magnetization.

Because of the fundamental and industrial importance of chiral molecules, molecu-
lar quantum theories of natural optical activity – and, by extension, of other spatially-
dispersive optical effects – have been developed over many decades, on the basis of the
multipole theory of electromagnetism [7–9]. This has led to the development, starting in
the mid 1990s, of several ab initio methods for calculating optical rotatory dispersion and
natural circular dichroism spectra of molecules. Some of those methods rely on sum-over-
states formulas; in others, the explicit summation over a truncated set of excited states
is avoided using either static-limit [10] or finite-frequency [11] linear-response schemes, or
real-time propagation approaches [11,12] (see Refs. [13–15] for reviews).

By comparison, there have been relatively few attempts to formulate corresponding
bulk theories [16–18], particularly within the one-electron band picture [19–24]. As a re-
sult, only a small number of ab initio calculations of natural optical rotation [20, 25–28]
and of nonreciprocal directional dichroism [29] have been carried out for periodic crystals.
Such effects provide valuable information about broken structural and magnetic symme-
tries, and their study in new materials [29,30] calls for improved theoretical descriptions.

In this work, we develop a microscopic theory of optical spatial dispersion in ex-
tended systems that is firmly rooted in the molecular multipole theory. We work in the
independent-particle approximation neglecting local-field effects, and focus on the elec-
tronic response with frozen ions. We proceed by evaluating the optical conductivity at
first order in q, including both interband and intraband contributions, and arrive at a
sum-over-states expression in terms of well-defined multipole transition moments.

To set the stage, let us introduce the multipole transition moments as defined in the
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standard molecular theory [9]. The electric dipole (E1) appears at leading order in the
multipole expansion, followed at the next order by the magnetic dipole (M1) and electric
quadrupole (E2). These are the needed ingredients to describe natural optical activity,
gyrotropic birefringence, and nonreciprocal directional dichroism. In the independent-
particle approximation, they take the form

dnl = −e〈φn|r|φl〉 , (1a)

mnl = −e
2
〈φn|r× v|φl〉 , (1b)

qabnl = −e〈φn|rarb|φl〉 , (1c)

where φn(r) and φl(r) are occupied and empty energy eigenstates of the molecule, respec-
tively, and −e is the electron charge. (The M1 transition moment also has a spin part; we
omit it for now, but it will be included later.)

In trying to extend the multipole theory to periodic crystals, one is faced with the prob-
lem of how to define the transition moments when the molecular orbitals φn(r) are replaced
by Bloch eigenstates ψnk(r) = eik·runk(r), given that the matrix elements in Eq. (1) involve
the nonperiodic position operator r. For E1 transitions between nondegenerate bands n
and l, there is a well-known prescription, namely dnl(k) = −e〈unk|i∂kulk〉 [31, 32].

The situation is less clear when it comes to defining M1 and E2 transition moments in
the Bloch representation. Already for molecules, their definitions in Eq. (1) are somewhat
problematic, as they give values that change under a rigid shift of the coordinate system.
Molecular properties should be origin independent, and for spatially-dispersive optical
coefficients that is generally ensured by a cancellation between the origin dependences of
different terms of the same order in the multipole expansion [8, 9]. This is not entirely
satisfactory from a formal standpoint, and moreover it leads to slightly origin-dependent
numerical results, because the cancellation is not exact for incomplete basis sets [33,34].

In our independent-particle formulation, the optical conductivity at first order in q
is written in terms of “intrinsic” multipole transition moments E1, M1, and E2 that
are origin independent and well defined for both molecules and periodic crystals. For
molecules, these modified transition moments take the form

d̄nl = −e〈φn|r− (r̄n + r̄l) /2|φl〉 , (2a)

m̄nl = −e
2
〈φn| [r− (r̄n + r̄l) /2]× v|φl〉 , (2b)

q̄abnl = −e〈φn|
[
ra −

(
r̄an + r̄al

)
/2
][
rb −

(
r̄bn + r̄bl

)
/2
]
|φl〉 . (2c)

As they are defined relative to an intrinsic origin located halfway between the centers
r̄n = 〈φn|r|φn〉 and r̄l = 〈φl|r|φl〉 of the two orbitals, the matrices d̄, m̄, and q̄ are
manifestly origin independent. For crystals, we find that they are expressed most naturally
in terms of covariant derivatives of the cell-periodic Bloch eigenstates: d̄ is given by the
interband Berry connection, while m̄ and q̄ are described by generalizations – with both
intraband and interband parts – of the intrinsic orbital moment [35] and of the quantum
metric [36], respectively.

The intraband orbital moment and quantum metric were already known to contribute
to the spatially-dispersive optical response in metals [22–24]; we clarify that the quantum
metric appears quite generally and not just in two-band models, and identify additional
Fermi-surface terms. As for the interband counterparts of the intrinsic orbital moment
and quantum metric, they had not been clearly identified in previous theoretical studies
of spatial dispersion in band insulators [19–21], where the optical matrix elements were
written in velocity form, and without isolating the magnetic and quadrupolar parts.
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The paper is organized as follows. In Sec. 2, we introduce some basic definitions and
relations. Section 3 contains the derivation of our main result: an expression for the bulk
optical conductivity at first order in q. The derivation is split into several steps. We start
in Sec. 3.1 from the Kubo formula for the frequency- and wavevector-dependent optical
conductivity in the velocity gauge. That formula suffers from apparent divergences at zero
frequency, and we recast it in a form that is manifestly divergence free. We then expand
the Kubo formula to linear order in q, treating the q dependence coming from the band
dispersion and from the Bloch eigenstates in Secs. 3.2 and 3.3, respectively. In Sec. 3.4,
we convert the optical matrix elements from velocity to length form, and express them
in terms of intrinsic multipole transition moments between Bloch eigenstates. Finally, in
Sec. 3.5 we collect terms and report the final expression for the optical conductivity. In
Sec. 4, we consider the molecular limit of our formalism, and its relation to the standard
multipole theory. The formal part of the paper ends in Sec. 5 with an analysis of optical
sum rules, and in Sec. 6 we present numerical results for a tight-binding model. We
conclude in Sec. 7 with a summary and discussion.

2 Basic definitions and relations

Consider the response of a medium to a monochromatic electromagnetic field. We work in
the so-called temporal gauge [2], where the electromagnetic field is fully described by the
vector potential A(t, r) = Re

[
A(ω,q)ei(q·r−ωt)

]
. To linear order in the field amplitude,

the induced current density reads

ja(ω,q) = Πab(ω,q)Ab(ω,q) =
1

iω
Πab(ω,q)Eb(ω,q) , (3)

so that one may define an effective conductivity as σab(ω,q) = (1/iω)Πab(ω,q) [1–3]. If
the spatial dispersion is weak, the effective conductivity can be expanded as

σab(ω,q) = σab(ω,0) + σab,c(ω)qc +O(q2) . (4)

The zeroth-order term is the optical conductivity in the long-wavelength limit, that is, in
the electric-dipole approximation. The next term in the expansion captures the effects of
spatial dispersion to the order of magnetic dipoles and electric quadrupoles, and will be
the focus of our study. Let us split it into symmetric (S) vs antisymmetric (A), and into
Hermitian (H) vs anti-Hermitian (AH) parts with respect to its first two indices,

σSab,c = ReσHab,c + i ImσAH
ab,c , (5a)

σAab,c = ReσAH
ab,c + i ImσHab,c . (5b)

The H and AH parts are absorptive and reactive, respectively [1, 2]. As for the S and A
parts, according to the Onsager reciprocity relation [1,2] they transform differently under
time reversal; the time-even (A) part describes natural optical activity, while the time-odd
(S) part describes spatially-dispersive magneto-optical effects.

3 Derivation of the bulk formula for σab,c(ω)

3.1 The Kubo formula

We now specialize to a bulk crystal described by a single-particle Pauli HamiltonianH [31],
and introduce the electromagnetic perturbation via an interaction Hamiltonian HI ex-
pressed in the velocity gauge [37]. To linear order in the vector potential, the interaction
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Hamiltonian can be written as [22]

H(η)
I (t, r) =

e

2

[
Ã(η)(t, r) · v + v · Ã(η)(t, r)

]
+

e

me
S · ∂r × Ã(η)(t, r) , (6)

where me is the electron mass, v = (1/i~)[H, r] is the unperturbed velocity operator, and
S is the spin operator. In addition, we have defined Ã(η)(t, r) = eηtA(t, r), where the
parameter η is formally a positive infinitesimal that controls the adiabatic turning on of
the coupling between the electromagnetic field and the crystal [38–41].

A standard perturbative calculation neglecting local-field corrections yields the fol-
lowing Kubo formula for the optical conductivity in the spectral (eigenstate) representa-
tion [22,39],

σ
(η)
ab (ω,q) = δab

ie2N

meω
+
ie2

~ω
∑
n,l

∫
k

flnk(q)

ωlnk(q)− ω − iηM
ab
nlk(q) . (7)

Here
∫
k =

∫
BZ dk/(2π)3, ωlnk(q) = ωl(k + q/2) − ωn(k − q/2), where ~ωn(k) = εn(k) is

the band energy, and flnk(q) = fl(k + q/2)− fn(k− q/2), where fn(k) = f [ωn(k)] is the
Fermi-Dirac occupation factor. In the first term, N is the total number of electrons per
unit volume, and in the second term the matrix element is defined as

Mab
nlk(q) = [Ialnk(q)]∗ Iblnk(q) , (8)

where Ilnk(q) is a sum of orbital and spin contributions [22],

Iorblnk(q) = 〈ul(k + q/2)|v(k)|un(k− q/2)〉 , (9a)

Ispinlnk (q) =
igs

2me
〈ul(k + q/2)|S|un(k− q/2)〉 × q . (9b)

Here gs ≈ 2 is the spin g-factor of the electron, and ~v(k) = ∂kH(k), with H(k) =
e−ik·rHeik·r. Henceforth, the index k will be omitted for brevity.

The 1/ω prefactors in Eq. (7), inherited from Eq. (3), make it singular at ω = 0. That
singularity is only apparent [41], and it can be removed as follows. First, split Eq. (7) into
reactive and absorptive parts using limη→0+(x− iη)−1 = 1/x+ iπδ(x). Next, notice that
the reactive part can be rewritten by invoking the Kramers-Krönig relation

σAH
ab (ω0,q) = − i

π
P

∫ ∞
−∞

dω
σHab(ω,q)

ω − ω0
, (10)

while in the absorptive part the factor 1/ω can be replaced with 1/ωln thanks to the delta
function. Finally, recombine the two parts to obtain the following nonsingular expression,

σab(ω̃,q) =
ie2

~
∑
n,l

∫
k

fln(q)

ωln(q)

Mab
nl(q)

ωln(q)− ω̃ , (11)

where ω̃ = ω + iη. At q = 0, this version of the Kubo formula reduces to Eq. (25) of
Ref. [41]. In Sec. 5, we discuss how the equivalence between the Kubo formulas (7) and (11)
at zeroth and first orders in q is related to the oscillator-strength and rotatory-strength
sum rules, respectively.

Inserting Eq. (11) in Eq. (4) for the q expansion of the optical conductivity, we get

σab,c(ω̃) =
e2

~
∑
n,l

∫
k
∂qc

[
Eln(ω̃,q)Mab

nl(q)
]
q=0

(12)
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at first order order in q, where

Eln(ω̃,q) =
fln(q)

ωln(q)

i

ωln(q)− ω̃ . (13)

Upon expanding the E and Mab matrices as

Eln(ω̃,q) = Eln(ω̃,0) + qcE ,cln(ω̃) +O(q2) , (14a)

Mab
ln(q) =Mab

ln(0) + qcMab,c
ln +O(q2) , (14b)

Eq. (12) becomes

σab,c(ω̃) =
e2

~
∑
n,l

∫
k

[
Mab

nl(0)E ,cln(ω̃) + Eln(ω̃,0)Mab,c
nl

]
. (15)

In the following subsections, we evaluate the expansion coefficients of E and Mab en-
tering Eq. (15). We start in Sec. 3.2 with the expansion of E , and then devote Secs. 3.3
and 3.4 to the expansion and subsequent manipulations ofMab, which is where our treat-
ment differs more substantially from that of previous works. The terms in the resulting
expression for σab,c(ω̃) can be classified as either “molecular” or “band dispersive,” de-
pending on whether or not they vanish for a crystal composed of nonoverlapping units.
The first term in Eq. (15) is clearly band dispersive, because the quantity E ,cln(ω̃) involves
the band velocities vn = ∂kωn (see Eqs. (16c) and (16d) below). While less obvious, the
second term in Eq. (15) is not purely molecular; as we will see, it has a band-dispersion
component that went unnoticed in previous works [19,21].

3.2 Expansion in q of E
When expanding Eq. (13) in powers of q, the l = n and l 6= n entries must be treated
separately. To first order in q, one finds

Enn(ω̃,0) = − i
ω̃
f ′n , (16a)

Eln(ω̃,0) = i
fln
ωln

(ωln + ω̃)Zln(ω̃) , (16b)

E ,cnn(ω̃) = − i

ω̃2
f ′nv

c
n , (16c)

E ,cln(ω̃) =
i

2

vcl f
′
l + vcnf

′
n

ωln
(ωln + ω̃)Zln(ω̃)−

− ifln
Z2
ln(ω̃)

ω2
ln

[
ω3
ln +

ω̃

2

(
3ω2

ln − ω̃2
)]

(vcl + vcn) , (16d)

where f ′n = ∂fn/∂ωn and Zln(ω̃) = 1/(ω2
ln − ω̃2). For the intraband identities, we used

fnn(q)

ωnn(q)
= f ′n +O(q2) , (17)

which follows from ωnn(q) = qa∂aωn+O(q3) and fnn(q) = qa∂afn+O(q3), where ∂a = ∂ka .

3.3 Expansion in q of Mab

3.3.1 Nondegenerate bands

Energy eigenstates are only defined up to overall phase factors, and observable quantities
cannot depend on this phase arbitrariness. In the case of nondegenerate Bloch bands,
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physical observables must remain invariant under single-band quantum-mechanical “gauge
transformations” of the form |un〉 → e−iβn |un〉, where βn is a real function of k.

As the matrix for Mab(q) defined by Eqs. (8) and (9) is clearly gauge invariant, the
same must be true for its expansion coefficients entering Eq. (15) for σab,c(ω̃). When
evaluating those coefficients, we would like to insist that each individual term we obtain
– and not just their sum – is gauge invariant. Doing so will lead to a physically transparent
and numerically robust expression for σab,c(ω̃) in terms of origin-independent quantities.

The coefficientMab(0) appearing in the first term in Eq. (15) is trivially gauge invari-
ant, as it involves a single term,

Mab
nl(0) = vanlv

b
ln , (18)

which is a product of gauge-covariant velocity matrix elements (clearly, those matrix ele-
ments are also origin independent). Instead, the coefficientMab,c appearing in the second
term comprises several terms, not all of which are individually gauge invariant. The
problematic terms are those that contain matrix elements such as 〈un|va|∂cul〉, because
Bloch-state derivatives transform noncovariantly as |∂kun〉 → e−iβn |∂kun〉−i(∂kβn)|un〉.
This can be fixed by writing |∂kun〉 as |Dkun〉 − iAn|un〉, where |Dkun〉 is the covari-
ant derivative [32], and An = 〈un|i∂kun〉 is the Berry connection. The terms containing
diagonal Berry connections cancel out between different noninvariant terms, leaving

Mab,c
nl =

1

2

(
vanl〈Dcul|vb|un〉+ 〈un|va|Dcul〉vbln − 〈Dcun|va|ul〉vbln − vanl〈ul|vb|Dcun〉

)
+

igs
2me

(
εacdS

d
nlv

b
ln − εbcdSdlnvanl

)
, (19)

where now every term is a gauge-invariant product of two gauge-covariant matrix elements,
just like in Eq. (18).

3.3.2 Degenerate bands

Gyrotropic birefringence and nonreciprocal directional dichroism occur in antiferromag-
netic crystals such as Cr2O3 [3–6], where the bands are doubly degenerate at every k as
a result of the combined symmetry of time reversal with spatial inversion. To treat such
cases, we introduce degeneracy indices λ and ν for the Bloch states in bands l and n,
respectively. The Kubo formula (11) remains unchanged, but the matrix element therein
becomes a trace over the degeneracy indices, Mab

nl =
∑

λ,ν (Ialλ,nν)∗Iblλ,nν . The reasoning
leading up to Eq. (19) follows through, provided that the covariant derivative is gener-
alized as |Dkunν〉 = |∂kunν〉 + i

∑
ν′ |unν′〉Aν′ν

n , where Aν′ν
n = 〈unν′ |i∂kunν〉 [32]. The

quantity |Dkunν〉 transforms covariantly under multiband gauge transformations of the
form |unν〉 →

∑
ν′ |unν′〉Uν

′ν
n , where Un is a k-dependent unitary matrix in the degeneracy

indices. To alleviate the notation, from now on we will assume nondegenerate bands.

3.4 Conversion to length (multipole) form

As we started out from the Kubo formula in the velocity gauge, the optical matrix elements
(18) and (19) entering Eq. (15) for σab,c(ω̃) are written in terms of the velocity operator.
Now, we would like to recast those matrix elements in a “length form” that brings out
their multipole character. In the case of molecules [33, 42], this is achieved by means of
identities such as 〈φl|v|φn〉 = iωln〈φl|r|φn〉, where ωln = ωl − ωn.

In periodic crystals, where the velocity operator is given by the gradient of the Hamil-
tonian, the conversion from velocity to length form follows from the identity

(∂kH)|un〉 = (∂kεn)|un〉 − (H − εn)|Dkun〉 , (20)
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which can be obtained by differentiating H|un〉 = εn|un〉, and then writing |∂kun〉 as
|Dkun〉 − iAn|un〉. Contracting with 〈ul| gives vln = δlnvn + iωlnAln, where vn is the
band velocity, and

Aln = 〈ul|iDun〉 = (1− δln)〈ul|i∂kun〉 =

{
vln
iωln

if l 6= n ,

0 if l = n
(21)

is the interband Berry connection.
Using Eqs. (20) and (21), Eq. (19) for Mab,c

nl can be split as

Mab,c
nl = i

(
vanlB

bc
ln − vblnBac

nl

)
+
ωln
2

[
(van + val )AblnA

c
nl + (vbn + vbl )A

a
nlA

c
ln

]
, (22)

where we have defined

Bbc
ln =

1

2i~
(〈Dbul|H − εl|Dcun〉 − 〈Dcul|H − εn|Dbun〉)−

gs
2me

εbcdS
d
ln . (23)

The first term in Eq. (22) is molecular for l 6= n and band dispersive for l = n, whereas
the second term is purely band dispersive and vanishes for l = n (the distinction between
molecular and band-dispersive contributions was introduced at the end of Sec. 3.1).

From the gauge-covariant and Hermitian matrices Aa and Bbc, we can now define for
bulk crystals the intrinsic multipole transition moments that were introduced in Eq. (2)
for molecules. The intrinsic electric dipole is d̄anl = −eAanl, while the intrinsic magnetic
dipole and electric quadrupole are related to the antisymmetric and symmetric parts of
Bbc as follows,

m̄a
ln =

e

2
εabcB

bc
ln , (24a)

q̄bcln =
ie

ωln

(
Bbc
ln +Bcb

ln

)
. (24b)

Thus,

d̄nl = −e〈un|iDkul〉 , (25a)

m̄ln =
e

2i~
〈Dkul| ×

(
H − εl + εn

2

)
|Dkun〉 −

egs
2me

Sln

= m̄orb
ln + mspin

ln , (25b)

q̄abln = −e
2

(〈Dbul|Dcun〉+ 〈Dcul|Dbun〉) , (25c)

where m̄ln comprises orbital and spin contributions. By expanding the covariant deriva-
tives and then setting l = n, one finds that d̄nn = 0 [see Eq. (21)], and that mn = m̄nn

and gabn = −q̄abnn/e are respectively the intrinsic magnetic moment [35] and the quantum
metric [36] of a Bloch eigenstate.

Using Eq. (21) for Aln together with the completeness relation, Eq. (25) can be recast
in a more convenient form for numerical work,

d̄nl =

{
ievnl
ωnl

if l 6= n

0 if l = n
, (26a)

m̄orb
ln =

e

4i

∑
p6=l,n

(
1

ωpl
+

1

ωpn

)
vlp × vpn , (26b)

q̄abln = −e
2

∑
p 6=l,n

[
valpv

b
pn

ωplωpn
+ (a↔ b)

]
. (26c)
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As they are written in terms of matrix elements of the velocity operator, these expressions
are manifestly origin independent. The correspondence with the molecular expressions in
Eq. (2) will be established in Sec. 4.

In the case of degenerate bands, Eq. (25) gets modified in the manner described in
Sec. 3.3.2. Note that the modified Eq. (26) remains nonsingular, as it only contains energy
denominators between nondegenerate bands.

There is at present considerable interest in quantum-geometric quantities associated
with interband optical responses [43]. In this regard, we note that the quantity −q̄abln/e
is distinct from the band-resolved quantum metric g̃abln =

(
AalnA

b
nl +AblnA

a
nl

)
/2 that has

been introduced in connection with nonlinear optical responses [44–46]. The band-resolved
quantum metric is gauge invariant for every l and n, and when summed over l it gives the
quantum metric of band n, defined as gabn = Re 〈∂aun|∂bun〉 − AanAbn. Instead, −q̄abln/e is
gauge covariant for l 6= n, and for l = n it reduces to gabn .

3.5 Final expression

We have now gathered all the needed ingredients to evaluate Eq. (15) for σab,c(ω̃), namely
the expansion coefficients of E(ω̃,q) in Eq. (16), and those ofMab(q) in Eqs. (18) and (22).
In Eqs. (28) and (32) below, we break down the resulting expression into symmetric (time-
odd) and antisymmetric (time-even) parts σSab,c(ω̃) and σAab,c(ω̃). The real and imaginary
parts of those two equations are either absorptive or reactive, as per Eq. (5).

To arrive at Eqs. (28) and (32) below, several terms containing double band summa-
tions were eliminated by exchanging the l and n indices (note also that the l = n terms
therein vanish, because fnn = ωnn = Aann = 0). Those equations are written in terms of
the Aa and Bbc matrices, which in turn are related to the intrinsic multipole transition
moments by

Aanl = −1

e
d̄anl , Bbc

ln =
1

e
m̄a
lnεabc +

ωln
2ie

q̄bcln . (27)

3.5.1 Antisymmetric part: optical activity

The antisymmetric part of σab,c(ω̃) takes the form

~
e2
σAab,c(ω̃) = ω̃

∑
n,l

∫
k
Zln(ω̃)

{
− flnIm

[
AanlB

bc
ln − (a↔ b)

]
+ fln

[
1

2
(van + val ) Im

(
AbnlA

c
ln

)
− (a↔ b)

]
+ fln

(
3ω2

ln − ω̃2
)
Zln(ω̃)Im

(
AanlA

b
ln

) 1

2
(vcn + vcl )

− f ′nωlnIm
(
AanlA

b
ln

)
vcn

}
+

1

ω̃

∑
n

∫
k
f ′n

(
vanB

bc
nn − vbnBac

nn

)
. (28)

The five terms in this expression can be classified as follows. The first is molecular, while
the others are band dispersive; the four inside curly brackets are interband, while the fifth
is intraband; and the first three are Fermi-sea-like, while the last two are Fermi-surface-like.

For insulators at zero temperature, only the Fermi-sea terms survive, and one can
compare with previous treatments of optical activity in insulators. In Refs. [19, 21], the
sole band-dispersion contribution to σAab,c came from differentiating the E matrix in the
first term of Eq. (15) for σab,c(ω̃). It went unnoticed in those works that the other term in

9
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that equation – where one differentiates theMab matrix instead – is not purely molecular,
as shown in Eq. (22). This is why we have not two but three Fermi-sea terms in Eq. (28),
one molecular and two band dispersive.

In conductors, the Fermi-surface terms contribute as well. Using Eq. (27) for Bbc
ln, the

last term in Eq. (28) becomes (εacdKbd − εbcdKad) /(eω̃), where Kab = −∑n

∫
k f
′
nv

a
nm

b
n.

This intraband contribution to optical activity involving the intrinsic magnetic moment
of conduction electrons was identified in Refs. [22, 23], and was evaluated for p-doped
tellurium in Refs. [27, 47]. The fourth term in Eq. (28) gives an additional interband
contribution to optical activity in conductors that was overlooked in previous works (in the
context of the kinetic magnetoelectric effect [48], such a term was identified in Ref. [49]).

The low-frequency behavior of the optical rotatory dispersion is different for insulators
and conductors. For simplicity, let us consider the propagation of light along the optical
axis z of a uniaxial crystal. The rotatory power is given by [1]

ρ(ω, τ) =
ω

2c2ε0
Re
[
σAxy,z(ω + iτ−1)

]
, (29)

where ε0 is the vacuum permittivity and c is the speed of light. To deal with absorp-
tion, the positive infinitesimal η in ω̃ = ω + iη has been reinterpreted heuristically as a
phenomenological scattering time τ−1 [8,41,50]. For frequencies and scattering rates well
below the threshold for the interband transitions, ω, τ−1 � ωgap, Eq. (28) yields

ρ(ω, τ) =
(ωτ)2

1 + (ωτ)2
a+ bω2 . (30)

The coefficient b comes from the interband terms which have ω̃ prefactors, and a =
−(e/c2ε0~)Kxx (with Kxx = Kyy) comes from the intraband term with a 1/ω̃ prefac-
tor. In insulators the coefficient a vanishes, and hence the rotatory power displays the
familiar ω2 dependence at low frequencies [8]; in conductors that coefficient is nonzero,
and one can distinguish two different regimes as follows,

ρ(ω, τ) '
{

(τ2a+ b)ω2 if ωτ � 1 ,

a+ bω2 if ωτ � 1 .
(31)

In Sec. 6, we will illustrate these low frequency profiles for a concrete tight-binding model.

3.5.2 Symmetric part: spatially-dispersive magneto-optics

The symmetric part of σab,c(ω̃) reads

~
e2
σSab,c(ω̃) = i

∑
n,l

∫
k
Zln(ω̃)

{
flnωlnRe

[
AanlB

bc
ln + (a↔ b)

]
+ flnωln

[
1

2
(van + val ) Re

(
AbnlA

c
ln

)
+ (a↔ b)

]
− flnω3

lnZln(ω̃)Re
(
AanlA

b
ln

)
(vcn + vcl )

+ f ′nω
2
lnRe

(
AanlA

b
ln

)
vcn

}
− i

ω̃2

∑
n

∫
k
f ′nv

a
nv

b
nv

c
n . (32)

The first three terms are Fermi-sea-like, and can be compared with the expressions ob-
tained for insulators in Ref. [21]. The third is band dispersive, and it corresponds to

10
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Eq. (31) in that work, while the first two add up to Eq. (30) therein, revealing its mixed
molecular/dispersive character.

The remaining two terms in Eq. (32) are Fermi-surface-like, and they can be compared
with the expressions obtained for metals in Ref. [24]. The last (Drude-like) term was
identified in that work. Writing ω2

lnZln(ω̃) as 1 + ω̃2Zln(ω̃) and noting that Re
∑

lA
a
nlA

b
ln

is the quantum metric gabn = −q̄abnn/e [this can be seen from Eqs. (21) and (26c)], the fourth
term in Eq. (32) splits into intraband and interband parts as follows,

i
∑
n

∫
k
f ′ng

ab
n v

c
n + iω̃2

∑
n,l

∫
k
f ′nZln(ω̃)Re

(
AanlA

b
ln

)
vcn . (33)

The intraband piece is similar to the Kab term in σAab,c(ω̃), but with the intrinsic magnetic
moment replaced by the quantum metric (intrinsic quadrupole moment). An equivalent
result was obtained in Ref. [24] for two-band models, but without invoking the identities
leading up to Eq. (33), which is what allowed us to isolate a quantum-metric contribution
in the general multiband case. Of the two intraband terms in σSab,c(ω̃) – the Drude-like
term and the one from the quantum metric – it is the former that is expected to dominate
at low frequencies, thanks to its 1/ω̃2 prefactor.

4 Molecular limit

In this section, we analyze the molecular limit of our formalism. First, we show how in
that limit the bulk expressions for the intrinsic transition moments d̄, m̄, and q̄ reduce to
those in Eq. (2). We then show how the formulas for σAab,c and σSab,c reduce to the standard
molecular expressions in terms of the ordinary transition moments d, m, and q in Eq. (1).

Consider an idealized molecular crystal composed of nonoverlapping units. For such a
crystal, the cell-periodic Bloch states assume the form [51,52]

unk(r)
.
= e−ik·ξ(r)φn[ξ(r)] , (34)

where ξ(r) = r−R(r) is the intracell coordinate, R(r) is the lattice vector that folds the
absolute coordinate r into the home unit cell, φn(r) is vanishingly small outside that cell,
and

.
= denotes an equality that only holds in the molecular limit. The intraband Berry

connection can now be easily evaluated by integrating over the home cell,

An
.
=

∫
cell

dr φ∗n(r)eik·r i∂k

[
e−ik·rφn(r)

]
= r̄n , (35)

and the covariant derivative of a Bloch state reduces to

Dkunk(r)
.
= −ie−ik·r (r− r̄n)φn(r) , (36)

for r in the home cell. Using this identity in Eq. (25) for d̄, m̄, and q̄, we recover after
some manipulations the expressions in Eq. (2). In the case of m̄, it is necessary to invoke
the operator identity [va, rb] = [vb, ra] to rewrite (r× v − v × r)/2 as r× v.

Consider now the molecular limit of Eqs. (28) and (32) for σAab,c and σSab,c. Since
the energy bands become dispersionless in that limit, all band-dispersion terms in those
equations vanish, leaving only the first term in each of them; and since the transition
moments also become independent of k, we can set

∫
k

.
= 1/Vc in those terms (Vc is the

cell volume) to find

Vcσ
A
ab,c

.
= Ḡ′adεdbc +

ω̃

2
āabc − (a↔ b) , (37a)

iVcσ
S
ab,c

.
= −Ḡadεdbc +

ω̃

2
ā′abc + (a↔ b) , (37b)

11
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where we have defined the (extensive) molecular tensors

Ḡab =
1

~
∑
n,l

fnlωlnZln(ω̃) Re
(
d̄anlm̄

b
ln

)
, (38a)

Ḡ′ab = −1

~
∑
n,l

fnlω̃Zln(ω̃) Im
(
d̄anlm̄

b
ln

)
, (38b)

āabc =
1

~
∑
n,l

fnlωlnZln(ω̃) Re
(
d̄anlq̄

bc
ln

)
, (38c)

ā′abc = −1

~
∑
n,l

fnl
ω2
ln

ω̃
Zln(ω̃) Im

(
d̄anlq̄

bc
ln

)
. (38d)

Invoking the identity fnl = fn(1− fl)− fl(1− fn), the fnl factors in the four equations
above can be replaced with 2fn(1− fl). In that form, Ḡ, Ḡ′ and ā become single-particle
versions of the multipolar susceptibility tensors G, G′ and a defined in Eqs. (2.83), (2.85)
and (2.86) of Ref. [9], with one difference: the ordinary transition moments d, m, and
q have been replaced by their intrinsic counterparts d̄, m̄, and q̄. It is not immediately
clear that the same is true for ā′, since Eq. (38d) contains a factor of ω2

ln/ω̃ in place
of the ω̃ factor appearing in Eq. (2.84) of Ref. [9] for a′. However, those two factors
are interchangeable in the expression for a′, as can be seen in the manner described
around around Eqs. (2.75–2.78) of Ref. [9]. Thus, (Ḡ, Ḡ′, ā, ā′) are intrinsic versions of the
molecular tensors (G,G′, a, a′) entering the standard multipole theory.

Consider now the propagation of light inside our idealized molecular crystal. For a
given propagation direction n̂, let us define (intensive) optical-activity and gyrotropic-
birefringence tensors as βAab(n̂) = −σAab,cn̂c and βSab(n̂) = iσSab,cn̂c, respectively. Using

Eq. (37), we obtain Eqs. (5.8) and (5.9) of Ref. [9] for those tensors, but with (Ḡ, Ḡ′, ā, ā′) in
place of (G,G′, a, a′). Inserting Eq. (2) in Eq. (38), the terms containing the orbital centers
drop out from the combinations of molecular tensors appearing in Eq. (37). Thus, (d̄, m̄, q̄)
can be safely replaced by (d,m, q) for the purpose of evaluating the optical properties of an
idealized molecular crystal. This completes the proof that our formalism correctly reduces
to the standard single-particle multipole theory in the molecular limit.

In summary, we have in Eqs. (37) and (38) a reformulation of the molecular multipole
theory of optical spatial dispersion at linear order in q in terms of translationally-invariant
property tensors. This is in contrast to the standard formulation, where translational
invariance is achieved by a cancellation between the origin dependences of the magnetic
and quadrupolar terms [9].

5 Sum rules

In Sec. 3.1, we wrote two alternative Kubo formulas for σab(ω,q), namely Eqs. (7) and (11).
The former displays apparent 1/ω divergences at ω = 0, whereas the latter is explicitly
divergence-free. In this section, we scrutinize the mathematical identities that underlie
the equivalence between those two formulas at zeroth and first order in q, and relate those
identities to the oscillator- and rotatory-strength sum rules.

12
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5.1 Equivalence between the two forms of the Kubo formula

Let us denote as (ie2/ω)∆ab(q) the difference between the Kubo formulas (7) and (11) at
η = 0. Writing 1/[x(a− x)] as (1/a)[1/x+ 1/(a− x)], we find

∆ab(q) = δab
N

me
+

1

~
∑
n,l

∫
k

fln(q)

ωln(q)
Mab
nl (q) , (39)

and using

ωln(q) = −ωnl(−q) , (40a)

fln(q) = −fnl(−q) , (40b)

Mab
nl (q) =

[
Mab
ln (−q)

]∗
, (40c)

Mab
nl (q) =

[
M ba
nl (q)

]∗
, (40d)

we obtain

Re ∆ab(q) = Re ∆ba(q) = Re ∆ab(−q) , (41a)

Im ∆ab(q) = −Im ∆ba(q) = −Im ∆ab(−q) . (41b)

For the two Kubo formulas to be equivalent, ∆ab(q) must vanish identically, and according
to the derivation in Sec. 3.1 this is guaranteed by the Kramers-Krönig relations. To analyze
the behavior of ∆ab(q) at zeroth and first order in q, we expand it as

∆ab(q) = ∆ab(0) + ∆ab,cqc +O(q2) . (42)

Let us start with the zeroth-order term in the expansion. Writing the electron density
N in the first term of Eq. (39) as

∑
n

∫
k fn, and using the identity in Eq. (17), followed by

an integration by parts, to deal with the l = n contribution to the second term, we obtain

∆ab(0) =
∑
n

∫
k
fn

 δab
me

+ 2
∑
l 6=n

Re
(
vanlv

b
ln

)
εn − εl

− 1

~2
∂2εn
∂ka∂kb

 = 0 . (43)

The quantity in square brackets is formally real and symmetric in accordance with Eq. (41a),
and it vanishes identically by virtue of the effective-mass theorem. We note that the
effective-mass theorem was also invoked in Ref. [53] to remove the apparent divergence at
ω = 0 of the dielectric function χab(ω) = iσab(ω,0)/ω of insulators and semiconductors.

In preparation for analyzing the first-order term in the expansion (42), let us compare
Eq. (39) for ∆ab(q) with the ω → 0 limit of Πab(ω,q) = iωσab(ω,q) [see Eq. (3)], evalu-
ated using the Kubo formula (7). This gives −e2∆ab(q) = Πab(0,q), and so −e2∆ab,c =
∂qcΠab(0,q)|q=0. From the analysis of this quantity in Ref. [22] (see Sec. III.A.1 of its
Supplemental Material), we conclude that

∆ab,c = − i
~
εabc

∑
n

∫
k
fn vn ·Ωn = 0 , (44)

where Ωn is the Berry curvature. In agreement with Eq. (41b), the expression above is
purely imaginary and antisymmetric in a and b. It vanishes identically for topological
reasons, and that amounts to a no-go theorem for the chiral magnetic effect in equilib-
rium [22].

In conclusion, the apparent divergence of σab,c(ω) at low frequencies can be removed
by means of Eq. (44). In a recent preprint [54], an expression was derived for σab,c(ω) that
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contains a term diverging as 1/ω. The authors found that the prefactor of that term was
neglibible for a specific tight-binding model, but they were unable to confirm analytically
that it vanishes in general.

The vanishing of ∆ab(q) dictates the high-frequency behavior of the optical conduc-
tivity. To see this, let ωmax be the frequency above which the system does not absorb [8];
setting ω � ωmax in Eq. (11) and comparing with Eq. (39), we can deduce that

σab(ω � ωmax,q) = δab
ie2N

ωme
. (45)

Thus, at high frequencies the optical conductivity reduces to the diamagnetic term. Since
that term is independent of q, we conclude that σab(ω,q = 0) decays as 1/ω, whereas
σab,c(ω) and all higher-order terms decay at least as 1/ω2.

In Sec. 5.2.4 of Ref. [8], the high-frequency behavior of the molecular optical activity
was inferred from the rotatory-strength sum rule. This is consistent with the present
analysis, because that sum rule is a direct consequence of the vanishing of ∆ab,c, as we
will now show.

5.2 Optical sum rules

Consider the sum rules obtained by integrating over positive frequencies the absorptive
part of the optical conductivity, taking into account both interband and intraband ab-
sorption. Writing

∫∞
0 f(ω)dω as 〈f(ω)〉 and using Eq. (5) yields〈
σHab(ω,q)

〉
=
〈
ReσSab(ω,q)

〉
+ i
〈
ImσAab(ω,q)

〉
. (46)

To evaluate this quantity, we begin by taking the Hermitian part of Eq. (11) for η → 0+,

σHab(ω,q) = −πe
2

~
∑
n,l

∫
k

fln(q)

ωln(q)
Mab

nl(q)δ [ω − ωln(q)] . (47)

Making the substitution

fln(q) = fl(k + q/2) [1− fn(k− q/2)]− fn(k− q/2) [1− fl(k + q/2)] , (48)

and noting that at zero temperature only the second term contributes to Eq. (47) when
ω > 0 and q ≈ 0, we obtain〈

ReσSab(ω,q)
〉

+ i
〈
ImσAab(ω,q)

〉
= Rab(q) + i Iab(q) , (49)

where we have defined

Rab(q) =
πe2

~
∑
n,l

∫
k
fn(k− q/2) [1− fl(k + q/2)]

Re
[
Mab

nl(q)
]

ωln(q)
, (50a)

Iab(q) =
πe2

~
∑
n,l

∫
k
fn(k− q/2) [1− fl(k + q/2)]

Im
[
Mab

nl(q)
]

ωln(q)
. (50b)

Let us split Rab(q) and Iab(q) in Eq. (49) into even and odd parts in q. Using the
identities in Eq. (40), one finds that the even part of Rab(q) plus the odd part of Iab(q) is
proportional to the second term in Eq. (39) for ∆ab(q). Therefore,〈

ReσSab(ω,q)
〉

=
πe2

2
[δabN/me − Re ∆ab(q)] +

1

2
[Rab(q)−Rab(−q)] , (51a)〈

ImσAab(ω,q)
〉

= −πe
2

2
Im ∆ab(q) +

1

2
[Iab(q) + Iab(−q)] , (51b)
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where we keep track of the vanishing quantity ∆ab(q).
The expansion of Eq. (51) in powers of q generates a series of sum rules. Since,

according to Eq. (41), the terms Re ∆ab and Im ∆ab only contribute (formally) at even
and odd orders in q, respectively, and since the reverse is true for the second terms in
Eqs. (51a) and (51b), we obtain

〈
ReσSab(ω,0)

〉
=
πe2

2
[δabN/me −∆ab(0)] , (52a)〈

ImσAab(ω,0)
〉

= Iab(0) , (52b)〈
ReσSab,c(ω)

〉
= Rab,c , (52c)〈

ImσAab,c(ω)
〉

= −πe
2

2
∆ab,c , (52d)

to linear order in q. Let us consider each of these identities in turn.
Once we set ∆ab(0) = 0 in accordance with Eq. (43), Eq. (52a) becomes the oscillator-

strength sum rule [1] 〈
ReσSab(ω,q)

〉
=
ω2
p

8
δab , (53)

where ωp = (4πe2N/me)
1/2 is the plasma frequency. In the case of tight-binding models,

the diamagnetic term in the Kubo formula changes form, leading to a modified oscillator-
strength sum rule [55].

Equation (52b) is the rotatory-strength sum rule for magnetic circular dichroism. At
q = 0, the intraband part of Eq. (50b) vanishes because Mab

nn(0) is real, and from the
interband part we recover the bulk expression given in Ref. [56] for that sum rule. If a single
band is occupied, the integrated magnetic circular dichroism spectrum is proportional to
the intrinsic orbital magnetic moment of the Bloch states in that band [56,57].

Equation (52c) is a sum rule for nonreciprocal directional dichroism. An explicit
expression can be obtained by expanding Eq. (50a) to first order in q, but we will leave
the detailed analysis for a future work.

Finally, by setting ∆ab,c = 0 in Eq. (52d) in accordance with Eq. (44), we arrive at the
rotatory-strength sum rule for natural circular dichroism,〈

ImσAab,c(ω,0)
〉

= 0 . (54)

This sum rule is well known for molecules in solution [7], as well as for oriented molecules [8].
Here, we have relied on a topological argument [22] to show that it remains valid for crys-
tals, both insulating and conducting. Alternative discussions restricted to insulators are
given in Refs. [19, 20].

The above derivation highlights the connection between the oscillator- and (natural)
rotatory-strength sum rules for crystals, and the equivalence between the Kubo formulas
(7) and (11) – that is, the vanishing of ∆ab(q) – at zero and first order in q, respectively.
More generally, the expansion of Eq. (51) in powers of q yields at each order two optical
sum rules, one of which relies on the vanishing of ∆ab(q) at that order.

6 A tight-binding example

In this section, we use numerical tight-binding calculations to validate our formalism, and
to illustrate the distinctive low-frequency profiles of the rotatory power in insulators and
conductors.
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Figure 1: a) The tight-binding model of Eq. (55). The crystallographic vectors are a1 =
(
√

3a, 0, 0), a2 = (
√

3a/2, 3a/2, 0) and a3 = (0, 0, c), with a the distance between nearest-
neighbor sites on the same layer, and c the interlayer distance. The on-site energies and
hoppings are indicated schematically. b) Band structure of the model for the Hamiltonian
parameters given in the main text.

As a simple model of a bulk crystal with nonzero σAab,c, we take the tight-binding model
of Ref. [48], which consists of honeycomb layers coupled by a chiral pattern of interlayer
hoppings. To break time-reversal symmetry, so that σSab,c becomes nonzero as well, we
add complex intralayer hoppings. The resulting model is depicted in Fig. 1(a), and its
Hamiltonian reads

H = ∆
∑
i

ξic
†
ici + t1e

iπ/2
∑
〈i,j〉

c†icj +
iλ1
a

∑
〈i,j〉

c†i (σ · δij) cj +
iλ2
a

∑
[i,j]

c†i (σ · dij) cj . (55)

The first term is a staggered on-site potential, with ξi = ±1 for the two sublattices in each
layer. The second and third terms describe intralayer hoppings between nearest-neighbor
sites i and j: the second is the complex hopping responsible for breaking time reversal, and
the third is a spin-orbit coupling term; therein, σ is the vector of Pauli matrices and δij
is the vector taking from site j to site i. The last term is the helical pattern of interlayer
hoppings that renders the model chiral, with dij the vector taking from site j to site i
in adjacent layers. We choose the distance a between nearest-neighbor sites on the same
layer as the unit of length, and the nearest-neighbor hopping amplitude t1 as the unit of
energy. For our tests, we set c = 1, ∆ = 0.5, λ1 = −0.06, and λ2 = 0.05.

Exploiting the translational symmetry of the crystal, we replace the site indices {i}
by {Ri}, where the lattice vector R labels the cell, and i is now an intracell site index.
The Hamiltonian matrix elements are denoted by Hij(R) = 〈φ0i|H|φRj〉, where φRj(r) =
ϕj(r−R− τ j) is a basis orbital centered at R− τ j [32]. The tight-binding Hamiltonian
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Figure 2: Numerical results for the nonzero components of σab,c for the model of Eq. (55)
and Fig. 1, with the two lowest bands treated as occupied. The results are plotted as
a function of frequency up to ~ω = 0.3, which is well below the threshold for interband
absorption (εgap ≈ 0.53). Filled circles: extrapolation from finite-size crystallites. Solid
lines: bulk crystal. The tensor σab,c has been divided by e2/~ to make it dimensionless.

in k space is constructed as

Hk
ij =

∑
R

eik·(R+τ j−τ i)Hij(R) , (56)

leading to the eigenvalue equation Hk ·Cnk = εnkCnk. Thanks to the inclusion of the phase
factor eik·(τ j−τ i) in Eq. (56), the column eigenvectors Cnk can be viewed as tight-binding
analogues of the cell-periodic Bloch eigenstates [32].

The energy bands of the model are displayed in Fig. 1(b). There are two composite
groups of bands with two bands each, separated by a gap. We treat the two lowest bands
as occupied, and calculate σAab,c and σSab,c at zero temperature using Eqs. (28) and (32),

respectively. The matrix elements Aanl and Bbc
ln are evaluated from Eqs. (26) and (27),

with effective velocity matrix elements given by [55]

vnl(k) =
1

~
C†nk · (∂kHk) · Clk . (57)

As the system is insulating, the only nonzero contributions to σab,c(ω) come from the
Fermi-sea terms in Eqs. (28) and (32); and since we restrict our calculations to frequen-
cies well below the threshold for interband absorption, we can safely set η = 0 in those
equations.

The model belongs to the magnetic point group 32 [58, 59]. Of the four independent
tensor components that are allowed by symmetry, σAyz,x, σAxy,z, σ

S
xx,y and σSxz,y, only the

first three are actually nonzero when the Fermi level εF lies in the gap. Converged results,
obtained by sampling the Brillouin zone on a uniform mesh of 50× 50× 50 k points, are
shown as solid lines in Fig. 2.

For comparison, we show as filled circles in Fig. 2 the results obtained from calculations
on finite crystallites. We treat them as “molecules,” and evaluate σAab,c and σSab,c from
Eq. (37) under open boundary conditions. Calculations are performed for samples with
L+1 unit cells in each crystallographic direction, with L ranging from 4 to 12. The results
are extrapolated to L→∞ by fitting them to the function

f(L) = f0 + f1/L+ f2/L
2 + f3/L

3 , (58)
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Figure 3: Decomposition of the σAxy,z curves in Fig. 2 into three types of origin-independent

contributions: intrinsic magnetic dipole (M1), intrisic electric quadrupole (E2), and band
dispersive (v). The latter is only present in the bulk calculation on the right, and it must
be included to obtain the same total result as in the extrapolated crystallite calculations
on the left.

where f0 is the extrapolated value to be compared with the result of the bulk calcula-
tion, and f1/L, f2/L

2, and f3/L
3 account for face, edge, and corner corrections, respec-

tively [60].
The excellent agreement seen in Fig. 2 between the two types of calculations confirms

the validity of our formalism for band insulators. We have also carried out exploratory
calculations where the Fermi level was placed in an energy band (metallic case), but we
found that it was not possible to converge the crystallite calculations from the available
system sizes, even with the help of temperature smearing [60]. For this reason, we only
report in Fig. 2 the well-converged results for the insulating case, and leave the metallic
case for future work.

In Fig. 3, we take the σAxy,z curves from Fig. 2 and split them into origin-independent
contributions. For the extrapolated crystallites (left panel), there are two types of con-
tributions in Eq. (37): those containing m̄ are denoted as M1, and those containing q̄
are denoted as E2. For the bulk crystal (right panel), there are, in addition to M1 and
E2 contributions from the first term in Eq. (28), band-dispersion contributions from the
second and third terms, which are denoted as v.

A comparison between the two panels of Fig. 3 reveals that the M1 and E2 contributions
are different for the extrapolated crystallites and for the bulk crystal, with the difference
being exactly compensated by the v contributions that are only present in the latter. A
similar situation occurs for the ground-state orbital magnetization of a crystal, whose bulk
expression contains a subtle Berry-curvature term without an obvious counterpart in the
molecular theory [60,61]. For a two-dimensional insulator with a single valence band, that
term reads −(e/2~)

∫
k εk(∂xAy − ∂yAx) or, after integrating by parts, (e/2)

∫
k(vxAy −

vyAx). As in Fig. 3, this additional band-dispersion contribution must be included in the
bulk calculation to recover the net orbital magnetization of a large flake [60,61].

To conclude, let us illustrate the different low-frequency behaviors of the rotatory
power in insulating and conducting states of our model. We evaluate ρ(ω, τ) for the bulk
model from Eqs. (28) and (29), setting ~/τ = 2 × 10−3. The frequency range is chosen
as 0 ≤ ~ω ≤ 10−2, and the calculation is carried out at zero temperature for εF = 0.0
(insulating state) and εF = 1.0 (conducting state). In both cases, a uniform mesh of
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Figure 4: Low-frequency optical rotatory dispersion of the model of Eq. (55) and Fig. 1 in
an insulating state (εF = 0.0), and in a metallic state (εF = 1.0). Numerical results based
on Eq. (30) are shown as solid lines. The dashed lines are guides to the eye, indicating
the distinct parabolic behaviors in the metallic state for ωτ � 1 and for ωτ � 1, as per
Eq. (31). The rotatory power has units of radians per length.

100× 100× 100 k points is used to sample the Brillouin zone; to improve the convergence
of the conducting-state calculation, the Fermi-surface terms in Eq. (28) are evaluated as
Fermi-sea integrals by performing an integration by parts.

The resulting ρ(ω) profiles, plotted in Fig. 4 as solid lines, display the behavior dictated
by Eq. (30). In the insulating state one observes a simple ρ ∝ ω2 decay with a negligible
influence from the scattering time τ . Instead, in the conducting state one can distinguish
two different parabolic regimes delimited by ωτ ∼ 1, in accordance with Eq. (31). This
distinctive low-frequency profile of the optical rotatory dispersion in conducting crystals
awaits experimental verification.

7 Summary and discussion

In summary, we have developed a band-theoretical description of optical spatial dispersion
in bulk crystals. The novelty with respect to previous formulations resides in the fact that
the current induced by the optical field is given in a physically-transparent form, as a
sum of contributions that are individually origin independent, and which remain invariant
under single-band gauge transformations of the Bloch eigenstates. Although we have
focused on the optical conductivity σab,c(ω) at first order in q, higher-order responses can
in principle be treated in a similar manner.

For a crystal composed of nonoverlapping units, our formula for σab,c(ω) reduces to
the standard multipole-theory expression, but with the transition moments (d,m, q) of
Eq. (1) replaced by their intrinsic (origin-independent) counterparts (d̄, m̄, q̄) given by
Eq. (2). Away from that molecular limit, σab,c(ω) changes in two ways. First, the intrinsic
transition moments between delocalized Bloch eigenstates are no longer given by Eq. (2);
instead, one must use the quantum-geometric expressions in Eq. (25). The second change
is that σab,c(ω) acquires additional band-dispersion contributions associated with electron
transfer between crystal cells; this is in line with the modern theories of electric polarization
and orbital magnetization in crystals [32].
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There were two key aspects to our derivation. The first was the use of covariant
Bloch-state derivatives to expand the optical conductivity in powers of q; this allowed us
to eliminate spurious noncovariant terms, and to isolate the physically relevant matrix
elements d̄, m̄, and q̄. The second was the choice of the divergence-free form of the Kubo
formula in Eq. (11) as the starting point for the expansion in q, which is particularly
convenient for handling Fermi-surface contributions [41]. Previous calculations of σab,c(ω)
in conductors [22–24] started instead from the version of the Kubo formula in Eq. (7). In
those works, the intraband pieces involving m̄ and q̄ could only be isolated after lengthy
manipulations, and, in the case of q̄, it was only possible to do so for two-band models [24].

An order-by-order analysis of the equivalence between the Kubo formulas (7) and (11)
led us to identify a hierarchy of optical sum rules. In particular, we found that the
rotatory-strength sum rule, well known from molecular physics [7, 8], remains valid for
crystals thanks to a topological argument involving the k-space Berry curvature.

Our work opens up new prospects for realistic ab initio calculation of spatially-dispersive
optical responses in crystals. An implementation based on the sum-over-states formulas
for (d̄, m̄, q̄) [Eq. (26)] has already been carried out in a concurrent work done in coordina-
tion with the present one [62], and we also envision Wannier-based [63] implementations
of the k-derivative formulas [Eq. (25)]. In addition, it would be of considerable interest to
recast σab,c(ω) in a linear-response form that circumvents the need for explicit summations
over unoccupied states, as has been done for molecules [10,11].

In closing, we mention a possible connection with the theory of the orbital Hall effect.
It was recently proposed [64–66] to evaluate the orbital Hall conductivity using an orbital-
current operator whose matrix elements in the Bloch-eigenstate basis are proportional to∑

l

(
mz,orb
ml valn + vamlm

z,orb
ln

)
. Here, morb

ln is the bulk generalization of Eq. (1b), given by
the same expression as in Eq. (25b) for m̄orb

ln , but with the covariant derivatives therein
replaced by ordinary derivatives. The two definitions are related by

m̄orb
ln = morb

ln −
e

4i
ωln (Al + An)×Aln , (59)

and therefore they agree for l = n only. For l 6= n, the two terms on the right-hand side of
Eq. (59) are not separately gauge covariant, and the lack of gauge covariance of morb

ln makes
the orbital Hall conductivity gauge dependent. This suggest that one should generally use
m̄orb
ln instead of morb

ln when evaluating the orbital Hall conductivity. In other words, one
is allowed to work with morb

ln only in the parallel-transport gauge where Al = An = 0.
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