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Abstract

Using a general framework, interaction potentials between chiral magnetic solitons in a pla-
nar system with a tilted external magnetic field are calculated analytically in the limit of large
separation. The results are compared to previous numerical results for solitons with topologi-
cal charge ±1. A key feature of the calculation is the interpretation of Dzyaloshinskii-Moriya
interaction (DMI) as a background SO(3) gauge field. In a tilted field, this leads to a U(1)-
gauged version of the usual equation for spin excitations, leading to a distinctive oscillating
interaction profile. We also obtain predictions for skyrmion stability in a tilted field which
closely match numerical observations.
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1 Introduction

Magnetic skyrmions are examples of topological solitons, topologically non-trivial field con-
figurations of finite energy that minimise an energy functional [1, 2]. In general, these con-
figurations are localised in a particular region, and behave like particles in the sense that the
lowest-energy excitations of the system involve translating or rotating the localised fields. It
is therefore interesting to look at the effective dynamics of these emergent particles, whether
that is in the context of second-order Lorentz-invariant dynamics, first-order gradient flow
dynamics or first-order Schrödinger dynamics, as it is an important part of the low-energy
dynamics of the system.

One may try to understand the dynamics of solitons by reducing the infinite-dimensional
dynamics of the field theory to a finite number of degrees of freedom [3], often the positions
and orientations of the solitons, and calculating the energy’s dependence on these parameters.
The assumption is that the dynamics on this finite-dimensional space given by this restricted
energy closely approximate the full dynamics on the infinite-dimensional space. Depending
on the context, this is known as the moduli space or collective co-ordinate approach. This
assumption is also the essence of the Thiele equation [4], where it is assumed that motion
of a soliton can be approximated by rigid translation of the statically stable configuration.
Generalisations of the Thiele method introduce a finite number of extra parameters [5, 6] or
allow the shape of the soliton to change depending on position [7].

The accuracy of this approximation has been assessed rigorously for some specific mod-
els. Some examples with both first-order Schrödinger dynamics and second-order Lorentz-
invariant dynamics are reviewed in [8]. In particular, the moduli space approximation is shown
to be justified in certain limits for Chern-Simons vortices evolving according to Schrödinger
dynamics [9], a situation which is in some ways analogous to magnetic skyrmion dynamics.

Magnetic skyrmions are topological solitons in a magnetisation field for a specific energy
functional modelling chiral magnets [10], and the magnetisation field evolves, in the simplest
case, according to the Landau-Lifshitz(-Gilbert) equation [11, 12]. Mathematically, this is a
combination of gradient flow dynamics, where the field changes so as to decrease the energy
functional as fast as possible, and Schrödinger dynamics, where the field evolves in a way
that preserves the energy functional. The Schrödinger dynamics comes from the quantum-
mechanical evolution of the magnetisation on a microscopic level, which preserves energy,
while the gradient flow component represents damping forces that cause energy to leave the
system.

An interaction potential is an example of energy restricted to a moduli space in the spe-
cific case of two solitons. Conventionally, we subtract the energies of the isolated solitons in
order to separate out the potential arising from interaction. In this paper we calculate this
interaction potential in the asymptotic limit where the distance between the two solitons be-
comes large. There is a considerable literature on interaction potentials for solitons. In many
cases - for example in the study of nonabelian monopoles [13], nuclear Skyrmions [14–16],
baby Skyrmions [17] and abelian vortices [18] - the long-range asymptotics of the interaction
potential can be derived in terms of point sources interacting in a much simpler linear field
theory. Such linear approximations can be justified at various levels of rigor in each of those
models, but there is no general understanding of when and why linear point-particle pictures
capture the asymptotics of soliton interactions.

The question of estimating the interaction energy of magnetic skyrmions analytically was
first considered in [19]. More recently, [20,21] calculated the interaction energy in skyrmions
supported by frustration and Dzyaloshinskii-Moriya interaction (DMI) respectively. The latter
of these drew on methods used, for example, in [17, 18]. The interaction potential of mag-
netic skyrmions in a tilted magnetic field has been numerically simulated [22] and partially
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calculated [23], but an expression for the analytical potential in terms of the separation of the
skyrmions has not been given. The advantages of an explicit formula are several: firstly, it
gives new understanding of the interaction potential in terms of multipoles in a U(1) gauge
theory which is, in principle, applicable to solitons of any degree. Secondly, it gives an under-
standing of how the interaction potential depends on the DMI, the external field tilt and the
soliton separation, and thirdly it gives us rigorous results, for example whether the interaction
energy leads to attraction between solitons for large separations.

The analytical calculation in this paper is based on the following general observations. The
field far from the core of any soliton (the ‘tail’) can be approximated by the solution of the lin-
earised Euler-Lagrange equations, in the presence of a combination of multipole sources (the
‘effective source’) positioned within the core of the soliton. It follows that to leading order in
inverse separation the effective source for the field far away from two well-separated solitons
is the sum of the two individual effective sources; this is equivalent to saying that their soliton
tails are approximately linearly superposed. The leading contribution to the interaction be-
tween two solitons can be expressed in terms of this far field so that, given certain assumptions
which are satisfied here, we can approximate the interaction potential in terms of the individ-
ual soliton tails (see Appendix B). A surprising feature of the interaction energy of solitons in
general is that when it is fully calculated in terms of the effective sources, we often find that it
looks like the interaction energy between the effective sources [17, 24]: in other words, soli-
tons do not only act like multipoles as sources of their tails, but also respond like those same
multipoles to the tail of the other soliton. Here we extend this observation to chiral magnetic
solitons in a tilted external field, with the modification that the DMI in general introduces an
effective background U(1) gauge field that interacts with the tails, and thus adds a modulation
on top of the familiar multipole-multipole interaction energy.

This picture explains the characteristic oscillating behaviour of the interaction energy of
magnetic solitons as a function of their separation. What is more, because the interaction
formula is derived generally, we can use it to look at other cases of interest. We discuss the
interaction of novel textures that have recently been numerically observed in magnetic field
applied normal to the plane [21,25,26].

The paper is split into two main sections. In Section 2, we investigate the tails of an indi-
vidual soliton in a chiral magnet. We first review the interpretation of DMI as a gauge field in
Section 2.1, then discuss how this gauge picture changes as magnetisation fields approach the
background magnetisation far from the soliton in Section 2.2. We solve the resulting linearised
Euler-Lagrange equation in general in Section 2.3, then see how the soliton can be seen as an
‘effective source’ for its tail in Section 2.4. We then test the accuracy of the linearised Euler-
Lagrange equation against numerics in Section 2.5 with details of the numerical methods given
in Appendix A. Finally, we note that the behaviour of solutions to the linearised Euler-Lagrange
equation gives new insight into elliptical instability of magnetic skyrmions and antiskyrmions
in Section 2.6, and compare this to another novel calculation of elliptical instability based on
the energy of an isolated 2π-domain wall.

In Section 3.1, we define the interaction potential and describe how it can be approximated
in terms of the tails of the individual solitons, under the assumption that these tails fall off
exponentially and that the solitons perturb each other a small amount that goes to zero as
they go to infinite separation. The details of this calculation are covered in Appendix B. We
then substitute in the solutions we have from 2.4 to write the interaction energy in terms of
the effective sources of the two solitons in Section 3.2. We consider two cases: in section 3.3,
we consider the tilted-field case, where we can compare to numerical observation [22]. This
involves the numerical results from Section 2.5. The numerical process is less expensive and
more accurate than directly calculating interaction energies, since we only need to simulate an
isolated soliton. In Section 3.4, we consider when the applied field is not tilted, simplifying the
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potential but allowing for a greater diversity of solitons whose interactions have not yet been
considered. We derive features of the interaction potential without any numerics. In particular
we argue that the presence of ‘chiral kinks’ [26] on either soliton leads to an attractive force
between the solitons.

2 Linearised theory of chiral magnets

2.1 Energy functional of the chiral magnet

We consider solitons in the magnetisation field n(~x) in the plane, satisfying the constraint
n(~x) · n(~x) = 1. We adopt the convention that boldface vectors v always have three compo-
nents, and vectors with an arrow ~v always have two. Throughout this paper we are concerned
with the chiral magnet energy functional, which we write as

E(n) =

∫

�

1
2
∂in · ∂in + D i · (n × ∂in) + V (n)

�

d2 x , (1)

where the term D i · (n × ∂in) is the generalized DMI [27, 28] introduced in different no-
tation in [29] namely D i = −

1
J D̂e i in terms of the standard orthonormal basis e1, e2, e3 of R3

and the matrix D̂, called the DM tensor. Summation over repeated indices with i = 1, 2 is as-
sumed throughout. The most commonly considered cases of Bloch-type and Néel-type DMI are
obtained by taking D̂ to be the identity and a 90 degree rotation about the 3-axis respectively.

We can equally view the chiral magnet energy, or rather a whole family of chiral magnet
energies, as an SU(2) or equivalently SO(3)-gauged sigma model [30–32]:

E(n) =

∫

�

1
2
|∂in + Ai × n|2 + V̄ (n)

�

d2 x , (2)

For later use we note that the gauge transformations are given by a spatially dependent
rotation matrix, in axis-angle co-ordinates R(θ (~x), e(~x)), under which the fields and DMI trans-
form as follows:

n 7→ ñ = R(θ , e)n

Ai 7→ Ãi = R(θ , e)Ai − ∂iθe − sinθ∂ie − (1− cosθ )e × ∂ie. (3)

We make some choices in formulating this gauge theory: in [31,32], the potential term is
−F ·n where F is the curvature of the gauge field, and thus explicitly gauge-invariant. Here we
are more general and let the vector parameters that appear in V̄ (n) also rotate under R(θ , e).
We can see that if we expand the energy functional out for a given value of the fields n, Ai
then we recover a particular chiral magnet model, with

D i = Ai

V (n) = V̄ (n) +
1
2
|Ai × n|2. (4)

Therefore different configurations of Ai correspond to different material parameters D i
and V (n), and gauge transformations link a configuration n in a system with DMI parameters
D i = Ai to a different configuration ñ in a different system with DMI parameters D i = Ãi and
a different (possibly spatially varying) potential. Although this differs from the usual interpre-
tation of gauge transformations as relating physically equivalent configurations of fields, the
language and technology of gauge theory has proved useful in finding exact chiral skyrmion
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solutions [31], and we will see here that it also provides a conceptually simple way of under-
standing asymptotic skyrmion interactions.

Configurations of the magnetisation field are classified by their degree, which under suit-
able assumptions on n is an integer:

Q(n) =
1

4π

∫

n · (∂1n × ∂2n)d2 x . (5)

We call a non-trivial configuration that minimizes the energy (1) for a given degree a
magnetic soliton. Degree−1 magnetic solitons are called skyrmions, while degree+1 magnetic
solitons are called antiskyrmions.

The first term in the energy is the Heisenberg interaction, which favours alignment of n(~x)
at a single constant value. Its prefactor can be fixed to 1

2 by picking appropriate units of energy.
The second term is the DMI. We are most interested in the case where

D1 = −k





cosβ
sinβ

0



 , D2 = −k





− sinβ
cosβ
0



 , (6)

for real parameters k and β . We call this axisymmetric DMI, because it is invariant under
the physical rotation:

n(~x) 7→ R(θ , e3)n(R(−θ , e3)~x). (7)

Then β = 0 corresponds to the normal Bloch-type DMI, kn · (∇× n), while β = π
2 corre-

sponds to Néel-type DMI. A general angle β corresponds to a linear combination of both kinds
of DMI.

The third term V (n) is the potential function. It attains its minimal value on a set of
vacuum configurations. We choose one of them, or take the unique vacuum if the set has only
one element, call it n0 in the following and impose it as the boundary value at spatial infinity.
Asymptotically we can therefore approximate n(~x) in terms of tangent vector fields to n0. To
do this we use the exponential map expn(~x) : TnS2→ S2 which takes a tangent vector ε(~x) to
the sphere at n(~x) (so ε(~x) ·n(~x) = 0) to the point on the sphere along the great circle in the
direction of ε(~x), at a distance |ε(~x)|:

expn(~x)(ε(~x)) = n(~x) cos|ε(~x)|+ sin|ε(~x)|
ε(~x)
|ε(~x)|

. (8)

The map allows us to describe fields n(~x) near n0 in terms of a linear tangent vector field ψn
to n0, defined via

ψn(~x) = exp−1
n0
(n(~x)), (9)

and this is essential for our formulation of the linearised theory. The tangent plane Tn0
S2 is

two-dimensional, so thatψn has two coordinates (ψn)1, (ψn)2 with reference to an orthonor-
mal frame en

1, en
2 oriented so that en

1 × en
2 = n0.

We assume that V (n), expanded around n0, is rotationally symmetric around n0 to
quadratic order. Defining Ṽ (ψn) = V (expn0

(ψn)) this amounts to assuming that

∂ 2Ṽ
∂ (ψn)i∂ (ψn) j

�

�

�

�

n0

= µ2δi j , µ2 ≥ 0, (10)

i.e. it costs equally to perturb in any direction away from the vacuum. Note that this
expression is independent of our choice of basis en

1, en
2.
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One physically relevant case where (10) holds is when the potential is the typical com-
bination of a Zeeman interaction from a magnetic field applied normal to the plane and an
anisotropy term:

V (n) = hz(1− n3) + ha(1− n2
3), (11)

with hz + 2ha ≥ 0. Then n0 = e3 and µ2 = hz + 2ha. Both V (n) and n0 are symmetric under
rotations around e3, so we call such a potential axisymmetric. Another case of interest where
(10) holds is when we have just a Zeeman interaction, but from a tilted magnetic field with
direction eh:

V (n) = hz(1− eh · n). (12)

We take hz > 0. Then n0 = eh and µ2 = hz . Specifically and without loss of generality in
the case of axisymmetric DMI (6), we consider a magnetic field tilted at angle θh to e3 so that
eh = cosθhe3 + sinθhe1 and we pick the orthonormal frame en

1 = cosθhe1 − sinθhe3, en
2 = e2.

In the case of axisymmetric potential (11), we just take en
1 = e1, en

2 = e2.
We briefly comment on two cases where the condition (10) is not satisfied. One is where

we use the potential (11), but with hz+2ha < 0. In that case the minimum of V (n) is attained
on a circle and n0 is some particular point on this circle which spontaneously breaks the rota-
tional symmetry of the potential. Thus we call these potentials symmetry-breaking. We now
have a zero-mode in one direction away from n0, so that picking a basis (ψn)1, (ψn)2 that

diagonalises ∂ 2 Ṽ
∂ ((ψn)i∂ (ψn) j

�

�

�

�

n0

we have diagonal entries

∂ 2Ṽ
∂ (ψn)1∂ (ψn)1

�

�

�

�

n0

= µ2,
∂ 2Ṽ

∂ (ψn)2∂ (ψn)2

�

�

�

�

n0

= 0, (13)

where µ2 = −2ha

�

1−
�

hz
2ha

�2�

.

The second case is a tilted Zeeman interaction combined with anisotropy, where we have
two different non-zero masses:

∂ 2V
∂ (ψn)1∂ (ψn)1

�

�

�

�

n0

= µ2
1,

∂ 2V
∂ (ψn)2∂ (ψn)2

�

�

�

�

n0

= µ2
2. (14)

Both of these cases could still be treated by the same methods we will use below, but the
calculations become more complicated because the linearised Euler-Lagrange equations have
less symmetry.

2.2 Asymptotic form of the chiral magnet energy functional

Soliton solutions can generically be split into two parts: the soliton tail, where the fields are
close to the vacuum n0, and the soliton core, which is everywhere else. We expect this to be
a small compact region in order to minimize the energy. When we calculate the asymptotic
interaction potential, it is expressed in terms of these soliton tails. So we must approximate
these in order to approximate the interaction potential.

We can approximate the tails of an exact solution to the non-linear Euler-Lagrange equa-
tions in terms of a corresponding solution to the Euler-Lagrange equations linearised around
n0. We will quantify the accuracy of this approximation in terms of the distance from the
core below. To find these linearised Euler-Lagrange equations, we expand the energy (1) to
quadratic order in ψn according to (9):

E(2)(ψn) =

∫

�

1
2
∂iψn · ∂iψn + D i · (n0 × ∂iψn) + D i · (ψn × ∂iψn) +

1
2
µ2|ψn|

2
�

d2 x , (15)
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bearing in mind that this energy density and thus the resulting Euler-Lagrange equations
are only valid at large r, whereψn is small. This is equivalent to expanding the Euler-Lagrange
equations directly, but helps us see how the DMI becomes a U(1) background gauge field for
the tails.

Since D i · (n0 × ∂iψn) is a divergence, it can be turned into a boundary term which does
not affect the Euler-Lagrange equations. It can be removed entirely by a redefinition of the
energy as in [30]. For the purpose of determining these equations we therefore ignore this
term, but will revisit it when calculating interaction energies.

Further, since (ψn × ∂iψn) ‖ n0,

E(2)(ψ) =

∫

�

1
2
(∂ψ)2 + D‖i · (ψ× ∂iψ) +

1
2
µ2|ψ|2

�

d2 x + boundary term, (16)

where we split D i into components parallel and perpendicular to n0, so D i = D‖i +D⊥i . We
also replace ψn with ψ, as it is a dummy variable at this point.

Defining ai = D i · n0, and collecting the components of ψ into complex scalar field,
ψ=ψ1 + iψ2, this energy can be rewritten as

E(2)(ψ) = Elin(ψ) + boundary term, (17)

where

Elin(ψ) =

∫

�

1
2
|(~∂ + i~a)ψ|2 +

1
2
(µ2 − |~a|2)|ψ|2

�

d2 x (18)

is the energy functional of a linear field theory for a complex scalar in the background of a
fixed abelian gauge field ~a. The first term in the energy is a gauged Dirichlet energy for a
complex scalar, and the second term is a ‘mass term’ in the language of quantum field theory.
However, unusually and importantly for us, the effective mass m of the scalar is a function of
both the potential and the DMI, given by

m=
Æ

µ2 − |~a|2. (19)

Note that Elin is only bounded below if m2 ≥ 0. If m2 < 0, it can be made arbitrarily
negative. This shows that we would be expanding the energy around the wrong vacuum in
this case: the state where the field is everywhere equal to the minimum of the potential,
n(~x) = n0, is no longer a minimum of the energy functional due to the effect of the DMI.
Thus m2 = 0 corresponds to some sort of phase transition, the details of which will depend
on the full nonlinear potential. At m2 = 0, Elin is bounded below and thus a sensible energy
functional viewed in its own right. However we would need to expand the nonlinear energy
functional to higher order to see if we are really expanding around the correct vacuum. For
the following we will consider parameter regimes where m2 > 0 and thus m > 0, but we will
return to the significance of the phase transition in Sec. 2.6.

Another way to view the asymptotic abelianisation of the theory is to note that Elin is the
asymptotic form of a nonlinear U(1) gauge theory. To see this, write the energy as

E(n) =

∫

�

1
2
|∂in + A‖i × n|2 + D⊥i · (n × ∂in) + V̄ ‖(n)

�

d2 x , (20)

where now we can only act with rotations around n0 for our gauge transformations, and
the formula for the material parameters of a particular theory reached by our gauge transfor-
mations is

D i = D⊥i + A‖i

V (n) = V̄ ‖(n) +
1
2
|A‖i |

2 (21)
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The potential of this new gauge theory V̄ ‖(n) is different is different from both the physical
potential V (n) and the potential V̄ (n). Crucially, as long as m2 > 0 it has the same minimum
n0 as V (n). The term involving D⊥i does not contribute to E(2)(ψ) and thus does not appear
in the linearised Euler-Lagrange equations. So the potential V̄ ‖(n) is the most meaningful in
terms of understanding the soliton tails and the m2 = 0 phase transition.

This phenomenon of asymptotic abelianisation is familiar from the simplest non-abelian
Higgs model [33] and underlies the theory of ’t Hooft-Polyakov monopoles [34,35], although
the context is quite different. Here the gauge field Ai is non-dynamical, so the concept of mass
does not apply and the Higgs mechanism has no analogue. We are instead concerned with the
fact that the scalar complex field ψ, corresponding to the would-be Goldstone bosons of that
theory, is acted on by a U(1) gauge field, the massless photon of that theory. In the theory of
magnetic skyrmions, most often D‖1 = D‖2 = 0, giving a trivial U(1) theory, so this viewpoint
has not previously been applied.

Since ~a is constant and a U(1) connection, it is flat and can be ‘gauged away’ by defining

ψ̃= ei~a·~xψ. (22)

Then the linearised energy takes the standard form

Elin(ψ̃) =

∫

�

1
2
|~∂ ψ̃|2 +

1
2

m2|ψ̃|2
�

d2 x , (23)

where the dependence on ~a is only in the effective mass m. This expression for the linearised
energy can also be seen as coming from the nonlinear energy functional (20): applying the
gauge transformation given by n 7→ ñ = R(~a · ~x ,n0)n eliminates A‖i according to (3), and then
expanding the resulting energy to quadratic order around ñ0 gives us the same final result.

Like the energy expression (18), the equivalent form (23) is only a good approximation to
the energy density of a soliton in the asymptotic region far from the centre of the soliton, as
represented by large r. So solutions of the Euler-Lagrange equation

(−∂i∂i +µ
2)ψ− 2i~a · ~∂ψ= 0, r large, (24)

are expected to provide good approximations to the soliton tail in the asymptotic region, but
not to the soliton core. Using the gauge transformation (22), this becomes the static Klein-
Gordon equation

(−∂i∂i +m2)ψ̃= 0, r large. (25)

Thus the gauge transformation described above maps the linearised equation into a stan-
dard linear problem whose solutions are well known. In the language of quantum field field
theory, it describes static excitations of a scalar field with mass m given by (19).

This is a result of independent interest: we see that spin excitations with mass µ in the
presence of DMI such that D i ·n0 6= 0 behave like spin excitations with a lower mass m which
twist along a direction picked by D i · n0. This reduction in mass and twisting was observed
in [22] for the specific case of Bloch-type DMI and a potential of the form (12), but we see
here that this is a general feature of chiral magnets when the DMI and potential have the
relation D i · n0 6= 0. As we shall see, the simplicity of the linear problem (25) together with
the transformation (22) explains remarkably subtle and surprising features of the interaction
of magnetic solitons in a tilted field.

Note that asymptotically isotropic potential (10) is crucial for the simplicity of the lin-
earised problem: if we had different ‘masses’ for perturbing away from the vacuum in different
directions, as in (13), (14), the asymptotic potential would not be invariant under rotation
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around n0. Therefore this gauge twist would still give us an equivalent model where DMI
vanishes asymptotically, but the potential would be spatially dependent. The Euler-Lagrange
equations can still be asymptotically approximated in this case [36], but the U(1) symmetry
which simplifies subsequent calculations has been lost.

2.3 Soliton tails in the form of a multipole expansion

We now aim to make concrete the claim at the beginning of Sec. 2.2, that a given nonlinear
solution can be approximated by a specific solution of (25). Firstly, given a solution n to
the full nonlinear Euler-Lagrange equations, ψn is the corresponding linear field satisfying an
appropriate nonlinear equation according to (9), leading us to define ψn = (ψn)1 + i(ψn)2
and ψ̃n = ei~a·~xψn . Our claim is that there is a specific solution to (25), which we call ψ̃lin

n ,
that approximates ψ̃n . In particular ψ̃lin

n → 0 at spatial infinity to reflect the fact that n→ n0.
To proceed we look for the general solution to (25), satisfying the same external boundary

condition. This is well-known in different coordinate systems. For us, solutions in polar coor-
dinates are particularly interesting because they give rise to an interpretation of a soliton ‘from
afar’ as the source of a linear multipole field. The choice of a centre for our polar coordinate
system (r,φ) is arbitrary at this point, but we will need to discuss this below. Having picked
coordinates, we can expand as follows:

ψ̃(r,φ) =
∞
∑

M=−∞
clin

M (r)e
iMφ (26)

with clin
M (r) a complex function. Substitution into (25) yields the Bessel equation for each clin

M ,

∞
∑

M=−∞

�

clin′′
M (r) +

1
r

clin′
M (r)−

M2

r2
clin

M (r) +m2clin
M (r)

�

eiMφ = 0, r large, (27)

With the boundary condition that clin
M vanishes as r → ∞ and provided m > 0, this equa-

tion is solved by the modified Bessel function of the second kind of order M [37], that is
clin

M (r) = KM (mr) [17]. For m = 0, we find clin
0 (r) = 0, clin

M 6=0(r) = r−M . We need exponential
falloff for the derivation below, so we do not consider this case. For large r, the leading terms
are

KM (mr) =
s

π

2
e−mr

p
mr
+O

�

e−mr

(mr)
3
2

�

. (28)

We can then write the general solution, with CM arbitrary complex numbers:

ψ̃(~x) =
∞
∑

M=−∞
CM KM (mr)eiMφ . (29)

The missing information here that picks out the specific solution ψ̃lin
n that we are looking

for is the unspecified internal boundary conditions on (25). These reflect the non-linear core
of the specific soliton whose tails we want to approximate. To find ψ̃lin

n , we specify CM such
that if we analogously expand the nonlinear solution

ψ̃n(r,φ) =
∞
∑

M=−∞
cM (r)e

iMφ , (30)

then cM (r)→ CM KM (mr) as r →∞, i.e. we set CM = limr→∞
cM (r)

KM (mr) , assuming such a limit
exists.

9



SciPost Physics Submission

At this point we we can quantify the accuracy of approximating ψ̃n by ψ̃lin
n . Above we

derived the linearised Euler-Lagrange equations by expanding the energy to quadratic order
in ψ. Equally, we can take the nonlinear Euler-Lagrange equation

n ×
�

−∂i∂in + 2∂in × D i +
∂ V
∂ n

�

= 0 (31)

and expand n = expn0
(ψn) for large radius. If we keep only linear terms in ψn , then we

find Equation (24). This is solved by (29) in general, but only ψ̃lin
n as defined above will have

the property that δψ̃ = ψ̃n − ψ̃lin
n is potentially subleading. If we expand to the next order

and rewrite in terms of this δψ̃, then we see that

(−∂i∂i +m2)δψ̃+O(ψ̃lin
n )

2) = 0 =⇒ ψ̃n(~x) = ψ̃
lin
n (~x) +O

�

e−2mr

mr

�

. (32)

The difference between ψ̃n and ψ̃lin
n is therefore subleading when we substitute it into the

interaction energy below.

2.4 Soliton tails in terms of an effective source

In the derivation above we solved Equation (25), always bearing in mind that it only applies
at large r. For what follows it is useful to consider the field ψ̃lin

n as defined on the whole plane.
This can be done at the cost of introducing a complex ‘effective source’ ρ̃n:

(−∂i∂i +m2)ψ̃lin
n = ρ̃n(~x). (33)

This effective source is just a different way of writing the information of an asymptotic
solution, and contains no new information. The effective source is introduced because the
interaction potential turns out to be written simply in terms of the effective source of one
soliton interacting with the tail of the other, which means that the interaction of two solitons
can be approximated by the interaction of their effective sources.

We can rewrite the information contained in the constants CM in terms of the function ρ̃n .
It is useful to define the derivative:

DM =











(∂1 + i∂2)M M > 0

1 M = 0

(∂1 − i∂2)M M < 0.

(34)

By using the recurrence relations satisfied by the modified Bessel functions of the second kind
[37], we can see that these derivatives move us along the series of independent solutions to
(25):

D1

�

KM (mr)eiMφ
�

= −mKM+1(mr)ei(M+1)φ

D−1

�

KM (mr)eiMφ
�

= −mKM−1(mr)ei(M−1)φ , (35)

so in particular ψ̃lin
n (~x) is equal to an infinite sum of derivatives acting on K0(mr). Finally,

we note that 1
2πK0(mr) is the fundamental solution to this equation, i.e. the solution in the

presence of a delta-function source. Using integration by parts, we can therefore write the
general solution ψ̃lin

n (r,φ) as the solution to (33) when ρ̃n is equal to a combination of sources
of the form DMδ(~x). These have the interpretation of being idealised multipole sources [38],
from which the multipole expansion gets its name.

10
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To be precise, if we write the source as follows:

ρ̃n(~x) = 2π
∞
∑

M=−∞
m−|M |qM eiγM DMδ(~x) (36)

with qM > 0, γM ∈ [0, 2π) real numbers that we can interpret as the strength and orientation
of the multipoles respectively, then we can consider the solution to (33) in the presence of this
source:

ψ̃lin
n (~x) =

∫

ρ̃n(~x
′)

1
2π

K0(m|~x − ~x ′|)d2 x ′

=
∞
∑

M=−∞
(−1)M m−|M |qM eiγM DM K0(mr)

=
∞
∑

M=−∞
qM eiγM eiMφK|M |(mr) (37)

and we see that it is equal to (29), with

CM = qM eiγM . (38)

So we see that (36) contains all of the data of the general solution to (25). The freedom we
had in picking an origin for our polar co-ordinate system manifests itself here as a freedom in
choosing where the effective source is located. This can be anywhere in the compact region
containing the soliton core. If we choose a different location then the numerical values qM ,
γM will change, so multipole moments are always defined relative to a chosen centre.

When solitons have reflection or rotation symmetries it is advantageous to adapt the polar
coordinate to these symmetries to simplify the multipole expansion. We have seen one example
of symmetry already, for the case of axisymmetric DMI (6). If a soliton is symmetric under the
rotation symmetry (7) around a particular point then picking that point as the origin of our
co-ordinate system we find that qM 6=1 = 0.

Axisymmetric DMI has another symmetry, given by reflection of space and the magnetisa-
tion at different angles. If we call the reflection about the line at an angle φ0 relative to the
x-axis Pφ0

:

Pφ0
=

�

cos(2φ0) sin(2φ0)
sin(2φ0) − cos(2φ0)

�

, (39)

then this symmetry is given by

(~x , (n1, n2)) 7→ (Pφ0
~x , Pφ0+β−

π
2
(n1, n2)). (40)

Again, a soliton may satisfy this symmetry for a given φ0 or set of different φ0. If we pick
the origin of our polar co-ordinate system to be on the line of the symmetry, we can impose
this symmetry on the multipole expansion (37) to constrain the multipoles, bearing in mind
that our answer will depend on our choice of basis vectors of the tangent space en

1, en
2 that we

made above. For n0 = e3 and thus en
1 = e1, en

2 = e2, we find

qM 6= 0 =⇒ γM = −
π

2
+ β − (M − 1)φ0 mod π. (41)

In the case of axisymmetric potential (11) and axisymmetric DMI (6), the energy in total
has O(2) n R2 symmetry. Individual solutions may break it to a discrete subgroup such as
Z2 × Z2 for reflections at two perpendicular lines or Z2 for a single reflection [26]. In these

11
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cases, φ0 is a free parameter describing the orientation of the soliton and a zero-mode of the
energy. In the case of a single Z2 invariance, (41) tells us how all γM must change as the
orientation of the soliton changes. In the case of two reflection symmetries at right angles,
(41) not only sets all γM but also sets qM = 0 for even M . In particular the antiskyrmion in an
axisymmetric potential obeys this latter constraint.

Alternatively, solitons may retain the full O(2) symmetry of the energy, as illustrated by
skyrmion and skyrmionium solutions [39]. If we centre the polar coordinate system at the
fixed point of the spatial rotations, in addition to constraining qM 6=1 = 0 it also requires that
γ1 = −

π
2 + β . So solitons like the skyrmion and skyrmionium act as dipole source of fixed

orientation for their linear tails.
We can also consider what happens when the energy explicitly breaks axisymmetry, for

example in the case of tilted field (12). In this case the energy has only a single Z2 sym-
metry, determined by the direction of tilt. For an external magnetic field in the direction
eh = sinθh cosφhe1 + sinθh sinφhe2 + cosθhe3, one finds φ0 = φh − β +

π
2 . Numerically,

skyrmions and antiskyrmions in a tilted field are found to retain this symmetry. As described
in Sec. 2.1, if we take φh = 0 without loss of generality, we can choose en

1, en
2 accordingly, and

in this case Equation (41) holds with φ0 =
π
2 − β .

For completeness we note that the real fields ψ̃1, ψ̃2 can be approximated by similar
multipole expansions in terms of q1

M , q2
M , γ1

M , γ2
M , subject to the constraint that q1,2

−M = q1,2
M ,

γ
1,2
−M = −γ1,2

M . The terms q1,2
1 , q1,2

2 , q1,2
3 . . . can be interpreted as the effective dipole,

quadrupole, octupole etc. sources for the corresponding real field ψ̃1,2, and γ1,2
M as the

orientations of these multipoles [38]. The complex sources that we work with are simply
linear combinations of these sources qM eiγM = q1

M eiγ1
M + iq2

M eiγ2
M , which have no constraint

as ψ̃ is a complex field. Equation (41) shows us that the orientations of these multipoles as
described by γ1,2

M or γM cannot be directly interpreted as the orientation of the soliton, but
they are closely linked.

2.5 Numerical calculation of multipole moments

The definition of the multipole moments of a soliton in the previous section relies on a divi-
sion of the soliton field into a nonlinear core and linear tail, and the results depend on the
choice of origin for polar coordinates. The numerical determination of the multipole moments
demonstrates both of these features. We illustrate this by considering a skyrmion and an an-
tiskyrmion in the model studied in [22], with a Bloch-type DMI with parameters D i = −2πe i
(β = 0) and a tilted magnetic field eh = n0 = sin(π3 )e1+ cos(π3 )e3 of strength hz = 0.8 · (2π)2.
This means φ0 =

π
2 and m = 2π

p
0.05 ' 1.4, so that the decay length of the soliton tail

is ' 0.7. We choose the origin of our polar coordinate system and thus the location of our
multipole sources to be at the point where n(~x) = −e3. It would be more natural to choose
the point at which n = −n0, but throughout this paper we choose −e3 for consistency with
the numerical simulations of [22], with which we make quantitative comparison. For either
choice, the centre lies on the fixed line of the Z2 reflection symmetry (40) of the skyrmion and
antiskyrmion solution in this model, so we expect to find γM fixed according to (41). In the
following we refer to this point as the ‘soliton centre’.

We generate the isolated skyrmion and antiskyrmion by minimising the energy from ap-
propriate initial conditions, see Appendix A for details. To determine the soliton centre, we
approximate it by the point where n3 is most negative, since n is not exactly equal to −e3
anywhere on the lattice. Using the soliton centre as the origin for polar coordinates (r,φ) we

12
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then invert (30) to get

cM (r) =
1

2π

∫ 2π

0

e−iMφψ̃n(r,φ)dφ. (42)

We know from Equation (32) that cM (r) → clin
M (r) = CM KM (mr) as r → ∞. Thus at suf-

ficiently large r, |cM (r)| should approach a multiple of KM (mr), and arg(cM (r)) should be
independent of the radius. Moreover, γM and thus arg(cM (r)) should be fixed according to
(41). However, the uncertainty in the location of the soliton centre, which in reality will not
be at the exact point at which n = −e3, will lead to (41) being only approximately satisfied.
Theory and numerical results are compared in Figs. 1 and 2, with error bars coming from this
uncertainty in the location of the soliton centre, see Appendix A. We only plot comparisons for
−3≤ M ≤ 3, since |cM (r)| is observed to fall off rapidly with increasing |M |.

(a) skyrmion (b) antiskyrmion

Figure 1: Magnitude of angular Fourier terms cM (r) of the tails of the skyrmion
and antiskyrmion in a tilted field relative to the Bessel functions KM (mr), where
the inverse decay lengthscale m depends on the DMI strength k and the Zeeman
interaction strength hz through m =

Æ

hz − k2 sin2 θh. The deviation for small r is
expected, as this represents the nonlinear core of the soliton. The graph should reach
a constant value as r becomes larger, giving a measurement of the multipole strengths
qM (36). Error bars come from the uncertainty in the position of the centre of the
polar co-ordinate system.

We see that in terms of |cM (r)|, the fit is good beyond r ' 0.8 for the skyrmion, and
r ' 1.25 for the antiskyrmion. Meanwhile, arg(cM (r)) is constant all the way down to r = 0.25
for some M , and even within the core only deviates when the value |cM (r)|/KM (mr) is small.
There are some cM (r) for which |cM (r)|/KM (mr)< 0.01 even for large r: these lead to widely
varying arg(cM (r)) and so these are not plotted in Fig. 2. In all cases plotted, the theoretically
predicted value of γM according to (41) is within the errorbars.

2.6 Stability of magnetic solitons in a tilted magnetic field

One of the remarkable features of chiral magnetic skyrmions is that, despite their topological
nature, they have a variety of instability modes, some of which are studied numerically in [22,
26]. They include elliptic instabilties where skyrmions or antiskrymions elongate indefinitely
into domain walls for certain values of the material parameters and the external magnetic
field.

When m2 < 0 in (33), it follows that the uniform state n(~x) = n0 is linearly unstable, as
is any solution that approaches n0 in all directions. That is not in itself a good enough reason
to think that this region tells us anything about elliptical instability. However, as we approach
this region, the lengthscale of decay diverges and so the whole nonlinear solution, while it
exists, will expand. At the same time, the oscillation along a given direction that is favoured

13



SciPost Physics Submission

(a) skyrmion (b) antiskyrmion

Figure 2: Argument of the angular Fourier terms cM (r) of the tails of the skyrmion
and antiskyrmion in a tilted field. Error bars come from the uncertainty in the po-
sition of the centre of the polar co-ordinate system. We exclude those cM (r) where
the absolute value is so small that the error in the argument becomes O(2π). The
lines plotted should approach a constant at large r where the linear approximation is
justified, while at small r deviation is expected. If the soliton respects the reflection
symmetry (40), then (41) further tells us the value of this constant up to ±π. This
graph thus acts as both a test of the linearised Euler-Lagrange equations approxima-
tion and a check that numerically found skyrmions and antiskyrmions in a tilted field
have the reflection symmetry described.

by the DMI as described by ~a will therefore become more pronounced. These are suggestions
that before or at the same time as this phase transition, solitons become elliptically unstable.

We therefore plot the m2 < 0 region and compare it to numerical results [22] for the onset
of elliptical instability. In the case of axisymmetric DMI with strength k (6) and a tilted applied
field with strength hz and tilt θh as in (12), m2 < 0 is equivalent to hz < k2 sin2 θh. In Fig. 3
it is is plotted as a grey region bounded by a black solid line, along with the numerical data
for the onset of elliptical instability for skyrmions and antiskyrmions in red and blue crosses
respectively.

In the numerics k = 1 and the DMI is Bloch-type, i.e. β = 0, but this leads to no loss of
generality as any axisymmetric DMI is equivalent to Bloch under rotation of n and by defining
suitable units of length k can be set to 1. Similarly, in the numerics only Q = −1 solutions are
considered. However, there is a transformation

n3 7→ −n3

~x 7→ −~x
θh 7→ π− θh (43)

which leaves the energy of a solution invariant while changing the sign of its charge,
Q 7→ −Q. Since this transformation changes θh it is not a symmetry of the energy but a
transformation that links equal-energy solutions in different systems, like the gauge transfor-
mation introduced in Sec. 2.1. This transformation interchanges the role of skyrmion and
antiskyrmion as θh is varied from 0 to π, as noted in [22]. It allows us to use the same numer-
ical data to insert the points at which Q = 1 solutions experience elliptical instability.

The lower bound for instability turns out to closely fit the numerical data for applied fields
tilted closer to the plane, while for fields close to the perpendicular, the lower bound is not very
useful; there is a large region of the phase diagram for which elliptical instability happens but is
not seen by the calculation above. To understand the instability in this region, we use an energy
comparison with domain walls, generalising the method employed [26, 40] for axisymmetric
potential (11) to include tilted fields.
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Figure 3: Comparison of theoretical predictions and numerical observations of the
onset of soliton instability in a tilted magnetic field, with strength hz , tilt θh, DMI
strength k. The blue shaded area inside the dashed blue line is the region of the
(hz ,θh) phase diagram where domain walls have negative energy per unit length.
The grey shaded area inside the solid black line is the region where the vacuum
is linearly unstable. These give two theoretical estimates for the onset of instabil-
ity. Blue and red crosses show the numerically observed values of (hz ,θh) at which
Q = ±1 solutions (related by the transformation (43)) become elliptically unstable
as hz is decreased [22].

If, without loss of generality, we take Bloch-type DMI, that is axisymmetric DMI (6) with
β = 0, and tilted potential (12), we can construct the domain wall ansatz

n(x) =





sin(θh + f (x2)
0

cos(θh + f (x2))



 , (44)

where f (x2) goes from 0 to 2π as we go from −∞ to +∞. This orientation is chosen to give
a negative contribution to the DMI. This domain wall, if we do not specify this orientation,
is the most general solution approaching n0 at x2 → ±∞ retaining the symmetries of the
energy x1 7→ x1 + a and (x1, n2) 7→ (−x1,−n2) (40), and thus by the principle of symmetric
criticality [41] if we minimise the energy of this ansatz with respect to f we will find a true
stationary point of the energy. For tilted field and axisymmetric DMI we can always use the
combination of translation and a reflection-like symmetry to have an ansatz depending on a
single function f , but as a result of the loss of the O(2) symmetry such an ansatz constrains
us to consider domain walls lying parallel to some axis. For this choice of DMI and tilt it is
the x1 axis, so we are specifically investigating if solitons will extend along the x1 direction by
assuming their cross-section in the x2 direction is well-approximated by an isolated domain
wall.

Substituting (44) into the energy, we get the Sine-Gordon energy modified by a boundary
term coming from the DMI, just as in the case of normally applied magnetic field without
anisotropy:

Emin( f ) =

�∫ ∞

−∞
d x1

�

�

−2πk+ 8
Æ

hz

�

. (45)

Hence the energy per unit length of such a domain wall changes sign at hz =
� kπ

4

�2
. For smaller

hz , the domain wall has negative energy per unit length. This suggests an elliptical instability,
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because any soliton necessarily has a cross-section that looks like the domain wall above, and
if domain walls have negative energy per unit length then we expect them to grow in length.

The instability line hz =
� kπ

4

�2
is also plotted in Fig. 3 as a dashed blue line, with the shaded

blue region corresponding to hz <
� kπ

4

�2
. We see that the domain wall instability calculation,

by contrast with the m2 = 0 curve, is most useful as θh approaches 0 or π. In the previous
calculations for axisymmetric potential [26], it was shown that the curve Emin( f ) = 0 is a
particularly good fit to numerical observations of elliptical instability for antiskyrmions, where
the cross-section perpendicular to the ‘long’ axis of the antiskyrmions is well approximated by
an isolated domain wall. Following the Q = −1 solution as we vary θh from 0 to π produces
a soliton that is effectively an antiskyrmion, in the sense that it is in correspondence with the
antiskyrmion solution at θh = 0 under the transformation (43). This antiskyrmion-like solution
is oriented so that its cross-section along x2 is a good approximation to an isolated domain wall.
Therefore we see this good fit as θh→ π. Meanwhile, in normal magnetic field the domain wall
method slightly overestimates critical hz , as some energy barrier separates the axisymmetric
skyrmion from an arbitrarily extended Q = −1 solution. We see this overestimation emerge as
θh→ 0. The reverse applies for the Q = +1 solutions.

3 Interaction potential for magnetic solitons

3.1 The interaction potential in terms of soliton tails

As described in the introduction, to define an interaction potential of solitons we must first
describe how we construct a suitable moduli space of two interacting solitons. Given a field
nA describing soliton A and a field nB describing soliton B, we must construct a field nAB that
describes soliton A and B located at points ~RA, ~RB in the plane. There is no canonical way to
do this, or even say what it means for a soliton to be ‘located’ at a particular point. In the
following calculation we do not in fact commit to a particular method, but for concreteness
it is useful to have a particular procedure in mind, so that we can see if our assumptions are
reasonable.

Here we take inspiration from the way interaction potentials are defined numerically [7,
22,42], which we here call pinning: in this procedure the interaction energy of two skyrmions
located at ~RA, ~RB is taken to be the minimum energy configuration reached by gradient descent
from some appropriate starting ansatz, subject to the constraint that the lattice points at ~RA, ~RB

are fixed to a particular value within the soliton core, generally −e3. We call the point within
a skyrmion where this value is attained the soliton centre in what follows. We can think of this
as an adiabatic approximation, where under gradient descent the timescale of solitons moving
together or apart is much larger than all other timescales, so the solitons instantaneously adjust
to minimise their energy at a given separation.

We suppose that we can analytically define a moduli space in an analogous way, with some
modifications. Instead of gradient descent, which depends on our choice of starting ansatz,
we define nAB as the absolute minimiser over all configurations satisfying pinning constraints
which approximate solitons A and B having their centres at points ~RA, ~RB. For skyrmions in
axisymmetric potential, the point of rotational symmetry makes a natural choice for soliton
centre. For general solitons, the choice is more arbitrary. Given some assumptions we will
discuss below, the interaction potential we calculate is independent of the choice of centres,
although different choices of centre will lead to the same potential being described in terms of
a different independent co-ordinate. Since we compare to numerics where n = −e3 is chosen
as the centre, we must pick that here as well. Again in contrast to skyrmions in axisymmetric
potential, general solitons may have internal degrees of freedom such as orientation, repre-
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~0 ~R

σA

Soliton A core

σB

Soliton B core

Figure 4: Schematic representation of the setup for calculating the interaction po-
tential.

sented here by (possibly multi-component) quantities φA,φB. In such cases, we must refine
the procedure by adding constraints to fix these parameters also. In theories with a transla-
tionally invariant energy expression we can choose ~RA = ~0 and write simply ~R for ~RB, and we
do this here.

With all this in mind, we define the configuration nAB[~R;φA,φB], which models the inter-
actions of solitons A and B described by fields nA, nB, determined by internal parameters φA,
φB, and with charges QA, QB, as the absolute minimiser within the space of QA+QB configu-
rations where n(~0) = n(~R) = −e3, and any further necessary constraints to determine φA, φB

and rule out other pairs of interacting solitons with the same total charge. Our moduli space
modelling the interaction of these two solitons is then obtained by allowing ~R to vary over a
suitable open set typically of the form {~R | |~R| > Rc}, and the internal degrees of freedom to
vary arbitrarily. The interaction potential on this moduli space is defined as

V AB(~R;φA,φB) = E(nAB)− E(nA)− E(nB). (46)

We now derive an asymptotic expression for the interaction potential in the limit of large
soliton separation, that is R = |~R| � 1

m . Motivated by the analogy to the numerical proce-
dure, we assume that as R becomes large, nAB approaches the field nA near ~0, and the field
nB near ~R. We also assume that as we go far from both ~0 and ~R, the field nAB approaches
linear superposition of the tails of the two solitons, as discussed in the introduction. Finally,
we restrict ourselves to consider local energy functionals with the property that nA, nB and
their derivatives fall off exponentially towards the vacuum away from their respective centres.
Note that this last assumption is satisfied in the case considered in Sec. 2.3, with the decay
lengthscale given by 1

m (29). These are the central assumptions to the results that follow.
The formula we obtain is remarkably general and simple, and is the main result of this

paper. However, the derivation is rather technical and therefore relegated to Appendix B. The
calculation involves dividing the plane into two infinite parts, σA and σB, which respectively
contain the core of soliton A and the core of soliton B. The dividing curve is thus called ∂ σA,
see Fig. 4.

The result of the calculation is an approximation for the interaction potential purely in
terms of the soliton tails ψnA, ψnB :

V AB(~R;φA,φB) = 2

∫

∂ σA

ψnB · (∂iψnA + D i ×ψnA)dS i +O(e−
3
2 mR). (47)
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where dS i represents the vector surface element of ∂ σA. Although ∂ σA appears in this
expression, its exact form and location do not matter, as we shall see below.

We can rewrite this in terms of the complex field ψn = (ψn)1 + i(ψn)2 and ai = D i ·n0 as
defined in (18) to get

V AB(~R;φA,φB) = 2ℜ
∫

∂ σA

(ψ̄nB(~∂ + i~a)ψnA) · d~S +O(e−
3
2 mR). (48)

Moreover, from (32), ψnA, ψnB can be replaced by ψlin
nA, ψlin

nB to the level of approximation
we are already working at, meaning we can describe the leading behaviour of the potential in
terms of the linearised soliton tails:

V AB(~R;φA,φB) = V AB
lin (~R;φA,φB) +O(e−

3
2 mR), (49)

where

V AB
lin (~R;φA,φB) = 2ℜ

∫

∂ σA

(ψ̄lin
nB(~∂ + i~a)ψlin

nA) · d~S. (50)

Equation (48) is the U(1)-gauged version of the interaction energy of complex scalar fields
in a linear theory. This is analogous to the interaction potential of baby skyrmions [17], where
the linear interaction potential is equivalent to the interaction energy of complex scalar fields
in a linear theory without a gauge field, and thus equivalent to the independent interaction of
two real scalar fields.

Equation (50) tells us that if ψlin
nA or ψlin

nB winds around the origin in the complex plane
as we vary either ~R or some of the φA, φB, then V AB

lin must change sign. We will use this fact
below to determine when attraction can exist between magnetic solitons.

We also see that we have a natural expression given the interpretation of ~a as a U(1) gauge
field:

V AB
lin (~R;φA,φB) = 2ℜ

�

e−i~a·~R
∫

∂ σA

( ¯̃ψlin
nB
~∂ ψ̃lin

nA) · d~S
�

. (51)

Again, we see that this is just like the interaction energy without DMI, but with a gauge
twist applied to the fields, and with a modulation representing the parallel transport between
the two soliton centres with respect to the gauge field ~a. Integrating by parts in either the bulk
σA or σB and using the fact that ψ̃lin

nA, ψ̃lin
nB solve (33) with corresponding effective sources ρ̃nA,

ρ̃nB , we can write (51) also as bulk integrals:

V AB
lin (~R;φA,φB) = −ℜ

�

e−i~a·~R
∫

σA

¯̃ψlin
nB ρ̃nAd2 x

�

=ℜ
�

e−i~a·~R
∫

σB

ψ̃lin
nA

¯̃ρnB d2 x

�

. (52)

This is like the interaction energy in [17], but before we take the real part of this complex
multipole interaction, we first multiply it by the parallel transport factor e−i~a·~R, complicating
a representation in terms of real multipoles. Moreover, without the high symmetry of that
scenario, we cannot reduce it to solely an interaction of dipoles. However, we do see the phe-
nomenon discussed in the introduction: not only do solitons act as a combination of multipole
sources for their tails, which can be thought of as just as a convenient mathematical repre-
sentation, but they also respond like those same multipole sources to the presence of another
soliton. Note the irrelevance of the exact location of the boundary ∂ σA, given that the sources
ρ̃nA, ρ̃nB are located at ~0, ~R.

The advantage of this representation is that, by substituting in Equations (36), (37) it will
allow the interaction to be explicitly written in terms of the separation of the two multipole
sources. However, as discussed in Sec. 2.4, these multipoles are only meaningful given a

18



SciPost Physics Submission

particular choice of centre of expansion. The final expression will be written in terms of the
separation between the centres that we choose, with multipoles that will be different for dif-
ferent choices of centre. Therefore for different choices of centre, V AB

lin , expressed as a function
of the separation between the multipoles (which is itself a function of ~R) could look quite dif-
ferent. However, the expression (51) for V AB

lin (~R) is fundamentally in terms of ψ̃lin and thus
independent of the choice we make.

The expression (51) is valid without constraint on D i and V (n), provided the tails fall off
appropriately, so could be used more generally. However, as discussed above, the solutions to
the linearised Euler-Lagrange equations for general V (n) are more complicated.

In [23], the authors substitute numerical solutions for the tails of specific solitons at given
couplings into (48), for a variety of energy functionals. However, here we continue to an
explicit expression for V AB

lin , which has certain advantages as discussed in the introduction. We
also use numerical simulation of an isolated soliton at specific couplings when we compare
to numerical results for the interaction potential, but even in this case the approach is more
general: a single numerical simulation of each isolated soliton will give us enough information
to approximate the interaction potential between any two solitons at arbitrary ~R.

3.2 The interaction potential in terms of effective sources

We can now explicitly calculate the interaction potential. We consider two solitons, A and B,
described by corresponding sources ρ̃nA and ρ̃nB located at ~0 and ~R respectively:

ψ̃lin
nA(~x;φA) =

∑

M

qA
M ei(Mφ+γA

M )K|M |(mr)

ψ̃lin
nB(~x;φB) =

∑

M

qB
M ei(Mφ(~x−~R)+γB

M )K|M |(m|~x − ~R|), (53)

where φ(~x− ~R) is the polar angle in co-ordinates centred on ~R, and qA,B
M , γA,B

M are functions
of φA,B. This dependence can be constrained from symmetry, which we will see below.

In the cases where qA,B
M , γA,B

M are not constrained enough from symmetry, we find them
numerically from the asymptotics of a single soliton, using the results from Sec. 2.5. Note that
this is why we chose to make our multipole expansion around the point at which n = −e3 in
that section: the interaction potential is ultimately written in terms of the separation between
the multipole sources, while it is defined as a function of ~R, the separation between the soliton
centres (as well as internal degrees of freedom). To be able to write our potential explicitly,
these two separations must be the same, so the multipole sources must be chosen to lie at the
soliton centres.

We now substitute this expansion into the integral in (52), using the relation between the
expansion of a field and the expansion of its source expressed in equations (36), (37) :

∫

σA

¯̃ψlin
nB ρ̃nAd2 x = 2π(−1)N

∑

M ,N

qA
M qB

N ei(γA
M−γ

B
N )K|M−N |(mR)ei(M−N)χ , (54)

and thus

V AB
lin (~R;φA,φB) = 2π

∑

M ,N

(−1)N+1qA
M qB

N cos(γA
M − γ

B
N − ~a · ~R+ (M − N)χ)K|M−N |(mR), (55)

where from ~a defined in (18) we define a = |~a| and χ as the angle between ~R and ~a.
This is the interaction potential between solitons in a chiral magnet in large generality:

as described above, we have assumed that the potential is asymptotically isotropic about the

19



SciPost Physics Submission

vacuum (10), general DMI, m as defined in (19) is real, and no other interactions. Because of
the independence of which soliton we take at ~0, this potential has the symmetry χ → χ +π,
A↔ B. This means for interactions between like solitons, χ → χ +π is a symmetry.

At sufficiently large R, we can use the expansion of KM (mR) in powers of 1
mR given in

Equation (28):

V AB
lin (~R,φA

0 ,φ0
B) =

p

2π3 f (χ;φA
0 ,φB

0 )
e−mR

p
mR
+O

�

e−mR

(mR)
3
2

�

, (56)

where

f (χ;φA
0 ,φB

0 ) =
∑

M ,N

(−1)N+1qA
M qB

N cos(γA
M (φ

A
0)− γ

B
N (φ

B
0 )− aR cosχ + (M − N)χ). (57)

At this radius, we can similarly expand the individual soliton tails:

ψ̃lin
nA,B(~x;φA,B) =

�

∑

M

qA,B
M ei(Mφ+γA,B

M )

�

s

π

2
e−mr

p
mr
+O

�

e−mr

(mr)
3
2

�

, (58)

from which it follows that V AB
lin can be approximated in terms of a product of the two soliton

tails at the midpoint between them:

V AB
lin (~R;φA,φB) = −ψnA

�

R
2

,χ;φA
�

·ψnB

�

R
2

,χ +π;φB
�p

2πmR+O

�

e−mR

(mR)
3
2

�

. (59)

This is a remarkably simple form of the interaction energy, if one wants to quickly estimate
whether two solitons will attract or repel at a large distance, but for the rest of the paper we
will continue to use the expression (55) for greater accuracy at smaller R.

3.3 Comparison to numerically calculated interaction potential in a tilted field

In the case of tilted field (12), there are two known stable solitons, the skyrmion and anti-
skyrmion [22]. These are known to both retain the single Z2 symmetry of the energy that
remains for tilted field, of the form (40) with φ0 fixed by the parameters of the theory, and
have no internal degrees of freedom. Therefore to construct our moduli space, we do not
need to add any constraints besides fixing nAB(~0) = nAB(~R) = −e3 and specifying the overall
topological charge as −2, 0 or 2. According to (41), γA

M and γB
M are fixed to the same value

such that γA
M − γ

B
N = (N −M)φ0. Without loss of generality, we consider Bloch-type DMI (6),

so β = 0, and field tilt in the direction of e1, as discussed in Sec. 2.1, so that φh = 0, β = 0
and thus φ0 =

π
2 , so we have

V AB
lin (R,χ) = 2π

∑

M ,N

(−1)N+1qA
M qB

N cos
�

(N −M)
π

2
− aR cosχ + (M − N)χ

�

K|M−N |(mR). (60)

Once γA
M , γB

N satisfy this, it imposes a corresponding symmetry on the potential of
χ → π−χ. Meanwhile, we calculate qM by using the results from Sec. 2.5, which only apply
to the specific material parameters considered: hz = 0.8 · (2π)2, k = 2π. While this means
that even in our analytical approach some numerics is required, the cost of simulating a single
soliton in isolation is much lower than calculating the interaction directly, which requires
pinning the soliton at every possible distance from every other soliton it could potentially
interact with. Moreover, our interaction energy can be calculated for arbitrarily large R,
while numerical error becomes dominant in the direct interaction calculation as the energy
difference from isolated solitons becomes exponentially small.
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To calculate qM = |CM |, we fit our numerically found |cM (r)| to |CM |KM (mr). To find
γM = arg(CM ), we take the angular mean of arg(cM (r)). Both the fitting and the mean are
taken between r = 1 and r = 2, so as to exclude the nonlinear soliton core. The errors on
arg(cM (r)) and |cM (r)| are propagated through to errors in |CM |, arg(CM ), bearing in mind
that the errors are not independent at each r. The resulting CM and errorbars are plotted in
Fig. 5.

(a) skyrmion (b) antiskyrmion

Figure 5: Plotting the numerically extracted multipole sources CM seen in the
general solution of the linearised Euler-Lagrange equations for solitons in a
tilted field, ψ̃lin =

∑∞
M=−∞ CM eiMφKM (mr), where the inverse decay lengthscale

m=
Æ

hz − k2 sin2 θh for DMI strength k, Zeeman interaction strength hz .

When θh =
π
2 there is a symmetry of the energy n3 7→ −n3, ~x 7→ −~x interchanging skyrmion

and antiskyrmion solutions [22], which can be seen as a special case of the transformation dis-
cussed in Sec. 2.6, and as a result skyrmion and antiskyrmion sources are related by a reflec-
tion around the imaginary axis. In Fig. 5 we see that the symmetry still holds approximately,
suggesting that the values of the sources change continuously with respect to the material
parameters.

Having numerically found qM , γM , for both skyrmion and antiskyrmion, we can substitute
them into (55) and plot Vlin(R,χ), comparing it to the numerical results in [22]. Because that
paper defined ~R as the distance between the two points where n is fixed to equal −e3, we have
defined our multipole locations to be in the same place, as discussed above.

Our result is only asymptotically valid, while the data is at small distances, but there is
nevertheless good agreement for R > 1.5, see Fig. 6. We see that because of the error in γM
discussed in Sec. 2.5, there is some small violation of the χ → π−χ symmetry in the analytical
prediction, which could be removed by using the theoretically predicted values of γM .

This analysis thus explains the observed oscillation of the inter-soliton potential in a tilted
field as a manifestation of the emergent U(1) gauge theory (18). In general it is fixed by the
DMI lengthscale but with a non-trivial factor 1

sinθh
. As we take the tilt angle to 0, we would

see the period of the oscillation diverge to infinity.
We also have an explanation for the unusual asymmetric lobe structure of the skyrmion-

antiskyrmion interaction potential, by analogy to the Roget’s palisade illusion [43], or rolling
shutter effect [44], where rotational motion of a some object at angular speed ω is combined
with the lateral motion of a camera shutter (at speed v) to produce an image where the object
is distorted. This distortion can be described in terms of a map on polar co-ordinates [45]:

(r,φ) 7→
�

r,φ −
ω

v
r cosφ

�

. (61)

We can see that each term in (55) where M 6= N looks like the distorted image of the
potential

2π(−1)N+1qA
M qB

N cos((N −M)φ0 + (M − N)χ)K|M−N |(mR) (62)
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(f) antiskyrmion-antiskyrmion

Figure 6: Analytical (a,b,c) and numerical [22] (d,e,f) results for the interaction po-
tential between solitons in a tilted field, as a function of their separation. Dashed
lines represent the limits of the numerical antiskyrmion-antiskyrmion interaction
data, which is the most restrictive.

Figure 7: “Airplane Prop + CMOS Rolling Shutter =WTF", Soren Ragsdale, licenced
under CC BY 2.0

if it were rotating at ωv =
a

N−M . If one were to plot this function, it would look like a
propellor with |M − N | blades, hence the likeness between this interaction potential and the
photo of rolling shutter effect in Fig. 7. The combination of all terms with M 6= N , then, is
analogous to a photo of a combination of propellors with different numbers of blades spinning
at different speeds, but the dominant multipoles will have the largest contribution. In our case,
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the effective propellor is dominated by the M = 0, N = −1 term, together with the M = 1,
N = 0 term which is proportional to it and ‘rotates’ at the same speed. Meanwhile, the terms
with M = N all add together to give a term proportional to cos(−aR cosχ), i.e. oscillation
only along ~a. The combination of these two parts gives us the interaction potential above.

Between two identical solitons, equal contributions from oppositely rotating propellors will
add up and obscure the rolling shutter picture, as they must to retain the χ → χ+π symmetry,
but for interactions between unlike solitons we can see this will be a general feature, assuming
only a small number of multipole sources contribute significantly as is seen here. This rolling
shutter analogy also gives us an idea of how the potential will change as we take θh → 0:
the lobes of positive and negative interaction energy will move upwards as they become ‘less
distorted’. This change is illustrated qualitatively in Fig 8, where we take a = k sinθh to zero
while leaving all other parameters constant.
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(c) a 7→ 0

Figure 8: The skyrmion-antiskyrmion interaction potential for different values of
a = k sinθh, where k is the DMI strength and θh is the applied field tilt. At the
same time we leave other parameters m, qSk

M , qASk
M ,γSk

M , γASk
M constant. This models

how the interaction potential will change as the field tilt is reduced, but it is only
schematic since in reality the parameters we are fixing are also functions of θh. In
particular, as θh → 0 then qSk

M 6=1 → 0 and qASk
Meven → 0, as both the skyrmion and

antiskyrmion regain symmetry. The interaction potential would accordingly gain a
second reflection symmetry about the x axis.

3.4 Soliton interactions in axisymmetric potential

In the case of axisymmetric potential and axisymmetric DMI, there are two possibilities: either
a soliton retains the U(1) symmetry of the energy (7) and thus has no internal degrees of
freedom, or it breaks it and has one internal degree of freedom coming from its orientation.
We call these degrees of freedom φA

0 , φB
0 for the corresponding solitons. By considering the

action of this U(1) symmetry on a soliton, we can see that qA,B
M will be independent of φA,B

0

while γA,B
M will have a prescribed dependence.

We can generally define these orientations up to ±π by considering the dispersion tensor
Γi j =

∫

∂in∂ jnd2 x [46]: when this matrix is not proportional to the identity matrix, it has a
one-dimensional eigenspace corresponding to its largest eigenvalue, picking a direction in the
plane. The angle between this line and the x-axis defines φA,B

0 . When the soliton has at least
one reflection-like symmetry (40), φA,B

0 is also the angle of one of the spatial reflections, and
the γA

M ,γB
N can be expressed in terms of φA,B

0 according to (41). Note that the γA
M ,γB

N will not
see the ±π ambiguity.

Considering also that a = 0 (this also means that ψ̃lin = ψlin), the general formula (55)
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becomes

V AB
lin (R,χ;φA

0 ,φB
0 ) = 2π

∑

M ,N

(−1)N+1qA
M qB

N cos(γA
M (φ

A
0)− γ

B
N (φ

B
0 ) + (M − N)χ)K|M−N |(mR).

(63)
where we now make explicit that γA,B

M depend on φA,B
0 respectively, while qA,B

M do not.
According to (56), V AB

lin ’s dependence on R and χ splits at sufficiently large R:

V AB
lin (R,χ;φA

0 ,φB
0 ) =

p

2π3 f (χ;φA
0 ,φB

0 )
e−mR

p
mR
+O

�

e−mR

(mR)
3
2

�

, (64)

where

f (χ;φA
0 ,φB

0 ) =

 

∑

M ,N

(−1)N+1qA
M qB

N cos(γA
M (φ

A
0)− γ

B
N (φ

B
0 ) + (M − N)χ)

!

. (65)

Therefore for sufficiently large R, V AB
lin decreases in absolute value as a function of R, so for

given χ the attraction is either repulsive, if positive, or attractive, if negative.
In axisymmetric potential and DMI, the O(2) symmetry of the skyrmion around the soliton

centre sets all sources except q1 to zero, and sets γ1 =
π
2 − β , as discussed in Sec. 2.4. Thus

setting qA
1 = qB

1 =: qSk
1 in this case, the skyrmion-skyrmion potential is

V SkSk
lin (R,χ) = 2π(qSk

1 )
2K0(mR). (66)

With the approximation of K0(mr)'
Æ

π
2

e−mr
p

mr , this is the potential derived in [21]. It is also in
principle applicable to the interaction of skyrmionium with a skyrmion, or two skyrmioniums,
as this soliton has the same symmetry, e.g.

V SkSkm
lin (R,χ) = 2πqSk

1 qSkm
1 K0(mR) (67)

where qSkm
1 is the corresponding dipole source of the far field of the skyrmionium with its

centre defined as the point at which n = e3. As discussed above, this requires us to define an
unambiguous way to define the combined field of a skyrmion and skyrmionium at separation
~R. In all these cases, the interaction is independent of χ, and repulsive for any R.

However, other solitons are supported in axisymmetric DMI and potential [26]. For exam-
ple, an antiskyrmion can be supported for a small range of coupling parameters. We label its
effective sources qASk

M , γASk
M . As discussed in Sec. 2.4, because it breaks the O(2) symmetry of

the energy to a Z2 × Z2 subgroup, it has an orientation which is free to vary, which we here
call φASk

0 . The multipole orientations γASk
M are fixed in terms of this orientation:

γASk
M = −

π

2
+ β − (M − 1)φASk

0 + nMπ, nM ∈ Z. (68)

while qASk
M = 0 for M even.

If we then consider the interaction of a skyrmion with an antiskyrmion, we find

V SkASk
lin (R,χ;φASk

0 ) = 2πqSk
∑

Nodd

qASk
N cos((N − 1)(φASk

0 −χ)− nMπ)K|N−1|(mR). (69)

Here we see the dependence of V AB on an internal parameter, as discussed in Sec. 3.1. This
potential is stationary with respect to variations of φASk

0 for φASk
0 = χ,χ + π

2 , but we cannot
guarantee that these are the only critical values of φASk

0 , nor say whether they are maxima or
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minima. However we can show that the interaction potential can be made negative for any R, χ
by a suitable choice ofφASk

0 . To show this we rely on the link between winding of an individual
tail and the sign of the overall interaction potential (48). If we assume ψASk

lin (r,φ;φASk
0 ) is not

equal to zero for all values of r larger than the soliton core size, it must wind once clockwise
around the origin in the complex plane as we vary φ from 0 to 2π for topological reasons,
meaning the product of the fields above winds twice clockwise around the origin as we vary χ
from 0 to 2π. Equivalently, the product above winds twice anticlockwise around the origin as
φASk

0 varies from 0 to 2π. So we know that the interaction can be made negative by varying
φASk

0 . Therefore according to Equation (64), the antiskyrmion can be oriented so as to attract
the skyrmion.

This observation can be extended more generally to the variety of soliton solutions in
axisymmetric potential, provided we can extend the pinning procedure so as to unambiguously
find an interaction between any two solitons. The general result confirms the observation made
in [26], namely that any solution with chiral kinks on the outer domain wall, which necessarily
has a zero-modeφ0 associated to the U(1) symmetry of the energy (7), can be rotated so that it
attracts another soliton, provided the tail does not reach the vacuum at any finite distance from
the core. The argument generalises what goes before: as we varyφ from 0 to 2π,ψlin(r,φ;φ0)
will wind −Nkink + 1 times anticlockwise around the origin in the complex plane, where Nkink
is the chiral kink number, as defined in the above paper, associated to the outermost domain
wall of the soliton. Now we use the fact that since φ0 describes the U(1) symmetry of the
energy, we can link it to the variation of φ: ψlin(r,φ;φ0 + α) = e−iαψlin(r,φ + α;φ0). This
means that as we increase α from 0 to 2π, ψlin(r,φ;φ0 + α) will wind −Nkink times. This
means that as we vary φ0 in any potential involving this soliton, there will be |Nkink| regions of
negative interaction potential and thus at sufficiently large R, the two solitons can be oriented
to attract each other. If two solitons attract at arbitrary distance, it implies a bound state of the
two, although we cannot guarantee stability of the combined configuration against collapse.
Nevertheless, this general proof of attraction between solitons with chiral kinks can be seen
as a partial explanation of why antiskyrmions are not found alone but with a large number of
other magnetic solitons [26].

4 Conclusion

In this paper we presented a framework for calculating soliton interactions in general and ap-
plied it to get explicit formulae in two new cases: chiral magnetic skyrmions and antiskyrmions
interacting in a tilted applied magnetic field, and a variety of magnetic solitons interacting in
a chiral magnet with normally applied magnetic field and anisotropy. The treatment is general
enough to include Bloch and Néel-type DMI. In the case of tilted field, we found close agree-
ment between the analytical formula and previous numerical observations [22]. In the case of
normal magnetic field combined with anisotropy, we found that solitons with chiral kinks [26]
can always be oriented so as to attract another soliton.

This calculation generalised previous ones in the topological soliton literature by incorpo-
rating the effect of a U(1) background gauge connection on the effective scalar field theory
that describes the tails of solitons. This arises when considering tilted field applied to a chi-
ral magnet, as the non-zero overlap between the minimum of the potential n0 and the DMI
vectors D i leads to a new term in the linearised Euler-Lagrange equations. This U(1) gauge
connection naturally descends from understanding the DMI as an SO(3) gauge connection.
This then gives an explanation of the oscillating interaction potential generically observed in
a tilted field.

We also generalised previous calculations in the magnetic skyrmion literature specifically,
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by understanding the far field of a general soliton as being effectively sourced by an infinite
set of multipoles, rather than just a single one. This is required for any soliton that does not
have the especially high symmetry of, for example, skyrmion and skyrmionium solutions. To
predict interaction potentials, we therefore had to extract the strengths of these multipoles
from looking at the isolated soliton. This sort of calculation has been done before in the
context of nuclear skyrmions [24], although our methods here are different. This allowed us
to consider interactions involving non-axisymmetric magnetic solitons like the antiskyrmion,
which had not previously been calculated.

The discussion in this paper can be generalised in various directions. Firstly, the interaction
formula (55) could be applied directly to any energy functional that satisfies the restrictions
that the potential is isotropic close to the vacuum (10), and with a sufficiently large effective
mass, (19). In particular, a case we have not considered in this paper is the same range
of potentials (11), (12) but with general DMI that is not axisymmetric. Secondly, we could
extend to cases where the potential does not satisfy the isotropy condition, as in (13), (14). The
equations (48) and (51) would still be true, but even the linearised Euler-Lagrange equations
cannot be solved exactly, only approximated [36]. Finally, the methods used can be applied
to any case where exponentially localised configurations interact, in a chiral magnet or any
similar medium. This includes skyrmion strings, Bloch points and more. For this the formula
(80) could be used with the necessary modifications.

Separately, we used the study of linearised Euler-Lagrange equations of the chiral magnet,
which were necessary to calculate the interaction potential, to investigate the magnetic soliton
elliptical instability. The divergence of decay lengthscale of solutions to these equations coin-
cides with the uniform state becoming linearly unstable, and we predict elliptical instability as
we approach this region. The predictions closely match numerically observed elliptical insta-
bility when the applied field is tilted close to the plane. Remarkably, this instability calculation
combines with a completely different method of estimating soliton instability, by finding the
point at which domain walls become energetically favoured, to overall produce a good fit to to
numerical observations at both small and large tilts of the applied field. It is interesting that a
seemingly single phenomenon can be explained only by a combination of two such different
methods. One can ask whether this reflects a real distinction between two forms of elliptical
instability, or alternatively how these two methods are related, and if they can be combined.
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A Numerical method

Skyrmion and antiskyrmion solutions were generated by arrested Newton flow [47] on a
400x400 lattice with periodic boundary conditions, with grid size d x = 0.02. This means that
the DMI lengthscale 1

k was approximately equal to 8d x , and the size of the domain 400d x
was approximately ten times 1

m , the decay length. Exact solutions from the critically coupled
model [31] with the appropriate charge were used as initial configurations.

To Fourier transform the angular dependence of ψ̃, we first must approximate the location
of the soliton centre. This was done by looking for the lattice point where n was closest to
−e3. This point then defines the centre of a polar co-ordinate system (r,φ). We then took a
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series of circles at successive values of r and a range of φ and found ψ̃ by interpolation, then
calculated the integral (42) for each r. The maximum radius at which this was done was half
the distance to the edge of the domain. It was found that beyond this the effects of the finite
size of the domain caused |cM (r)|/KM (mr) to again deviate from a constant value.

This method of finding the soliton centre is fairly crude, and by using more sophisticated
methods we can reduce the discrepancy between our measurement for γM and the value pre-
dicted by (41). So to account for this discrepancy in general, we consider the error in the
location of the soliton centre, δx0, in the calculations below. This leads to errors in the polar
co-ordinates (δr = δx0,δφ = δx0

r ). Note that these are not independent at each point. This
leads to an error in the argument of ψ̃, δ arg(ψ̃) = aδx0, and thus an error in arg(cM (r)).
Then in the integral (42), the error in φ leads to an error in arg(cM (r)) equal to Mδx0/r,
while the error in r leads to an error in |cM (r)| equal to c′M (r)δx0. These are the errorbars
plotted in Figs. 1, 2 and 5.

To test the accuracy of this method, we simulated the skyrmion in normal magnetic field,
D i = −2πe i , hz = 0.8(2π)2, ha = 0, θh = 0. Because of the axisymmetry of the skyrmion, we
expect only C1 6= 0. The largest |CM 6=1|we found numerically was 0.07, compared to a value of
∼ 7.3 for |C1|. We can also compare the value of |C1| found to that for the hedgehog solution
of the Euler-Lagrange equations as found by shooting. In Fig. 9, both solutions are shown to
be well-fitted by the appropriate Bessel function K1(mr) beyond a certain radius, but there is
a discrepancy between them that leads to a 1.9% error in the calculated value of |C1|, which
we see is well contained within the errorbars described above.

Figure 9: Magnitude of angular Fourier term c1(r) of the axisymmetric skyrmion tail
relative to the Bessel function K1(mr), for the solution found by arrested Newton
flow (PDE) and for the solution of the hedgehog Euler-Lagrange equations found by
shooting (ODE), for the chiral magnet energy functional (1) with axisymmetric DMI
(6) of strength k = 2π and axisymmetric potential (11) hz = 0.8(2π)2, ha = 0.
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B Interaction potential for general energy functional

Here we discuss a general framework for calculating the interaction energy of solitons in a
magnetisation field (i.e. target space S2) with an arbitrary local energy functional, provided
that solutions of the Euler-Lagrange equations fall off exponentially. The argument is in fact
more general still. It applies for target spaces that are any Riemannian manifold, meaning that
we can for instance consider the target space to be SO(3), which can be relevant for certain
classes of antiferromagnet. It also holds for any number of spatial dimensions, which would
for instance be useful if we want to calculate the interaction strength of skyrmion strings.
However, for the following we keep the number of spatial dimensions to two and the target
space to S2. The steps of this argument are not new [17,23], but the purpose of this discussion
is to show its generality and that it does not require a superposition ansatz. Throughout
we think in terms of the infinite-dimensional configuration space consisting of all possible
configurations of the magnetisation field.

As described in Sec. 3.1, we define the interaction potential V AB in terms of the difference
between the energy of a combined configuration nAB and the energy of the two isolated soliton
configurations nA, nB. In the simplest case, we construct nAB as a function of ~R by finding the
absolute minimum of the energy, within configurations of an appropriate topological degree,
subject to the constraint that nAB = −e3 at ~0 and ~R. This creates a 2-dimensional moduli space
within the infinite-dimensional configuration space, parametrised by ~R. This is motivated by
numerical pinning procedures to approximate interaction energies, with which we make direct
comparison [22]. This moduli space also has a significance when the Landau-Lifshitz equation
is dominated by damping, so that in mathematical terms fields undergo gradient flow on the
configuration space. If we assume that under this dynamics the soliton centres will move
together or apart while remaining unique, then this pinning procedure consists of foliating the
configuration space transversally to the path of the true dynamics and finding the minimum on
each sheet. In particular, this means that gradient flows that start within our moduli space will
remain on it, so that the path of gradient flow on the moduli space is the path of the dynamics
on the configuration space and so the moduli space approach is exact, not an approximation.

There are other choices that we could make to construct nAB. Firstly, our choice of soli-
ton centre is somewhat arbitrary. A more natural choice might be the point ~x0 at which
nAB(~x0) = −n0, as this continues to be unique as we rotate the groundstate from e3 to −e3,
but because we compare to numerical results that used −e3 we stick to that definition. The
choice of soliton centre can also be on a case-by-case basis for different solitons. As discussed
in the main paper, we assume that in general we can modify the constraints to specify between
all the soliton configurations under consideration.

A separate approach, if we are interested in the property that the moduli space contains
gradient flows of the full energy, is to explicitly construct it as such a space. To do this we
extend our space of configurations to include the solitons at infinite separation, and look at
the (un)stable manifold of this configuration if the attraction is repulsive (attractive) [48].
Another approach would be to construct nAB by ansatz, namely some pointwise superposition
of the two fields [17, 23], that satisfies the properties we require below. This would give an
upper bound on the interaction energy as defined by the pinning method, if it were calculated
exactly, as in [49].

For the purposes of this appendix, the composite field nAB only has to satisfy a few basic
features in terms of the fields nA, nB and ~R. Firstly, it should attain −e3 at ~0 and ~R. Secondly,
as R→∞, nAB → nA around soliton A, and nAB → nB around soliton B. Thirdly, the field and
its derivatives fall off exponentially away from the soliton core. Fourthly, the fields approach
linear superposition far from both soliton cores, as discussed in the introduction. We can make
these assumptions more precise below once we have introduced some notation.
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We define the region closer to ~0 than ~R as σA, and its complement as σB. Since the energy
functional is local, we can write the energy functional E as the sum of the integrals over the
two regions, E = EσA + EσB . We can now split the calculation for V AB:

V AB = EσA(nAB)− EσA(nA)− EσA(nB) + EσB(nAB)− EσB(nA)− EσB(nB) (70)

To continue we call a map ε : R2 → R3 a tangent vector to a given magnetisation field n
in configuration space if ε(~x) · n(~x) = 0 for all ~x . Using the exponential map on the sphere
defined in the main text (8), we define the exponential map in configuration space [50] expn
which takes a tangent vector ε to n, and turns it into a magnetisation field that is pointwise
the exponential map expn(x)(ε(x)):

(expn(ε))(~x) = expn(~x)(ε(~x)) (71)

In addition toψnB as defined in the main text (9), we can also define εB = exp−1
nA (nAB). The

first describes the ‘tail’ of the isolated soliton B, while the second describes the perturbation
of the tail of soliton B on soliton A. As shown in 2.3, ψnB can be approximated by solving
the linearised Euler-Lagrange equations for the particular energy functional we are working
with. Meanwhile, we have no explicit way of finding εB but we can link it to ψnB using the
assumptions on nAB.

Note that according to (9), exp−1
n0
(−n0) is not defined, so we can only define ψnA,B(~x),

εA,B(~x)when n(~x) is never−n0. However, nAB(~x) does indeed reach−n0 near or at the soliton
centre. This is not a problem in practice: note that we always define ψnA,B(~x) and εA,B(~x)
below in integrals over regions away from the corresponding soliton centre. In actuality we
are then using the fact that the integral is independent of the value of nAB(~x) outside its domain
to replace nAB(~x) with a field that is identical within the domain of integration but outside the
integral never reaches −n0, and then defining εB, ψnB in terms of the inverse exponential
function on that field. We just skip this cumbersome notation.

We can now state our second assumption on nAB more explicitly: as we go far from the
centre of soliton B, |εB(~x)| ∼ |ψnB(~x)|, and thus |εB(~x)| → 0 as R→∞ for all ~x in region σA,
and vice versa. We can also formalise our assumption of linear superposition: in the region
far from both solitons, εA,B → ψnA,B . Finally, we have the assumption that the tails and their
derivatives are bounded by exponential decay: ψnA,B(~x) = O(e−mr), ∂iψnA,B(~x) = O(e−mr),
and so on. This last assumption is satisfied by solitons in the chiral magnet, see Equations
(29), (32), but in this appendix the discussion is more general and m can be taken to generally
describe the inverse decay lengthscale of whatever soliton is under consideration.

We define the variation of the energy functional:

δεE(n) =
d
d t

�

�

�

�

t=0
(E(expn(tε)), (72)

and the second variation:

δ2
ε′,εE(n) =

d
d t

�

�

�

�

t=0
δεE(expn(tε

′)), (73)

then we can Taylor expand all three terms:

EσA(nAB)− EσA(nA) = δεB EσA(nA) +
1
2
δ2
εB ,εB EσA(nA) +O(|εB|3) (74)

EσA(nB) = EσA(n0) +δψnB EσA(n0) +
1
2
δ2
ψnB ,ψnB

EσA(n0)) +O(|ψnB |3)

= δψnB EσA(n0) +
1
2
δ2
ψnB ,ψnB

EσA(n0) +O(|ψnB |3) (75)
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where |ε| is the maximum value of |ε(x)| over the whole region σA, in practice its value at the
midpoint ~x = 1

2
~R. We use our assumption that |ε| ∼ |ψ| to replace O(|εB|3) with O(|ψnB |3),

and so on.
This is where the exponential decay assumption becomes useful: since we are expanding

in terms of the maximum value of |ψnB(x)| over the domain of integration, this expansion
only makes sense if in general the integral of the function is bounded by its maximum value,
and whatever derivative operators may act within the integrals that we throw away do not
change the order of that maximum value. Both of these things are true for exponentially
decaying functions, and thus true for functions bounded below exponential decay with all
derivatives bounded below exponential decay. We will use this several times more below to
bound integrals in terms of the maximum value of a field over the domain of integration. At
this point we can bound the term we are neglecting in terms of maxσA e−3mr = e−

3
2 mR.

For what follows it is useful to separate the first variation into two contributions. By inte-
gration by parts, a variation can always be separated into a bulk integral where the variation
field appears without derivatives, and an integral along ∂ σ which we call ∂ δεEσ(n):

δεEσ(n) =

∫

σ

ε · f(n,∂ n, . . .)d2 x + ∂ δεEσ(n). (76)

Because nA is a minimizer of the full energy E(n), nA solves the Euler-Lagrange equations,
n × f(n,∂ n, . . .) = 0, and therefore the term δεB EσA(nA) can only be a boundary term:

δεB EσA(nA) = ∂ δεB EσA(nA) (77)

Similarly, δψnB EσA(n0) = ∂ δψnB EσA(n0). Now because ∂ δεB EσA(nA) depends only on the
field nA evaluated along ∂ σA, which is far from ~0, we can Taylor expand the whole expression
around nA = n0, using the fact that εB →ψnB :

∂ δεB EσA(nA) = ∂ δψnB EσA(n0) +δψnA∂ δψnB EσA(n0) +O(e−
3
2 mR) (78)

This means that

V AB = δψnA∂ δψnB EσA(n0)+
1
2
δ2
εB ,εB EσA(nA)−

1
2
δ2
ψnB ,ψnB

EσA(n0)+(A↔ B)+O(e−
3
2 mR) (79)

Outside the soliton core, we can expand 1
2δ

2
εB ,εB EσA(nA) around n0, and the latter two

terms will cancel to order |εB|2|ψnA|′, where |ψnA|′ is the maximum value of |ψnA(~x)|′ over
everywhere except the soliton core. This is still subleading. Inside the soliton core, both
terms are order |εB|′2, where |εB|′ is the maximum value of |εB(~x)| over just the soliton core.
Because of our assumption that n approaches nA in σA as R increases, the size of the soliton
core approaches a constant value, so it can be arbitrarily small in comparison to R, and so
in particular the distance between the centre of soliton B and the closest edge of the core of
soliton A can be larger than 3R

4 for large enough R. Then |εB|′2 ∼ |εB|3 = O
�

e−
3
2 mR

�

and we
get our final expression for the general interaction energy at large separation:

V AB = δψnA∂ δψnB EσA(n0)−δψnB ∂ δψnA EσA(n0) +O
�

e−
3
2 mR

�

, (80)

where we use the fact that ∂ σB is equal to ∂ σA with the opposite orientation.
We find in the main text that V AB ∼ e−mR

p
mR

, so the correction term is indeed subleading.
By repeating the above calculations in a more geometric language, we can view the term
∂ δεEσA as a one-form on the configuration space of magnetisation fields, acting on the vector
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ε, ∂ δεEσA(nA) = ωnA(ε). Then our final expression can be seen to be the external derivative
of this one-form acting on the two tail vector fields, V AB = dn0

ω(ψnA,ψnB).
We can apply this formula to the chiral magnet energy functional (1). First we find the

boundary term from the first variation of the energy:

∂ δψEσA(n) =

∫

∂ σA

ψ · (∂in + D i × n)dS i (81)

then we vary this term with respect to a second field:

δψ′∂ δψEσA(n0) =

∫

∂ σA

ψ · (∂iψ
′ + D i ×ψ′)dS i (82)

Note that the addition of a boundary term to the energy like −D i ·(n0×∂in), which can be
motivated physically and in terms of analysis [30, 32], does not affect this quantity and thus
does not enter into the interaction potential. Also, while for simplicity we chose ∂ σA to be
the straight line equidistant from the soliton centres, the derivation above only fundamentally
depends on the fact that ∂ σA divides the plane into two halves with a soliton core in each half.
We see this independence of the exact boundary in the main section when we calculate the
interaction potential for the chiral magnet specifically. Finally we substitute this into (80) to
find (47).
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