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Abstract

We present lattice simulations on the phase diagram of Quantum Chromodynamics (QCD)
with two light quark flavours at finite chemical potential µ. To circumvent the sign prob-
lem, we use the complex Langevin method. In this study, we have carried out ab-initio
lattice QCD calculations at finite density for a pion mass of ∼ 480 MeV. We report on the
pressure, energy and entropy equations of state, as well as the observation of the Silver
Blaze phenomenon.

1 Introduction

Revealing the phase diagram of Quantum Chromodynamics (QCD) from first principles is one
of the big challenges in modern high-energy physics. Insight into the hot and dense strongly
interacting quark-gluon plasma (QGP) phase provides answers to the physics of the early uni-
verse and supernovae. Complementary, the cold and dense regions exhibiting a rich structure
of hadronic matter contain crucial information for the understanding of neutron stars. Explor-
ing QCD at finite temperature and baryon density is of paramount importance in heavy-ion
collision experiments at LHC, RHIC, FAIR, and NICA. On the theory side the lattice formula-
tion of QCD offers a well-established numerical framework to compute the QCD phase diagram
from first principles.

The phase structure, including the nature and critical temperature of the chiral and de-
confinement transitions, is well understood at vanishing chemical potential [1, 2]. A finite
chemical potential, µ > 0, renders the Euclidean action and hence the path-integral mea-
sure complex, thus prohibiting the use of conventional Monte Carlo simulations. Moreover,
reweighting the phase of the fermion determinant comes with exponential simulation costs as
the lattice volume increases. This is the sign problem in lattice QCD. Over the last two decades
various solution programs to deal with the sign problem have been established [3]. Among its
candidates rank a variety of reweighting methods [4,5], Taylor expansions [6,7] and analytic
continuation from imaginary chemical potential [8–11], dual formulations, and the density of
states method [12]. Complementary, the complex Langevin (CL) method [13, 14] as well as
the Lefschetz thimble method and generalizations thereof [15] are based on analytic continu-
ation in the field variables into the non-compact gauge group SL(3,C). A recent overview of
lattice efforts to compute the QCD phase diagram can be found in [16].

In this work, we present results on the phase diagram and the extraction of the equation
of state of QCD with two mass-degenerate light flavours. In particular, we focus on exploring
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the phase diagram in the region of low temperature and finite density. The latter gives rise to
a particularly severe sign problem. Our approach to cope with this is the complex Langevin
method. Over the last decade, a plethora of tools to guarantee stability and correctness in CL
simulations has been developed, see e.g., [17–25]. Here we put those tools to work in QCD
with dynamical quarks and low temperatures.

Our CL-based approach allows us to investigate a large portion of the phase diagram, in
particular with baryon chemical potentials close to and above the nucleon mass. The focus of
this work is on temperatures between 50 MeV and 200 MeV and baryon chemical potential up
to twice the nucleon mass, complementing previous studies of the QCD phase diagram [26–32]
and the equation of state [5,7,33–39]. Our simulations have been performed at fixed volume
and lattice spacing, with pions lighter than 500 MeV. We present here the pressure, energy
and entropy equations of state (EoS) in the T − µ plane, and also numerical evidence of the
Silver Blaze phenomenon [40]. Other studies of the QCD phase diagram via complex Langevin
simulations can be found in [41–45].

2 Computational method

Our simulations have been performed in the grand-canonical ensemble by employing the com-
plex Langevin method. This technique allows the circumvention of the sign problem by ex-
tending the configuration space for the gauge link variables from the group SU(3) to SL(3,C).
Complex Langevin has been successfully used in tackling the sign problem, beyond the cases
mentioned above, in the relativistic Bose gas [46], polarised [47] and mass-imbalanced [48]
ultracold atoms. For recent reviews, see [14,49].

We use the standard Wilson plaquette gauge action

Sg =
β

3

∑

x

∑

µ<ν

Tr
�

1−
1
2

�

Ux ,µν + U−1
x ,µν

�

�

, (1)

where Ux ,µν represents the elementary plaquette at the site x in directions µ and ν, and β is the
inverse coupling. The quark contribution is given by the action for N f flavours of unimproved
Wilson fermions

S f = −N f Tr log M(U ,µ) , (2)

with the Dirac operator

Mx y = (4+m)δx y −
1
2

∑

ν

�

Γν eµδν,0 Ux ,νδx+ν̂,y + Γ−ν e−µδν,0 U−1
x−ν̂,νδx−ν̂,y

�

. (3)

The parameters m and µ stand for the quark mass and chemical potential, respectively, in
lattice units, and Γ±ν = 1∓ γν.

Field configurations are generated using the complex Langevin [50,51] method

Ux ,µ(θ + ε) = exp
�

iλa
�

εKa
x ,µ +
p
εηa

x ,µ

��

Ux ,µ(θ ) , (4)

where ηa
x ,µ are white noise fields and the derivative in the Langevin drift, Ka

x ,µ ≡ −Da
x ,µS,

acts on the group manifold [13,52]. The step size ε is adaptively changed during the simula-
tion [53], and we make use of the gauge cooling technique [17] to reduce large explorations
of the (non-compact) group manifold. Our drift is augmented with the dynamical stabilisation
term to help ensuring proximity to the SU(3) manifold [22]. Quantum expectation values are
averages for large θ . We have estimated autocorrelation times following [54]. Note that in
this work we have employed a modified version of the dynamic stabilisation method, in which
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its contribution to the Langevin drift does not use the adaptive step size computed from Ka
x ,µ.

Instead, we keep the step size that multiplies the DS term fixed at ε= 10−3 in order to ensure
that the additional force term depends only on the distance to the unitary manifold. The addi-
tional force then has the form εαDS KDS. Our CL simulation code is based on the openQCD [55]
and openQCD-FASTSUM software packages [56]. The most costly part of the CL simulation
is the computation of the fermionic drift force. The quark contribution to the Langevin drift
reads

�

Ka
x ,µ

�

quark
= N f Tr
�

M−1Da
x ,µM
�

. (5)

We have used the even-odd preconditioned conjugate gradient algorithm in [55] applied to
the normal equation M†Mψ = η to estimate M−1, and compute the trace using the bilinear
noise scheme. To further reduce the numerical effort, we update the gauge force more fre-
quently than the fermionic drift. We choose the ratio of gauge over fermion updates to be
16. This needs to be taken into consideration once we conduct the step size extrapolation.
As a reference, we performed a finite step size extrapolation for vanishing chemical potential
in [57]. Here, results are shown for an average step size of the order of O(10−3).

3 Numerical results

We have measured the Polyakov loop,

P =
1

3V

∑

x⃗

Tr

�

∏

τ

U( x⃗ ,τ),0̂

�

, (6)

where the product is taken along the periodic Euclidean time direction, and quark number
density

〈n〉=
1

NτV
∂ ln Z
∂ µ

. (7)

Other thermodynamic quantities, such as pressure, energy, and entropy, are discussed in the
next section.

Our simulations have been performed at a fixed lattice spacing of a ≈ 0.06 fm [58], a
spatial volume of V = 243 in lattice units, and a quark bare hopping parameter of κ= 0.1544,
and inverse coupling β = 5.8. These input values correspond to pion and nucleon masses
of mπ ≈ 480 MeV and mN ≈ 1.3 GeV. The value of the stabilisation parameter αDS has been
chosen such that its impact on the observables is minimal [22].

We have scanned the T − µ plane by varying the quark chemical potential in the range
0≤ aµ≤ 0.28 in steps of 0.02 and 4≤ Nt ≤ 64, corresponding to 0.0≲ µ≲ 920 MeV and 50
MeV ≲ T ≲ 820 MeV, respectively. With this type of scan our simulations cover both hadronic
and quark-gluon plasma regions, as well as regions of pion and nucleon condensation. Since
we work with two degenerate flavors, a finite pion density cannot be observed by increasing
the quark chemical potential. However, it is expected that for temperatures below the decon-
finement transition a non-vanishing quark density should appear for µ≳ mN/3. In particular,
at T = 0 the quark density should vanish for µ < mN/3. This is known as the Silver Blaze phe-
nomenon [40], a peculiar situation where the absence of net quark density for 0≤ µ < mN/3 is
due to non-trivial cancellation between eigenmodes of the Dirac operator. Information about
the deconfinement transition can be obtained from the Polyakov loop, even though it is only an
order parameter in purely gluonic theories. A vanishing Polyakov loop indicates the absence
of free quarks, while a non-zero value implies the reverse.

We present in fig. 1 the quark number density and in fig. 2 the Polyakov loop as functions
of the temperature. The density plot clearly shows direct evidence of the Silver Blaze phe-
nomenon: for µB > mN the data shows 〈n〉/T3 diverging, indicating that 〈n〉 remains finite as
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Figure 1: Quark number density as function of temperature for different baryonic
chemical potentials. Remnants of the Silver Blaze effect can be seen in the plot.
The inset zooms into the lower temperature, low density region and shows that for
µB > mN the density decreases slower than T3 for small temperatures. Dashed lines
are to guide the eye. Error bars are statistical only.
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Figure 2: Real part of the Polyakov loop as function of temperature for different
baryonic chemical potentials. In the Polyakov loop plot, the inset focuses on the
region where Re[P] starts differing from zero. The Polyakov loop, despite not being
an order parameter in QCD, still serves as an indicator of confinement. Dashed lines
are to guide the eye. Error bars are statistical only.
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Figure 3: Baryon density normalised by the nucleon mass as function of the baryon
chemical potential, including polynomial fits for each temperature. The vertical line
indicates µ= mπ/2 for reference.

the temperature decreases. In contrast, for µB < mN the density decreases faster than T3 for
low temperatures. Strictly speaking, the Silver Blaze phenomenon only occurs at zero tem-
perature, but the plot shows that for simulations performed below the baryon condensation
threshold, µB < mN , the density tends to zero as the temperature decreases, while for µB > mN
it remains finite. The confinement of quarks is indicated by the average Polyakov loop: the fig-
ure shows that quarks become free at lower temperatures for larger chemical potentials. This
is in qualitative agreement with what has been observed for the QCD phase diagram [31,35].

4 Equation of state

The pressure equation of state can be obtained via

∆p(µB, T ) =

∫ µB

0

dµ′ 〈n(µ′, T )〉 (8)

In order to perform the integration, the density as a function of the chemical potential was
fitted by a cubic polynomial for each temperature, shown in fig. 3. The uncertainty on the fit
coefficients has been used to compute 1σ error bands. The choice of a cubic polynomial was
inspired by a phenomenological parametrisation of the pressure equation of state for quark
matter, see e.g., [59], in terms of a quartic polynomial in µ. Similar studies have been carried
out using isospin, rather than baryon, chemical potential, where the viability of compact pion
stars [60], and QCD thermodynamics [38] have been investigated.

Using the pressure equation of state we have computed the trace anomaly,

∆I
T4
= T

∂

∂ T

�

p(µB, T )
T4

�

+
µB nB(µB, T )

T4
, (9)

where nB = n/3 is the baryon number density, and subsequently the energy and entropy
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Figure 4: Pressure in units of the nucleon mass as a function of the baryon chemical
potential.
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Figure 5: Energy density in units of the nucleon mass as a function of the baryon
chemical potential.
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Figure 6: Entropy density in units of the nucleon mass as a function of the baryon
chemical potential.

densities,

∆ε=∆I + 3∆p , (10)

T∆s =∆ε+∆p−µn , (11)

respectively. The derivative within the trace anomaly has been computed numerically, using
the fit coefficients of the pressure computed at each fixed temperature.

The pressure difference with respect to the µB = 0 case is displayed in fig. 4, whence
a growth can be observed as a function of µB. For our lowest temperature, it is noticeable
that this growth only starts at µB = mN , since prior to that the baryon number density is
essentially zero. The energy and entropy densities can be found in figs. 5 and 6, respectively.
An increase in the energy density difference as µB grows is clearly visible for all temperatures
considered. In particular, as expected from the nearly vanishing quark number density at low
temperatures and chemical potential, ∆ϵ only starts to deviate from zero for µB ≳ mN . For
higher temperatures, growth starts much sooner.

The stiffness of the equation of state can be inferred from the density as a function of µB,
shown in fig. 4. It grows slower for lower temperatures, implying that the EoS becomes stiffer
as T decreases.

5 Summary and outlook

We have presented ab-initio results of the QCD phase diagram with relatively light pions
(≲ 480 MeV) in the T − µ plane. We cover a baryon number density range of up to ∼ 15
times the nuclear saturation density n0 ≃ 0.16 fm−3 at T ∼ 50 MeV and up to ∼ 20n0 at
T ∼ 200 MeV. At low temperatures we observe remnants of the Silver Blaze phenomenon,
where the quark number density vanishes at T = 0 for µ < mN/3. Our results also show that
the pressure equation of state becomes stiffer for lower temperatures. This is in accordance
with the behaviour necessary for the stability of neutron stars [61].
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In order to further understand dense nuclear matter, our future plans include the addition
of the strange quark to our simulations. This would be of particular relevance to studies of
neutron stars, as they are known to soften the equation of state. Additionally, our results
have been obtained at a finite lattice spacing and need to be continuum and finite step size
extrapolated. We plan to employ improved actions to improve the approach to the continuum
limit. Another interesting point is the search for the critical end-point (CEP), which requires
a fine scan of the phase diagram as well as finite volume scaling analyses and finite step size
extrapolation.
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