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Abstract

An analysis of the realizations of the ladder operators for the Rosen-Morse and Pöschl-
Teller quantum systems is carried out. The failure of the algebraic method of construction
in the general Rosen-Morse case is exposed and explained. We present the reduction of
a recently obtained set of (2n ± 1)-th-order Rosen-Morse ladder operators to the usual
first-order realization for the Pöschl-Teller case known in the literature.
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1 Introduction

Ladder operators are objects of fundamental importance in the context of exactly solvable
quantum systems. While they connect adjacent eigenspaces of the Hamiltonian, they appear
as key operators in the definition of coherent and squeezed states extensively studied for their
properties in quantum optics, for instance [1]. Ladder operators also participate in describing
the underlying structure of the system through the spectrum generating algebra (SGA) [2].
For the most common one-dimensional (1D) exactly solvable systems (harmonic oscillator,
infinite square well, Morse, etc.), a systematic method has been developed to obtain a realiza-
tion of the ladder operators as first-order differential operators [2]. However, more elaborated
one-dimensional exactly solvable systems like the Rosen-Morse system fall outside the range
of application of this algebraic method. This system, originally introduced as a model to study
vibrations of polyatomic molecules, has been studied in different contexts recently [3–6]. In-
deed, two different ladder operators realizations have been proposed in the literature, both as
higher-order differential operators [4,5]. The first of which was motivated by an analogy with
classical mechanics [6]; while the second arises purely from quantum mechanics through the
concept of shape invariance in supersymmetric quantum mechanics (SUSYQM) [7].

In this paper, we investigate why realization as first-order differential operators of Rosen-
Morse ladder operators cannot be achieved with the standard algebraic method. We find that
the rational dependence of the bounded eigenstates parameters on the excitation number is
crucial in providing an explanation. Moreover, the Rosen-Morse system is a generalization of
the Pöschl-Teller system for which first-order ladder operators are known [8]. We then address
the natural question of relating these sets of ladder operators. Starting from the most recent
set of higher-order Rosen-Morse ladder operators, we explicitly show how they reduce to the
known first-order realization in the Pöschl-Teller limit.

The plan of the paper is as follows. In Section 2, we review the Rosen-Morse and Pöschl-
Teller exactly solvable systems. Then, we introduce ladder operators in Section 3 together
with the algebraic method for obtaining realizations as first-order differential operators. The
resulting ladder operators are presented for the Pöschl-Teller while the failure of the method is
demonstrated for the general Rosen-Morse system. In Section 4, the construction of the most
recent realization of higher-order ladder operators for the Rosen-Morse system is exposed.
Then, we show explicitly in Section 5 how the higher-order ladder operators for the Rosen-
Morse system reduce to their usual first-order realization in the Pöschl-Teller case. We make
final conclusions in Section 6.

2 The Rosen-Morse and Pöschl-Teller systems

The (hyperbolic) Rosen-Morse (RM) [9] system is an exactly solvable quantum system with
Hamiltonian labelled by the parameters s and λ:

Hs,λ = −
d2

dx2
+ 2λ tanh(x)− s(s+ 1) sech2(x), x ∈ R, s > 0, 0≤ λ < s2. (1)

This system is also named Rosen-Morse II in the literature, as opposed to its trigonomet-
ric analogue (Rosen-Morse I) [10]. The particular case λ = 0 is the Pöschl-Teller (PT) sys-
tem [2,11]. The normalizable eigenstates solving the time-independent Schrödinger equation
Hs,λψs,λ(n) = Es,λ(n)ψs,λ(n) are given in terms of the Jacobi polynomials P(α,β)

n (y) [15]:

ψs,λ(n; x) = Ms,λ(n) cosh−(s−n)(x)e−
λx
s−n P

(as,λ(n),bs,λ(n))
n (tanh(x)), (2)
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where the parameters are

as,λ(n) = s− n+
λ

s− n
, bs,λ(n) = s− n−

λ

s− n
, (3)

and Ms,λ(n) is a normalization constant. There exists a finite number of bounded eigenstates
and the associated energies are rational in the excitation:

Es,λ(n) = −(s− n)2 −
λ2

(s− n)2
, n= 0,1, . . . , nmax < s−

p

λ. (4)

The energies are related to the parameters through Es,λ(n) = −[a2
s,λ(n) + b2

s,λ(n)]/2. In the
Pöschl-Teller case, as,0(n) = bs,0(n) are linear in n and the eigenstates can be expressed in
terms of the associated Legendre polynomials Pµl (y) [15]. Moreover, the energy spectrum
becomes quadratic in n.

3 Ladder operators and the algebraic method

In this work we define ladder operators
�

A±(n)
	nmax

n=0 for a given Hamiltonian H by the following
action on the bounded eigenstates:

A±(n)ψ(n; x)∝ψ(n± 1; x), A−(0)ψ(0; x) = 0. (5)

Here, nmax is either finite or infinite depending on H. They connect eigenspaces of adjacent
energies: A+(n) is referred to as a raising operator and A−(n) is a lowering operator. This
definition allows for different realizations of the ladder operators for a unique given system.
Indeed, the proportionality constant can be chosen arbitrarily either to close an algebra or to
construct certain types of coherent states, for instance. In the Rosen-Morse case, the bounded
spectrum is finite and the action A+(nmax)ψ(nmax; x) yields an unbounded state; we refer to [4]
for more details.

For numerous exactly solvable systems (harmonic oscillator, infinitely deep square-well,
Morse potential, etc.), there exists a standard technique to realize the ladder operators as first-
order differential operators using the action on the eigenstates. This technique is sometimes
referred to as the algebraic method in the literature [12,13]. In particular, it has shown to be
efficient for the Pöschl-Teller system. Starting with the assumption that A±(n)may be realized
as

A±(n) = g±(n; x) + f ±(n; x)
d

dx
, (6)

we act on an eigenstate ψ(n; x) in order to get (5). The result is well-known and detailed in
this case (see [2] , for example). Indeed, ladder operators are found to be given as

A±PT (n)∝−(s− n) sinh(x)± cosh(x)
d

dx
. (7)

Let us now try to apply this technique to the Rosen-Morse case. We will show that it fails to
obtain (5) in a straight way.

The idea is first to act with a derivative on the eigenstate, and then to use functional
relations among the eigenstates to express the result in terms of the adjacent eigenstates. We
take the usual change of variable z = tanh(x) and act with d

dx = sech2(x) d
dz on an eigenstate

of (2). This yields

d
dx
ψs,λ(n; x) =

�

−(s− n)
sinh x
cosh x

−
λ

s− n

�

ψs,λ(n; x)

+ Ms,λ(n) cosh−(s−n)(x)e−
λx
s−n sech2(x)

d
dz

P
(as,λ(n),bs,λ(n))
n (z).

(8)
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Now, one wants to make use of the functional relation [14]

d
dz

P
(as,λ(n),bs,λ(n))
n (z) =

2s− n+ 1
2

P
(as,λ(n)+1,bs,λ(n)+1)
n−1 (z), (9)

to recover P
(as,λ(n−1),bs,λ(n−1))
n−1 (z) in order to have ψs,λ(n− 1; x) in (8). However, recalling the

expression (3) for as,λ(n) and bs,λ(n), this is only possible in the Pöschl-Teller case:

as,λ(n) + 1= as,λ(n− 1)

bs,λ(n) + 1= bs,λ(n− 1)

�

⇐⇒ λ= 0. (10)

Therefore, one cannot recover the eigenstate ψs,λ(n− 1; x) using this relation in the general
Rosen-Morse setting. In fact, the problem comes directly from the rational dependence of the
parameters as,λ(n) and bs,λ(n) with respect to the excitation number n. Indeed, the functional

relations that share the Jacobi polynomials P(α,β)
n (z) only allow integer shifts of the parameters

α and β [15]. The same problem occurs when trying to recover ψs,λ(n+ 1; x) instead. Con-
sequently, the algebraic method fails to provide ladder operators for the Rosen-Morse system.
The next section summarizes the most recent alternative way of constructing ladder operators
for the Rosen-Morse system [4].

4 Ladder operators for the Rosen-Morse system

To simplify notation, we omit the explicit x-dependence of the eigenstates and use ψs,λ(n)
from this point on. We apply first-order supersymmetric (SUSY) transformation (see [7, 16],
for example) to the Rosen-Morse Hamiltonian Hs,λ and the corresponding eigenstatesψs,λ(n).
We get the so-called intertwining first-order differential operators

B±s,λ = −s tanh(x)−
λ

s
±

d
dx

. (11)

The Rosen-Morse system Hs,λ is known to be shape invariant with SUSY partner Hs−1,λ with
translated parameter s→ s− 1 [7]. We have the usual eigenstates connections

ψs−1,λ(n) =
B−s,λψs,λ(n+ 1)

Æ

Es,λ(n+ 1)− Es,λ(0)
, ψs,λ(n+ 1) =

B+s,λψs−1,λ(n)
Æ

Es,λ(n+ 1)− Es,λ(0)
, (12)

together with the ground state annihilation B−s,λψs,λ(0) = 0. The energies are preserved under
the application of B±s,λ as Es−1,λ(n) = Es,λ(n+ 1). Successive applications of the SUSY trans-
formation generate a hierarchy of Rosen-Morse Hamiltonians with fixed λ and translating s.
Since the system loses its ground state energy at every step of the procedure, the state ψs,λ(n)
of the initial system is connected to the ground state of the system Hs−n,λ and vice versa:

ψs−n,λ(0)∝
�

B−s−n+1,λB−s−n+2,λ · · ·B
−
s−1,λB−s,λ

�

ψs,λ(n), (13)

ψs,λ(n)∝
�

B+s,λB+s−1,λ · · ·B
+
s−n+2,λB+s−n+1,λ

�

ψs−n,λ(0). (14)

Furthermore, defining

γs,λ = cosh(x)e−
λx

s(s−1) , (15)

we obtain the ground states connections

ψs−1,λ(0)∝ γs,λψs,λ(0), ψs+1,λ(0)∝ γ−1
s+1,λψs,λ(0), (16)
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Hs,λ Hs−1,λ Hs−n+1,λ Hs−n,λ Hs−n−1,λ

ψs,λ(n+ 1)

ψs,λ(n)

ψs,λ(n− 1)

ψs−1,λ(n)

ψs−1,λ(n− 1)

ψs−1,λ(n− 2)

ψs−n+1,λ(2)

ψs−n+1,λ(1)

ψs−n+1,λ(0)

ψs−n,λ(1)

ψs−n,λ(0)

ψs−n−1,λ(0)

B−s,λ

B+s,λ

B+s,λ

B−s−1,λ

B+s−1,λ

B+s−1,λ · · ·

· · ·

· · ·

· · ·

B−s−n+2,λ

B+s−n+2,λ

B+s−n+2,λ

B−s−n+1,λ

B+s−n+1,λ B+s−n,λ

γs−n,λ

γ−1
s−n+1,λ

Figure 1: Product decomposition of A±s,λ(n) acting on ψs,λ(n) to obtain ψs,λ(n± 1)
through the Rosen-Morse shape invariance hierarchy scheme.

which respectively raise and lower the value of the energy (4) in the hierarchy.
A ladder operator is constructed by applying successive intertwining operators from (13)

onψs,λ(n) until a ground state is reached, then applying the connection (16), and finally apply-
ing successive intertwining operators from (14) to climb back in the hierarchy untilψs,λ(n±1)
is reached [4]. The ladder operators A±s,λ(n)write as the (2n±1)-th-order differential operators

A+s,λ(n)∝
�

B+s,λB+s−1,λ · · ·B
+
s−n+1,λB+s−n,λ

�

γs−n,λ

�

B−s−n+1,λB−s−n+2,λ · · ·B
−
s−1,λB−s,λ

�

. (17)

A−s,λ(n)∝
�

B+s,λB+s−1,λ · · ·B
+
s−n+3,λB+s−n+2,λ

�

γ−1
s−n+1,λ

�

B−s−n+1,λB−s−n+2,λ · · ·B
−
s−1,λB−s,λ

�

. (18)

The previous equations are valid with the exception of A−s,λ(0), A+s,λ(0) and A−s,λ(1) for which
they do not hold. For the latter two, one of the products should be interpreted as unity:

A+s,λ(0)∝ B+s,λγs,λ, A−s,λ(1)∝ γ−1
s,λB−s,λ. (19)

The particular case A−s,λ(0) is also of the first order. For consistency with (18)1 we take

A−s,λ(0)∝ γ−1
s+1,λB−s,λ, (20)

even though B−s,λ already annihilates ψs,λ(0). The ladder operators A±s,λ(n) satisfy the action
(5) and they are illustrated in Figure 1 where their action is decomposed within the hierarchy.

5 Reduction of Pöschl-Teller ladder operators

This section addresses the reduction of the Rosen-Morse ladder operators A±s,λ(n) to the known
Pöschl-Teller first-order realization A±PT (n) presented in Section 3. We set λ = 0 and remove
theλ-label so that A±s (n), B±s ,γs andψs(n) are understood to be that of the Pöschl-Teller system.

5.1 Reduction of A+s,0(n)

We show how the action of A+s (n) reduces to that of A+PT (n). To do so, we use ideas from [8].
Raising the ψs(n) state develops as

A+s (n)ψs(n)∝ B+s B+s−1 · · ·B
+
s−n+1

�

B+s−n cosh(x)B−s−n+1B−s−n+2 · · ·B
−
s−1B−s ψs(n)

�

, (21)

where the factor in brackets yields the state ψs−n(1) (see Figure 1). Knowing the expression
for ψs−n(1), we write it in terms of the ground state of the same system in the hierarchy:

ψs−n(1)∝ sinh(x) cosh−(s−n)(x)∝ sinh(x)ψs−n(0). (22)

1as well as for technical reasons in view of Section 5.
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Substituting back in (21), we arrive at

A+s (n)ψs(n)∝ B+s B+s−1 · · ·B
+
s−n+1 sinh(x)ψs−n(0). (23)

The sinh(x) must be commuted to the left of the product of intertwining operators in order to
recover ψs(n) on the right hand side via the relation (14). This can be done by first writing
the product of intertwining operators in the form

B+s B+s−1 · · ·B
+
s−n+1 = coshs+1(x)

�

sech(x)
d

dx

�n

cosh−(s−n+1)(x), (24)

and then by making use of the commutation relation
��

sech(x)
d

dx

�n

, sinh(x)
�

= n
�

sech(x)
d

dx

�n−1

, (25)

among differential operators [8]. We obtain

A+s (n)ψs(n)∝ sinh(x)B+s B+s−1 · · ·B
+
s−n+1ψs−n(0) + n cosh(x)B+s−1 · · ·B

+
s−n+1ψs−n(0) (26)

∝ sinh(x)B+s ψs−1(n− 1) + n cosh(x)ψs−1(n− 1), (27)

where we again used (14) in the last line. Then, from (12), we use respectively

B+s ψs−1(n− 1) =
Æ

n(2s− n)ψs(n), and ψs−1(n− 1) =
B−s ψs(n)
p

n(2s− n)
(28)

on the first and second terms of (27) to recover the action of a first-order differential operator
on ψs(n):

A+s (n)ψs(n)∝
�

Æ

n(2s− n) sinh(x) +
n cosh(x)
p

n(2s− n)
B−s

�

ψs(n). (29)

Simplifying using the expression for B−s , the remaining operator is proportional to the usual
raising operator for the Pöschl-Teller system:

A+s (n)ψs(n)∝
�

−(s− n) sinh(x) + cosh(x)
d

dx

�

ψs(n)∝ A+PT (n)ψs(n). (30)

In the general Rosen-Morse case, the operators B±s,λ contain a λ/s term which complicates
the generalization of the identity (24). Then, the association (22) contains two terms with
exponentials. Put together, the commutation of the B±s,λ cannot be performed similarly and
prevents the reduction of the ladder operators.

5.2 Reduction of A−s,0(n)

The reduction of A−s (n) is similar to that of A+s (n). Developing the lowering of the ψs(n) state
in a similar fashion as done in (21) and (22) yields

A−s (n)ψs(n)∝ B+s B+s−1 · · ·B
+
s−n+2 sech(x)B−s−n+1ψs−n+1(1). (31)

Note that we have made the association with ψs−n+1(1) before reaching the step of ground
state connexion (see Figure 1). To continue further, we make use the equivalence of the fol-
lowing operators on ψs−n+1(1):

sech(x)B−s−n+1,λ

cosh(x)B−s−n,λ

«

:ψs−n+1,λ(1) 7→ψs−n+1,λ(0), (32)
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to write

A−s (n)ψs(n)∝ B+s B+s−1 · · ·B
+
s−n+2 cosh(x)B−s−nψs−n+1(1). (33)

Noticing B−s−n = B−s−n+1 + tanh(x), we get

A−(n)ψs(n)∝ B+s B+s−1 · · ·B
+
s−n+2

�

cosh(x)B−s−n+1 + sinh(x)
�

ψs−n+1(1). (34)

We use B+s cosh(x) = cosh(x)B+s−1 repeatedly on the first term of (34) to commute cosh(x) to
the left. The second term is treated similarly as in the previous section by using the formula
(24) and the commutation relation (25) on sinh(x), yielding two terms. Keeping track of the
relative constants between the terms, we obtain

A−s (n)ψs(n)∝ cosh(x)B+s−1 · · ·B
+
s−n+2B+s−n+1B−s−n+1ψs−n+1(1)

+ sinh(x)B+s B+s−1 · · ·B
+
s−n+2ψs−n+1(1)

+ (n− 1) cosh(x)B+s−1 · · ·B
+
s−n+2ψs−n+1(1).

(35)

The product B+s−n+1B−s−n+1 factorizes Hs−n+1 in the first term and the three terms can then be
combined. We act with the product B+s−1 · · ·B

+
s−n+2 to get ψs−1(n− 1) (see Figure 1). We are

left with

A−s (n)ψs(n)∝
�

(2s− n) cosh(x) + sinh(x)B+s
�

ψs−1(n− 1). (36)

We again make use of (28) and rearrange to recover the usual Pöschl-Teller lowering operator

A−s (n)ψs(n)∝
�

−(s− n) sinh(x)− cosh(x)
d

dx

�

ψs(n)∝ A−PT (n)ψs(n). (37)

6 Conclusion

In this paper, we have studied ladder operators for the Rosen-Morse system and the Pöschl-
Teller particular case. We exposed how the algebraic method of constructing ladder operators
fails for the general Rosen-Morse system, and we found that the rational dependence of the
parameters as,λ(n) and bs,λ(n) on n is responsible for this failure. Next, we recalled the con-
struction of a set of known (2n± 1)-th-order Rosen-Morse ladder operators. It was expected
that the later should reconcile with the well-known first-order realization of the Pöschl-Teller
ladder operators obtained from the algebraic method. Indeed, we have explicitly obtained the
reduction of the Pöschl-Teller ladder operators from order 2n± 1 to order 1. Besides, a point
canonical transformation [17] has been used to map the ladder operators presented in Sec-
tion 4 onto (2n± 1)-th-order analogous ladder operators for the trigonometric Rosen-Morse
system [4]. We expect that similar results apply in the trigonometric case.
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