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Abstract

A generalisation of Euclidean and pseudo-Euclidean groups is presented, where the Weyl-
Heisenberg groups, well known in quantum mechanics, are involved. A new family of
groups is obtained including all the above-mentioned groups as subgroups. Symmetries,
like self-similarity and invariance with respect to the orientation of the axes, are properly
included in the structure of this new family of groups. Generalized Hermite functions on
multidimensional spaces, which serve as orthogonal bases of Hilbert spaces supporting
unitary irreducible representations of these new groups, are introduced.

1 Introduction

It is well-known the interest of the Heisenberg-Weyl (HW) group in physics, mainly in Quan-
tum Mechanics (QM). The indetermination principle, fundamental in QM, is closely linked
to this group and the Fourier transform (FT) [1, 2]. It is also related with the Gabor formal-
ism [3] on the theory of wavelets, where an uncertainty principle for time-frequency operators
appears [4]. On the other hand, (the affine spaces) Euclidean, Rn, or pseudo-Euclidean spaces,
Rp,q (p + q = n), are the arena of the physical events, where their invariance properties are
described by the Euclidean type groups En = Rn � SO(n) or Ep,q = Rp,q � SO(p, q), respec-
tively. The HW and Euclidean groups are involved in relevant invariance properties used in the
study of the physical systems. Thus, we can mention, first of all, the pairs of sets of conjugate
variables, connected through the HW group, that allows us to get equivalent physical descrip-
tions either in the position or in the momentum representations. The freedom of the choice
of the origin in each coordinate system (either position or momenta) that it is know as “ho-
mogeneity” and it is related to both kind of groups. The freedom to choose the unit of length
or “self-similarity”, that can be implemented via dilations. And finally the freedom to select
the orientation of the unit vectors for the orthogonal bases of the physical space (“invariance
from orientation”). In these last two cases the Euclidean groups are involved in. However, all
these invariances are not completely independent because the FT, which matches coordinate
and momentum representations [5], does not allow to fix independently self-similarity and
orientation. Both family of groups are independent although some times they appear together
in the implementation of the invariances above mentioned, that we consider as a whole.
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Recently in [6] we have studied the case related with R, It has been the point of departure
for a generalization of our analysis to Rn and Rp,q realized in [7]. Here the Euclidean-like
groups En and Ep,q and the HW groups Hn and Hp,q (where Rn ⊂ Hn has been replaced by
Rp,q) have been enlarged to the groups Kn and Kp,q that contain the Euclidean groups and
the HW groups as subgroups. Tentatives in this direction has been done but with different
motivations and only considering the cases with positively defined metric [8–10].

Here, we present the lower dimensional cases (1D and 2D) in Sections 2 and 3, respectively.
The representations of the groups here studied are supported by square integrable functions.
The fact that the Hermite functions (HF) constitute a (discrete) basis of L2(R) (see Subsection
2.2) allows us to introduce in Subsection 3.4 a generalization of the HF in order to describe
the above mentioned invariance in 2D. We end with a Section 4 devoted to conclusions.

2 Heisenberg-Weyl groups in the real line R

2.1 The Heisenberg-Weyl group H1

The HW group in 1D can be realized on the coordinate space R providing the basic commu-
tation relations of QM as [x , p] ≡ [x ,−iħh ∂

∂ x ] = iħh. A matrix representation of H1 in terms of
real 3× 3 upper triangular matrices of the group M3(R) [11] is given by

H1[a, b, c] =





1 a c
0 1 b
0 0 1



 , a, b, c ∈ R . (1)

Self-similarity and orientation are included by extending H1 to a new group K1 realized as

K1[a, b, c, k] =





1 a c
0 k b
0 0 1



 , a, b, c ∈ R, k ∈ R∗ . (2)

Obviously, the group laws in both cases are obtained through matrix multiplication.
The group K1 has two connected components: the connected component of the identity

(Ko
1 ) characterized by k > 0; and a 2nd component with k < 0 (K1

1 ).
The parameters a, b, c of H1 (and K1) are in correspondence to the three generators X , P, I

of the Lie algebra of H1 (and K1), Lie[H1] (Lie[K1]), respectively; and the generator D asso-
ciated to k only belongs to Lie[K1]. The explicit form of these generators in (1) and (2) is

X = ∂ K1[... ]
∂ a

�

�

�

�

Id
=





0 1 0
0 0 0
0 0 0



 , P = ∂ K1[... ]
∂ b

�

�

�

�

Id
=





0 0 0
0 0 1
0 0 0



 ,

I = ∂ K1[... ]
∂ c

�

�

�

�

Id
=





0 0 1
0 0 0
0 0 0



 , D = ∂ K1[... ]
∂ k

�

�

�

�

Id
=





0 0 0
0 1 0
0 0 0



 ,

(3)

with Id the identity element. The commutation relations for both Lie algebras are

[X , P] = I , [D, X ] = −X , [D, P] = P, [I ,• ] = 0 . (4)

The real line R is a metric space that supports two continuous conjugate (in the sense of
position-momentum conjugation) bases for L2(R) : {|x〉}x∈R and {|p〉}p∈R obtained by means
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of the generalized eigenvectors of the operators X and P, i.e., X |x〉= x |x〉 , P |p〉= p |p〉 . The
basis elements of {|x〉}x∈R satisfy (and similarly for {|p〉}p∈R)

〈 x |x ′ 〉 =
p

2π δ(x − x ′) ,
1
p

2π

∫

R
d x |x〉〈x |= I . (5)

As we mention before these generalized bases are well defined on certain extensions of the
Hilbert space (the Gelfand triplets or the rigged Hilbert spaces) [12].

As is well known the Fourier transform (FT) and its inverse (IFT) connect both bases [5]

F T [|x〉, x , p] =
1
p

2π

∫

R
d x eipx |x〉 = |p〉, I F T [|p〉, p, x] =

1
p

2π

∫

R
dp e−ipx |p〉 = |x〉 .

(6)
There exists a representation of H1 by unbounded operators on L2(R), where P and X may

be represented by

[P f ](x) = −i
d

d x
f (x) , [X f ](x) = x f (x) , f (x) ∈ L2(R), (7)

satisfying [X , P] = I . We also may choose another representation of P and X on an ab-
stract infinite dimensional separable Hilbert space H. Since there is always a unitary map
U : H→ L2(R), the commutation relation between P and X on L2(R) is translated to H. In
order to simplify the notation we also denote the operators on H by P and X .

The relationship between the elements | f 〉 ∈H and f (x) ∈ L2(R) is given by [5]

| f 〉=
1
p

2π

∫

R
d x f (x) |x〉=

1
p

2π

∫

R
dp f̂ (−p) |p〉 , (8)

with f (x) = 〈x | f 〉, f̂ (p) = F T[ f (x); x , p] and f̂ (−p) = 〈p| f 〉. Remember that only the vectors
| f 〉 belonging to a dense space in H (i.e., the space of test vectors) can be written as (8).

The action of the group elements e−iP b and e−iX a on the continuous bases is given by

e−iP b |x〉= |x + b〉 , e−iX a |p〉= |p− a〉 , ∀a, b ∈ R . (9)

From these relations we conclude that {|x〉} ({|p〉}) is equivalent to {|x + b〉} ({|p− a〉}).
These bases support each an infinite dimensional unitary irreducible representation (UIR)

of H1, Uh(g), h ∈ R∗ [6,13],

Uh(g)≡ Uh(c, a, b) := eihcI eih(aX−bP) = eih(c−ab/2)I eihaX e−ihbP . (10)

For instance, in the cases of {|x〉} as well as L2(R) the action is given by

Uh(g) |x〉= eihc eiha(x+b/2) |x + b〉 , (Uh(g) f ) (x) = eihc eiha(x−b/2) f (x − b) . (11)

We mentioned before that H1 does not exhaust the invariances of the real line if we add the
hypothesis of self-similarity and orientation and we have to considerer K1. Since {|x〉} ({|p〉})
is equivalent to {|k x〉}

�

{|k′ p〉}
�

and from (6) we find that k′ = k−1 ∈ R∗. In other words, R
supports a UIR, Uh,C , of K1. For the connected component Ko

1 of K1 and for the dilations we
use the formula (53) of [6] obtaining that eidD |x〉= ed/2 |ed x〉. Therefore,

Uh,C( g̃) |x〉= ed/2 eih(c+C) eiha(ed x+b/2) |ed x + b〉 , g̃ = (a, b, c, d) ∈ Ko
1 , (12)

where C ∈ R denotes the eigenvalues of the quadratic Casimir of Ko
1 , C = X P − I D. When we

consider also the dilations with k < 0 we introduce the (unitary) parity operator P (x →−x)
and we obtain in a unified manner that

Uh,C( g̃,α) |x〉= Uh,C( g̃) |xα〉= ed/2 eih(c+C) eiha(ed xa+b/2) |ed xα + b〉 , (13)
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where α stands either for the identity (xI = x) and ( g̃,I) ∈ Ko
1 or the parity (xP = −x) and

( g̃,P) ∈ K1
1 . We can rewrite (13) in terms of k ∈ R∗ with |k|= ed and d ∈ R as

Uh,C(c, a, b, k) |x〉=
Æ

|k| eih(c+C) eiha(k x+b/2) |k x + b〉 . (14)

The corresponding action on the functions of L2(R) is given by
�

Uh,C( g̃,α) f
�

(x) =
1

p

|k|
eih(c+C) ei h a(x−b/2) f

�

k−1 (x − b)
�

. (15)

2.2 The Hermite Functions appear on the scene

It is well known that the FT of the Hermite Functions {ψm(x)}m∈N are also HF, i.e.

F T[ψm(x), x , p] = imψm(p) , I F T[ψm(p), p, x] = (−i)mψm(x) . (16)

Hence, both are complete orthonormal bases in L2(R) [14].
Invariance properties of K1 are implemented to a generalization of the HF obtained using

the UIR’s of K1 (13) in position coordinates x (and similarly for p) as follows

χm(x , a, b, k) := |k|1/2 e−ia(k x+b/2)ψm(k x + b) , a, b ∈ R , k ∈ R∗ . (17)

In this way we obtain two families of functions depending on 3 real parameters (a, b, k)

{χm(x , a, b, k)} , {χm(p, a, b, k)} , ∀k 6= 0, a, b ∈ R . (18)

Orthonormal and completeness relations of the HF induce similar relations for these families
of generalized HF, so they are also orthonormal bases in L2(R). However, these generalized
HF are not eigenfunctions of the FT and its inverse, contrarily to the ordinary HF (16)

F T[χm(x , a, b, k), x , p] = im χm(p, b,−a, k−1) ,

I F T[χm(p, a, b, k), p, x] = (−i)m χm(x ,−b, a, k−1) .
(19)

3 Euclidean and pseudo-Euclidean plane cases

In this Section we will consider the 2D configuration spaces: the Euclidean plane (R2) and the
pseudo-Euclidean plane (R1,1) with metrics of signature (+,+) and (+,−), respectively.

3.1 The groups H2 and K2 on the plane

The HW group on 2D, H2, admits a finite representation by real 4× 4 matrices as

H2[a,b, c] =





1 aT c
0 I2 b
0 0T 1



≡







1 a1 a2 c
0 1 0 b1
0 0 1 b2
0 0 0 1






, a1, a2, b1, b2, c ∈ R . (20)

This group can be enlarged by adding the group of proper rotations SO(2) and the dilations
on the plane, R∗, so as to obtain the group K2

K2[a,b, c, k, R(θ )] =





1 aT c
0 k R(θ ) b
0 0T 1



 , R(θ ) =

�

cosθ − sinθ
sinθ cosθ

�

∈ SO(2) , (21)

with θ ∈ [0,2π) and k ∈ R∗. The group law is obtained by matrix multiplication, as usual,

K2[a,b, c, k, R] · K2[a
′,b′, c′, k′, R′] = K2[a

′ + k′R′ T a, b+ kRb′, c + c′ + a · b′, kk′, R R′] , (22)

where R R′ ≡ R(θ )R(θ ′) = R(θ + θ ′) .
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3.2 The groups H1,1 and K1,1 on the pseudo-plane

A new generalization of H2, H1,1, can be obtain by replacing R2 by R(1,1). It formally is like H2
(20) but replacing SO(2) by SO0(1, 1)), the connected component of the identity of SO(1,1).
The group K1,1 comes from H1,1 by adding R∗,

K1,1[a,b, c, k,Λ(η)] =





1 aT c
0 kΛ(η) b
0 0T 1



 , Λ(η) =

�

coshη sinhη
sinhη coshη

�

∈ SO0(1,1) , (23)

with η ∈ R and k ∈ R∗. The group law for K1,1 is similar to that of K2 (22), provided R is
replaced by Λ. Note that K2 has only a connected component while K1,1 has two.

3.3 The Lie algebras of K2 and K1,1

Both algebras are 7D with infinitesimal generators X1, X2, P1, P2, I , D and, moreover, J for
Lie[K2] and K for Lie[K1,1]. A 4× 4 matrix realization of the generators is

Xα =
∂ K−
∂ aα

�

�

�

�

Id
=





0 αT 0
0 O2 0
0 0T 0



 , Pα =





0 0T 0
0 O2 α
0 0T 0



 ,

I =
∂ K−
∂ c

�

�

�

�

Id
=





0 0T c
0 O2 0
0 0T 0



 , D =





0 0T 0
0 I2 0
0 0T 0



 ,

(24)

where α is either the column vector (1, 0)T for α = 1 or (0, 1)T for α = 2 and O2 is the 2× 2
zero matrix. The generators J and K are represented as

J =
∂ K−
∂ θ

�

�

�

�

Id
=





0 0T 0
0 −iσ2 0
0 0T 0



 , K =
∂ K−
∂ η

�

�

�

�

Id
=





0 0T 0
0 σ1 0
0 0T 0



 , (25)

where σi are Pauli matrices. The non-vanishing commutation relations are

[Xα, Pβ] = δαβ I , [D, Xα] = −Xα, [D, Pα] = +Pα (26)

together with these for Lie[K(2)]

[J , Xα] = εαβXβ , [J , Pα] = εαβ Pβ , (27)

where εαβ is the skew-symmetric tensor, and these ones for Lie[K(1, 1)]

[K , Xα] = (−1)α εαβXβ , [K , Pα] = (−1)α+1 εαβ Pβ . (28)

3.4 Bases on the plane and the hyperplane

Now we will consider together the 2D real affine space X associated to either the vector space
R2 or R1,1 and the Hilbert space L2(X) on which we define the position operator X≡ (X1, X2)
and their conjugate momentum operator P≡ (P1, P2). These operators act on the eigenvectors
|x〉 (≡ |x1, x2〉= |x1〉⊗|x2〉) and |p〉, respectively, as Xα |x〉= xα|x〉 and Pα |p〉= pα|p〉 ,α= 1,2 .
These eigenvectors are transformed into each other by means of Fourier type transformations
(6) but in 2D

|p〉=
1

2π

∫

X
dx eip·x |x〉 , |x〉=

1
2π

∫

X
dp e−ip·x |p〉 , (29)
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As for the 1D case (9) we have similar relations: e−ib·P |x〉 = |x+ b〉 and e−ia·X |p〉 = |p− a〉
(a,b ∈ X) . Hence the basis {|x〉} is equivalent to {|x+b〉} and the same for {|p〉} and {|p−a〉}.

The use of the 2D FT serves us to realize that the five operators given by X, P and I deter-
mine a UIR representation of H2 or H1,1 by exponentiation.

Let H be an abstract infinite-D separable Hilbert space and S : H→ L2(X) a unitary map.
If | f 〉 ∈H and S | f 〉= f (x) we have the following relation in a suitable dense subspace of H

| f 〉=
∫

X
dx f (x) |x〉 , f (x) = 〈x| f 〉 . (30)

The action of an element of K2 (or K1,1) on X implies that |x〉 transforms as

|x〉 → |x′〉= |k| eih(c+C+a·b/2) eiha·(kΛx+b) |kΛx+ b〉 , (31)

see (10), (13) and (14). This action allows to calculate the action of a UIR on L2(X)

(U(g) f )(x) = |k|−1 eic e−ik−1a·Λ−1(x−b) f (k−1Λ−1(x− b)) . (32)

The interested reader can easily compute similar expressions for |p〉 and f (p).

3.5 Bases on L2(X)

The HFs ψα(xα) determine an orthonormal basis on L2(R) (Subsection 2.2). So the functions

Ψm(x) :=ψm1
(x1)ψm2

(x2) , m= (m1, m2) ∈ N2 , (33)

constitute an orthonormal basis on L2(X), i.e. for any f (x) ∈ L2(X) we have that

f (x) =
∞
∑

m∈N2

cmΨm(x) =
∞
∑

m1=0

∞
∑

m2=0

cm1,m2 ψm1
(x1)ψm2

(x2) , cm1,m2 ∈ C . (34)

The double HF or the 2D HF functions Ψm(x) verify the following relations
∫

R2

dx [Ψm′(x)]
∗ Ψm(x) = δm,m′ ≡ δm1,m′1

δm2,m′2
,

∑

m∈N2

[Ψm(x)]
∗ Ψm(y) = δ(x− y)≡ δ(x1 − y1)δ(x2 − y2) .

(35)

They are real functions and eigenfunctions of the FT and of its inverse, i.e.,

F T [Ψm(x);x;p] = i em Ψm(p) , I F T [Ψm(p);p;x] = (−i)em Ψm(x) ; em :=
∑

α

mα . (36)

In this 2D case we can profit from the invariance properties of 2D HF to construct a repre-
sentation of the groups K2 (or K1,1) supported on a set of generalized HF. We start by defining

Xm(x,a,b, k,Λ) := |k| e−i a(kΛx+b/2)Ψm(kΛx+ b) . (37)

Now we are able to obtain an explicit form of the 2D generalized HF in terms of the 1D
generalized HF, (17) and (18), as

Xm(x,a,b, k,Λ) = χm1
((Λx)1, a1, b1, k)χm2

((Λx)2, a2, b2, k) , (38)

where (Λx)α denotes la α-th contravariant component of the vector Λx.
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The 2D GHF determine an orthonormal basis on L2(X) since
∫

R2

dxXm(x,a,b, k,Λ) [Xm′(x,a,b, k,Λ)]∗ = δm,m′ ,

∑

m∈N2

Xm(x,a,b, k,Λ) [Xm(y,a,b, k,Λ)]∗ = δ(x− y) .
(39)

In addition, for the FT in 2D and its inverse we have the following relations:

F T [Xm(x,a,b, k,Λ) ; x,p] = i em [Xm(p,b,−a, k−1,Λ−1T ) ,

I F T [Xm(p,a,b, k,Λ) ;p;x] = (−i)em Xm(x,b,−a, k−1,Λ−1T ) .
(40)

4 Conclusion

We present a revision of some generalizations of the Euclidean groups [8–10] by considering
as an ensemble the equivalence of conjugate variables, and the properties of homogeneity,
self-similarity and invariance from orientation that are present in the description of physical
systems. The group extensions of the Euclidean-like groups by the HW group origine groups
that amalgamate the symmetries associated to both groups together with the invariances that
we have just mentioned above. Moreover these groups Kp,q (with q + p = n) admit a repre-
sentation in terms of (n+ 2)× (n+ 2) matrices. In particular, we have displayed here the low
dimensional cases (1D and 2D). The nD case can be easily implemented from the 2D case [7].

Since the HF are an orthogonal basis of L2(R1) a basis on L2(Rp,q) is obtained in terms of
nD HF. The function spaces L2(Rp,q) support a UIR of the group Kp,q, that allows us to define
a new set of orthonormal functions, the nD generalized Hermite functions.

The existence of both discrete and continuous bases supporting representations of Kp,q lead
us to introduce a generalization of the Hilbert spaces: the rigged Hilbert spaces (or Gelfand
triplets) [12]. Then the infinitesimal generators of Kp,q represented by self-adjoint operators on
L2(Rp,q) are, generally, unbounded become bounded (continuous) operators (on two different
locally convex topologies) using these rigged Hilbert spaces [7].

The nD Hermite functions appear in many quantum systems with quadratic Hamiltoni-
ans [15, 16], hence our results could be of interest, for instance, in Quantum Optics (photon
distribution on multimodes mixed states [17]), in multidimensional signals analysis (decompo-
sition of signals in terms of wavelets involves Fourier transform or Gabor transform [3,18,19])
and in vision studies [20–22].
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