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Abstract

Integrability of the one-dimensional Hubbard model and of the fac-
torised scattering problem encountered on the worldsheet of AdS strings
can be expressed in terms of a peculiar quantum algebra. In this arti-
cle, we derive the classical limit of these algebraic integrable structures
based on established results for the exceptional simple Lie superalgebra
d(2, 1; ϵ) along with standard sl(2) which form supersymmetric isome-
tries on 3D AdS space. The two major steps in this construction consist
in the contraction to a 3D Poincaré superalgebra and a certain reduc-
tion to a deformation of the u(2|2) superalgebra. We apply these steps
to the integrable structure and obtain the desired Lie bialgebras with
suitable classical r-matrices of rational and trigonometric kind. We il-
lustrate our findings in terms of representations for on-shell fields on
AdS and flat space.
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1 Introduction

Integrable systems play an important role in theoretical physics, especially for models of
condensed matter physics as well as of high energy physics. Integrability of such models
is often attributed to the existence of particular extended types of symmetry algebra. In
the case of many integrable quantum models, the relevant algebras are known as quantum
groups and quantum algebras [1, 2]. These describe not only the extended symmetries of
a quantum model, but also allow one to formulate the integrable structure purely in the
algebraic language. Quantum algebras thus give us a useful tool to describe, evaluate and
study integrable systems.

Two important, yet elaborate examples of integrable models are given by the one-
dimensional Hubbard model, and by the planar limit of N = 4 supersymmetric gauge
theory, which is AdS/CFT dual to strings on AdS4,1 × S5. In fact, these two particular
examples are not unrelated. The algebraic structures underlying integrability in the 1D
Hubbard model and factorised worldsheet scattering in the AdS/CFT models are given
by one and the same algebra. Many features of this quantum algebra have already been
worked out, importantly, that it is based on certain extensions of the Lie superalgebra
u(2|2) and that it is of some exceptional kind. The latter means that established stan-
dard constructions in quantum algebra based on simple or semi-simple Lie algebras and
superalgebras are not sufficient to describe it. Let us elaborate on these achievements and
on open questions.

The quantum R-matrix for the integrable structure of the 1D Hubbard model [3],
see [4], has been proposed by Shastry [5]. It is the result of an elaborate combination of
two six-vertex models at the free fermion point using elliptic functions and it was shown
to satisfy the quantum Yang–Baxter equation. A significant feature of this R-matrix is
that it is not of a so-called difference form, a feature that most of the known solutions to
the Yang–Baxter share. Much later, the R-matrix was reproduced [6] by a construction
of the AdS/CFT worldsheet scattering matrix [7], see [8], which was based on a central
extension of the Lie superalgebra psu(2|2) in combination with dynamics of excitations
on the worldsheet. Quantum algebra structures were established for this system in [9],
and the algebra was extended to an infinite-dimensional Yangian algebra in [10].

Equipped with these algebraic tools, scattering matrices for some higher representa-
tions [11, 6, 12] have been constructed [13]. Importantly, also the overall phase for the
scattering matrix could be pinned down by consistency considerations of the quantum
algebra together with considerations of the underlying physical system [14]. All of this
calls for the formulation of a universal R-matrix which (in principle) could be evaluated in
arbitrary representations in order to yield the corresponding scattering matrix along with
a suitable overall phase. Yet, our understanding of the quantum algebra is not complete,
nor is the original Drinfel’d presentation well suited towards the construction of a uni-
versal R-matrix. Alternative presentations of the Yangian algebra have been formulated
in [15] with the aim of providing a complete formulation of this quantum algebra from
which all relevant properties of the algebra can be derived using established methods.

Progress towards a complete formulation of the quantum algebra is compromised by
an elevated complexity of the structures for this case. In general, quantum algebras are
highly non-linear objects, but certain functions and structures have been established to
formulate their objects in more convenient terms. Among others, these are so-called q-
deformations of group actions, exponential functions, logarithms, dilogarithms, factorials,
Gamma functions and Pochhammer symbols. Unfortunately, in the present case, it is
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not yet known precisely how to compose these to formulate, e.g., the universal R-matrix.
Here, the classical limit comes along very handy, where expressions are reduced to their
leading order terms. Consequently, the quantum algebra reduces to a Lie bialgebra where
most relations are linearised. The classical limit for the R-matrix has been introduced
in [16–18], and a formulation as a Lie bialgebra was completed in [19]. The underlying
algebra turned out to be a novel deformation of the u(2|2) loop superalgebra. A corollary
of this result was the discovery of an additional u(1) derivation to extend the psu(2|2)
symmetry algebra [20].

The article [19] made an auxiliary proposition for the derivation of the deformed u(2|2)
loop superalgebra as a curious reduction of a maximally extended sl(2)⋉ psu(2|2)⋉R2,1

loop superalgebra. The latter is a non-simple Lie superalgebra, yet its bialgebra structures
take a standard form in the rational case.

A further clue in this direction was provided in the article [21], where the above
maximally extended sl(2) ⋉ psu(2|2) ⋉ R2,1 superalgebra was shown to be an algebraic
contraction of the semi-simple algebra d(2, 1; ϵ) × sl(2) involving the exceptional Lie su-
peralgebra d(2, 1; ϵ).1 This contraction follows along the lines of the contraction of the 3D
AdS algebra so(2, 2) = sl(2) × sl(2) to the 3D Poincaré algebra iso(2, 1) = sl(2) ⋉ R2,1.
The latter contraction can be supersymmetrised by the replacement of one (or two) factors
of sl(2) by d(2, 1; ϵ), and by the introduction of one (or two) factors of the superalgebra
psu(2|2) into the Poincaré algebra sl(2)⋉R2,1.

The combination of the latter two insights opens up a path towards a complete al-
gebraic formulation of the classical integrable structures purely in terms of established
elements of simple loop superalgebras and their Lie bialgebra structures. In the present
article, we carry out the full procedure in order to obtain the complete Lie bialgebra
with its classical r-matrix. In particular, we will explore two concepts, contraction and
reduction, that are essential in avoiding the complications mentioned above. Moreover, we
will resort to the well-established representation theory of sl(2) together with analogous
representations of d(2, 1; ϵ) to express a relevant class of representations for the resulting
algebra. This will allow us to express the classical r-matrix as the classical limit of a
particle scattering matrix, and it will generally illustrate some of the abstract results in
more applied terms.

In this article we fill some of the missing steps of the above construction in the classical
limit. In Sec. 2 we start with the reduced case of the contraction of the algebra so(2, 2)
of isometries of AdS2,1 to the 3D Poincaré algebra iso(2, 1). In particular, we describe
on-shell field representations on AdS2,1 and on flat R2,1, and we show how to perform the
contraction between the two. Then we promote the discussion to loop algebras in Sec. 3
and establish the contraction of the r-matrix of rational type. In Sec. 4 we discuss a par-
ticular reduction of the algebras, their r-matrices and representations. We then extend
the receding construction from the rational to the trigonometric case in Sec. 5. Finally,
the supersymmetric extension of the above constructions involving the exceptional super-
algebra d(2, 1; ϵ) is discussed in Sec. 6. Eventually, our construction yields the classical
r-matrix which describes the classical limit of the 1D Hubbard model and of the AdS/CFT
worldsheet S-matrix.

1The idea to involve the exceptional Lie superalgebra d(2, 1; ϵ) in the limit ϵ → 0 appeared earlier
in [22].
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algebra generators indices sl(2) form a ∈ {0,±}
so(3) Jk 1, 2, 3 sl(2) (generic) Ja

so(2, 2) Mαβ x, y;u, v sl(2)× sl(2) Ma
1,M

a
2

iso(2, 1) Lµν ,Pµ x, y; t sl(2)⋉R2,1 La,Pa

Table 1: Generators of spacetime symmetries

2 Contraction

Our aim is to understand integrable structures of a physical model with (an extension
as well as a reduction of) Poincaré symmetry on flat Minkowski space R2,1. A difficulty
is that the Lie algebra iso(2, 1) = sl(2) ⋉ R2,1 incorporating Poincaré symmetry is non-
simple, whereas structures of integrability are best developed for simple and semi-simple
algebras, see [23]. Moreover, unitary representation of this non-compact algebra are
necessarily infinite-dimensional, which complicates constructions in terms of physically
relevant representations. Our resolution to these problems is to resort to the fact that
the Poincaré algebra is a contraction of the Lie algebra so(2, 2) = sl(2) × sl(2) which
incorporates the isometries of anti-de Sitter space AdS2,1. The algebra factors sl(2) are
simple, and their representation theory is well-understood and easy to handle. We will
then move, step by step, towards the originally intended situation in the subsequent
sections.

In order to set the stage for some more elaborate constructions in this work, we will
review the algebra contraction,

so(2, 2) = sl(2)× sl(2) −→ iso(2, 1) = sl(2)⋉R2,1, (2.1)

first at the level of the algebra, then in terms of geometry and finally at the level of
infinite-dimensional representations. This will also introduce the notation and relate the
abstract mathematical considerations to physical fields on the symmetric space AdS2,1

and on flat Minkowski space R2,1.

2.1 Algebra

We start by introducing the above Lie algebras in terms of their generators, see the
summary in Tab. 1, and by describing the contraction that relates the two.

Spacetime Algebras. Here we present the generators of the relevant spacetime Lie
algebras so(2, 2) and iso(2, 1) along with their Lie brackets and invariant quadratic forms.

The AdS algebra so(2, 2) is spanned by a set of generators which we shall denote by
Mαβ = −Mβα with the indices α, β ∈ {u, v, x, y}. Their Lie brackets are given by2

[Mαβ,Mγδ] = −̊ıηβγMαδ + ı̊ηαγMβδ + ı̊ηβδMαγ − ı̊ηαδMβγ, (2.2)

where η denotes a metric tensor of signature (−,−,+,+) corresponding to the directions
(u, v, x, y). The algebra has two independent invariant quadratic forms

M2
+ := −1

2
ηαγηβδM

αβ ⊗Mγδ, M2
− := 1

4
εαβγδM

αβ ⊗Mγδ, (2.3)

2Here and below, we follow the physics convention that the generators for the real form of a Lie algebra
are typically assumed to be purely imaginary.
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where ε denotes totally anti-symmetric tensors (we choose the normalisation εuvxy = +1).
The Lorentz algebra so(2, 1) is spanned by the generators Lµν = −Lνµ with the indices

µ, ν ∈ {t, x, y} and the signature (−,+,+). Their Lie brackets take the same form as (2.2)
but with indices µ, ν ∈ {t, x, y}

[Lµν ,Lρσ] = −̊ıηνρLµσ + ı̊ηµρLνσ + ı̊ηνσLµρ − ı̊ηµσLνρ. (2.4)

It has an invariant quadratic form L2 := −1
2
ηµρηνσL

µν ⊗ Lρσ which is analogous to M2
+ of

so(2, 2).
The Poincaré algebra iso(2, 1) supplements the Lorentz generators Lµν with the mo-

mentum generators Pµ, µ ∈ {t, x, y}, which obey the additional algebra relations

[Lµν ,Pρ] = −̊ıηνρPµ + ı̊ηµρPν , [Pµ,Pν ] = 0. (2.5)

The Poincaré algebra has two invariant quadratic forms

P2 := ηµν P
µ ⊗ Pν , L·P := −1

4
εµνρ(L

µν ⊗ Pρ + Pρ ⊗ Lµν). (2.6)

Note that the above invariant quadratic form L2 of the Lorentz algebra is not an invariant
for the Poincaré algebra.

sl(2) Forms. All of the above algebras are related to sl(2) in some way. To make the
relations between the various algebras more evident, we will use a common notation. This
will also streamline the contraction procedure.

We will typically denote the generators of an abstract complexified algebra sl(2) by
Ja with index a ∈ {0,±}. The generators obey the algebra relations

[J0, J±] = ±J±, [J+, J−] = −2J0 ⇐⇒ [Ja, Jb] = ı̊fabcJ
c. (2.7)

The structure constants fabc of the latter universal form are defined by the former explicit
relations. Finally, the quadratic invariant form of sl(2) reads

J2 := −J0 ⊗ J0 + 1
2
J+ ⊗ J− + 1

2
J− ⊗ J+ = cab(J

a ⊗ Jb), (2.8)

with cab denoting the coefficients in the basis Ja. Concretely, the above two sets of
coefficients are given by

f 0±
± = ∓̊ı, f±∓

0 = ±2̊ı, c00 = −1, c±∓ = 1
2
. (2.9)

As an aside, note that the set of generators {J0,±}maps almost trivially to the standard
Cartan–Weyl basis {H,E,F} of sl(2) by (J0, ı̊J+, ı̊J−) = (1

2
H,E,F).3 It can also be cast

as an imaginary basis Jk, k = 1, 2, 3 for the compact real form so(3) as4

(J0, ı̊J±) = (J3, J1 ± ı̊J2), [Jj, Jk] = ı̊εjkmJm, J2 = −Jk ⊗ Jk. (2.10)

It is well-known that the AdS algebra so(2, 2) is isomorphic to sl(2) × sl(2). We use
the following map for the generators Ma

1,M
a
2 of two copies of the algebra sl(2)

M0
1 = −1

2
Muv + 1

2
Mxy, M±

1 = 1
2
(−Mux +Mvy)∓ ı̊

2
(+Muy +Mvx),

M0
2 = +1

2
Muv + 1

2
Mxy, M±

2 = 1
2
(+Mux +Mvy)∓ ı̊

2
(−Muy +Mvx). (2.11)

3For the real form sl(2,R), the generators J0, J± or H,E,F can be taken to be real.
4For the real form so(3), the generators J0 is imaginary and J± obey (J±)∗ = J∓.
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Each set of generators Ma
1 and Ma

2 obeys the algebra relations of one copy of sl(2) while
the mixed Lie brackets are zero

[Ma
1,M

b
1] = ı̊fabcM

c
1, [Ma

1,M
b
2] = 0, [Ma

2,M
b
2] = ı̊fabcM

c
2. (2.12)

The two quadratic invariant forms are related to the quadratic invariant form (2.8) for
the two copies of sl(2)

M2
+ = 2M2

1 + 2M2
2, M2

− = 2M2
1 − 2M2

2. (2.13)

The Lorentz algebra so(2, 1) = sl(2,R) can also be cast in the above sl(2) form.
The generators Lµν are identified with La, and it makes sense to express the Poincaré
generators Pµ in the sl(2) basis Pa as follows5

L0 = Lxy, L± = Lty ∓ ı̊Ltx, 1
2
L+ + 1

2
L− = Lty, ı̊

2
L+ − ı̊

2
L− = Ltx.

P0 = Pt, P± = Px ± ı̊Py, 1
2
P+ + 1

2
P− = Px, − ı̊

2
P+ − ı̊

2
P− = Py. (2.14)

Altogether, the algebra relations of iso(2, 1) = sl(2)⋉R2,1 then take the form

[La,Lb] = ı̊fabcL
c, [La,Pb] = ı̊fabcP

c, [Pa,Pb] = 0. (2.15)

The invariant quadratic forms match with their sl(2) counterparts as follows

P2 = cab(P
a ⊗ Pb), L·P = 1

2
cab(L

a ⊗ Pb + Pa ⊗ Lb). (2.16)

Algebra Contraction. The contraction so(2, 2) → iso(2, 1) is achieved by taking the
limit ϵ→ 0 for the following identification of generators6

La = Ma
1 +Ma

2, Pa = ϵm̄Ma
1. (2.17)

Here, we have introduced a supplementary reference mass constant m̄ in order to make
appropriate mass dimensions manifest when the limiting parameter ϵ is assumed to be
dimensionless. For finite ϵ this identification describes a bijective map between Ma

1,M
a
2

and La,Pa which becomes singular at ϵ = 0. The algebraic relations of these generators
at finite ϵ read

[La,Lb] = ı̊fabcL
c, [La,Pb] = ı̊fabcP

c, [Pa,Pb] = ı̊ϵm̄fabcP
c. (2.18)

In the limit ϵ → 0, the Lie bracket of generators P becomes trivial due to [P,P] = O(ϵ),
and the algebra relations (2.15) of iso(2, 1) are recovered.

2.2 Geometry

Our aim is to construct a representation of the AdS algebra so(2, 2) which reduces to a
field representation of the Poincaré algebra iso(2, 1) under the contraction. Therefore it
makes sense to analyse the situation from a geometric point of view.

5For the real form so(2, 1), the generators L0 is imaginary and L± obey (L±)∗ = −L∓.
6Alternative choices of combinations for Pa are conceivable, e.g. Pa = 1

2ϵm̄(Ma
1−Ma

2) or P
a = −ϵm̄Ma

2

or Pa = cϵm̄Ma
1 . These lead to inessential modifications of the algebraic relations.
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G
F R2,1

AdS2,1

Figure 1: Mapping between a function on a small neighbourhood of a point on
AdS2,1 and a function on the tangent space.

Anti-de Sitter Space. The algebra so(2, 2) acts canonically on the vector space R2,2

for which we shall use linear coordinates Xα = (u, v, x, y) with signature (−,−,+,+).
The corresponding canonical action on a scalar field7 F (u, v, x, y) by means of differential
operators D(M) takes the form

D(Mαβ) = −̊ıXα ∂

∂Xβ

+ ı̊Xβ ∂

∂Xα

. (2.19)

This action is reducible thanks to the invariance of the square form X2 := ηαβX
αXβ

under so(2, 2) which can be used to restrict to submanifolds at constant X2. Correspond-
ingly, so(2, 2) has an action on the symmetric space AdS2,1 which can be embedded into
R2,2 as the submanifold at X2 = −1. We shall use the embedding angular coordinates
(τ, ψ, ϕ) which are given by the relationship8

Xα =


u
v
x
y

 =


sec(ψ) cos(τ)
sec(ψ) sin(τ)
tan(ψ) cos(ϕ)
tan(ψ) sin(ϕ)

 . (2.20)

The metric of AdS2,1 in these coordinates reads

ds2 = sec2(ψ)
(
−dτ 2 + dψ2 + sin2(ψ) dϕ2

)
. (2.21)

The restriction of the above so(2, 2) differential action to the submanifold AdS2,1 is given
by

D(M0
1) =

1

2

(
−̊ı ∂

∂τ
− ı̊

∂

∂ϕ

)
,

D(M±
1 ) =

1

2
e±̊ı(τ+ϕ)

(
∓ sin(ψ)

∂

∂τ
+ ı̊ cos(ψ)

∂

∂ψ
∓ csc(ψ)

∂

∂ϕ

)
,

D(M0
2) =

1

2

(
+̊ı

∂

∂τ
− ı̊

∂

∂ϕ

)
,

D(M±
2 ) =

1

2
e±̊ı(−τ+ϕ)

(
∓ sin(ψ)

∂

∂τ
− ı̊ cos(ψ)

∂

∂ψ
± csc(ψ)

∂

∂ϕ

)
. (2.22)

Contraction. The contraction can be thought of as the set of partially infinitesimal
so(2, 2) transformations acting on a tangent space of AdS2,1 as follows (see also Fig. 1 for
an illustration): Without loss of generality, we consider the tangent space at the marked

7We initially restrict to scalar fields for simplicity. Later on, we will generalise our presentation to
spinning fields.

8The non-periodicity of time τ implies that AdS2,1 covers the submanifold of R2,2 infinitely often.
Conversely, the angle coordinate ϕ is 2π-periodic, and the domain of the radial coordinate ψ is 0 ≤ ψ < 1

2π.
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point τ = ψ = 0 with arbitrary angle ϕ. We want to blow up a small neighbourhood of
this point, where the curvature of AdS2,1 becomes irrelevant, to a finite neighbourhood of
the origin in the tangent space. The tangent space is R2,1 and it has coordinates (t, x, y)
of signature (−,+,+). In the neighbourhood of the marked point, we can map a function
F on the tangent space R2,1 to a function G on the manifold AdS2,1 according to the map

F (t, x, y) ↔ G(τ, ψ, ϕ), t =
2

ϵm̄
τ, x =

2

ϵm̄
ψ cosϕ, y =

2

ϵm̄
ψ sinϕ, (2.23)

where the time and radial coordinates τ and ψ need to be small in the limit ϵ→ 0 while
the angle coordinate ϕ should remain finite. Note that the field G fluctuates rapidly with
the position as far as F is a smooth function. Suitable transformations of G then map
to transformations of F under the contraction. Using the appropriate transformation of
partial derivatives,

∂

∂τ
=

2

ϵm̄
∂t,

∂

∂ψ
=

2

ϵm̄
√
x2 + y2

(x∂x + y∂y),
∂

∂ϕ
= x∂y − y∂x, (2.24)

we find the following contraction limit for the differential operators using the prescriptions
detailed in Sec. 2.1

D(L0) = −̊ı(x∂y − y∂x), D(L±) = ∓(x± ı̊y)∂t ∓ t(∂x ± ı̊∂y),

D(P0) = −̊ı∂t, D(P±) = ı̊(∂x ± ı̊∂y). (2.25)

The resulting expressions have no divergent terms, and infinitesimal terms are discarded
in the limit. In the following, we demonstrate that these form a representation of the
limiting Poincaré algebra.

Minkowski Space. These differential operators clearly agree with the canonical action
of the Poincaré algebra iso(2, 1) for scalar fields on R2,1

D(Lµν) = −̊ıxµ∂ν + ı̊xν∂µ, D(Pµ) = ı̊∂µ. (2.26)

Here |x⟩ is a position eigenstate on R2,1 on which the Poincaré algebra acts as9

Lµν |x⟩ = −D(Lµν)|x⟩, Pµ|x⟩ = −D(Pµ)|x⟩. (2.27)

Alternatively, fields on R2,1 can be expressed in momentum space by means of the
Fourier transformation

|p⟩ =
∫

(dx)3 exp(−̊ıpµxµ)|x⟩, |x⟩ =
∫

(dp)3

(2π)3
exp(̊ıpµx

µ)|p⟩, (2.28)

where |p⟩ is a state of with definite momentum. We will also use the representation in
momentum space,

Lµν |p⟩ = ı̊pµ
∂

∂pν
|p⟩ − ı̊pν

∂

∂pµ
|p⟩, Pµ|p⟩ = pµ|p⟩, (2.29)

which is obtained by Fourier transformation of the representation in position space.
Altogether, we have thus shown how to obtain the iso(2, 1) momentum space repre-

sentation on R2,1 as a contraction limit of the so(2, 2) representation acting on AdS2,1.

9Note that a consistent representation of some generator J on a position eigenstate |x⟩ requires the
somewhat unintuitive identification J|x⟩ = −D(J)|x⟩ with the negative differential operator D(J). For
a functional eigenstate |F ⟩ =

∫
dxF (x)|x⟩ this leads to the desired positive sign upon acting on F by

integration by parts, namely J|F ⟩ = |D(J)F ⟩. For this reason we shall explicitly distinguish between a
generator J and its associated differential operator D(J).
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2.3 Irreducible Representations

The above field representations are off-shell, i.e. the fields are unconstrained by differen-
tial equations. Such representations are reducible, and it makes sense to identify their
irreducible components and subsequently describe their contraction limit.

Minkowski Space. Reducibility becomes most apparent for the above Poincaré repre-
sentation in momentum space: The orbit of the momentum |pµ⟩ under Lorentz transfor-
mations is a shell of common mass rather than all of R2,1. The mass m and spin s are
identified as eigenvalues of the two quadratic invariants (2.6) of iso(2, 1)

P2 ≃ p2 = −m2, L·P ≃ −sm. (2.30)

For the above momentum space representation, one finds that L·P ≃ 0 which is in line
with the fact that it describes a scalar field with s = 0.10

The reduction of the above representation for a scalar field to a mass shell can be
performed by setting

|p⃗⟩m :=

∫
de θ(e) δ(−e2 + p⃗2 +m2)|e, p⃗⟩ = 1

2em(p⃗)

∣∣em(p⃗), p⃗〉 (2.31)

with the relativistic energy relation

em(p⃗) :=
√
p⃗2 +m2 . (2.32)

This identification fixes the energy component pt to em(p⃗) and effectively makes all deriva-
tives ∂/∂pt drop out.11 Altogether the irreducible representation on an on-shell field of
mass m and spin s reads

Lxy|p⃗⟩m,s =
(̊
ıpx

∂

∂py
− ı̊py

∂

∂px
+ s+ px

∂Θ

∂py
− py

∂Θ

∂px

)
|p⃗⟩m,s,

Lty|p⃗⟩m,s =
(̊
ıem(p⃗)

∂

∂py
+

spx
em(p⃗) +m

+ em(p⃗)
∂Θ

∂py

)
|p⃗⟩m,s,

Ltx|p⃗⟩m,s =
(̊
ıem(p⃗)

∂

∂px
− spy
em(p⃗) +m

+ em(p⃗)
∂Θ

∂px

)
|p⃗⟩m,s,

Pt|p⃗⟩m,s = em(p⃗)|p⃗⟩m,s,
Px|p⃗⟩m,s = px|p⃗⟩m,s,
Py|p⃗⟩m,s = py|p⃗⟩m,s. (2.33)

Here, we have generalised the above representation by a non-trivial spin s.12 Furthermore,
the arbitrary function Θ = Θ(p⃗) incorporates the on-shell gauge freedom

|p⃗⟩ → exp
(̊
ıΘ(p⃗)

)
|p⃗⟩. (2.34)

In position space, the mass shell and spin conditions turn into differential equations for
the field. One can formally solve these equations by means of a Fourier transformation
which maps the representation to its momentum space counterpart.

10Non-scalar fields require additional spin components for each momentum eigenstate on which some
extra contributions to L act. For the sake of simplicity we do not discuss this more complicated case.
Instead we shall merely introduce a non-zero spin for irreps further below.

11More accurately, it leads to a derivative of the delta-function enforcing the mass shell condition. It
cancels in all combinations of derivatives that leave the mass shell condition invariant.

12The stabiliser of a massive momentum vector is so(2) whose irreducible representations are one-
dimensional and labelled by a spin s ∈ Z (or s ∈ 1

2Z for fields with bosonic and fermionic statistics).
Consequently, there are no additional spin degrees of freedom in this case.
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Anti-de Sitter Space. We would now like to formulate an irreducible representation
of so(2, 2) on AdS2,1 that limits to the above iso(2, 1) representation upon contraction.
Unfortunately, the Fourier transformation does not apply to a curved manifold such as
AdS2,1. Hence it is not evident how to construct a momentum space representation,
but we can still impose a suitable differential equation. The solutions of the differential
equation then serve as the basis states for an irreducible representation of so(2, 2). This
representation will be infinite-dimensional.

The Laplacian for the AdS2,1 manifold reads

∆ = − cos2(ψ)
∂2

∂τ 2
+ cos2(ψ)

∂2

∂ψ2
+ cot(ψ)

∂

∂ψ
+ cot2(ψ)

∂2

∂ϕ2
. (2.35)

The eigenvalue equation ∆Υ = λΥ can be understood as an equation of motion for the
free scalar field Υ where λ = µ2 − 1 describes its AdS mass µ.13 The eigenfunctions for
eigenvalue λ = µ2 − 1 are given by the following hypergeometric functions14

Υµ,ω,κ(τ, ψ, ϕ) ∼ eı̊ωτ+̊ıκϕ sinκ(ψ) cos1+µ(ψ)

· 2F1

(
1
2
(1 + κ− ω + µ), 1

2
(1 + κ+ ω + µ), 1 + µ; cos2(ψ)

)
. (2.36)

The particular exponential dependencies of the eigenfunction Υ on τ and ϕ identify ω and
κ as the energy and angular momentum, respectively.

Let us understand how the eigenfunctions transform under the isometries so(2, 2). We
find

D(M0
1)Υµ,ω,κ =

1
2
(κ+ ω)Υµ,ω,κ,

D(M±
1 )Υµ,ω,κ = ± ı̊

2
(κ+ ω ± µ± 1)Υµ,ω±1,κ±1,

D(M0
2)Υµ,ω,κ =

1
2
(κ− ω)Υµ,ω,κ,

D(M±
2 )Υµ,ω,κ = ∓ ı̊

2
(κ− ω ± µ± 1)Υµ,ω∓1,κ±1. (2.37)

Here it makes sense to consider the action of invariant elements. The two quadratic
invariants for so(2, 2) act as eigenvalues

−D(M2
+) = ∆ ≃ µ2 − 1, D(M2

−) ≃ 0. (2.38)

Moreover, we can compute the invariant group elements

exp
(
2π̊ıD(Mxy)

)
≃ e2π̊ıκ, exp

(
2π̊ıD(Muv)

)
≃ e2π̊ıω, (2.39)

which generate shifts of ϕ and τ by 2π, respectively. On AdS2,1 a shift ϕ→ ϕ+ 2π must
be trivial, hence κ ∈ Z, while the time τ is non-periodic, and consequently ω ∈ R.

Finally, the eigenfunctions may or may not be normalisable where the canonical square
norm is given by ∥∥Υµ,ω,κ∥∥2

:=

∫
dϕ dψ tan(ψ)

∣∣Υµ,ω,κ(τ, ψ, ϕ)∣∣2. (2.40)

Normalisability is relevant for unitarity of the representation which is a useful classification
criterion in (quantum) physics. Let us therefore discuss it: A finite norm requires that
the asymptotic behaviour at ψ → 0 and at ψ → 1

2
π must be benign, i.e.

lim
ψ→0

ψ−|κ|Υµ,ω,κ(τ, ψ, ϕ) <∞, lim
ψ→π/2

Υµ,ω,κ(τ, ψ, ϕ) = 0. (2.41)

13The dimensionless AdS mass µ is measured in units of the inverse AdS radius.
14Note that the two functions Υ±µ,ω,κ with opposite sign of µ serve as a basis for the two-dimensional

space of solutions of the second order differential equation with otherwise equal dependency on τ and ϕ.
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The function Υµ,ω,κ is a linear combination of two basis functions with the leading be-
haviours ∼ ψ±κ at ψ → 0. Clearly, one of these two is divergent and therefore undesirable.
Within Υµ,ω,κ it must have a vanishing coefficient which happens to be achieved under the
conditions κ = n1 − n2 and |ω| = 1+ µ+ n1 + n2 with n1, n2 ∈ Z+

0 non-negative integers.
At ψ → 1

2
π one finds the asymptotic behaviour Υµ,ω,κ ∼ (1

2
π−ψ)1+µ which implies a lower

bound on µ. Altogether, an eigenfunction Υµ,ω,κ is normalisable provided that

1
2

(
|ω| − |κ| − 1− µ

)
∈ Z+

0 , µ > −1. (2.42)

Principal Series Representations. The above representations (2.37) of M1 and M2

on the scalar eigenfunctions can be identified as infinite-dimensional principal series rep-
resentations of the two copies of sl(2) in so(2, 2) = sl(2) × sl(2). A principal series
representation of J ∈ sl(2) on the tower of states |k⟩, k ∈ Z, takes the form

J0|k⟩γ,χ = (k + χ)|k⟩γ,χ,
J+|k⟩γ,χ = θk(k + χ+ γ + 1

2
)|k + 1⟩γ,χ,

J−|k⟩γ,χ = θ−1
k−1(k + χ− γ − 1

2
)|k − 1⟩γ,χ. (2.43)

The parameter γ describes the eigenvalue of the quadratic invariants (2.8) whereas the
non-integer part of the parameter χ describes the eigenvalue of the invariant group element
exp(2π̊ıJ0)

J2 ≃ 1
4
− γ2, exp(2π̊ıJ0) ≃ e2π̊ıχ. (2.44)

Furthermore, the parameters θk incorporate a gauge transformation |k⟩ → exp(̊ıΘk)|k⟩
acting on the states |k⟩ as the map θk → exp(̊ıΘk− ı̊Θk−1)θk which can be used to fix the
θk to arbitrary values. The states and parameters of the principal series representations
are matched with the scalar representation (2.37) by the identifications κ = k1 + k2 + κ0
and ω = k1 − k2 + ω0 as well as γ1,2 = 1

2
µ and χ1,2 = 1

2
(κ0 ± ω0). Note that this agrees

with the relationship (2.13) between the quadratic invariants of so(2, 2) and sl(2)× sl(2).
We want to generalise the above considerations to unitary irreps of so(2, 2) with pos-

itive energy ω and non-zero spin s: This constrains the parameters γ, χ of the sl(2) prin-
cipal series representations somewhat: the representation of M1 needs be of lowest-weight
type with

χ1 > 0, γ1 = χ1 − 1
2
, θ1;k =

√
k + 1

k + 2χ1

, (2.45)

while the representation of M2 needs to be of highest-weight type with

χ2 < 0, γ2 = −χ2 − 1
2
, θ2;k =

√
−k − 2χ2 − 1

−k
. (2.46)

A non-zero spin s is achieved by choosing distinct values for χ1 and −χ2
15

γ1,2 =
1
2
(µ± s), χ1,2 =

1
2
(s± (µ+ 1)). (2.47)

Unitarity then implies the bound µ > −1 + |s|.
15In the above discussion, this would correspond to certain tensor and/or spinor fields which are

eigenfunctions of both 2M2
1 and 2M2

2.
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Altogether the representation for a field on AdS2,1 with spin s is given by

M0
1|k1, k2⟩µ,s = (k1 +

1
2
µ+ 1

2
s+ 1

2
)|k1, k2⟩µ,s,

M+
1 |k1, k2⟩µ,s =

√
(k1 + 1)(k1 + µ+ s+ 1) |k1 + 1, k2⟩µ,s,

M−
1 |k1, k2⟩µ,s =

√
k1(k1 + µ+ s) |k1 − 1, k2⟩µ,s,

M0
2|k1, k2⟩µ,s = −(k2 +

1
2
µ− 1

2
s+ 1

2
)|k1, k2⟩µ,s,

M+
2 |k1, k2⟩µ,s = −

√
k2(k2 + µ− s) |k1, k2 − 1⟩µ,s,

M−
2 |k1, k2⟩µ,s = −

√
(k2 + 1)(k2 + µ− s+ 1) |k1, k2 + 1⟩µ,s. (2.48)

Here, the labels k2 for states of the representation of M2 have been flipped to make both
numbers k1 and k2 non-negative integers. The eigenvalues of the quadratic invariant forms
and the full spatial rotation are given by

M2
1,2 =

1
4
(1− µ2 ∓ 2sµ− s2), exp(2π̊ıMxy) ≃ exp(2π̊ıs). (2.49)

The quadratic form eigenvalues identify µ and s as mass and spin, respectively

M2
+ ≃ 1− µ2 − s2, M2

− ≃ −2sµ. (2.50)

The above representation for normalisable fields on AdS2,1 will serve as a principal
starting point for many investigations of this article.

2.4 Irrep Contraction

Next we would like to derive a Poincaré representation from a unitary irrep of the AdS
algebra. We have already constructed irreps for both algebras in (2.48) and (2.33), and
they describe fields with certain properties such as an AdS or Minkowski mass µ or m
and an intrinsic spin s. It is therefore conceivable that the AdS representation contracts
to the Poincaré representation. However, there is also a major difference between the
states of the representation: the AdS states are labelled by discrete numbers whereas the
Minkowski states are described by continuous momenta. The contraction limit can indeed
induce such a transmutation, but this is a singular process which requires some care. Let
us therefore describe the limiting relationship of the representation in detail.

Parameters. The contraction limit is performed via an identification of generators

(L,P) = (M1 +M2, m̄ϵM1) ⇐⇒ (M1,M2) = (ϵ−1m̄−1P,−ϵ−1m̄−1P + L). (2.51)

We need to find a family of representations for M1,M2 so that the limiting representation
for L,P is finite. As the two representations superficially look rather unrelated, a useful
first step is to consider the eigenvalues of the algebra invariants. These expressions are
independent of the states, so the contraction limit will directly fix their relationship.

Altogether, we have the eigenvalue relations

(P2,L·P) ≃ (−m2,−sm), (M2
+,M

2
−) ≃ (1− µ2 − s2,−2sµ). (2.52)

The spin s is a discrete quantity and it has to be identified directly between the two
representations. For the masses m and µ, we use the relationship of invariants

M2
+ =

4

ϵ2m̄2
P2 +O(ϵ−1), M2

− =
4

ϵm̄
L·P +O(ϵ0) (2.53)
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|p− 1
2ϵm̄em(p)/p, ϕ⟩

|p, ϕ⟩

|p+ 1
2ϵm̄em(p)/p, ϕ⟩

|k1, k2⟩

|k1 + 1, k2⟩|k1, k2 + 1⟩

|k1, k2 − 1⟩|k1 − 1, k2⟩

k1k2

k
− 1/2 0 1/2 1 3/2 2 5/2 3 7/2

2em
ϵm̄

Figure 2: Discrete states |k1, k2⟩ of AdS irrep vs. continuous states |p, ϕ⟩ of
Poincaré irrep. Note that the lattice of permissible k is alternating between inte-
gers and half-integers for consecutive energy levels.

from which one obtains

µ =
2m

ϵm̄
+O(ϵ0). (2.54)

We thus identify the parameters γ1,2 of the sl(2) representations by

γ1 =
m

ϵm̄
+
s

2
, γ2 =

m

ϵm̄
− s

2
. (2.55)

States. We can now approach the contraction limit for the representation. The discrete
states of the AdS representation have to turn into continuous momentum states of the
Poincaré representation by some continuum limit involving states with large indices k1, k2.
For how to identify the indices precisely, we can take inspiration from their roles in the
AdS representation. We know that ω = 1 + µ + k1 + k2 represents the energy on AdS
space and in the contraction limit it must diverge. Conversely, κ = k1 − k2 is an angular
momentum which should remain finite in the limit. These two considerations are taken
into account by the following prescription for a suitable state in the contraction limit

|p, ϕ⟩m,s :=
∑
k

e−̊ı(k1−k2)ϕ|k1, k2⟩2m/m̄/ϵ,s, k1,2 :=
em(p)−m

ϵm̄
± k. (2.56)

Some remarks are in order: The indices k1,2 are not necessarily integers for any given
parameters p,m, ϵ, but for sufficiently small ϵ one can always find a nearby momentum
p′ such that k1,2 become integers while approximating the desired state well. The bounds
for the sum over k are determined by non-negativity of k1 and k2, and for small ϵ these
diverge to ±∞. Finally, note that the prescription assumes k1−k2 = 2k, and for k1 and k2
to be arbitrary non-negative integers, we allow k to be either an integer or a half-integer.
However, the sum over k assumes a step size of 1, so it is defined to be either over the
integers or over the half-integers, depending on where one starts. The situation is perhaps
best illustrated by a figure, see Fig. 2.

Momentum Generators. Carrying out the contraction is most straight-forward for
the energy generators P0

P0|p, ϕ⟩ = ϵm̄
∑
k

e−̊ı(k1−k2)ϕ M0
1|k1, k2⟩

=
∑
k

e−̊ı(k1−k2)ϕ ϵm̄(k1 +
1
2
µ+ 1

2
s+ 1

2
)|k1, k2⟩
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=
∑
k

e−̊ı(k1−k2)ϕ
(
em(p) +

1
2
ϵm̄(2k + s+ 1)

)
|k1, k2⟩

= em(p)|p, ϕ⟩+O(ϵ). (2.57)

The result is the same state multiplied by the energy em(p). For the momentum generators
P±, some more work is needed, e.g.

P+|p, ϕ⟩ =
∑
k

e−̊ı(k1−k2)ϕ ϵm̄
√
(k1 + 1)(k1 + µ+ s+ 1) |k1 + 1, k2⟩

= p
∑
k

e−̊ı(k1−k2)ϕ|k1 + 1, k2⟩+O(ϵ). (2.58)

Next we have to express the sum as a limiting state. For that we shift the summation
index by 1/2 to bring the sum closer to the original form. The resulting overall shift of
k1,2 by 1/2 corresponds to a shift of energy by an elementary level and thus to a shift of
momentum

k′1,2 = k1,2 +
1
2
, em(p

′) = em(p) +
1
2
ϵm̄, p′ = p+ 1

2
ϵm̄

em(p)

p
+O(ϵ2). (2.59)

According to Fig. 2 the shift of energy fits nicely to the alternating lattices for the index
k. We thus find∑

k

e−̊ı(k1−k2)ϕ|k1 + 1, k2⟩ =
∑
k−1/2

e−̊ı(k1−k2−1)ϕ|k1 + 1
2
, k2 +

1
2
⟩ = eı̊ϕ

∣∣p+ 1
2
ϵm̄em(p)/p, ϕ

〉
.

(2.60)
The shift of k1 leads to a shift of energy and a phase eı̊ϕ. Similar identities hold for shifts
of k1,2 by ±1. This concludes the evaluation of the contraction limit for the momentum
generator

P+|p, ϕ⟩ = p e+̊ıϕ
∣∣p+ 1

2
ϵm̄em(p)/p, ϕ

〉
+O(ϵ) = e+̊ıϕp|p, ϕ⟩+O(ϵ). (2.61)

In the limit, we end up with the same state we started with, therefore P+ also acts by
multiplication with the momentum eı̊ϕp. The limit for the other momentum generator P−

is analogous and yields the eigenvalue e−̊ıϕp.

Lorentz Generators. We can now turn to the Lorentz generators L. The rotation
generator L0 is easiest to handle, we find

L0|p, ϕ⟩ =
∑
k

e−̊ı(k1−k2)ϕ(M0
1 +M0

2)|k1, k2⟩ =
∑
k

e−̊ı(k1−k2)ϕ(k1 − k2 + s)|k1, k2⟩

=
∑
k

(̊
ı
∂

∂ϕ
+ s

)
e−̊ı(k1−k2)ϕ|k1, k2⟩ =

(̊
ı
∂

∂ϕ
+ s

)
|p, ϕ⟩. (2.62)

Here the appearance of a factor of k1,2 in the Fourier sum translates to a derivative term
in the conjugate variable as usual. Finally, we compute the contraction limit for the
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remaining Lorentz generator L+ where recycle most of the previously used relations

L+|p, ϕ⟩ =
∑
k

e−̊ı(k1−k2)ϕ
√
(k1 + 1)(k1 + µ+ s+ 1) |k1 + 1, k2⟩

−
∑
k

e−̊ı(k1−k2)ϕ
√
k2(k2 + µ− s) |k1, k2 − 1⟩

=
∑
k

e−̊ı(k1−k2)ϕ
(
p

ϵm̄
+ (k + 1)

em(p)

p
+

1

2

sp

em(p) +m
+O(ϵ)

)
|k1 + 1, k2⟩

−
∑
k

e−̊ı(k1−k2)ϕ
(
p

ϵm̄
− k

em(p)

p
− 1

2

sp

em(p) +m
+O(ϵ)

)
|k1, k2 − 1⟩

= eı̊ϕ
p

ϵm̄

(∣∣p+ 1
2
ϵm̄em(p)/p, ϕ

〉
−
∣∣p− 1

2
ϵm̄em(p)/p, ϕ

〉)
+ eı̊ϕ

(̊
ı
em(p)

p

∂

∂ϕ
+

sp

em(p) +m

)
|p, ϕ⟩+O(ϵ)

= eı̊ϕ
(
em(p)

∂

∂p
+ ı̊

em(p)

p

∂

∂ϕ
+

sp

em(p) +m

)
|p, ϕ⟩+O(ϵ). (2.63)

In the final step, we have encountered the additional phenomenon that a small shift of
energy levels times a divergent factor of 1/ϵ gives rise to a derivative with respect to
momentum.

Comparison. In summary, we have obtained the contraction limit of the irrep

L0|p, ϕ⟩m,s =
(̊
ı
∂

∂ϕ
+ s

)
|p, ϕ⟩m,s,

L±|p, ϕ⟩m,s = e±̊ıϕ
(
±em(p)

∂

∂p
+ ı̊

em(p)

p

∂

∂ϕ
+

sp

em(p) +m

)
|p, ϕ⟩m,s,

P0|p, ϕ⟩m,s = em(p)|p, ϕ⟩m,s,
P±|p, ϕ⟩m,s = e±̊ıϕp|p, ϕ⟩m,s. (2.64)

One can convince oneself that these satisfy the relations of the Poincaré algebra. In fact,
the representation matches precisely with the Poincaré irrep (2.33) with trivial gauge
function Θ(p⃗) = 0 provided we express the two-dimensional momenta (px, py) in polar
momentum coordinates (p, ϕ) as

|p, ϕ⟩m,s =
∣∣p cos(ϕ), p sin(ϕ)〉

m,s
. (2.65)

3 Loop Algebras and r-Matrices

The integrable structure of many classical physics models in 1 + 1 dimensions are related
to loop algebras based on some finite-dimensional Lie algebra with a classical r-matrix of
rational or trigonometric kind. The framework for models with underlying Lie algebras
of simple or semi-simple kind is developed very well. The situation is not as fortunate
for non-simple algebras. Here we use the contraction limit of the AdS algebra so(2, 2)
to derive an algebraic integrability framework based on the non-simple Poincaré algebra
iso(2, 1).
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We start by reviewing some relevant elements of quasi-triangular loop algebras of
rational type for simple Lie algebras g. We then apply the contraction of Sec. 2 to derive
the algebraic integrability structures for the Poincaré loop algebra. We also introduce the
notion of integrable twists that will be needed later on.

The results concerning quasi-triangular loop algebras based on non-simple Lie algebras
(with invertible quadratic forms) will turn out to be straight-forward and unsurprising
generalisations of the case of simple Lie algebras. Nevertheless we will also use this
section as an opportunity to introduce the relevant algebraic framework and to derive
their application to the quasi-triangular Poincaré loop algebra.

3.1 Simple Rational Case

In the following, we review rational r-matrices and loop algebras for simple Lie algebras
g.

Classical r-Matrix. A Lie algebra g can be supplemented by a classical r-matrix r in
order to turn it into a so-called quasi-triangular Lie bi-algebra. Such an algebra provides
relevant structures for integrability and it is a suitable starting point for quantisation [2].

A classical r-matrix is an element r ∈ g ⊗ g with two key properties. First, the
symmetrisation r + P(r) must be a quadratic invariant element of g, that is for any
elements X ∈ g [

r + P(r),X
]
:=

[
r12 + r21,X1 +X2

] !
= 0. (3.1)

Second, r must satisfy the classical Yang–Baxter equation

[[r, r]] := [r12, r13] + [r12, r23] + [r13, r23]
!
= 0. (3.2)

These two properties ensure that the Lie cobracket δ : g → g ∧ g, defined by

δ(X) := −[r,X] := −[r12,X1 +X2], (3.3)

extends the Lie algebra to a proper Lie bi-algebra.

Parametric r-Matrices and Loop Algebras. A classical r-matrix may also depend
on a pair of so-called spectral parameters u1, u2 ∈ C. The two spectral parameters are
associated to the two tensor sites of the r-matrix r : C × C → g ⊗ g such that in its
relations the latter typically extends according to the rule

r12 → r(u1, u2)12. (3.4)

In the parametric case, r(u1, u2) is usually anti-symmetric as follows

P
(
r(u2, u1)

)
= −r(u1, u2) ⇐⇒ r(u1, u2)12 = −r(u2, u1)21, (3.5)

so that its symmetric part is zero and thus trivially invariant. The classical Yang–Baxter
equation also extends canonically to[
r(u1, u2)12, r(u1, u3)13

]
+
[
r(u1, u2)12, r(u2, u3)23

]
+
[
r(u1, u3)13, r(u2, u3)23

]
= 0. (3.6)
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The dependency on spectral parameters uk can be encoded at the algebraic level by
lifting a given Lie algebra g to the infinite-dimensional loop extension g[u, u−1] of g. This
is achieved by adjoining g with Laurent polynomials in a formal parameter u:

g[u, u−1] := C[u, u−1]⊗ g. (3.7)

For a Lie algebra spanned by the generators Ja ∈ g with a = 1, . . . , dim g, the correspond-
ing loop algebra is spanned by un ⊗ Ja =: Jan with n ∈ Z. The Lie brackets are defined
as

[Jan, J
b
m] = ı̊fabcJ

c
n+m. (3.8)

For any representation ρ of the original algebra g there is a corresponding one-parameter
family of evaluation representations of the loop algebra ρu, u ∈ C, defined by:

ρu(J
a
n) = unρ(Ja). (3.9)

With these relations and identifications (as well as an implicit reference to the evaluation
representation) the parametric r-matrix r(u1, u2) ∈ g⊗ g becomes a plain r-matrix in the
loop algebra r ∈ g[u, u−1] ⊗ g[u, u−1]. The cobracket in a quasi-triangular loop algebra
thus becomes

δ(Jan) = −[r, Jan] = −
[
r(u1, u2)12, u

n
1 ⊗ Ja1 + un2 ⊗ Ja2

]
. (3.10)

Rational r-Matrices. Many of the known parametric r-matrices obey the difference
form r(u1, u2) = r(u1 − u2). Such r-matrices for simple Lie algebras are classified by
their poles which form regular lattices in the complex plane of dimension 0, 1 or 2 [24].
These classes are respectively called rational, trigonometric and elliptic. In this article we
discuss rational and trigonometric r-matrices for which standard expressions exist and are
well-known. In this and the following section we will deal only with rational r-matrices,
the generalisation to the trigonometric case is described in Sec. 5.

For a Lie algebra g with a quadratic invariant J2 = cabJ
a⊗Jb, in particular for g = sl(2),

the standard parametric r-matrix of rational types takes the form

r(u1, u2) =
−νJ2

u1 − u2
. (3.11)

This r-matrix is anti-symmetric and it satisfies the classical Yang–Baxter equation.
We can recast this r-matrix to the loop algebra form by identifying the spectral pa-

rameters u1 and u2 with the loop parameters of two copies of the loop algebra g[u, u−1].
We may expand the r-matrix around the point u1/u2 = 0 using a geometric series and
obtain

r = νcab

∞∑
k=0

Jak ⊗ Jb−k−1. (3.12)

This r-matrix satisfies the classical Yang–Baxter equation, but notably it is not anti-
symmetric in contradistinction to the corresponding parametric r-matrix r(u1, u2).

16 The
cobrackets based on the rational r-matrix read

δ(Jcn) =
ı̊
2
νf cab

n−1∑
k=0

Jak ∧ Jbn−1−k, (3.13)

16An alternative but equivalent form for r is based on the expansion about the point u2/u1 = 0. Here
we fix the choice on one of the two alternative forms.
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with the dual structure constants defined by f cab := cdaf
cd
b.

For g = sl(2) we have concretely the rational r-matrix

rsl(2) = ν

∞∑
k=0

(
−J0k ⊗ J0−k−1 +

1
2
J+k ⊗ J−−k−1 +

1
2
J−k ⊗ J+−k−1

)
(3.14)

and the resulting cobrackets

δ(J0n) = −1
2
ν
n−1∑
k=0

J+k ∧ J−n−1−k, δ(J±n ) = ±ν
n−1∑
k=0

J0k ∧ J±n−1−k. (3.15)

3.2 Contraction

Now we apply the contraction to the so(2, 2) loop algebra with rational r-matrix, and we
investigate several relevant aspects of it.

Limit. As discussed above, the AdS algebra so(2, 2) has two quadratic invariants M2
1

and M2
2. Therefore, there is a family of rational r-matrices for this algebra

rso(2,2)(u1,1, u2,1;u1,2, u2,2) = − ν1M
2
1

u1;1 − u1;2
− ν2M

2
2

u2;1 − u2;2
, (3.16)

with two constants νk and two pairs of spectral parameters uk;j which can all be chosen
independently.17

Now let us see how the contraction limit of the so(2, 2) r-matrix leads to an r-matrix
for iso(2, 1). We change variables from M1,2 to L,P according to (2.17) to obtain

rso(2,2) = − ν1m̄
−2ϵ−2P2

u1;1 − u1;2
+

−ν2m̄−2ϵ−2P2 + 2ν2m̄
−1ϵ−1L·P− ν2L

2

u2;1 − u2;2
. (3.17)

We observe that this expression is divergent in the contraction limit ϵ → 0. In order for
it to have a finite limit, we need to transform the coefficients ν1,2 and spectral parameters
u1,2;j accordingly such that ν1 + ν2 = O(ϵ2) and ν2 = O(ϵ) as well as u1;j − u2;j = O(ϵ).
This is easily achieved by the combinations

ν1,2 = ±νϵm̄+ 1
2
ν ′ϵ2m̄2 +O(ϵ3), u1,2;j = uj ± 1

2
ϵm̄vj +O(ϵ2). (3.18)

Then we find in the contraction limit ϵ→ 0

rso(2,2) → riso(2,1)(u1, v1;u2, v2) = − 2νL·P
u1 − u2

− ν ′P2

u1 − u2
+
ν(v1 − v2)P

2

(u1 − u2)2
. (3.19)

The resulting expression up to the last term is of the generic rational form (3.11) for an
algebra with two independent quadratic invariants L·P and P2. Indeed, the construction
of the rational r-matrix merely relies on a quadratic invariant form, whose existence is
guaranteed for semi-simple Lie algebras, but it may also exist in suitable non-simple Lie
algebras.

Merely the last term proportional to the difference of the second spectral parameters
vj is unusual. In fact, it is curious that the r-matrix admits a second spectral parameter

17Since the overall pre-factor of an r-matrix is usually of minor importance, the r-matrix for this
semi-simple algebra still depends on the ratio of ν1 and ν2 as one essential constant.
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vj: This spectral parameter appears in a very regular way thanks to its origin in the
semi-simple loop algebra. For instance, the dependency on it can be reproduced easily by
a suitable evaluation representation of the loop algebra with two spectral parameters

ρu,v(L
a
n) = unρ(La) + nvun−1ρ(Pa), ρu,v(P

a
n) = unρ(Pa). (3.20)

The parametric r-matrix then follows as the evaluation representation of the loop algebra
r-matrix

riso(2,1) =
∞∑
k=0

(
νcabL

a
k ⊗ Pb−k−1 + νcabP

a
k ⊗ Lb−k−1 + ν ′cabP

a
k ⊗ Pb−k−1

)
. (3.21)

This expression agrees with the canonical form for rational r-matrices with two indepen-
dent quadratic invariants L·P and P2. In fact, for many purposes, it would do to drop the
second spectral parameter by setting it to zero, vj = 0. However, for reasons of generality,
we shall keep it explicitly.

Twists. Later on, we will need to apply a twist to the coalgebra structure. Let us
introduce the twist deformation already here. A twist of some original r-matrix r is
obtained by adding some anti-symmetric combination of generators [25]

r̃ = r + ξX ∧ Y (3.22)

while ensuring that the classical Yang–Baxter equation remains valid. Towards under-
standing the latter, we express the relevant combination of the classical Yang–Baxter
equation in terms of the original cobracket δ as

[[r̃, r̃]] = [[r, r]]− ξδ(X) ∧ Y + ξδ(Y) ∧ X+ ξ2(X ∧ Y) ∧ [X,Y]
!
= 0. (3.23)

In particular, if δ(X)∧Y, δ(Y)∧X and [X,Y] are all linear combinations of X and Y, the
twist applies to arbitrary continuous values of the deformation parameter ξ. The twist
then correspondingly deforms the cobracket as follows

δ̃(Z) = δ(Z)− ξX ∧ [Y,Z] + ξY ∧ [X,Z]. (3.24)

For example, we will later need to twist the rational so(2, 2) r-matrix as follows:

r̃so(2,2) = rso(2,2) + ξ(M0
1 +M0

2) ∧M+
2 . (3.25)

Defining the pair of level-0 generators X := M0
1 +M0

2 and Y := M+
2 we see that the twist

is applicable for arbitrary ξ because

δ(X) = δ(Y) = 0, [X,Y] = Y. (3.26)

In the contraction limit with the scaling of parameter ξ = ϵm̄ξ′, the twist yields the
following r-matrix

r̃iso(2,1) = riso(2,1) + ξ′L0 ∧ P+. (3.27)

This is in fact also a proper twist of riso(2,1) because the generators X := L0 and Y := P+

obey the relations as described above.
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Momentum Representation. Now, we can evaluate the twisted rational r-matrix
(3.27) on the momentum representations which are the unitary irreps of the Poincaré
algebra. Upon subsequent reduction to be discussed in the following Sec. 4, this repre-
sentation of the r-matrix forms the diagonal part of the tree level AdS/CFT S-matrix, as
we will see in Sec. 6.

The r-matrix acts on the tensor product of two states of the momentum representation
(2.65):

|p1, ϕ1⟩m1,s1
⊗ |p2, ϕ2⟩m2,s2

(3.28)

as the differential operator

r̃iso(2,1)(u1, v1;u2, v2) ≃ ı̊A12
∂

∂ϕ2
− ı̊A21

∂

∂ϕ1
+ ı̊B12

∂

∂p2
− ı̊B21

∂

∂p1
+ C12 − C21, (3.29)

with the coefficient functions

A12 =
ν

u1 − u2

(
em1(p1)−

p1
p2
em2(p2) cos(ϕ1 − ϕ2)

)
− ξ′ eı̊ϕ1 p1,

B12 =
ν

u1 − u2
p1em2(p2) sin(ϕ1 − ϕ2),

C12 =
ν

u1 − u2
s2

(
em1(p1)−

p1p2
em2(p2) +m2

cos(ϕ1 − ϕ2)

)
− ξ′s2 e

ı̊ϕ1 p1

+

[ 1
2
ν ′

u1 − u2
−

1
2
ν(v1 − v2)

(u1 − u2)2

](
em1(p1) em2(p2)− p1p2 cos(ϕ1 − ϕ2)

)
. (3.30)

By construction, the above r-matrix differential operator acting on two-particle states
obeys the classical Yang–Baxter equation. We shall return to these expressions after
having introduced a reduction procedure for the algebra and for the states.

4 Reduction

In this section we discuss a particular reduction of the (3 + 3)-dimensional Poincaré
bi-algebra sl(2) ⋉ R2,1 to a (1 + 1)-dimensional bi-algebra u(1) × R. This reduction
was introduced in [19] as a possibility to embed the classical algebra of the AdS/CFT
worldsheet matrix in a larger but more conventional algebra. It was motivated by the
observation that particle momenta take values in a three-dimensional linear space [7,
26], but are further non-linearly constrained to one degree of freedom. At the algebraic
level, the reduction consists in restricting to a one-dimensional subalgebra of the Lorentz
algebra sl(2) and dividing out a newly established two-dimensional ideal of the algebra
of momentum generators R2,1. The two remaining generators represent the length of a
momentum vector in three-dimensional space as well as a Lorentz rotation about this
vector. The most interesting aspect of the reduction is that it incorporates a dependency
on the spectral parameter u of the loop extension of the Poincaré algebra. In other
words, the reduction is not homogeneous in the level of the loop algebra because it relates
generators of different loop levels. On the one hand, the resulting reduced algebra is
abelian and thus hardly exciting. On the other hand, the reduction mechanism leaves the
coalgebra and r-matrix structures intact,18 and we end up with a non-standard form for

18The reduction mechanism is the same at the level of the coalgebra, but the roles of taking a subalgebra
and dividing out an ideal are exchanged.
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the r-matrix. This makes the overall construction extendable by psu(2|2) supersymmetry
without further ado, and has important applications within the AdS/CFT correspondence.
Also in practical terms it makes the reduction conveniently applicable to representations,
in particular to representations of the r-matrix.

Subalgebra and Ideal. In [19] the classical limit of the relevant representation for the
AdS/CFT worldsheet matrix was discussed. This representation involves a R2,1 momen-
tum vector which was shown to be aligned along a common direction depending on the
spectral parameter u. This direction can be described by the two relations

p± =
e±̊ıαβ

u
p0. (4.1)

Next to the spectral parameter u it also depends on two constants α, β. These can be
chosen arbitrarily; keeping them merely serves a more universal treatment. Furthermore,
we can simply view the parameter u, for the time being, as just another adjustable
parameter of the Poincaré representation, as opposed to the spectral parameter for its
loop algebra which it ultimately becomes.

The above assignment of momentum components is clearly not invariant under the full
Lorentz algebra sl(2), but there is a one-dimensional u(1) subalgebra which rotates about
the direction of the above momentum. This subalgebra is generated by the combination

L = β−1uL0 − 1
2
e−̊ıαL+ − 1

2
e+̊ıαL−. (4.2)

As a one-dimensional subalgebra, the residual Lie bracket can only be trivial. The algebra
with the momentum generators is given by

[L,P0] = 1
2
(e−̊ıαP+ − e+̊ıαP−) = 1

2
(e−̊ıαI+ − e+̊ıαI−),

[L,P±] = ±β−1uP± ∓ e±̊ıαP0 = ±β−1uI±. (4.3)

Among the three resulting linear combinations of the momentum generators, there are
only two linearly independent directions

I± := P± − e±̊ıαβu−1P0. (4.4)

Consequently, these two span an ideal of u(1)⋉R2,1. Removing the ideal by the identifi-
cations19

P0 = β−1uP, P± = e±̊ıαP, (4.5)

where P is a single remaining momentum generator, we reduce the algebra to u(1) × R
with the abelian relation

[L,P] = 0. (4.6)

19Here we choose to identify P with P± such that the eigenvalue of P in a momentum representation
is the magnitude of spatial momentum p. Alternatively, one might choose to identify P0 = H with a
different generator H that measures the energy p0 = e(p). The identification between these two generators
is βH = uP.
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r-Matrix. We can now address the reduction of the algebra to the coalgebra structures.
Ordinarily, reducing an algebra to a subalgebra or removing an ideal is not compatible
with the coalgebra structure because the latter typically leads out of the subalgebra or
does not respect the trivialisation of the ideal. Here, the combination of subalgebra and
removal of ideal also ensures a proper coalgebra structure. First, removal of the ideal by
the two relations

P± = e±̊ıαβu−1P0 (4.7)

can be understood as two linear relations on the dual generators which reduce it to a
one-dimensional subcoalgebra. Second, reduction to the subalgebra spanned by

L = β−1uL0 − 1
2
e−̊ıαL+ − 1

2
e+̊ıαL− (4.8)

specifies a two-dimensional coideal of dual generators which are annihilated by L.
The compatibility of these reductions is more clearly seen in the r-matrix. We first

apply it to the twisted r-matrix r̃iso(2,1) in (3.29) and find

r̃iso(2,1)(u1, u2) →
ν

u1 − u2
L⊗ P +

ν

u1 − u2
P⊗ L

+

[
ν ′

β2
− ν(v1 − v2)

β2(u1 − u2)

]
u1u2 − β2

u1 − u2
P⊗ P

+

(
− ν

β
+ ξ′ eı̊α

)
L0 ∧ P. (4.9)

We note that almost all occurrences of the individual generators La have been combined to
the generator L. Merely in the last term, there is a residual dependence on the generator
L0 which does not belong to the u(1) subalgebra. This term can be removed by fixing the
twist parameter to20

ξ′ =
ν

β
e−̊ıα. (4.10)

The twisted r-matrix thus reduces to

ru(1)×R :=
ν

u1 − u2
L⊗P+

ν

u1 − u2
P⊗L+

[
ν ′

β2
− ν(v1 − v2)

β2(u1 − u2)

]
u1u2 − β2

u1 − u2
P⊗P, (4.11)

which now belongs completely to the reduced loop algebra (u(1) × R)[u, u−1]. Since the
algebra is abelian, the classical Yang–Baxter equation is trivially satisfied for any r-matrix.

Even though the classical Yang–Baxter equation is trivial in this case, it is worth
pointing out that it also holds by virtue of the reduction procedure alone. We will work out
this fact in Sec. 6 in order to conveniently demonstrate the applicability of the reduction
procedure to an extension by psu(2|2) supersymmetry.

In conclusion, we have constructed a consistent reduction of the Poincaré bi-algebra
sl(2)⋉R2,1 to a quasi-triangular Lie bi-algebra u(1)×R. In this construction, the role of
the coalgebra twist remains somewhat unclear. Here we constructed it by the requirement
that the r-matrix reduces consistently. However, it would be interesting to understand
whether there is some (abstract) connection between the twist and the choice of the
subalgebra or ideal. Why is the twist necessary in the first place? Could one also start
with a (suitable) twist, and construct the corresponding reduction?

20The reduction presented in [19] used a slightly different twist of the original algebra which respects
the classical Yang–Baxter equation only upon reduction. Our twist resolves this issue by adding terms
involving the ideal so that the result is equivalent upon reduction.
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Loop Algebra Form. It makes sense to cast the reduction and the resulting relations
in terms of the loop algebra, which we will occasionally need later on. This reformu-
lation makes explicit the non-standard nature of the resulting bi-algebra which is non-
homogeneous in the loop levels. Even more importantly, working in terms of the loop
algebra makes the statements slightly more robust.21

The subalgebra u(1)[u, u−1] of sl(2)[u, u−1] is spanned by the generators

Ln := β−1L0
n+1 − 1

2
e−̊ıαL+

n − 1
2
e+̊ıαL−

n . (4.12)

Similarly, the removal of the ideal is achieved by the relations

P0
n = β−1Pn+1, P±

n = e±̊ıαPn. (4.13)

Evidently, the resulting loop algebra is abelian, [Ln,Pm] = 0. Finally, the reduced twisted
r-matrix in loop algebra form reads

r̃iso(2,1) = riso(2,1) +
ν

β
e−̊ıαL0

0 ∧ P+
0 → ru(1)×R,

ru(1)×R := ν
∞∑
n=0

[−Ln ⊗ P−n−1 − Pn ⊗ L−n−1]

+ ν ′
∞∑
n=0

[
−β−2Pn+1 ⊗ P−n + Pn ⊗ P−n−1

]
. (4.14)

Momentum Representation. Let us finally apply the reduction to representations.
In the momentum representation (2.64), the momentum generators are represented on a
state |u, p, ϕ⟩m,s by the eigenvalues

P0
n ≃ unem(p), P±

n ≃ une±̊ıϕp. (4.15)

In order to trivialise the ideal, we need to impose the following relations on the eigenvalues

e±̊ıϕp = e±̊ıαβu−1em(p). (4.16)

These are solved as functions of u by

ϕ = α, p(u) =
βm√
u2 − β2

, e(u) =
mu√
u2 − β2

. (4.17)

We thus define the reduced state as

|u, v⟩m,s := |u, v, p(u), α⟩m,s. (4.18)

The remaining generators act on this state as eigenvalues

Ln|u, v⟩m,s = un
sm

p(u)
|u, v⟩m,s + vun−1

(
(n+ 1)u2β−2 − n

)
p(u)|u, v⟩m,s,

Pn|u, v⟩m,s = unp(u)|u, v⟩m,s. (4.19)

21For instance, the classical Yang–Baxter equation can involve distributional terms in the dependence
on the spectral parameter u which have been discarded in the above treatment.
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Note that all the derivative operators in the representation of L have cancelled out on the
particular state.

We can now act with the r-matrix on a tensor product state |u1, v1⟩m1,s1
⊗|u2, v2⟩m2,s2

.
Here we can either use the reduction of the r-matrix or apply the original twisted r-matrix
to the reduced state, in either case, the result is a pure scattering phase

ru(1)×R ≃ ν

u1 − u2

s1m1p2
p1

+
ν

u1 − u2

s2m2p1
p2

+

[
ν ′

β2
− ν(v1 − v2)

β2(u1 − u2)

]
u1u2 − β2

u1 − u2
p1p2

=
ν

β

s1m1p
2
2 + s2m2p

2
1

p2e1 − p1e2
+

[
ν ′

β
− ν(v1 − v2)p1p2
β2(p2e1 − p1e2)

]
(e1e2 − p1p2)p1p2
p2e1 − p1e2

. (4.20)

As an aside, the second line displays the scattering phase expressed purely in terms of
energy and momentum variables.

5 Trigonometric Case

The rational classical r-matrix which we have discussed up to now has a trigonometric
generalisation [27]. The corresponding quantum R-matrix was constructed in [28] and
its quantum affine symmetry algebra was proposed in [29]. It provides the integrable
structure for a quantum deformation of the one-dimensional Hubbard model, as well as
for the worldsheet scattering matrix in quantum-deformed AdS/CFT [30].

In this section we will extend the discussion of the previous sections to the case of the
trigonometric r-matrix. Whereas the contraction is performed precisely as in the rational
case, the consistent reduction requires a different identification of the abelian subalgebra.

5.1 Contraction

We start with the trigonometric r-matrix of the algebra g = sl(2) [24]. The standard form
reads with zi := exp(ui)

rsl(2)(z1, z2) = +1
2
ν
z1 + z2
z1 − z2

J0 ⊗ J0 −
1
2
νz1

z1 − z2
J+ ⊗ J− −

1
2
νz2

z1 − z2
J− ⊗ J+

= −1
2
ν
z1 + z2
z1 − z2

J2 − 1
4
νJ+ ∧ J−. (5.1)

Similarly to the rational case, the trigonometric r-matrix can be expressed in terms of the
loop algebra, where z1,2 (rather than u1,2) serve as spectral parameters. The cobrackets
take the form

δ(J0n) = −1
2
ν

n∑
k=1

J+k ∧ J−n−k,

δ(J+n ) = +1
2
νJ00 ∧ J+n + ν

n−1∑
k=1

J0k ∧ J+n−k,

δ(J−n ) = −1
2
νJ00 ∧ J−n − ν

n∑
k=1

J0k ∧ J−n−k. (5.2)
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Contraction Limit. Similarly to the rational case, we construct the trigonometric r-
matrix for the AdS algebra so(2, 2) ≃ sl(2)×sl(2) as a sum of two copies of the r-matrices
above

rso(2,2)(z1;1, z2;1; z1;2, z2;2) = −1
2
ν1
z1;1 + z1;2
z1;1 − z1;2

M2
1 − 1

4
ν1M

+
1 ∧M−

1

− 1
2
ν2
z2;1 + z2;2
z2;1 − z2;2

M2
2 − 1

4
ν2M

+
2 ∧M−

2 . (5.3)

As the next step, we perform the contraction with the same prescription for the
coefficients ν1,2 as we had in the rational case (3.18) and for the spectral parameters
z1,2;j = zj(1± 1

2
ϵm̄yj)+O(ϵ2). This gives us a trigonometric r-matrix for the 3D Poincaré

algebra

riso(2,1)(z1, y1; z2, y2) = −ν z1 + z2
z1 − z2

L·P− 1
2
ν ′
z1 + z2
z1 − z2

P2 + ν
z1z2(y1 − y2)

(z1 − z2)2
P2

− 1
4
νL+ ∧ P− + 1

4
νL− ∧ P+ − 1

4
ν ′P+ ∧ P−. (5.4)

This r-matrix can be obtained as the evaluation representation of the loop algebra
r-matrix

riso(2,1) =
∞∑
k=0

(
νcabL

a
k ⊗ Pb−k + νcabP

a
k ⊗ Lb−k + ν ′cabP

a
k ⊗ Pb−k

)
− νL·P− 1

2
ν ′P2 − 1

4
νL+

0 ∧ P−
0 + 1

4
νL−

0 ∧ P+
0 − 1

4
ν ′P+

0 ∧ P−
0 , (5.5)

with the evaluation representation being defined as

ρz,y(L
a
n) = znρ(La) + nyznρ(Pa), ρz,y(P

a
n) = znρ(Pa). (5.6)

Twist. Similarly to the rational case, there exists a twist with an arbitrary parameter
ξ that preserves the classical Yang–Baxter equation

r̃so(2,2) = rso(2,2) +
1
2
ν2M

0
1 ∧M0

2 + ξ(M0
1 +M0

2) ∧M+
2 . (5.7)

After the contraction one obtains with ξ = −ϵm̄ξ′

r̃iso(2,1) = riso(2,1) +
1
2
νL0 ∧ P0 + ξ′L0 ∧ P+. (5.8)

We will use this twist later on.

Momentum Representation. Finally, we also compute the momentum representation
of the twisted trigonometric r-matrix on two-particle states. This yields the following
differential operator

riso(2,1)(z1, y1; z2, y2) ≃ ı̊A12
∂

∂ϕ2

− ı̊A21
∂

∂ϕ1

+ ı̊B12
∂

∂p2
− ı̊B21

∂

∂p1
+ C12 − C21, (5.9)
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where we now define the coefficient functions as

A12 =
1
2
ν
z1 + z2
z1 − z2

(
em1(p1)− em2(p2)

p1
p2

cos(ϕ1 − ϕ2)

)
− ı̊

2
νem2(p2)

p1
p2

sin(ϕ1 − ϕ2)− νem1(p1)− ξ′p1e
ı̊ϕ1 ,

B12 =
1
2
ν
z1 + z2
z1 − z2

p1em1(p2) sin(ϕ1 − ϕ2)− ı̊
2
νp1em2(p2) cos(ϕ1 − ϕ2),

C12 =
1
2
ν
z1 + z2
z1 − z2

s2

(
em1(p1)−

p1p2 cos(ϕ1 − ϕ2)

m2 + em2(p2)

)
− ı̊

2
ν

p1p2s2
m2 + em2(p2)

sin(ϕ1 − ϕ2)

+

(
1
4
ν ′
z1 + z2
z1 − z2

− 1
2
ν
z1z2(y1 − y2)

(z1 − z2)2

)(
em1(p1)em2(p2)− p1p2 cos(ϕ1 − ϕ2)

)
− ı̊

4
ν ′p1p2 sin(ϕ1 − ϕ2)− 1

2
νem1(p1)s2 − ξ′p1s2e

ı̊ϕ1 . (5.10)

5.2 Reduction

Now, we introduce a different reduction procedure to reduce the trigonometric 3D Poincaré
bi-algebra to the bi-algebra u(1) × R. The alternative reduction consists in a differ-
ent choice for the one-dimensional subalgebra of sl(2) and subsequent ideal subalgebra.
Whereas the difference is inessential for the resulting abelian algebras, in the supersym-
metric extension to be discussed in Sec. 6, the novel reduction will yield the trigonometric
bi-algebra for the classical limit of the quantum-deformed Hubbard model [27].

Subalgebra and Ideal. The new u(1) subalgebra generator now is chosen as

L = 1
2
h−1zL0 − 1

2
h−1L0 + ı̊

2
eı̊αL− + ı̊

2
e−̊ıαzL+, (5.11)

where z will later be identified with the parameter of the evaluation representation. We
also introduce two global parameters h and α that take on the roles of β and α in the
rational case. This generator acts on the momentum generators according to

[L,P0] = ı̊
2
eı̊αP− − ı̊

2
e−̊ıαzP+ =: I0,

[L,P+] = ı̊eı̊αP0 − 1
2
h−1P+ + 1

2
h−1zP+ =: I+,

[L,P−] = −̊ıe−̊ıαzP0 + 1
2
h−1P− − 1

2
h−1zP−

= −e−2̊ıαzI+ − ı̊e−̊ıαh−1I0 + ı̊e−̊ıαh−1zI0. (5.12)

We see that there are only two linear independent brackets out of three between L and
P0,±. This implies that {I0,+n }n∈Z span an ideal subalgebra for u(1) ⋉ R2,1. By dividing
the ideal out we recover an abelian algebra spanned by L and P with the identifications:

P0 ≃ 1
2
h−1zP− 1

2
h−1P, P+ ≃ −̊ıeı̊αP, P− ≃ ı̊e−̊ıαzP. (5.13)

The relations (5.13) can be implemented at the level of the momentum representation
forming constraints on the eigenvalues of the momentum generators. However, it will prove
useful to consider an alternative parametrisation, in which the constraints are expressed
as

em(p) = (z − 1)
qm

h
, p eı̊ϕ = −2̊ı eı̊α qm, p e−̊ıϕ = 2̊ı e−̊ıα qzm. (5.14)
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For the time being we consider the spectral parameter z as a usual representation variable.
The parameter q is depends z, but in order to resolve square roots in q(z) we introduce
a new parameter x such that

z =
ı̊x

(h′x− ı̊h)(hx+ ı̊h′)
, q =

(h′x− ı̊h)(hx+ ı̊h′)

h′(x2 − 1)
, h′ =

√
1− h2 . (5.15)

The on-shell condition is explicitly satisfied in the new variables

e2 − p2 −m2 =
m2

h2
(
z2q2 + 2zq2(2h2 − 1) + q2 − h2

)
= 0. (5.16)

r-Matrix. As we did for the rational case, let us apply the reduction relations (5.13) to
the twisted trigonometric r-matrix 5.8:

riso(2,1) → ν
z2

z1 − z2
L⊗ P + ν

z1
z1 − z2

P⊗ L

+ ν ′
1
8
h−2(z1 + z2)(z1 − 1)(z2 − 1) + z1z2

z1 − z2
P⊗ P

− ν
z1z2(y1 − y2)

z1 − z2

1
2
(z1 + z2) +

1
4
h−2(z1 − 1)(z2 − 1)

z1 − z2
P⊗ P. (5.17)

As before, we observe that all the terms which do not belong to the reduced subalgebra
cancel thanks to the twist and we obtain a trigonometric classical r-matrix for u(1)× R.

Loop Form. For slightly more rigorous treatment we can reformulate the reduction and
the r-matrix in the loop algebra form by identifying z with the spectral parameter. The
u(1)[z, z−1] generators then read

Ln = 1
2
h−1L0

n+1 − 1
2
h−1L0

n +
ı̊
2
eı̊αL−

n + ı̊
2
e−̊ıαL+

n+1, (5.18)

and the following identifications between R2,1[z, z−1] generators remove the ideal

P0
n ≃ 1

2
h−1Pn+1 − 1

2
h−1Pn, P+

n ≃ −̊ıeı̊αPn, P−
n ≃ ı̊e−̊ıαPn+1. (5.19)

In the loop form, the resulting reduced trigonometric r-matrix reads

ru(1)×R = −ν
∞∑
k=0

[Lk ⊗ P−k + Pk+1 ⊗ L−k−1]

− 1
4
ν ′h−2

∞∑
k=0

[Pk+1 ⊗ P−k+1 + Pk+1 ⊗ P−k−1 + (4h2 − 2)Pk+1 ⊗ P−k]

− 1
8
ν ′h−2(P0 ⊗ P0 − P1 ⊗ P1 + P1 ∧ P0). (5.20)

Rational Limit. The trigonometric and rational reductions are actually related by the
so-called rational limit. We identify

zi = eλui , yi = λvi, h = ı̊
2
λβ, (5.21)

and consider the leading-order terms in λ in all expressions as λ → 0. In the evaluation
representation the leading terms of the generator L coincide with the rational genera-
tor (4.2) (up to a factor of ı̊) and the leading terms of I0,+ span the same ideal as in the
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rational case. We can also verify that the obtained trigonometric twist is consistent with
the rational one in the limiting sense. We apply the rational limit relations (5.21) to the
r-matrix and only keep track of leading order terms in λ:

rtrigiso(2,1)(z1, y1; z2, y2) = − ν

λ

2L·P
u1 − u2

− ν ′

λ

P2

u1 − u2
+
ν

λ

(v1 − v2)P
2

(u1 − u2)2

+
ν

λ

e−̊ıα

β
L0 ∧ P+ +O(λ0)

= λ−1rratiso(2,1)(u1, v1;u2, v2) +O(λ0). (5.22)

The singular contribution in the limit is λ → 0 the resulting r-matrix rescaled by λ−1.
We observe that it exactly coincides with the rational twisted r-matrix (3.29):

rratiso(2,1)(u1, v1;u2, v2) = − 2νL·P
u1 − u2

− ν ′P2

u1 − u2
+
ν(v1 − v2)P

2

(u1 − u2)2
+
ν

β
e−̊ıαL0 ∧ P+. (5.23)

Momentum Representation. Relations (5.14) define a reduced state that depends
on the variable z

|z⟩m,s :=
∣∣p(z), ϕ(z)〉

m,s
. (5.24)

The reduced generators then act on this state according to

Ln|z⟩m,s =
szn

2q(z)
|z⟩m,s +

2mq(z)yzn

(2h)2
(
(n+ 1)z2 − (2̊ıh2 + 1)(2n+ 1)z + n

)
|z⟩m,s,

Pn|z⟩m,s = 2mq(z)zn|z⟩m,s. (5.25)

Altogether, the representation of the r-matrix reads (with q1,2 = q(z1,2))

ru(1)×R(z1, y1; z2, y2) ≃
ν

z1 − z2

(
q2
q1
z2m2s1 +

q1
q2
z1m1s2

)
+

ν ′

z1 − z2

(
z1z2 +

1
8
h−2(z1 + z2)(z1 − 1)(z2 − 1)

)
q1q2

− ν(y1 − y2)

(z1 − z2)2
(
1
2
(z1 + z2) +

1
4
h−2(z1 − 1)(z2 − 1)

)
z1z2q1q2. (5.26)

6 Supersymmetric Extension

In this section we consider supersymmetric extensions of the algebras we discussed so
far. Namely, we extend the AdS algebra so(2, 2) to a semi-simple superalgebra d(2, 1; ϵ)×
sl(2),22 where so(2, 2) = sl(2)×sl(2) is realised as the combination of the external sl(2) and
the sl(2) subalgebra inside d(2, 1; ϵ). On the other hand, the Poincaré algebra iso(2, 1) is
lifted to sl(2)⋉psu(2|2)⋉R2,1 where the Lorentz and momentum generators of iso(2, 1) =
sl(2)⋉R2,1 act as three derivations and three central charges, respectively, to the simple
super-algebra psu(2|2). The extension of the contraction and reduction is rather plain and
we obtain a (deformed) loop u(2|2) algebra and classical r-matrices for it that are relevant
for AdS/CFT integrability and for the one-dimensional Hubbard model [16,17,19,27].

In the following we shall introduce the above superalgebras and some relevant repre-
sentations. We will then discuss how they are related by contractions, generalise their

22Throughout this article, we consider the real form of d(2, 1; ϵ) whose even part is sl(2)×su(2)×su(2).
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reduction and investigate r-matrices of rational and trigonometric form. Finally, we dis-
cuss how a second superalgebra d(2, 1; ϵ′) can be used in place of a plain sl(2) algebra in
order to double the amount of supersymmetry.

6.1 Superalgebras

Let us briefly introduce the relevant superalgebras, their Lie brackets and explain how
the contraction works in the supersymmetric setting.

Exceptional Lie Superalgebra d(2, 1; ϵ). The exceptional Lie superalgebra d(2, 1; ϵ)
is spanned by a set of sl(2) generators J0,±M , two copies of su(2) generators J0,±L , J0,±R and
eight supercharges {Qj,lr}j,l,r=↑,↓. The algebra relations for the sl(2) or su(2) subalgebras
are described in Sec. 2.1, whereas the supercharges transform in spin-1/2 representations
of sl(2)M and su(2)L,R in each index, respectively. In other words, the Lie brackets read

[JaM,Q
j,lr] = −1

2
cab(σ̃b)

j
kQ

k,lr,

[JaL,Q
j,lr] = −1

2
cab(σ̃b)

l
mQ

j,mr,

[JaR,Q
j,lr] = −1

2
cab(σ̃b)

r
pQ

j,lp, (6.1)

where we introduce a set of Pauli matrices σ̃ adjusted to the signature of sl(2) as well as
the anti-symmetric tensor ε

σ̃0 =

(
1 0
0 −1

)
, σ̃+ =

(
0 ı̊
0 0

)
, σ̃− =

(
0 0
ı̊ 0

)
, ε =

(
0 +1
−1 0

)
. (6.2)

The anti-symmetric Lie bracket between the supercharges is

{Qj,lr,Qk,mp} = −sM(σ̃aε)jkεlmεrp JaM − sLε
jk(σ̃aε)

lmεrp JaL − sRε
jkεlm(σ̃aε)

rp JaR. (6.3)

It depends on three parameters sM,L,R subject to two considerations: First, the Jacobi
identity requires the linear constraint sM + sL + sR = 0. Second, the possibility to rescale
the supercharges removes another degree of freedom. Thus, there is effectively only one
independent parameter that we label as ϵ. For further purposes we fix the parameters to

sM = ϵ, sL = 1− ϵ, sR = −1. (6.4)

The superalgebra has a quadratic invariant form given by

J2 = −ϵJ2M − (1− ϵ)J2L + J2R +Q2, (6.5)

where J2M,L,R denote the invariant quadratic forms for the even subalgebras sl(2)M and
suL,R(2), respectively, and where we have defined Q2 as the following quadratic combina-
tion of the supercharges

Q2 := 1
2
εjkεlmεrpQ

j,lr ⊗Qk,mp. (6.6)

AdS Supersymmetry. The simple superalgebra d(2, 1; ϵ) can be supplemented by a
factor of sl(2) to a supersymmetry algebra d(2, 1; ϵ)× sl(2) for AdS2,1 space. In that case,
we relabel the generators J0,±M of the subalgebra sl(2)M as M0,±

1 of the subalgebra sl(2)1.
The additional algebra sl(2)2 is spanned by the triplet of generators M0,±

2 which have
trivial algebra relations with d(2, 1; ϵ).
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Poincaré Supersymmetry. The other relevant superalgebra is maximally extended
psu(2|2) algebra which can also be expressed as sl(2) ⋉ psu(2|2) ⋉ R2,1 [31]. We would
like to obtain it as a contraction limit of the algebra above. Therefore, we write the
algebra starting from the above basis where the triplet of generators JaM is replaced by
the triplet of Lorentz generators La, and an additional triplet of momentum generators
Pa is introduced. The action of the sl(2) and su(2)L,R generators on the supercharges is
the same as in the algebra d(2, 1; ϵ) where La replaces JaM. The Lie bracket between the
supercharges is

{Qj,lr,Qk,mp} = − 1

m̄
(σ̃aε)

jkεlmεrp Pa − εjk(σ̃aε)
lmεrp JaL + εjkεlm(σ̃aε)

rp JaR. (6.7)

Here, we have introduced a reference mass scale m̄, which could be absorbed by rescaling
the momentum generators. Nevertheless, we would like to keep it explicit to manifestly
make the momenta have the dimension of a mass. The algebra has two invariant quadratic
forms

2L·P− m̄(Q2 − J2L + J2R), P2. (6.8)

Contraction. We start with the semi-simple AdS superalgebra d(2, 1; ϵ) × sl(2) with
the AdS generators M0,±

1 = J0,±M from d(2, 1; ϵ) and M0,±
2 from sl(2). One can easily check

that the contraction (2.17) prescribed by the identifications

La = Ma
1 +Ma

2, Pa = ϵm̄Ma
1, (6.9)

leads to the algebra sl(2) ⋉ psu(2|2) ⋉ R2,1 in the limit ϵ → 0. Note that the limit now
involves both the identification of generators for the contraction as well as the structure
of the algebra d(2, 1; ϵ) itself. For the even subalgebra all the relations hold precisely the
same as before. For the odd subalgebra the contraction is manifest, since [Ma

2,Q
j,lr] = 0

and the Lie brackets between supercharges coincide if we replace ϵMa
1 → Pa/m̄ and then

take the limit ϵ→ 0. Note that the limits of the quadratic invariants read

ϵm̄2J2 → −P2, ϵ2m̄2M2
2 → P2, m̄J2 + ϵm̄M2

2 → −2L·P+ m̄(Q2 − J2L +J2R). (6.10)

6.2 Irreducible Representations

Now, we would like to discuss a particular type of irreducible representation for the alge-
bras above that appear in the context of AdS integrability [7]. Since these representations
are intended for physics applications, we use unitarity considerations to select appropriate
representation parameters.

Poincaré Supersymmetry. Asymptotic particles on the string worldsheet or spin
states of the one-dimensional Hubbard model transform in a four-dimensional represen-
tation of the even subalgebra su(2)L × su(2)R. The representation space consists of two
two-dimensional components ‘L’ and ‘R’ as follows: On the components ‘L’, the su(2)L
generators act in the fundamental representation 2 and the su(2)R generators act in the
trivial representation 1. On the other component ‘R’, the roles of the two su(2)’s are
exchanged. We denote the states by |R↑,↓⟩, |L↑,↓⟩ and they transform canonically in the
representations (1,2) and (2,1), respectively, under su(2)L × su(2)R. Furthermore, these
states must obey opposite bosonic and fermionic statistics.
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For the Poincaré subalgebra iso(2, 1) we assume a field representation in momentum
space whose states |p, ϕ⟩m,s are labelled as in (2.65) by the two spatial momentum com-
ponents p and ϕ (in radial coordinates), the mass m and the spin s. Altogether, the basis
states of the representation are given by

|p, ϕ; R↑,↓⟩m,sR , |p, ϕ; L↑,↓⟩m,sL , (6.11)

where we allow the two components to have different spins sR and sL while the same mass
m applies to both. The even generators act as in (2.64). The supersymmetry generators
act on the components according to

Q↑,lr|p, ϕ; Rp⟩s = ζm̄−1/2
√
em(p) +mεrp|p, ϕ; Ll⟩s,

Q↓,lr|p, ϕ; Rp⟩s = ı̊ζm̄−1/2e−̊ıϕ
√
em(p)−mεrp|p, ϕ; Ll⟩s,

Q↑,lr|p, ϕ; Lm⟩s = −̊ıζ−1m̄−1/2eı̊ϕ
√
em(p)−mεlm|p, ϕ; Rr⟩s,

Q↓,lr|p, ϕ; Lm⟩s = ζ−1m̄−1/2
√
em(p) +mεlm|p, ϕ; Rr⟩s, (6.12)

where the constant ζ governs the relative normalisation of states R vs. L. The algebra
relations then imply the following mass and spin constraints23

m = 1
2
m̄, s := sR = sL − 1

2
. (6.13)

The invariant quadratic forms (6.8) take the following eigenvalues on the momentum
representation

2L·P− m̄(Q2 − J2L + J2R) ≃ −m̄(s+ 1
4
), P2 ≃ −1

4
m̄2. (6.14)

Ultra-Short Representation of d(2, 1; ϵ). We would now like to identify an irre-
ducible representation of d(2, 1; ϵ) that could lead to the above representation upon con-
traction. This representation can be found in [32]. In particular, the configuration of
su(2)L × su(2)R representations will serve as a convenient starting point.

Irreducible representations of the superalgebra d(2, 1; ϵ) are composed from irreps of
the even subalgebra sl(2)M × su(2)L × su(2)R. These could be principal series, highest-
weight, lowest-weight or fixed spin representations. The interaction with supercharges
organises a collection of different irreps of sl(2) into a supermultiplet. These typically
have a large number of components, but for particular choices of the sl(2) representations,
they may be substantially shorter. For instance, if we take the representation of the
compact subalgebras su(2)L and su(2)R to be 1 or 2, we obtain the so-called ultra-short
representation. Just as the above representation for the Poincaré supersymmetry algebra,
this representation consists of two components, on which su(2)L×su(2)R act in (1,2) and
(2,1), respectively. We denote the corresponding states as |R↑,↓⟩, |L↑,↓⟩, and they need
to respect opposite bosonic and fermionic statistics. The third, non-compact sl(2)M acts
on the two components in the principal series representation (2.43) with the parameters
(γR,L, χR,L). It turns out that a consistent action of the supercharges on the ultra-short
multiplet implies the following constraints on the representation parameters

(γR, χR) = (1
2
ϵ−1 − 1

2
, χ), (γL, χL) = (1

2
ϵ−1, χ+ 1

2
), (6.15)

23In fact, the consistency conditions require m2 = 1
4m̄

2. Depending on the concrete root chosen, the
lowering supercharges annihilate either R or L states for p = 0 in (6.12), and in addition the difference
between spins in (6.13) is flipped.
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which leaves just a single adjustable representation parameter χ.
Here we assume that the representation space is spanned by the vectors

|k; R↑,↓⟩χ, |k + 1
2
; L↑,↓⟩χ with k ∈ Z, (6.16)

where the label k enumerates states of the principal series representation. Notice that we
label the L states by a half-integer index. The even generators then act as in (2.43) with
a shift of L labels by 1/2,

J0M|k; Rr⟩χ = (k + χ)|k; Rr⟩χ,
J+M|k; R

r⟩χ = θRk (k + χ+ 1
2
ϵ−1)|k + 1;Rr⟩χ,

J−M|k; R
r⟩χ = (θRk−1)

−1(k + χ− 1
2
ϵ−1)|k − 1; Rr⟩χ,

J0M|k + 1
2
; Ll⟩χ = (k + χ+ 1

2
)|k + 1

2
; Ll⟩χ,

J+M|k + 1
2
; Ll⟩χ = θLk (k + χ+ 1 + 1

2
ϵ−1)|k + 3

2
; Ll⟩χ,

J−M|k + 1
2
; Ll⟩χ = (θLk−1)

−1(k + χ− 1
2
ϵ−1)|k − 1

2
; Ll⟩χ. (6.17)

The supercharges act on the components according to

Q↑,lr|k; Rp⟩χ = (k + χ+ 1
2
ϵ−1)θRk η

−1
k εrp|k + 1

2
; Ll⟩χ,

Q↓,lr|k; Rp⟩χ = ı̊(k + χ− 1
2
ϵ−1)η−1

k−1 ε
rp|k − 1

2
; Ll⟩χ,

Q↑,lr|k + 1
2
; Lm⟩χ = −̊ıϵηk εlm|k + 1;Rr⟩χ,

Q↓,lr|k + 1
2
; Lm⟩χ = ϵηk(θ

R
k )

−1 εlm|k; Rr⟩χ. (6.18)

Here, the normalisation coefficients ηk must satisfy the difference equation

ηk+1θ
L
k = ηkθ

R
k+1 (6.19)

and θR,Lk are the gauge degrees of freedom of the principal series representations for the
R and L components, respectively. The representation is characterised by the eigenvalues
of the quadratic invariant form (6.5) and of the group invariant

J2 ≃ 1
4
ϵ−1 − 1

4
, exp(2π̊ıJ0M + 2π̊ıJ0L) ≃ e2π̊ıχ. (6.20)

In what follows we will need the representation to be of the unitary semi-infinite type.
This is achieved by fixing the presentation parameter and the gauge as follows

χ = 1
2
ϵ−1, θRk =

√
k + 1

k + ϵ−1
, θLk =

√
k + 1

k + ϵ−1 + 1
, ηk =

√
k + 1

ζ̃
√
ϵ

. (6.21)

The normalisation ζ̃ needs to be a pure phase, |ζ̃| = 1. The lowest-weight representation
closes on the states with half-integer label k ≥ 0 and it is unitary for ϵ > 0. The highest-
weight representation closes on the states with label k ≤ −1

2
and it is unitary for ϵ < 0 or

ϵ > 1. An alternative pair of unitary semi-infinite representations is obtained by setting

χ = −1
2
ϵ−1, θRk =

√
k − ϵ−1 + 1

k
, θLk =

√
k − ϵ−1 + 1

k + 1
, ηk =

√
k − ϵ−1 + 1

ζ̃
√
ϵ

.

(6.22)
Here, the lowest-weight representation closes on states with label k ≥ 1

2
, and it is unitary

for ϵ < 0 or ϵ > 1. The highest-weight representation closes on the states with label k ≤ 0
and it is unitary for ϵ > 0. These four semi-infinite representations mainly differ in the
lowest-weight or highest-weight states being either type R or L.
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AdS Supersymmetry. Now we supplement the d(2, 1; ϵ) algebra with another set of
sl(2) generators Ma

2 to a supersymmetry algebra for AdS2,1. The additional non-compact
sl(2) acts on the states in a principal series representation (2.43), and we thus add an
additional integer label k2 to the states (6.16).

In Sec. 2.3 we identified the pair of principal series representations with the (normal-
isable) (tensor) fields on AdS space. In the supersymmetric case we have two types of
on-shell fields, R and L. Therefore, we would like to identify both states in (6.24) with
AdS fields of, possibly, different masses µR,L and spins sR,L. In order to ensure a positive
energy, as in Sec. 2.3, we turn the states of the representation of sl(2)2 around and use
a highest-weight representation instead, while the representation of d(2, 1; ϵ) remains of
lowest-weight type.

As we have already seen in the previous paragraph, the two components must have
different parameters (γR,L, χR,L) for the representations of the sl(2)1 subalgebra (6.15). On
the other hand, due to the overall algebra being a direct product, the commutator between
supercharges and Ma

2 must be trivial. Thus, the parameters (γ2, χ2) of the principal series
representation must be the same for R and L states.

As pointed out in Sec. 2.3, the mass and spin are encoded into γ1 = γR,L and γ2
according to (2.47) resulting in µR,L = γR,L + γ2 and sR,L = γR,L − γ2. The above
constraint (6.15) then relates the mass and spin parameters for R and L states according
to

(µR, sR) = (ϵ−1 − 1− s, s), (µL, sL) = (ϵ−1 − 1
2
− s, s+ 1

2
), (6.23)

where the overall spin parameter s is one remaining degree of freedom for the represen-
tation.24 Finally, we impose the lowest-weight relation χ = 1

2
ϵ−1 for d(2, 1; ϵ) and the

highest-weight relation χ2 = −(γ2 +
1
2
) for sl(2)2. This constrains the labels k1 and k2 to

be non-negative and the representation for both R and L components is given by (2.48)
with masses and spins (µR,L, sR,L). Unitarity imposes the bounds 2s < ϵ−1 and ϵ > 0 on
the algebra parameter ϵ and on the spin s. The resulting states

|k1, k2; R↑,↓⟩s, |k1 + 1
2
, k2; L

↑,↓⟩s with k1, k2 ∈ Z+
0 . (6.24)

transform under the AdS representation (2.48) supplemented by the supercharge actions
in (6.18,6.21).

Irrep Contraction. The contraction of the representation of d(2, 1; ϵ)× sl(2) discussed
above follows the same lines as for the case of so(2, 2) in Sec. 2.4 with some minor adjust-
ments.

First of all, we note that the constraints (6.23) can be expressed due to the mass
constraint m = 1

2
m̄ as

µR,L =
2m

ϵm̄
+O(ϵ0). (6.25)

This relation agrees with the relation (2.54) required for a proper contraction of the
representation. We then generalise the prescription introduced in (2.56) by supplementing
the identifications for the L states

|p, ϕ; Lj⟩s :=
∑
k

e−̊ı(k1−k2)ϕ|k1 + 1
2
, k2; L

j⟩s, k1,2 :=
em(p)−m

ϵm̄
± k. (6.26)

24We will see in Sec. 6.5 that doubling the amount of supersymmetry singles out s = − 1
4 as the most

symmetric choice.
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Furthermore we identify the normalisations ζ̃ in (6.21) and ζ in (6.12) as ζ̃ = ζ.
Contraction of the momentum and Lorentz generators precisely repeats the calculation

given in Sec. 2.4. The last step is to consider the contraction of the supercharge generators.
Let us perform the computation explicitly only for Q↑,lr|p, ϕ; Rp⟩s as other cases are treated
analogously:

Q↑,lr|p, ϕ; Rp⟩s = ζ̃
∑
k

e−̊ı(k1−k2)ϕ
√
ϵ
√
k1 + ϵ−1 εrp|k1 + 1

2
, k2; L

l⟩s

= ζm̄−1/2
√
em(p) +mεrp|p, ϕ; Ll⟩s, (6.27)

which precisely reproduces the action of the supercharge on the R state in the con-
ventions (6.12). One may easily check that the representation of other supercharges is
contracted consistently as well.

6.3 Reduction

In the full sl(2)⋉ psu(2|2)⋉R2,1 superalgebra we only apply the reduction procedure to
the sl(2) ⋉ R2,1 subalgebra. Thus, the supersymmetry generators as well as the left and
right su(2)L,R generators remain unchanged within the reduced subalgebra. The resulting
set of generators corresponds to those of u(2|2) superalgebra. However, the Lie brackets
between the supercharges and the u(1) generator are non-standard and depend on the
reduction scheme. Let us compute them explicitly.

Rational Case. We straight-forwardly compute the Lie bracket between L and Qj,lr

using the identification (4.2)

[L,Qj,lr] = Wrat(u)
j
kQ

k,lr, (6.28)

where we introduce the traceless matrix Wrat(u)

Wrat(u) =
1

2

(
β−1u ı̊eı̊α

ı̊e−̊ıα −β−1u

)
. (6.29)

This matrix also allows us to write the anti-symmetric Lie brackets between supercharges
compactly

{Qj,lr,Qk,mp} = − 2

m̄

(
Wrat(u)ε

)
jkεlmεrp P− εjk(σ̃aε)

lmεrp JaL + εjkεlm(σ̃aε)
rp JaR. (6.30)

We observe that now the Lie brackets involve the spectral parameter u. Therefore, we
cannot interpret the resulting algebra as a finite-dimensional u(2|2). Rather, we treat
the relations above as if they were computed in the evaluation representation of a loop
algebra. Therefore, we call the algebra a deformation of the loop algebra u(2|2)[u, u−1].
In fact, we here merely reproduce the result obtained in [19] (upon some rescalings and
shift of levels in the generators).

Trigonometric Case. The trigonometric reduction, naturally, give the same form for
the brackets with the supercharges except for replacing the matrix Wrat(u) with

Wtrig(z) =
1

2

(
1
2
h−1(z − 1) eı̊α

ze−̊ıα −1
2
h−1(z − 1)

)
. (6.31)

As before, the algebra relations depend on the spectral parameter z and we interpret
the resulting algebra as a (different) deformation of the loop algebra u(2|2)[z, z−1]. The
commutation relations coincide with those found in [27].
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6.4 r-Matrix

The supersymmetric extension of the r-matrices is rather straight-forward. Let us briefly
discuss the additional structures appearing in this case.

AdS Supersymmetry. In order to construct the rational and trigonometric r-matrices
for the superalgebra d(2, 1; ϵ) × sl(2), we simply add terms corresponding to the left
and right sl(2) and the supercharges to the r-matrices introduced earlier in Sec. 3.2
and Sec. 5.1. Namely, the rational r-matrix reads

rratd(2,1;ϵ)×sl(2) =
ν1
ϵ

Q2 − ϵM2
1 − (1− ϵ)J2L + J2R
u1;1 − u1;2

− ν2
M2

2

u2;1 − u2;2
, (6.32)

where the numerators are given by the invariant quadratic forms of d(2, 1; ϵ) in (6.5) and
of sl(2)2.

Similarly, in the trigonometric case we have

rtrigd(2,1;ϵ)×sl(2) =
ν1
ϵν

(
ϵ rtrig1 (z1;1, z1;2) + (1− ϵ) rtrigL (z1;1, z1;2)− rtrigR (z1;1, z1;2)

)
− ν1
ϵν
rtrigQ (z1;1, z1;2) +

ν2
ν
rtrig2 (z2;1, z2;2) (6.33)

Here, rtrig1,2,L,R(z1, z2) denote the trigonometric r-matrices of the subalgebras sl(2)1,2 and

su(2)L,R, respectively, and (with some abuse of notation) rtrigQ (z1, z2) describes the super-
charge contribution to the r-matrix given by

rtrigQ (z1, z2) := −
1
2
νz1

z1 − z2
εlmεrpQ

↑,lr ⊗Q↓,mp +
1
2
νz2

z1 − z2
εlmεrpQ

↓,lr ⊗Q↑,mp. (6.34)

Contraction. As we discussed at the beginning of this section, the supercharges and
additional su(2)’s do not interfere with the contraction procedure. Therefore, one can
straight-forwardly exploit the contraction prescription defined in Sec. 3 and obtain corre-
sponding r-matrices for the maximally extended sl(2|2). The rational r-matrix then takes
the form

rratsl(2)⋉psu(2|2)⋉R2,1 = −ν 2L·P− m̄(Q2 − J2L + J2R)

u1 − u2
− ν ′P2

u1 − u2
+
ν(v1 − v2)P

2

(u1 − u2)2
, (6.35)

and the trigonometric one

rtrigsl(2)⋉psu(2|2)⋉R2,1 = rtrigiso(2,1) − m̄
(
rtrigQ − rtrigL + rtrigR

)
. (6.36)

Reduction. The possible twists of the r-matrices introduced earlier also work without
any changes in the supersymmetric case. Since the reduction is not affected by the
supercharges, no new structures appear in the reduced r-matrices. In the end one obtains
the r-matrices of the deformed loop u(2|2) algebra that coincide with those obtained
in [19,27].

Here, we notice that unlike u(1) × R from Sec. 4, the full supersymmetric reduced
algebra u(2|2) is not abelian. Evidently, the r-matrices (4.14) and (5.20) for an abelian
algebra satisfy the classical Yang–Baxter equation, but it is non-trivial that their super-
symmetric counterparts do so. The latter happens due to the consistency in choosing the
ideal subalgebra of the reduction and the twist of the r-matrix as follows:
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Concretely, let us describe the reduction of the original algebra g = sl(2)⋉ psu(2|2)⋉
R2,1 as

g → h/i : g = k⊕ h, [h, h] ⊂ h, i ⊂ h, [h, i] ⊂ i, (6.37)

where k denotes the subspace of g which does not belong to the subalgebra h = u(1) ⋉
psu(2|2) ⋉ R2,1, and i = R2 denotes the ideal of h. We know that the r-matrix reduces
to elements of the reduced algebra upon removing elements of the ideal. In other words,
the reduced r-matrix deviates from the original r-matrix by pairings of the ideal with
arbitrary elements of the original algebra

r ∈ h⊗ h+ i⊗ g+ g⊗ i. (6.38)

In particular, generators not belonging to the subalgebra can only be paired with elements
of the ideal

r ∈ (h⊗ h)⊕ (i⊗ k)⊕ (k⊗ i). (6.39)

We now decompose the terms [[r, r]] of the original classical Yang–Baxter equation to
these subspaces as follows

[[r, r]] ∈ [h, h]∧h∧h+[h, i]∧h∧k+[i, i]∧k∧k+[h, k]∧h∧ i+[i, k]∧k∧ i+[k, k]∧ i∧ i. (6.40)

The original classical Yang–Baxter equation [[r, r]] = 0 holds by assumption, and it thus
also holds upon factoring out the ideal by setting i = 0. This eliminates all potential
terms from the listed subspaces but the first one because there is an explicit tensor factor
from i or because the Lie bracket [h, i] belongs to i. The remaining terms can only belong
to the subspace [h, h]∧h∧h or equivalently [h/i, h/i]∧h/i∧h/i. In particular, the residual
terms rely on Lie brackets from the subalgebra only, and thus they constitute the validity
of the classical Yang–Baxter equation for the reduced r-matrix.

Representation. For completeness, let us write down the representation of the resulting
rational and trigonometric r-matrices after the reduction. We would like to recover the
same classical r-matrices as in [19, 27]. Therefore, in the rational case we adopt the
following change of variables that resolves the square roots in various relations

u(x) :=
β

2

x2 + 1

x
. (6.41)

Then the momentum and energy eigenvalues read

p(x) = m̄
x

x2 − 1
, e(x) =

m̄

2

x2 + 1

x2 − 1
. (6.42)

For the explicit matching of all the coefficients we also fix the normalisation of the super-
charge representation to be

ζ = ζ(x) := m̄−1/2γ̃(x)
√
1− x−2 . (6.43)

The unitarity now requires γ̃(x) =
√
m̄ /

√
1− x−2 . Notice that we naturally define the

action of the r-matrix on the tensor product such that it obeys the fermionic statistics
when a supercharge is interchanged with a fermionic state

(A⊗ B)
(
|u1,X⟩m,s ⊗ |u2,Y⟩m,s

)
:= (−1)|B||X|A|u1,X⟩m,s ⊗ B|u2,Y⟩m,s, (6.44)
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where |. . .| = 0, 1 describes the grading of a generator or a state. These identifications
lead us exactly to the classical rational r-matrix from [17, 19] (with the normalisation
|m̄| = 1) plus an additional term proportional to the unit matrix. The coefficient of the
latter is given by the scalar phase function

P12 = ν
m̄

2

p2(s1 +
1
4
)

p1(u1 − u2)
+ ν

m̄

2

p1(s2 +
1
4
)

p2(u1 − u2)
+

(
ν ′ − ν

v1 − v2
u1 − u2

)
e1e2 − p1p2
u1 − u2

. (6.45)

For a perfect matching with [19], we need a trivial phase P12 = 0: We find that this is
obtained by fixing the two spin parameters s1,2, the secondary spectral parameters v1,2,
as well as the secondary r-matrix normalisation ν ′ as follows

s1,2 = − 1

4
, v1,2 = 0, ν ′ = 0. (6.46)

These assignments are in perfect agreement with the algebra representation proposed
in [19]. Notably, this particular choice of spin leads to the trivial representation of one of
the quadratic invariants in (6.14).

It is interesting to contemplate different assignments for the parameters s1,2, v1,2 and
ν ′ or to add some other twist in L ⊗ P, all of which merely affect the phase function
P12. For instance, one could reproduce the phase factor obtained in [33] at the classical
level [19]

P12 =
1
2
νη(u2 − u1)p1p2 (6.47)

with η some (dimensionful) normalisation constant. This phase was originally obtained
by twisting the r-matrix with terms non-homogeneous in loop level

1
2
νηP0 ∧ P1 ≃ P12, (6.48)

which obviously preserves the classical Yang–Baxter equation as the generators P0 and
P1 are central. Curiously, the same effect at the representation level can be achieved by
merely fixing the parameters as follows

s1,2 = − 1

4
+
p21,2
m̄

η(u21,2 − β2) =
ηm̄β2 − 1

4
, v1,2 = ηβ2u1,2, ν ′ = 0. (6.49)

However, it is not clear whether such manipulations are permissible, in particular once the
affine extension is taken into consideration [34]. It is interesting to pursue this question
further in order to better understand the phase of the r-matrix.

Similarly, in the trigonometric case we also obtain the fundamental r-matrix displayed
in [27] with an additional phase factor

P12 = ν
m̄

2

z2q2(s1 +
1
4
)

q1(z1 − z2)
+ ν

m̄

2

z1q1(s2 +
1
4
)

q2(z1 − z2)
+ ν ′m̄2 z1z2q1q2

z1 − z2
+ ν ′

e1e2
z1 − z2

z1 + z2
2

− ν
y1 − y2
z1 − z2

z1z2e1e2
z1 − z2

− νm̄2 y1 − y2
z1 − z2

z1z2q1q2
z1 − z2

z1 + z2
2

. (6.50)

Again, by varying the parameters s1,2, y1,2 or adding a twist we can shift the phase of the
r-matrix.
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6.5 Double Supersymmetry

The symmetry relevant to worldsheet scattering in the AdS/CFT correspondence requires
twice as many supercharges and is attributed to the algebra [35]

u(1)⋉ psu(2|2)2 ⋉R. (6.51)

This algebra can be obtained by means of the contraction and reduction discussed in this
article from the extended AdS supersymmetry algebra

d(2, 1; ϵ1)1 × d(2, 1; ϵ2)2, (6.52)

where the corresponding so(2, 2) subalgebra is composed of the two sl(2)1,2 subalgebras
taken from each d(2, 1; ϵ1,2)1,2 factor. The consistent contraction limit requires ϵ1 ∼ ϵ2 →
0, thus we set

ϵ1m̄1 = ϵ2m̄2 +O(ϵ21,2). (6.53)

In this way one obtains an enhanced Poincaré superalgebra with two distinct mass scales
m̄1,2. Note also that the quadratic invariants are now contracted according to

ϵ1m̄
2
1J

2
1 → −P2, ϵ2m̄

2
2J

2
2 → −P2, m̄1J

2
1 − m̄2J

2
2 → −2L·P + . . . . (6.54)

Next, we apply the representation theory that was developed earlier in this section.
We have two copies of the exceptional algebra, thus, the representations space is spanned
by a tensor product of two states from (6.16). Therefore, each state is labelled by two
(half) integers and four possible pairs of the letters R and L. We also exchange the
roles of the states L and R in the second d(2, 1; ϵ2)2 compared to d(2, 1; ϵ1)1 for the
reason explained shortly. Recall, that we had to choose the principal series representation
of the external sl(2) algebra to be of the highest-weight type in order to contract the
representations. Now, we redefine the representation of the sl(2) algebra within d(2, 1; ϵ2)2
to be of highest-weight kind, which, according to (6.22), leads to the following constraints
on the parameters of the representation

(γ2,R, χ2,R) = (1
2
ϵ−1
2 , 1

2
ϵ−1
2 − 1

2
), (γ2,L, χ2,L) = (1

2
ϵ−1
2 − 1

2
, 1
2
ϵ−1
2 − 1). (6.55)

Note that we invert the sign of k2 in (6.17) and shift it by −1 so that one of the charge
relations takes the form

M0
2|k2; Lr⟩χ = (−k2 + χ2,L)|k2; Lr⟩χ, (6.56)

and so on for other generators. Now, we have the highest-weight representation with
k2 bounded from below as k2 ≥ −1

2
and unitarity holds if ϵ2 < 0 or ϵ2 > 1. For the

parameters of d(2, 1; ϵ1)1 we have the analogous relations from (6.15) and the unitarity
condition ϵ1 > 0. This representation has fixed masses µ(R,L)(R,L) = χ1,(R,L) − χ2,(R,L) − 1
and spins s(R,L)(R,L) = χ1,(R,L) + χ2,(R,L).

A relevant observation is that a proper contraction limit of the above ultra-short rep-
resentations requires ϵ2 = −ϵ1 + O(ϵ21,2) for the resulting spins to be finite. This also
implies equal reference masses, m̄1 = −m̄2, for the limiting Poincaré superalgebra.25

Incidentally, a proper combination of two ultra-short representation of the Poincaré su-
peralgebra needs |m̄1| = |m̄2| because the Poincaré mass m is constrained to both m̄1

25A Poincaré superalgebra with unequal reference masses is perfectly conceivable, however, it does not
support doubly ultra-short irreps (of equal kinds).
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and m̄2. Furthermore, for unitary representations, we need to assume that ϵ1 approaches
0 from above, consequently, ϵ2 will approach 0 from below, which is consistent with the
above assignments.

In the end, we find the following finite spin configuration for the full representation

sRL = 1
2
ξ− 1+O(ϵ21,2), sRR = sLL = 1

2
ξ− 1

2
+O(ϵ21,2), sLR = 1

2
ξ +O(ϵ21,2), (6.57)

where ξ is a parameter that relates ϵ1 and ϵ2 at sub-leading orders according to ϵ2 =
−ϵ1−ξϵ21+O(ϵ31,2). We observe that although all the parameters of the representation are
constrained by the algebra parameters ϵ1,2, the spin s appears to be unconstrained in the
limit because ξ disappears from the algebra relations. This leads us to a rather curious
situation: before taking the limit the spin is determined by the remaining algebra param-
eter ξ, whereas in the limiting Poincaré superalgebra the spin is rather a representation
parameter s.26 At this point, one would be tempted to assign ξ = 1 in order to achieve a
symmetric distribution of spins

sRL = −1
2
, sRR = sLL = 0, sLR = +1

2
, (6.58)

and a natural interpretation of RR, LL being bosons and LR, RL being fermions. In fact,
such an assignment can be motivated by two observations: On the one hand, the physical
phase of the classical r-matrix required s1,L = −s1,R = 1

4
(see (6.46)). Since for the second

exceptional algebra we exchanged the roles of R and L, we also have s2,R = −s2,L = 1
4
.

Altogether, this consideration fixes spins to be as in (6.58). On the other hand, we may
use one of the 6 equivalences of the d(2, 1; ϵ) algebra to define ϵ2 in terms of ϵ1 as

ϵ2 =
−ϵ1
1− ϵ1

= −ϵ1 − ϵ21 +O(ϵ31). (6.59)

This equally singles out the value ξ = 1. Furthermore, this equivalence exchanges the
left and right su(2)L and su(2)R, hence it motivates the exchange of the roles R and L in
d(2, 1; ϵ2)2.

As a final remark, in [21] the contraction of the q-deformed algebras Uh1(d(2, 1; ϵ1))×
Uh2(d(2, 1; ϵ2)) is investigated. The consistent algebra contraction imposes a relation
between the deformation parameters h1,2 and algebra parameters ϵ1,2

h1ϵ1 + h2ϵ2 = O(ϵ21,2), (6.60)

Our brief analysis of the representation contraction seems to suggest that one has to set
h1 = h2 and fix the next to the leading order term to be −ϵ1/h1 in the quantum case.
Therefore, it is interesting to investigate the discussed representation for the quantum
algebras and understand all the interaction between deformation, algebra and represen-
tation parameters.

7 Conclusions and Outlook

In this article, we have constructed the classical algebra relevant to integrability of the one-
dimensional Hubbard model and worldsheet scattering in the AdS/CFT correspondence

26In particular, there is only a discrete choice of representations before the limit, whereas the repre-
sentations in the limit appear to have a continuous parameter. Consequently, two Poincaré superalgebra
representations with different spins should not be obtainable simultaneously as the contraction from the
same AdS superalgebra. We emphasise that this feature is perhaps curious but not self-contradictory.
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by means of contracting the semi-simple loop superalgebra based on d(2, 1; ϵ)×sl(2) to the
loop algebra of the 3D Poincaré superalgebra sl(2)⋉ psu(2|2)⋉R2,1 and by subsequently
reducing it to a deformation of the u(2|2) loop algebra. We have explicitly constructed
infinite-dimensional unitary irreducible representations compatible with the contraction
and reduction that result in the physically relevant representations for the Hubbard model
and AdS/CFT models. We have also determined the rational and trigonometric r-matrices
for these algebras and deduced that they are consistent with the contraction and reduc-
tion so that they satisfy the classical Yang–Baxter equation at each step. Evaluating the
obtained r-matrices on the physically relevant representation produces the tree-level scat-
tering matrix for the string worldsheet within the AdS/CFT correspondence as expected.
This constitutes a deductive derivation of the classical r-matrix for the one-dimensional
Hubbard model and for AdS/CFT worldsheet scattering.

The natural future goal is to lift our construction to the level of quantum algebra.
The feasibility of the contraction of the finite quantum algebra based on d(2, 1; ϵ)× sl(2)
to the one based on sl(2)⋉ psu(2|2)⋉R2,1 has already been demonstrated [21]. However,
it remains to promote the construction to loop algebras and to the quantum level and to
establish a suitable prescription for the subsequent reduction. Based on that construc-
tion, one can aim to derive the universal R-matrix, but this will conceivably constitute
an elaborate challenge in complexity. Therefore, lifting the notions of contraction and
reduction to quantum algebra at the level of the concrete representation developed in this
article will be a very useful next step [36].

Another useful aspect of the classical integrability algebras which we have not discussed
in this article is their affine extension. In the standard cases, the additional symmetry
induced by the derivation element of a Kac–Moody algebra implies the difference form of
the classical r-matrix. As we have seen, here the difference form is lost due to the reduction
procedure, nonetheless, there exists a deformation of twist of the derivation whose co-
bracket effectively describes the deviation of the r-matrix from the difference form, see
[37, 27]. Furthermore this derivation may act as a deformed Lorentz boost for the three-
dimensional momenta [7,26]. In [38] the boost generator at the quantum level is proposed
to be a Lorentz generator of the quantum-deformed Poincaré superalgebra, and therefore
the boost generator has non-trivial co-bracket in the classical limit. Importantly, the
derivation symmetry constrains the form of the phase. We will return to this question in
[34]. Furthermore, the integrability algebras admit a novel second spectral parameter for
each evaluation representation. So far such a second degree of freedom has not appeared
in physical applications, and thus it may be interesting to study its potential implications.

Whereas we now have the semi-simple algebra as the starting point, for which there
exist the standard construction of the rational and trigonometric r-matrix, consistency
with the reduction requires a non-standard twist of the r-matrix. Moreover, as we have
seen in Sec. 4 and Sec. 5, the reduction is not unique. It amounts to identifying a two-
dimensional ideal within the momentum subalgebra, which, in fact, can be done in other
ways. The twist of the r-matrix and the choice of the ideal subalgebra turn out to be
closely related. It would be interesting to consider generic reduction schemes in order to
understand the twist of the r-matrix, the resulting deformed loop algebras and possible
models that correspond to the symmetry algebras.

Finally, the full symmetry algebra of the AdS/CFT integrability is (a quantum exten-
sion of) psu(2, 2|4). Therefore, it is important to understand how to extend the construc-
tions developed in this article to the full symmetry algebra.
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[9] C. Gómez and R. Hernández, “The Magnon kinematics of the AdS/CFT correspondence”,
JHEP 0611, 021 (2006), hep-th/0608029. • J. Plefka, F. Spill and A. Torrielli, “On the
Hopf algebra structure of the AdS/CFT S-matrix”, Phys. Rev. D 74, 066008 (2006),
hep-th/0608038.

[10] N. Beisert, “The S-matrix of AdS/CFT and Yangian symmetry”,
PoS SOLVAY, 002 (2006), arxiv:0704.0400.

[11] N. Dorey, “Magnon Bound States and the AdS/CFT Correspondence”,
J. Phys. A 39, 13119 (2006), hep-th/0604175.

[12] H.-Y. Chen, N. Dorey and K. Okamura, “The Asymptotic spectrum of the N = 4 super
Yang-Mills spin chain”, JHEP 0703, 005 (2007), hep-th/0610295. • T. Matsumoto and
A. Molev, “Representations of centrally extended Lie superalgebra psl(2/2)”,
J. Math. Phys. 55, 091704 (2014), arxiv:1405.3420.

[13] G. Arutyunov and S. Frolov, “The S-matrix of String Bound States”,
Nucl. Phys. B 804, 90 (2008), arxiv:0803.4323. • M. de Leeuw, “Bound States, Yangian
Symmetry and Classical r-matrix for the AdS5 × S5 Superstring”, JHEP 0806, 085 (2008),
arxiv:0804.1047. • G. Arutyunov, M. de Leeuw and A. Torrielli, “The Bound State
S-Matrix for AdS5 × S5 Superstring”, Nucl. Phys. B 819, 319 (2009), arxiv:0902.0183.

[14] R. A. Janik, “The AdS5 × S5 superstring worldsheet S-matrix and crossing symmetry”,
Phys. Rev. D 73, 086006 (2006), hep-th/0603038. • R. Hernández and E. López,
“Quantum corrections to the string Bethe ansatz”, JHEP 0607, 004 (2006),
hep-th/0603204. • G. Arutyunov and S. Frolov, “On AdS5 × S5 String S-matrix”,
Phys. Lett. B 639, 378 (2006), hep-th/0604043. • N. Beisert, R. Hernández and E. López,
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