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Abstract

We show how the replica method can be used to compute the asymptotic eigenvalue
spectrum of a real Wishart product matrix. For unstructured factors, this provides a
compact, elementary derivation of a polynomial condition on the Stieltjes transform
first proved by Müller [IEEE Trans. Inf. Theory. 48, 2086-2091 (2002)]. We then show
how this computation can be extended to ensembles where the factors have correlated
rows. Finally, we derive polynomial conditions on the average values of the minimum
and maximum eigenvalues, which match the results obtained by Akemann, Ipsen, and
Kieburg [Phys. Rev. E 88, 052118 (2013)] for the complex Wishart product ensemble.
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1 Introduction

In this note, we describe how the replica method from the statistical mechanics of disordered
systems may be used to obtain the asymptotic density of eigenvalues for a Wishart product
matrix

K=
1

nL · · ·n1
X⊤1 · · ·X

⊤
L XL · · ·X1, (1)

where the factors

Xℓ ∈ Rnℓ×nℓ−1 (2)

are independent Gaussian random matrices. In the simplest case, the factors are real Ginibre
random matrices, i.e., they have independent and identically distributed standard real Gaus-
sian elements (Xℓ)i j ∼N (0, 1), though the complex Gaussian case is also often studied [1–15].
We will also consider cases in which the elements of each factor are correlated.

Not all of our final results are novel. Rather, our overarching objective in reporting these
replica-theoretic derivations are to note their simplicity, as the replica method has to the best
of our knowledge not seen broad application to the study of product random matrices [9],
despite its common usage in other areas of random matrix theory [16–22]. For a discussion of
the application of the cavity method to Wishart product matrices, we direct the reader to the
work of Dupic and Pérez Castillo [9], or to recent work by Cui, Rocks, and Mehta [23].

1.1 Applications of Wishart product matrices in science and technology

The spectral statistics of Wishart product matrices are of interest in many areas of physics and
applied mathematics [7, 8]. For example, they describe the covariance statistics of Gaussian
data propagated through noisy linear vector channels [1]—in other words, the covariance
statistics of certain linear latent variable models [24]—and transport in simple models for
chaotic systems [11, 25]. Both real and complex Wishart product matrices are of particular
interest in mathematical physics because certain features are amenable to exact study [2–13,
15].

Most commonly, Wishart product matrices are studied either at finite size or in one of three
asymptotic limits. Adopting the nomenclature that the factor dimensions nℓ are the “widths”
and the number of factors L is the “depth” of the product, these limiting regimes are as follows:

• The thermodynamic limit, in which the widths are taken to infinity proportionally, i.e.,

n0, · · · , nL →∞ with
nℓ
n0
→ αℓ ∈ (0,∞), (3)

for fixed depth L [1–4,8,26,27]. This is the regime on which we focus.

• The ergodic limit, in which the depth L→∞ for fixed widths nℓ [7,8,12,26,28].

• The double-scaling, or critical, regime, in which the depth L and widths nℓ tend jointly
to infinity [7,8,11,15,27–29].
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Properties of the thermodynamic limit of real Wishart product matrices have recently
attracted attention in the machine learning community, as they appear as the Neural Net-
work Gaussian Process Kernel Gram matrix of a deep linear network with Gaussian inputs
[23, 27, 30–34, 34–36]. In this case, n0 represents the number of datapoints on which the
kernel is evaluated, n1 is the input dimensionality, and n2, . . . , nL are the widths of the hid-
den layers. The spectrum of this kernel matrix determines the generalization properties of a
network in the limit of infinite hidden layer width [31–33]. The present note is based on our
recent work on deep linear networks in Ref. [31]; we direct the interested reader to that work
and references therein for more background on generalization in deep linear neural networks.

1.2 Roadmap

Our paper is organized as follows:

• In §2.1, we briefly introduce the Edwards-Jones [18] approach to computing the resol-
vent of a random matrix using the replica method.

• In §2.2, we apply the Edward-Jones method to compute the limiting spectral statistics
of Wishart product matrices with uncorrelated factors. The details of this computation
are deferred to Appendix A. This recovers a polynomial condition on the resolvent first
proved by Müller [1].

• In §2.3, we extend this approach to structured Wishart product matrices where the
factors have correlated rows, deferring the details of the computation to Appendix B.
We obtain a condition on the resolvent in terms of the spectral generating functions
of the factor correlations, which to our knowledge as not previously been reported for
L > 1 [37].

• In §3, we conclude by discussing the outlook for the application of the replica method
to product matrix ensembles.

• In Appendix C, as an additional demonstration of replica approaches to Wishart prod-
uct matrices, we compute the minimum and maximum eigenvalues of an uncorrelated
Wishart product matrix directly by applying the replica method to the low-temperature
partition function of a spherical spin glass [18, 38–40]. The resulting polynomial con-
ditions on the minimum and maximum eigenvalues match the results obtained by Ake-
mann, Ipsen, and Kieburg [5] for the complex Wishart product ensemble.

2 Results

Before summarizing our results, let us briefly record our notational conventions. We denote
vectors and matrices by bold lowercase and uppercase Roman letters, respectively, e.g., x and
X. For an integer m, Im denotes the m×m identity matrix, while 1m denotes the m-dimensional
vector with all elements equal to 1. Finally, we warn the reader that we will often leave implicit
the domains of integrals.

2.1 The Edwards-Jones method

In the thermodynamic limit n0, · · · , nL →∞, nℓ/n0 → αℓ ∈ (0,∞), the eigenvalue density
ρ(λ) of K is self-averaging, and can be conveniently described in terms of its Stieltjes transform

G(z) = lim
n0,...,nL→∞

1
n0

tr[(K− zIn0
)−1], (4)
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from which the limiting density can be recovered via

ρ(λ) = lim
ε↓0

1
π

Im G(λ− iε). (5)

To compute the the Stieltjes transform using the replica method from the statistical physics
of disordered systems [16,41,42], we follow a standard approach, introduced by Edwards and
Jones [18]. This method proceeds by writing

G(z) =
∂ g
∂ z

(6)

for

g(z) = lim
n0,...,nL→∞

2
n0

log Z(z), (7)

where the partition function is

Z(z) =

∫

Rn0

dw exp
�

−
i
2

w⊤(zIn0
−K)w

�

. (8)

In the thermodynamic limit, we expect g(z) to be self-averaging, i.e., to concentrate around
its expectation Eg over the random factors Xℓ. The expectation E log Z can be evaluated using
the identity E log Z = limm→0 m−1 logEZm and a standard non-rigorous interchange of limits:

g = lim
n0,...,nL→∞

2
n0
E log Z = lim

m→0
lim

n0,...,nL→∞

2
mn0

logEZm. (9)

As usual, we evaluate the moments EZm for non-negative integer m, and assume that they
can be safely analytically continued to m→ 0 [41, 42]. Here, as in other applications of the
replica trick to the Stieltjes transform, the annealed average is exact, in the sense that the
replica-symmetric saddle point is replica-diagonal [16–18] (see Appendices A and B).

2.2 Spectral moments for unstructured factors

In Ref. [1], Müller proved that the Stieltjes transform of a Wishart product matrix with un-
structured factors (i.e., (Xℓ)i j ∼i.i.d. N (0, 1)) satisfies the polynomial equation

zG(z) + 1
G(z)

=
L
∏

ℓ=1

�

1−
zG(z) + 1
αℓ

�

; (10)

see also Refs. [3–5, 9, 10]. As noted by Burda et al. [3], the condition (10) can be expressed
more compactly as

z =
M(z) + 1

M(z)

L
∏

ℓ=1

�

1+
M(z)
αℓ

�

(11)

in terms of the moment generating function

M(z) =
∞
∑

k=1

1
zk

1
n0

tr(Kk) =
1
n0

tr[(In0
−K/z)−1]− 1= −zG(z)− 1, (12)

where we assume that the formal series converges. Our first result is a derivation, presented
in Appendix A, of (10) using the Edwards-Jones method outlined in §2.1.
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Figure 1: Eigenvalue densities for unstructured Wishart product matrices for depths
L = 1 (left) and L = 2 (right) for varying widths α1 = · · · = αL = α, indicated by
shades of red. Solid lines show the result of solving equation (15) numerically, while
shaded areas show the results of numerical eigendecompositions of matrices of size
n0 = 2048. Importantly, each empirical histogram is obtained for a single realization
of the random matrix.

In the case L = 1, the equation for the Stieltjes transform reduces to

zG(z) + 1
G(z)

= 1−
zG(z) + 1
α1

(13)

which can be re-written as

0= z +
1

G(z)
−

α1

α1 + G(z)
(14)

which is the familiar result for a Wishart matrix. In the equal-width case α1 = · · · = αL = α,
we have the simplification

zG(z) + 1
G(z)

=
�

1−
zG(z) + 1
α

�L

. (15)

In the context of deep linear neural networks, this special case has a natural interpretation as
a network with hidden layer widths equal to the input dimensions. If L = 2, this is a cubic
equation, which can be solved in radicals, though the result is not particularly illuminating
[9,23]. In the square case α1 = · · ·= αL = 1, we have the further simplification

0= zLG(z)L+1 − zG(z)− 1. (16)

As shown in previous works, this can be solved to obtain an exact expression for the eigen-
value density [10]. More generally, the equation (10) must be solved numerically. We show
examples for L = 1 and L = 2 in Figure 1, demonstrating excellent agreement with numerical
experiment. We direct the reader to previous work by Burda et al. [3] and by Dupic and Pérez
Castillo [9] for further examples.

2.3 Spectral moments for factors with correlated rows

Importantly, the replica approach is not limited to the study of ensembles where the factors
have independent and identically distributed entries. It also allows one to tackle with rela-
tive ease the more general setting where the factors are independent Gaussian matrices with
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independent columns and correlated rows, i.e.,

E[(Xℓ)i j] = 0, (17)

E[(Xℓ)i j(Xℓ)kl] = (Σℓ)ikδ jl (18)

for some covariance matrices Σℓ ∈ Rnℓ×nℓ . This ensemble describes the kernel of a deep linear
neural network with correlated input features and correlated neurons, or more generally the
covariance of a linear latent variable model [24]. We can equivalently define this ensemble by

K=
1

nL · · ·n1
Z⊤1Σ

1/2
1 · · ·Z

⊤
LΣLZL · · ·Σ

1/2
1 Z1 (19)

for Zℓ an unstructured Ginibre matrix with standard Gaussian elements (Zℓ)i j ∼N (0, 1). This
makes it clear that we may take the covariance matrices Σℓ to be diagonal without loss of
generality, as the random Gaussian factors are rotation-invariant. For the thermodynamic
limit to be well-defined, we have in mind an ensemble defined by sequences of covariance
matrices Σℓ(nℓ) such that the spectral statistics of these matrices tend to deterministic limits
(see Appendix B for our precise assumptions on these matrices).

For matrices from this correlated ensemble, we show in Appendix B that the moment gen-
erating function M(z) of K satisfies the self-consistent equation

z =
M(z) + 1

M(z)

L
∏

ℓ=1

�

M(z)
αℓ

M−1
ℓ

�

M(z)
αℓ

��

. (20)

Here, the functions

Mℓ(z) = lim
nℓ→∞

1
nℓ

tr[(zInℓ −Σℓ)
−1Σℓ] (21)

are the moment generating functions of the matrices Σℓ, and the inverse functions M−1
ℓ
(z)

satisfy (M−1
ℓ
◦Mℓ)(z) = z. This condition can of course be equivalently written in terms of the

resolvent G(z) = −[(M(z)+1)/z]. Moreover, the inverses of the spectral generating functions
can be equivalently expressed in terms of the S-transform from free probability theory [26].

In the case L = 1, this ensemble reduces to the ordinary correlated Wishart ensemble
[37,43,44], and (20) recapitulates the result previously obtained by Burda et al. [37]. In this
case, we can use the assumed invertibility of M1 to write

M1

�

α1z
M(z) + 1

�

=
M(z)
α1

. (22)

However, the general L > 1 case does not appear to have been reported in the literature
[24,37,43–45].

It is easy to confirm that this result reduces to that which we obtained before for the
unstructured case. For Σℓ = Inℓ , we have

Mℓ(z) =
1

z − 1
(23)

and

M−1
ℓ (z) = 1+

1
z

, (24)
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Figure 2: Eigenvalue densities for structured Wishart product matrices for depths
L = 1 (left) and L = 2 (right) of width α1 = · · · = αL = α = 4. The correlation
structure is as described in the main text, with M1(z) given by (26) with γ = 1/8
and varying signal eigenvalues σ, indicated by shades of green. Solid lines show
the result of solving equation (27) numerically, while shaded areas show the results
of numerical eigendecompositions of matrices of size n0 = 2048. Importantly, each
empirical histogram is obtained for a single realization of the random matrix.

hence (20) reduces to (11). Another simplifying case is when all layers are identically struc-
tured, i.e., M1(z) = · · · = ML(z), and the widths are equal, i.e., α1 = · · · = αL = α. Then, we
have the simplified condition

M1

�

α

M(z)

�

M(z)z
1+M(z)

�1/L�

=
M(z)
α

. (25)

To gain intuition for how the structured case differs from the unstructured setting, we
consider a simple example. With the application of neural network kernels in mind, we include
structured correlations only in X1, corresponding to the case in which the dataset is composed
of independent samples drawn from a Gaussian distribution with correlated dimensions. We
keep the remaining factors unstructured—i.e., Σℓ = Inℓ for ℓ = 2, . . . , L—corresponding to a
setting in which the weights of the network are drawn independently. This is the standard
setting for deep linear neural networks, where the weights at initialization are assumed to be
independent and identically distributed [27,30,32,33].

As a toy model for structured data, we consider a gapped model in which a fraction
γ ∈ [0,1] of the eigenvalues of Σ1 are equal to σ > 1, while the remainder are equal to
unity. In the case γ = 0, this reduces to the unstructured spectrum considered before. For
simplicity, we restrict our attention to equal-width factors α1 = · · ·= αL = α. With this setup,
we have

M1(z) = γ
σ

z −σ
+ (1− γ)

1
z − 1

, (26)

and the simplified condition on the generating function

M1

�

αz
(1+M(z))(1+M(z)/α)L−1

�

=
M(z)
α

. (27)

We show examples of this model for L = 1 and L = 2 in Figure 2, demonstrating excellent
agreement with numerical experiment. As the signal eigenvalue σ increases, we see that the
bulk density separates into two components. It will be interesting to investigate this effect,
and other effects of structured correlations, in future work.
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Figure 3: Eigenvalue densities for structured Wishart product matrices for depths
L = 1 (left) and L = 2 (right) of width α1 = · · ·= αL = α= 4. The correlation struc-
ture is as described in the main text, with M1(z) = · · · = ML(z) given by (26) with
γ= 1/8 and varying signal eigenvalues σ, indicated by shades of purple. Solid lines
show the result of solving equation (25) numerically, while shaded areas show the
results of numerical eigendecompositions of matrices of size n0 = 2048. Importantly,
each empirical histogram is obtained for a single realization of the random matrix.

For this simple data model, we can also study the case in which all layers include identical
structure, i.e., M1(z) = M2(z) = · · · = ML(z). In the equal-width case α1 = · · · = αL = α, this
gives the simplified condition noted above in (25). In Figure 3, we compare the results of solv-
ing (25) for this model to numerical experiments, showing excellent agreement. Interestingly,
in this case the gap in the spectrum that is present for L = 1 (for which this model is identical
to that considered above and in Figure 2) is not present at L = 2.

3 Conclusion

We have shown that the replica method affords a useful approach to the study of product ran-
dom matrices. These derivations are straightforward, but they are of course not mathemati-
cally rigorous [41, 42]. We conclude by briefly discussing the utility of these results vis-à-vis
open questions in the study of product random matrices.

The most notable utility of statistical physics methods, including the replica trick, in ran-
dom matrix theory is that they allow for the study of non-invariant ensembles. Dating back to
the seminal work of Bray and Rogers [17,46], sparse ensembles have been of particular inter-
est [9,17,40]. We hope that the methods described in this work will enable further investiga-
tion of products of sparse random matrices and of other non-invariant product ensembles. It
will also be interesting to investigate Gaussian ensembles with general correlations within and
between the factor matrices [9,37,44,45]. We remark that the approaches used in this work
are particularly simple due to the independence of different factors, i.e., E[(Xℓ)i j(Xℓ′)kl] = 0 if
ℓ ̸= ℓ′, hence studying ensembles with correlated factors would require a somewhat different
replica-theoretic setup.

In the context of neural networks, the structured ensemble with row-wise correlations stud-
ied in this work has a natural interpretation as the neural network Gaussian process kernel of
a deep linear network where the input dimensions are correlated but the datapoints are inde-
pendent samples, and the weights of each layer are correlated across the neurons within each
layer but not across the inputs to the layer. It will be interesting to study the spectra of such
kernel matrices in greater detail in future work. To enable future studies of generalization in
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deep nonlinear random feature models and wide neural networks [31,47], it will be important
to extend to extend these approaches to the nonlinear setting [34–36, 48]. Finally, it will be
interesting to investigate the spectra resulting from the non-Gaussian factor distributions that
arise in trained Bayesian neural networks [32,33].
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A Computing the Stieltjes transform for unstructured factors

In this appendix, we derive the result (10) for the Stieltjes transform of a Wishart product ma-
trix with unstructured factors. Our starting point is the partition function (8) in the Edwards-
Jones [18] approach. We divide the details of the derivation into two parts. In §A.1, we eval-
uate the moments of the partition function. Then, in §A.2, we derive the replica-symmetric
saddle point equations and use them to obtain the desired condition on G(z) and M(z).

A.1 Step I: Evaluating the moments of the partition function

Introducing replicas indexed by a = 1, . . . , m, the moments of the partition function (8) expand
as

EZm =

∫ m
∏

a=1

dwa exp

�

−
iz
2

m
∑

a=1

∥wa∥2
�

Eexp

�

i
2nL · · ·n1

m
∑

a=1

(wa)⊤X⊤1 · · ·X
⊤
L XL · · ·X1wa

�

.

(28)

Using the fact that the rows of XL are independent and identically distributed standard Gaus-
sian random vectors in RnL−1 , we have

EXL
exp

�

i
2nL · · ·n1

m
∑

a=1

(wa)⊤X⊤1 · · ·X
⊤
L XL · · ·X1wa

�

(29)

= det

�

InL−1
−

i
nL · · ·n1

m
∑

a=1

XL−1 · · ·X1wa(wa)⊤X⊤1 · · ·X
⊤
L−1

�−nL/2

(30)

= det(Im −CL)
−nL/2 (31)

where in the last line we have applied the Weinstein–Aronszajn identity to express the deter-
minant in terms of the Wick-rotated overlap matrix

Cab
L ≡

i
nL · · ·n1

(wa)⊤X⊤1 · · ·X
⊤
L−1XL−1 · · ·X1wb. (32)

9
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We enforce the definition of these order parameters using Fourier representations of the δ-
distribution with corresponding Lagrange multipliers Ĉab

L , writing

1=

∫

dCL dĈL

(4πi/nL)m(m+1)/2
exp

�

−
nL

2
tr(CLĈL)

�

× exp

 

i
2nL−1 · · ·n1

m
∑

a,b=1

Ĉab
L (w

a)⊤X⊤1 · · ·X
⊤
L−1XL−1 · · ·X1wb

!

. (33)

Here, the integrals over CL are taken over m × m imaginary symmetric matrices, while the
integrals over ĈL are taken over imaginary symmetric matrices. This yields

EZm =

∫

dCL dĈL

(4πi/nL)m(m+1)/2
exp

�

−
nL

2
[tr(CLĈL) + logdet(Im −CL)]

�

×
∫ m
∏

a=1

dwa exp

�

−
iz
2

m
∑

a=1

∥wa∥2
�

×EX1,...,XL−1
exp

 

i
2nL−1 · · ·n1

m
∑

a,b=1

Ĉab
L (w

a)⊤X⊤1 · · ·X
⊤
L−1XL−1 · · ·X1wb

!

. (34)

We can easily see that XL−1 may be integrated out using a similar procedure, and that this
may be iterated backwards by introducing order parameters

Cab
ℓ ≡

i
n1 · · ·nℓ

(wa)⊤X⊤1 · · ·X
⊤
ℓ−1Xℓ−1 · · ·X1wb, (35)

yielding

EZm =

∫

dC1 dĈ1

(4πi/n1)m(m+1)/2
· · ·
∫

dCL dĈL

(4πi/nL)m(m+1)/2

exp

�

−
1
2

L
∑

ℓ=1

nℓ[tr(CℓĈℓ) + log det(Im −CℓĈℓ+1)]

�

×
∫ m
∏

a=1

dwa exp

 

−
iz
2

m
∑

a=1

∥wa∥2 +
i
2

m
∑

a,b=1

Ĉab
1 (w

a)⊤wb

!

, (36)

where we have defined ĈL+1 ≡ Im for brevity. We then can evaluate the remaining Gaussian
integral over wa:

∫ m
∏

a=1

dwa exp

 

−
iz
2

m
∑

a=1

∥wa∥2 +
i
2

m
∑

a,b=1

Ĉab
1 (w

a)⊤wb

!

(37)

=

∫ m
∏

a=1

dwa exp

 

−
i
2

m
∑

a,b=1

(zδab − Ĉab
1 )(w

a)⊤wb

!

(38)

= (2π)n0m/2 det(Ĉ1 − zIm)
−n0/2. (39)

Therefore, we have

EZm =

∫

dC1 dĈ1

(4πi/n1)m(m+1)/2
· · ·
∫

dCL dĈL

(4πi/nL)m(m+1)/2
exp

�

−
n0m

2
S(C1, Ĉ1, . . . ,CL , ĈL)

�

(40)
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for

S(C1, Ĉ1, . . . ,CL , ĈL) =
1
m

logdet(Ĉ1 − zIm)− log(2π)

+
1
m

L
∑

ℓ=1

αℓ[tr(CℓĈℓ) + log det(Im −CℓĈℓ+1)] (41)

where we recall the definition ĈL+1 ≡ Im. In the thermodynamic limit n0, n1, . . . , nL →∞,
this integral can be evaluated using the method of steepest descent, yielding

−
2
n0
E log Z = extr

C1,Ĉ1,...,CL ,ĈL

S, (42)

where the notation extr means that S should be evaluated at the saddle point

∂ S
∂ Cℓ

=
∂ S

∂ Ĉℓ
= 0 (ℓ= 1, . . . , L). (43)

A.2 Step II: The replica-symmetric saddle point equations

As is standard in the replica method (see e.g. Ref. [41]), we will consider replica-symmetric
(RS) saddle points, where the order parameters take the form

Cℓ = qℓIm + cℓ1m1⊤m, (44)

Ĉℓ = q̂ℓIm + ĉℓ1m1⊤m. (45)

Under this Ansatz, we will now simplify S in the limit m → 0 using standard identities (see
Ref. [31] and Refs. [41,42]). We have

lim
m→0

1
m

tr(CℓĈℓ) = lim
m→0
[qℓq̂ℓ + qℓ ĉℓ + cℓq̂ℓ +mcℓ ĉℓ] (46)

= qℓq̂ℓ + qℓ ĉℓ + cℓq̂ℓ. (47)

Using the matrix determinant lemma, we have

lim
m→0

1
m

logdet(Ĉ1 − zIm) = lim
m→0

1
m

logdet[(q̂1 − z)Im + ĉ11m1⊤m] (48)

= log(q̂1 − z) + lim
m→0

1
m

log
�

1+
mĉ1

q̂1 − z

�

(49)

= log(q̂1 − z) +
ĉ1

q̂1 − z
, (50)

and, similarly,

lim
m→0

1
m

log det(Im −CℓĈℓ+1) = log(1− qℓq̂ℓ+1)−
qℓ ĉℓ+1 + cℓq̂ℓ+1

1− qℓq̂ℓ+1
. (51)

This gives

lim
m→0

S = log(q̂1 − z) +
ĉ1

q̂1 − z

+
L
∑

ℓ=1

αℓ

�

qℓq̂ℓ + qℓ ĉℓ + cℓq̂ℓ + log(1− qℓq̂ℓ+1)−
qℓ ĉℓ+1 + cℓq̂ℓ+1

1− qℓq̂ℓ+1

�

(52)
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with the boundary condition q̂L+1 = 1, ĉL+1 = 0.
We also have

G(z) = − lim
m→0

∂ S
∂ z
= −

1
z − q̂1

−
ĉ1

(z − q̂1)2
, (53)

where the order parameters are to be evaluated at their saddle point values.
From the equation ∂ S/∂ qℓ = 0, we have

0= q̂ℓ + ĉℓ −
q̂ℓ+1

1− qℓq̂ℓ+1
−

ĉℓ+1

1− qℓq̂ℓ+1
−

qℓ ĉℓ+1 + cℓq̂ℓ+1

(1− qℓq̂ℓ+1)2
q̂ℓ+1 (54)

for ℓ= 1, . . . , L. From the equations ∂ S/∂ q̂ℓ = 0, we have

0= −
1

z − q̂1
−

ĉ1

(z − q̂1)2
+α1(q1 + c1) (55)

if ℓ= 1, and

0= αℓ(qℓ + cℓ)−αℓ−1

�

qℓ−1

1− qℓ−1q̂ℓ
+

cℓ−1

1− qℓ−1q̂ℓ
+

qℓ−1 ĉℓ + cℓ−1q̂ℓ
(1− qℓ−1q̂ℓ)2

qℓ−1

�

(56)

if ℓ > 1. From ∂ S/∂ cℓ = 0, we have

0= q̂ℓ −
q̂ℓ+1

1− qℓq̂ℓ+1
(57)

for ℓ= 1, . . . , L. Finally, from ∂ S/∂ ĉℓ = 0 we have

0= −
1

z − q̂1
+α1q1 (58)

if ℓ= 1 and

0= αℓqℓ −αℓ−1
qℓ−1

1− qℓ−1q̂ℓ
(59)

for ℓ > 1.
Simplifying, we find that the replica-nonuniform components are determined by the system

q̂ℓ =
q̂ℓ+1

1− qℓq̂ℓ+1
(ℓ= 1, . . . , L) (60)

q1 =
1
α1

1
z − q̂1

(61)

qℓ =
αℓ−1

αℓ

qℓ−1

1− qℓ−1q̂ℓ
(ℓ= 2, . . . , L), (62)

while the uniform components are determined by

ĉℓ =
ĉℓ+1 + cℓq̂

2
ℓ+1

(1− qℓq̂ℓ+1)2
(ℓ= 1, . . . , L) (63)

c1 =
1
α1

ĉ1

(z − q̂1)2
(64)

cℓ =
αℓ−1

αℓ

cℓ−1 + q2
ℓ−1 ĉℓ

(1− qℓ−1q̂ℓ)2
(ℓ= 2, . . . , L) (65)

12
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Recalling the boundary condition q̂L+1 = 1, ĉL+1 = 0, it is easy to see that we should have
cℓ = ĉℓ = 0 for all ℓ = 1, . . . , L. Then, the Stieltjes transform is given by G(z) = −α1q1, where
q1 is determined by the system

q̂ℓ =
q̂ℓ+1

1− qℓq̂ℓ+1
(ℓ= 1, . . . , L) (66)

q1 =
1
α1

1
z − q̂1

(67)

qℓ =
αℓ−1

αℓ

qℓ−1

1− qℓ−1q̂ℓ
(ℓ= 2, . . . , L). (68)

These equations can be simplified with a bit of algebra, as in our prior work [31]. From
the equation

q̂ℓ =
q̂ℓ+1

1− qℓq̂ℓ+1
, (69)

we have

qℓ =
q̂ℓ − q̂ℓ+1

q̂ℓq̂ℓ+1
(70)

for ℓ= 1, . . . , L. Then, for ℓ= 2, . . . , L, the equation

qℓ =
αℓ−1

αℓ

qℓ−1

1− qℓ−1q̂ℓ
(71)

yields

q̂ℓ − q̂ℓ+1

q̂ℓq̂ℓ+1
=
αℓ−1

αℓ

q̂ℓ−1

q̂ℓ

q̂ℓ−1 − q̂ℓ
q̂ℓ−1q̂ℓ

. (72)

If we define A by

α1q1q̂1 = A (73)

such that

q̂1 − q̂2

q̂1q̂2
=

A
α1q̂1

, (74)

we have

q̂2 − q̂3

q̂2q̂3
=
α1

α2

q̂1

q̂2

q̂1 − q̂2

q̂1q̂2
(75)

=
A
α2q̂2

. (76)

It is then easy to see that

qℓ =
q̂ℓ − q̂ℓ+1

q̂ℓq̂ℓ+1
=

A
αℓq̂ℓ

(77)

for ℓ= 1, . . . , L. This yields the backward recurrence

q̂ℓ =
�

1+
A
αℓ

�

q̂ℓ+1 (78)
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for ℓ= 1, . . . , L, which can be solved using the endpoint condition q̂L+1 = 1, yielding

q̂ℓ =
L
∏

j=ℓ

�

1+
A
α j

�

. (79)

Then, using the fact that q1 and q̂1 are related by the equation

q1 =
1
α1

1
z − q̂1

, (80)

we have

q̂1 = −
1− zα1q1

α1q1
, (81)

so

A= −(1− zα1q1). (82)

Therefore, we have the equation

−
1− zα1q1

α1q1
=

L
∏

ℓ=1

�

1−
1− zα1q1

αℓ

�

(83)

which, substituting in G(z) = −α1q1, yields the condition

zG(z) + 1
G(z)

=
L
∏

ℓ=1

�

1−
zG(z) + 1
αℓ

�

(84)

on the Stieltjes transform. This is the result claimed in (10).

B Computing the Stieltjes transform for correlated factors

In this appendix, we derive the result (20) for the Stieltjes transform of a Wishart product
matrix with row-wise correlated factors. This computation parallels our analysis of the un-
structured case in §A. Again, our starting point is the Edwards-Jones [18] partition function,
and we once again first evaluate its moments in §B.1 and then derive and simplify the replica-
symmetric saddle point equations in §B.2.

B.1 Step I: Evaluating the moments of the partition function

Introducing replicas indexed by a = 1, . . . , m, the moments of the partition function (8) expand
as

EZm =

∫ m
∏

a=1

dwa exp

�

−
iz
2

m
∑

a=1

∥wa∥2
�

Eexp

�

i
2nL · · ·n1

m
∑

a=1

(wa)⊤X⊤1 · · ·X
⊤
L XL · · ·X1wa

�

.

(85)

We will first integrate out XL . For brevity, define the matrix AL ∈ RnL−1×m by

(AL) ja =
1

nL · · ·n1
(XL−1 · · ·X1wa) j (86)
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such that the required expectation is

EXL
exp

�

i
2nL · · ·n1

m
∑

a=1

(wa)⊤X⊤1 · · ·X
⊤
L XL · · ·X1wa

�

= EXL
exp

�

i
2

tr[A⊤L X⊤L XLAL]
�

. (87)

Let ZL ∈ RnL×nL−1 be a real Ginibre random matrix, with independent and identically dis-
tributed elements Zi j ∼N (0,1), such that

XL = Σ
1/2
L ZL (88)

in distribution. The required expectation then becomes

EZL
exp

�

i
2

tr[A⊤L Z⊤LΣLZLAL]
�

. (89)

This expectation can be easily evaluated using column-major vectorization

EZL
exp

�

i
2

tr[A⊤L Z⊤LΣLZLAL]
�

= EZL
exp

�

i
2

tr[Z⊤LΣLZLALA⊤L ]
�

(90)

= EZL
exp

�

i
2

vec(ZL)
⊤[(ALA⊤L )⊗ΣL]vec(ZL)

�

(91)

= det
�

InL nL−1
− i(ALA⊤L )⊗ΣL

�−1/2
, (92)

where vec(·) denotes the column-major vectorization of a matrix and ⊗ denotes the Kro-
necker product [49]. Using the mixed-product property of the Kronecker product and the
Weinstein–Aronszajn identity [49,50], we have

det
�

InL nL−1
− i(ALA⊤L )⊗ΣL

�

= det
�

InL nL−1
− i(AL ⊗ΣL)(A

⊤
L ⊗ InL

)
�

(93)

= det
�

ImnL
− i(A⊤L ⊗ InL

)(AL ⊗ΣL)
�

(94)

= det
�

ImnL
− i(A⊤L AL)⊗ΣL

�

. (95)

But, we recognize that

iA⊤L AL = CL , (96)

where CL is the Wick-rotated overlap matrix we encountered in our previous calculation:

Cab
L ≡

i
nL · · ·n1

(wa)⊤X⊤1 · · ·X
⊤
L−1XL−1 · · ·X1wb. (97)

We enforce the definition of these order parameters using Fourier representations of the δ-
distribution with corresponding Lagrange multipliers Ĉab

L , which gives

EZm =

∫

dCL dĈL

(4πi/nL)m(m+1)/2
exp

�

−
nL

2

�

tr(CLĈL) +
1
nL

logdet(ImnL
−CL ⊗ΣL)

��

×
∫ m
∏

a=1

dwa exp

�

−
iz
2

m
∑

a=1

∥wa∥2
�

×EX1,...,XL−1
exp

 

i
2nL−1 · · ·n1

m
∑

a,b=1

Ĉab
L (w

a)⊤X⊤1 · · ·X
⊤
L−1XL−1 · · ·X1wb

!

. (98)

Here, the integrals over CL are taken over m × m imaginary symmetric matrices, while the
integrals over ĈL are taken over imaginary symmetric matrices.
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As in the unstructured case, we can see that this procedure can be iterated backwards by
introducing order parameters

Cab
ℓ ≡

i
n1 · · ·nℓ

(wa)⊤X⊤1 · · ·X
⊤
ℓ−1Xℓ−1 · · ·X1wb, (99)

yielding

EZm =

∫

dC1 dĈ1

(4πi/n1)m(m+1)/2
· · ·
∫

dCL dĈL

(4πi/nL)m(m+1)/2

exp

�

−
1
2

L
∑

ℓ=1

nℓ

�

tr(CℓĈℓ) +
1
nℓ

logdet[Imnℓ − (CℓĈℓ+1)⊗Σℓ]
�

�

×
∫ m
∏

a=1

dwa exp

 

−
iz
2

m
∑

a=1

∥wa∥2 +
i
2

m
∑

a,b=1

Ĉab
1 (w

a)⊤wb

!

, (100)

where we have defined ĈL+1 ≡ Im for brevity. The remaining integral over wa is identical to
the unstructured case, hence we obtain

EZm =

∫

dC1 dĈ1

(4πi/n1)m(m+1)/2
· · ·
∫

dCL dĈL

(4πi/nL)m(m+1)/2
exp

�

−
n0m

2
S(C1, Ĉ1, . . . ,CL , ĈL)

�

(101)

for

S(C1, Ĉ1, . . . ,CL , ĈL) =
1
m

logdet(Ĉ1 − zIm)− log(2π)

+
1
m

L
∑

ℓ=1

αℓ

�

tr(CℓĈℓ) +
1
nℓ

logdet[Imnℓ − (CℓĈℓ+1)⊗Σℓ]
�

, (102)

where we recall the definition ĈL+1 ≡ Im.
In the thermodynamic limit, we expect that

1
nℓ

log det[Imnℓ − (CℓĈℓ+1)⊗Σℓ]∼O(1), (103)

provided that the spectrum of Σℓ is sufficiently generic. It clearly holds in the unstructured
case Σℓ = σℓInℓ , in which we have

1
nℓ

log det[Imnℓ − (CℓĈℓ+1)⊗Σℓ] = logdet[Im −σℓCℓĈℓ+1]. (104)

Under the assumption that this scaling is valid, we can evaluate the required integrals using
the method of steepest descent.

B.2 Step II: The replica-symmetric saddle point equations

We now make an RS Ansatz

Cℓ = qℓIm + cℓ1m1⊤m, (105)

Ĉℓ = q̂ℓIm + ĉℓ1m1⊤m. (106)

The only new terms relative to our calculation in the unstructured case are

1
mnℓ

logdet[Imnℓ − (CℓĈℓ+1)⊗Σℓ] (107)
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If we assume that the annealed approximation is valid, and that cℓ = ĉℓ = 0, then we immedi-
ately obtain

1
mnℓ

log det[Imnℓ − (CℓĈℓ+1)⊗Σℓ] =
1

mnℓ
logdet[Imnℓ − (qℓq̂ℓ+1Im)⊗Σℓ] (108)

=
1

mnℓ
logdet[Im ⊗ (Inℓ − qℓq̂ℓ+1Σℓ)] (109)

=
1
nℓ

logdet(Inℓ − qℓq̂ℓ+1Σℓ) (110)

= Eσℓ log(1− qℓq̂ℓ+1σℓ), (111)

where σℓ are the eigenvalues of Σℓ and Eσℓ denotes expectation with respect to their limiting
measure.

More generally, we have

det[Imnℓ − (CℓĈℓ+1)⊗Σℓ] (112)

= det[Imnℓ − qℓq̂ℓ+1Im ⊗Σℓ − (qℓ ĉℓ+1 + cℓq̂ℓ+1 +mcℓ ĉℓ+1)(1m1⊤m)⊗Σℓ] (113)

= det[Im ⊗ (Inℓ − qℓq̂ℓ+1Σℓ)− (qℓ ĉℓ+1 + cℓq̂ℓ+1 +mcℓ ĉℓ+1)(1m ⊗Σℓ)(1⊤m ⊗ Inℓ)] (114)

Assuming that Inℓ − qℓq̂ℓ+1Σℓ is invertible, we may use the multiplicative property of the de-
terminant and the mixed-product property of the Kronecker product to expand this as

det(Inℓ − qℓq̂ℓ+1Σℓ)
m

× det{Imnℓ − (qℓ ĉℓ+1 + cℓq̂ℓ+1 +mcℓ ĉℓ+1)[1m ⊗ (Inℓ − qℓq̂ℓ+1Σℓ)
−1Σℓ](1

⊤
m ⊗ Inℓ)}. (115)

Then, by the Weinstein–Aronszajn identity, we have

det{Imnℓ − (qℓ ĉℓ+1 + cℓq̂ℓ+1 +mcℓ ĉℓ+1)[1m ⊗ (Inℓ − qℓq̂ℓ+1Σℓ)
−1Σℓ](1

⊤
m ⊗ Inℓ)} (116)

= det{Inℓ − (qℓ ĉℓ+1 + cℓq̂ℓ+1 +mcℓ ĉℓ+1)(1
⊤
m ⊗ Inℓ)[1m ⊗ (Inℓ − qℓq̂ℓ+1Σℓ)

−1Σℓ]} (117)

= det[Inℓ −m(qℓ ĉℓ+1 + cℓq̂ℓ+1 +mcℓ ĉℓ+1)(Inℓ − qℓq̂ℓ+1Σℓ)
−1Σℓ]. (118)

Therefore, we have

1
mnℓ

det[Imnℓ − (CℓĈℓ+1)⊗Σℓ] (119)

=
1
nℓ

log det(Inℓ − qℓq̂ℓ+1Σℓ)

+
1

mnℓ
logdet[Inℓ −m(qℓ ĉℓ+1 + cℓq̂ℓ+1 +mcℓ ĉℓ+1)(Inℓ − qℓq̂ℓ+1Σℓ)

−1Σℓ]. (120)

Assuming no issues arise in interchanging limits in m and nℓ, we can then use the series ex-
pansion of the log-determinant near the identity [33] to obtain

1
mnℓ

logdet[Inℓ −m(qℓ ĉℓ+1 + cℓq̂ℓ+1 +mcℓ ĉℓ+1)(Inℓ − qℓq̂ℓ+1Σℓ)
−1Σℓ] (121)

= −(qℓ ĉℓ+1 + cℓq̂ℓ+1)
1
nℓ

tr[(Inℓ − qℓq̂ℓ+1Σℓ)
−1Σℓ] +O(m) (122)

= −(qℓ ĉℓ+1 + cℓq̂ℓ+1)Eσℓ

�

σℓ
1− qℓq̂ℓ+1σℓ

�

+O(m). (123)
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Combining this with our results from the unstructured case, we obtain

lim
m→0

S = log(q̂1 − z) +
ĉ1

q̂1 − z

+
L
∑

ℓ=1

αℓ

�

qℓq̂ℓ + qℓ ĉℓ + cℓq̂ℓ +Eσℓ log(1− qℓq̂ℓ+1σℓ)

− (qℓ ĉℓ+1 + cℓq̂ℓ+1)Eσℓ

�

σℓ
1− qℓq̂ℓ+1σℓ

��

(124)

with the boundary condition q̂L+1 = 1, ĉL+1 = 0.
As in the unstructured case, we have

G(z) = − lim
m→0

∂ S
∂ z
= −

1
z − q̂1

−
ĉ1

(z − q̂1)2
, (125)

where the order parameters are to be evaluated at their saddle point values.
From the equations ∂ S/∂ qℓ = 0, we have

0= q̂ℓ + ĉℓ − (q̂ℓ+1 + ĉℓ+1)Eσℓ

�

σℓ
1− qℓq̂ℓ+1σℓ

�

− (qℓ ĉℓ+1 + cℓq̂ℓ+1)q̂ℓ+1Eσℓ

�

�

σℓ
1− qℓq̂ℓ+1σℓ

�2
�

(126)

for all ℓ= 1, . . . , L. From the equations ∂ S/∂ q̂ℓ = 0, we have

0= −
1

z − q̂1
−

ĉ1

(z − q̂1)2
+α1(q1 + c1) (127)

for ℓ= 1 and

0= αℓ(qℓ + cℓ)−αℓ−1(qℓ−1 + cℓ−1)Eσℓ−1

�

σℓ−1

1− qℓ−1q̂ℓσℓ−1

�

−αℓ−1(qℓ−1 ĉℓ + cℓ−1q̂ℓ)qℓ−1Eσℓ−1

�

�

σℓ−1

1− qℓ−1q̂ℓσℓ−1

�2
�

(128)

for ℓ= 2, . . . , L. From ∂ S/∂ cℓ = 0, we have

0= q̂ℓ − q̂ℓ+1Eσℓ

�

σℓ
1− qℓq̂ℓ+1σℓ

�

(129)

for ℓ= 1, . . . , L. Finally, from ∂ S/∂ ĉℓ = 0, we have

0= −
1

z − q̂1
+α1q1 (130)

for ℓ= 1 and

0= αℓqℓ −αℓ−1qℓ−1Eσℓ−1

�

σℓ−1

1− qℓ−1q̂ℓσℓ−1

�

(131)

for ℓ= 2, . . . , L.
As in the unstructured case, we can decouple the replica-uniform components from the

replica-uniform components. This yields the system

q̂ℓ = q̂ℓ+1Eσℓ

�

σℓ
1− qℓq̂ℓ+1σℓ

�

(ℓ= 1, . . . , L) (132)

q1 =
1
α1

1
z − q̂1

(133)

qℓ =
αℓ−1

αℓ
qℓ−1Eσℓ−1

�

σℓ−1

1− qℓ−1q̂ℓσℓ−1

�

(ℓ= 2, . . . , L) (134)
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for the non-uniform components. Given a solution to that system, the replica-uniform compo-
nents are determined by the linear system

ĉℓ = ĉℓ+1Eσℓ

�

σℓ
1− qℓq̂ℓ+1σℓ

�

+ (qℓ ĉℓ+1 + cℓq̂ℓ+1)q̂ℓ+1Eσℓ

�

�

σℓ
1− qℓq̂ℓ+1σℓ

�2
�

(ℓ= 1, . . . , L) (135)

c1 =
1
α1

ĉ1

(z − q̂1)2
(136)

cℓ =
αℓ−1

αℓ
cℓ−1Eσℓ−1

�

σℓ−1

1− qℓ−1q̂ℓσℓ−1

�

+
αℓ−1

αℓ
(qℓ−1 ĉℓ + cℓ−1q̂ℓ)qℓ−1Eσℓ−1

�

�

σℓ−1

1− qℓ−1q̂ℓσℓ−1

�2
�

(ℓ= 2, . . . , L). (137)

Recalling the boundary condition q̂L+1 = 1, ĉL+1 = 0, it is easy to see that we should have
cℓ = ĉℓ = 0 for all ℓ = 1, . . . , L. Thus, as in the unstructured case, the annealed average is
exact. The Stieltjes transform is then given by G(z) = −α1q1, where q1 is determined by the
system

q̂ℓ = q̂ℓ+1Eσℓ

�

σℓ
1− qℓq̂ℓ+1σℓ

�

(ℓ= 1, . . . , L) (138)

q1 =
1
α1

1
z − q̂1

(139)

qℓ =
αℓ−1

αℓ
qℓ−1Eσℓ−1

�

σℓ−1

1− qℓ−1q̂ℓσℓ−1

�

(ℓ= 2, . . . , L) (140)

with boundary condition q̂L+1 = 1. As a sanity check, we can see immediately that this reduces
to our earlier result in the unstructured case Σℓ = Inℓ .

We can simplify this result in terms of standard objects in random matrix theory. We have

Eσℓ

�

qℓq̂ℓ+1σℓ
1− qℓq̂ℓ+1σℓ

�

= Mℓ

�

1
qℓq̂ℓ+1

�

(141)

for Mℓ(z) the moment generating function of Σℓ. Then, we have

qℓq̂ℓ = Mℓ

�

1
qℓq̂ℓ+1

�

(ℓ= 1, . . . , L) (142)

q1 =
1
α1

1
z − q̂1

(143)

qℓq̂ℓ =
αℓ−1

αℓ
Mℓ−1

�

1
qℓ−1q̂ℓ

�

(ℓ= 2, . . . , L). (144)

Thus, for ℓ= 2, . . . , L, we have

qℓq̂ℓ =
αℓ−1

αℓ
Mℓ−1

�

1
qℓ−1q̂ℓ

�

(145)

=
αℓ−1

αℓ
qℓ−1q̂ℓ. (146)

This relation can easily be iterated backward to give

qℓq̂ℓ =
α1

αℓ
q1q̂1. (147)
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for all ℓ= 1, . . . , L, where the ℓ= 1 case is of course a tautology.
This re-writing is useful because the equation

q1 =
1
α1

1
z − q̂1

(148)

gives q̂1 in terms of G = −α1q1:

q̂1 = z +
1

G(z)
. (149)

Thus,

α1q1q̂1 = −G(z)q̂1 = −zG(z)− 1= M(z). (150)

Assuming that for all ℓ = 1, . . . , L the functions Mℓ are invertible, with inverses M−1
ℓ
(z)

satisfying (M−1
ℓ
◦Mℓ)(z) = z, we have

1
qℓq̂ℓ+1

= M−1
ℓ (qℓq̂ℓ) (151)

= M−1
ℓ

�

M(z)
αℓ

�

(152)

for all ℓ= 1, . . . , L. Using the boundary condition q̂L+1 = 1, we then have

1
qL
= M−1

L

�

M(z)
αL

�

. (153)

For ℓ= 1, . . . , L − 1, we can multiply through by qℓ+1q̂ℓ+1 to obtain

qℓ+1

qℓ
= qℓ+1q̂ℓ+1M−1

ℓ

�

M(z)
αℓ

�

(154)

=
M(z)
αℓ+1

M−1
ℓ

�

M(z)
αℓ

�

. (155)

This gives

1
q1
=

1
qL

L−1
∏

ℓ=1

qℓ+1

qℓ
(156)

= M−1
L

�

M(z)
αL

� L−1
∏

ℓ=1

�

M(z)
αℓ+1

M−1
ℓ

�

M(z)
αℓ

��

(157)

=
α1

M(z)
M(z)

L
∏

ℓ=1

�

M(z)
αℓ

M−1
ℓ

�

M(z)
αℓ

��

(158)

or, using α1q1 = −G(z) = [M(z) + 1]/z,

z =
M(z) + 1

M(z)

L
∏

ℓ=1

�

M(z)
αℓ

M−1
ℓ

�

M(z)
αℓ

��

. (159)

This is the result claimed in (20).

C Direct computation of the minimum and maximum eigenvalues

In this appendix, we describe a direct replica-theoretic approach to computing the minimum
and maximum eigenvalues of unstructured Wishart product matrices.
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C.1 Summary of results

In the thermodynamic limit, we expect the minimum and maximum eigenvalues of K to be
self-averaging. Conditions on these eigenvalues can be obtained from the condition (10) on
the Stieltjes transform (see Ref. [5]), but they can also be computed using a direct, physically
meaningful method.

In this approach, the eigenvalues are interpreted as the ground-state energies of a spherical
spin glass, as studied by Kosterlitz, Thouless, and Jones [51], and in subsequent random matrix
theory works [38–40]. Our starting point is the min-max characterization of the minimum and
maximum eigenvalues as Rayleigh quotients:

λmin(K) = min
w∈Rn0 ,∥w∥=1

w⊤Kw, λmax(K) = max
w∈Rn0 ,∥w∥=1

w⊤Kw. (160)

We first consider the computation of the maximum eigenvalue. We introduce a Gibbs distri-
bution at inverse temperature β > 0 over vectors in the sphere Sn0−1(pn0) of radius

p
n0 in

n0 dimensions, with density

p(w;β ,K) =
1

Z(β ,K)
exp[−βE(w,K)] (161)

with respect to the Lebesgue measure on the sphere. Here,

E(w,K) = −
1
2

w⊤Kw (162)

is the energy function associated to the maximization problem (160), and the partition func-
tion is

Z(β ,K) =

∫

Sn0−1(pn0)
dw exp[−βE(w,K)]. (163)

As β →∞, the Gibbs distribution (161) will concentrate on the ground state of (162), which
is the eigenvector of K corresponding to its maximum eigenvalue. We denote averages with
respect to the Gibbs distribution (161) by 〈·〉β ,K. Then, recalling our definition of E in (162)
and the Rayleigh quotient (160), we have

Eλmax(K) = lim
β→∞
E

2
n0
〈E〉β ,K = lim

β→∞

∂ g(β ,K)
∂ β

, (164)

where we have defined the reduced free energy per site

g(β ,K) = −
2
n0
E log Z(β ,K). (165)

In the thermodynamic limit, we expect log z to be self-averaging, and it can be computed using
the replica method.

We can also use this setup to compute the minimum eigenvalue. We can see that this
computation is identical up to a sign, and that

Eλmin(K) = − lim
β→∞
E

2
n0
〈E〉−β ,K = lim

β→∞

∂ g(−β ,K)
∂ β

. (166)

Deferring the details of the replica computation to §C, we find that the maximum eigen-
value can be written as

Eλmax =
1

1−
∑L
ℓ=1

A
αℓ+A

L
∏

ℓ=1

�

1+
A
αℓ

�

(167)
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Figure 4: Maximum (left) and minimum (right) eigenvalues of Wishart product ma-
trices for varying depths L (with higher values indicated by lighter shades of blue)
and varying widths α1 = α2 = · · · = αL = α. In each panel, the theoretical predic-
tions from equations (173) and (175), respectively, are plotted as solid lines, while
the open circles show the results of numerical eigendecompositions for 10 realiza-
tions of matrices of size n0 = 1000.

where A is a positive solution to the equation

A=
1

∑L
ℓ=1

A
αℓ+A

− 1. (168)

This computation is somewhat more tedious than that of the Stieltjes transform, as the replica-
symmetric saddle point is not replica-diagonal. Considering the minimum eigenvalue, as the
rank of K is at most min{n0, . . . , nL},

Eλmin(K) = 0 if min{α1, . . . ,αL}< 1. (169)

If min{α1, . . . ,αL} > 1, then we expect the minimum eigenvalue to be almost surely positive,
and to be determined by an almost identical equation as the maximum eigenvalue, up to a
sign:

Eλmin =
1

1+
∑L
ℓ=1

B
αℓ−B

L
∏

ℓ=1

�

1−
B
αℓ

�

, (170)

where B > 0 solves

B =
1

∑L
ℓ=1

B
αℓ−B

+ 1. (171)

These conditions are identical to those obtained by Akemann, Ipsen, and Kieburg [5] for the
complex Wishart ensemble.

As noted by Akemann, Ipsen, and Kieburg [5], these equations are exactly solvable in the
equal-width case α1 = · · · = αL = α. With this constraint, A is determined by the quadratic
equation LA2 + (L − 1)A−α= 0, which gives

A=

p

4Lα+ (L − 1)2 − (L − 1)
2L

, (172)

and thus

Eλmax =
α+ A

α− (L − 1)A

�

1+
A
α

�L

. (173)
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Considering the minimum eigenvalue, we have the quadratic equation LB2−(L−1)B−α= 0,
which yields

B =

p

4Lα+ (L − 1)2 + (L − 1)
2L

, (174)

and thus

Eλmin =
α− B

α+ (L − 1)B

�

1−
B
α

�L

. (175)

If L = 1, this recovers the familiar results for Wishart matrices. In the square case α = 1, we
have the further simplification

Eλmax = (L + 1)
�

1+
1
L

�L

, (176)

while λmin = 0, as noted previously by Dupic and Pérez Castillo [9]. In Figure 4, we show that
these results display excellent agreement with numerical eigendecompositions.

As in our derivation of the Stieljes transform in §A, we divide the replica computation of
the minimum and maximum eigenvalues into two parts. We first compute the moments of the
partition function in §C.2, and then simplify the replica-symmetric saddle point equations in
§C.3.

C.2 Step I: Evaluating the moments of the partition function

Again, we introduce replicas indexed by a = 1, . . . , m, which gives the moments of the partition
function for the spherical spin glass (163) as

EZm =

∫

∏

a

dwa

� m
∏

a=1

δ

�

1−
1
n0
∥wa∥2

�

�

Eexp

�

β

2nL · · ·n1

m
∑

a=1

(wa)⊤X⊤1 · · ·X
⊤
L XL · · ·X1wa

�

,

(177)

where we enforce the spherical constraints with δ-distributions. It is easy to see that the
matrices Xℓ can be integrated out much as before, except for the fact that the order parameters
we introduce should be real, i.e.,

Cab
ℓ ≡

1
n1 · · ·nℓ

(wa)⊤X⊤1 · · ·X
⊤
ℓ−1Xℓ−1 · · ·X1wb, (178)

and that the boundary condition is now ĈL+1 = βIm. Iterating backwards, this yields

EZm =

∫

dC2 dĈ2

(4πi/n2)m(m+1)/2
· · ·
∫

dCL dĈL

(4πi/nL)m(m+1)/2

exp

�

−
1
2

L
∑

ℓ=2

nℓ[tr(CℓĈℓ) + log det(Im −CℓĈℓ+1)]

�

×
∫ m
∏

a=1

dwa

� m
∏

a=1

δ

�

1−
1
n0
∥wa∥2

�

�

det(Im −C1Ĉ2)
−n1/2, (179)

where we recall that

Cab
1 =

1
n1
(wa)⊤wb. (180)
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By the spherical constraint, we have

Caa
1 =

n0

n1
=

1
α1

. (181)

It is therefore useful to instead introduce order parameters

F ab =
1
n0
(wa)⊤wb (182)

via Fourier representations of the δ-distribution, such that F aa = 1 and C1 = F/α1. Integrating
over F with F aa = 1, the corresponding Lagrange multipliers F̂ aa automatically enforce the
spherical constraint. Then, after evaluating the remaining unconstrained Gaussian integral
over wa, we obtain

EZm =

∫

dF dF̂
(4πi/n0)m(m+1)/2

∫

dC2 dĈ2

(4πi/n2)m(m+1)/2
· · ·
∫

dCL dĈL

(4πi/nL)m(m+1)/2
exp

�n0m
2

S
�

(183)

for

S(F, F̂,C2, Ĉ2, · · · ,CL , ĈL) =
1
m

tr(FF̂)−
1
m

logdet(F̂)−
1
m
α1 log det(Im −α−1

1 FĈ2)

−
L
∑

ℓ=2

αℓ[tr(CℓĈℓ) + logdet(Im −CℓĈℓ+1)]). (184)

As in our computation of the Stieltjes transform, this integral can be evaluated using the
method of steepest descent. Again, we will consider only replica-symmetric saddle points.

C.3 Step II: The replica-symmetric saddle point equations

We make an RS Ansatz

F= (1− f )Im + f 1m1⊤m (185)

F̂= (F̂ − f̂ )Im + f̂ 1m1⊤m (186)

Cℓ = qℓIm + cℓ1m1⊤m (ℓ= 2, . . . , L) (187)

Ĉℓ = q̂ℓIm + ĉℓ1m1⊤m (ℓ= 2, . . . , L). (188)

Again, we use standard identities to obtain

lim
m→0

1
m

log det(F̂) = log(F̂ − f̂ ) +
f̂

F̂ − f̂
, (189)

lim
m→0

1
m

tr(FF̂) = F̂ − f f̂ , (190)

and

lim
m→0

1
m

logdet(Im −α−1
1 FĈ2) = log(1−α−1

1 (1− f )q̂2)−
α−1

1 (1− f )ĉ2 +α−1
1 f q̂2

1−α−1
1 (1− f )q̂2

, (191)
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yielding

lim
m→0

S = F̂ − f f̂ − log(F̂ − f̂ )−
f̂

F̂ − f̂

−α1

�

log(1−α−1
1 (1− f )q̂2)−

α−1
1 (1− f )ĉ2 +α−1

1 f q̂2

1−α−1
1 (1− f )q̂2

�

−
L
∑

ℓ=2

αℓ

�

qℓq̂ℓ + qℓ ĉℓ + cℓq̂ℓ + log(1− qℓq̂ℓ+1)−
qℓ ĉℓ+1 + cℓq̂ℓ+1

1− qℓq̂ℓ+1

�

, (192)

where we recall the endpoint condition q̂L+1 = β , ĉL+1 = 0.
For brevity, we define q1 = α−1

1 (1 − f ) and c1 = α−1
1 f . Then, by comparison with our

previous results, the saddle point equations for ℓ= 2, . . . , L are

q̂ℓ =
q̂ℓ+1

1− qℓq̂ℓ+1
(193)

qℓ =
αℓ−1

αℓ

qℓ−1

1− qℓ−1q̂ℓ
(194)

ĉℓ =
ĉℓ+1 + cℓq̂

2
ℓ+1

(1− qℓq̂ℓ+1)2
(195)

cℓ =
αℓ−1

αℓ

cℓ−1 + q2
ℓ−1 ĉℓ

(1− qℓ−1q̂ℓ)2
. (196)

The saddle point equation ∂ S/∂ F̂ = 0 yields

0= 1+
f̂

(F̂ − f̂ )2
−

1

F̂ − f̂
, (197)

while the equation ∂ S/∂ f̂ = 0 yields

0= − f −
f̂

(F̂ − f̂ )2
, (198)

hence we have

F̂ − f̂ =
1

1− f
(199)

and

f̂ = −
f

(1− f )2
. (200)

Finally, the equation ∂ S/∂ f = 0 yields

0= − f̂ −
q̂2

2c1 + ĉ2

(1− q1q̂2)2
(201)

Then, we can easily eliminate the Lagrange multipliers F̂ and f̂ . The remaining system can be
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written compactly as

q̂ℓ =
q̂ℓ+1

1− qℓq̂ℓ+1
(ℓ= 2, . . . , L) (202)

qℓ =
αℓ−1

αℓ

qℓ−1

1− qℓ−1q̂ℓ
(ℓ= 2, . . . , L) (203)

ĉℓ =
ĉℓ+1 + cℓq̂

2
ℓ+1

(1− qℓq̂ℓ+1)2
(ℓ= 1, . . . , L) (204)

cℓ =
αℓ−1

αℓ

cℓ−1 + q2
ℓ−1 ĉℓ

(1− qℓ−1q̂ℓ)2
(ℓ= 2, . . . , L), (205)

where we have the definitions

q1 ≡ α−1
1 (1− f ) (206)

c1 ≡ α−1
1 f (207)

ĉ1 ≡
f

(1− f )2
(208)

and the endpoint conditions

q̂L+1 = β (209)

ĉL+1 = 0. (210)

Moreover, we have

Eλmax = − lim
β→∞

lim
m→0

∂ S
∂ β

(211)

= −αL lim
β→∞

�

qL

1− βqL
−

cL

(1− βqL)2

�

, (212)

where the order parameters are to be evaluated at their saddle point values. Our task is
therefore to solve the saddle point equations in the zero temperature limit.

We first simplify the replica-nonuniform saddle point equations using the same trick as
before. To do so, it is useful to define an auxiliary variable q̂1 by

q̂1 =
q̂2

1− q1q̂2
, (213)

such that the system of equations is identical to what we encountered in §A.2. Then, letting

A= α1q1q̂1, (214)

we have the backward recurrence

q̂ℓ =
�

1+
A
αℓ

�

q̂ℓ+1 (215)

for ℓ= 1, . . . , L, which can be solved using the endpoint condition q̂L+1 = β , yielding

q̂ℓ = β
L
∏

j=ℓ

�

1+
A
α j

�

. (216)
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This shows that we should have q̂ℓ ∼O(β) and qℓ ∼O(1/β). With these scalings, we have

Eλmax = αL lim
β→∞

cL

(1− βqL)2
. (217)

To obtain qL , we use the equation

qℓ =
A
αℓq̂ℓ

(218)

which gives

qL =
A
αL q̂L

=
A

β(αL + A)
, (219)

hence

Eλmax = αL lim
β→∞

�

αL + A
αL

�2

cL . (220)

The equations for the replica-uniform components can be simplified after a bit of tedious
but straightforward algebra. Deferring the details of this computation to Appendix C.4, we
obtain an expression for cL in terms of c1,

αL

�

αL + A
αL

�2

cL = α1c1
q̂1

β

1

1−
∑L

j=1
A
α j+A

, (221)

along with the condition

ĉ1 =
q̂1

q1
c1

∑L
ℓ=1

A
αℓ+A

1−
∑L
ℓ=1

A
αℓ+A

(222)

where we again have defined A= α1q1q̂1.
Combining these results with the definitions

q1 ≡ α−1
1 (1− f ) (223)

c1 ≡ α−1
1 f (224)

ĉ1 ≡
f

(1− f )2
, (225)

we obtain a closed equation for A,

1
A
=

∑L
ℓ=1

A
αℓ+A

1−
∑L
ℓ=1

A
αℓ+A

, (226)

along with the equation

Eλmax = lim
β→∞

f
q̂1

β

1

1−
∑L
ℓ=1

A
αℓ+A

. (227)

To solve these equations in the limit β →∞, it is clear that we should have q̂1 ∼ O(β)
and 1− f ∼O(1/β), such that A= α1q1q̂1 = (1− f )q̂1 ∼O(1). Then, A is determined by the
limiting equation

1
A
=

∑L
ℓ=1

A
αℓ+A

1−
∑L
ℓ=1

A
αℓ+A

, (228)
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and the maximum eigenvalue is given by

Eλmax =
1

1−
∑L
ℓ=1

A
αℓ+A

L
∏

ℓ=1

�

1+
A
αℓ

�

. (229)

As physical solutions have A> 0, we can re-write the equation for A as

A=
1

∑L
ℓ=1

A
αℓ+A

− 1. (230)

This is the result claimed in §C.1. It is easy to confirm that this is identical to the condition
given in equations (70) and (71) of Akemann, Ipsen, and Kieburg [5] for the complex Wishart
case, with their v̂ℓ = αℓ − 1 and û0 = −(A+ 1).

We finally consider the computation of the minimum eigenvalue. In this case, we must
take β → −∞ through negative values of β , hence we expect B = −(1− f )q̂1 ∼ O(1) to be
positive. If we directly apply the results of the preceding section with the substitution A= −B,
we obtain the condition

B =
1

∑L
ℓ=1

B
αℓ−B

+ 1 (231)

and the equation

Eλmin =
1

1+
∑L
ℓ=1

B
αℓ−B

L
∏

ℓ=1

�

1−
B
αℓ

�

, (232)

as claimed.

C.4 Simplifying the saddle point equations for the extremal eigenvalues

In this appendix, we solve the saddle point equations for the replica-uniform components of
the order parameters in our computation of the minimum and maximum eigenvalues. This
analysis amounts to solving a recurrence relation, and follows our approach in [31].

We first eliminate the variables cℓ by solving the equation

ĉℓ =
ĉℓ+1 + cℓq̂

2
ℓ+1

(1− qℓq̂ℓ+1)2
(233)

to obtain

cℓ =
�

1− qℓq̂ℓ+1

q̂ℓ+1

�2

ĉℓ −
1

q̂2
ℓ+1

ĉℓ+1 (ℓ= 1, . . . , L). (234)

Then, for ℓ= 2, . . . , L, the equation

cℓ =
αℓ−1

αℓ

cℓ−1 + q2
ℓ−1 ĉℓ

(1− qℓ−1q̂ℓ)2
(235)

yields a three-term recurrence

αℓ−1

αℓ
ĉℓ−1 =

�

q̂2
ℓ

q̂2
ℓ+1

(1− qℓq̂ℓ+1)
2 +
αℓ−1

αℓ

1− q2
ℓ−1q̂2

ℓ

(1− qℓ−1q̂ℓ)2

�

ĉℓ −
q̂2
ℓ

q̂2
ℓ+1

ĉℓ+1 (236)
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for ℓ= 2, . . . , L, with initial difference condition

c1 =
�

1− q1q̂2

q̂2

�2

ĉ1 −
1

q̂2
2

ĉ2 (237)

and endpoint condition ĉL+1 = 0. Substituting in the formula

qℓ =
A
αℓq̂ℓ

(238)

and using the recurrence

q̂ℓ =
�

1+
A
αℓ

�

q̂ℓ+1, (239)

we have

qℓq̂ℓ+1 =
A
αℓ

q̂ℓ+1

q̂ℓ
=

A
αℓ + A

, (240)

hence we obtain the simplified recurrence

αℓ−1

αℓ
ĉℓ−1 =

αℓ +αℓ−1 + 2A
αℓ

ĉℓ −
�

αℓ + A
αℓ

�2

ĉℓ+1 (241)

and the initial difference condition

q̂2
1c1 = ĉ1 −

�

α1 + A
α1

�2

ĉ2. (242)

We now further simplify our task by defining new variables ûℓ such that

ĉℓ = α1q̂2
1c1ûℓ (243)

which obey the recurrence

αℓ−1

αℓ
ûℓ−1 =

αℓ +αℓ−1 + 2A
αℓ

ûℓ −
�

αℓ + A
αℓ

�2

ûℓ+1 (244)

for ℓ= 2, . . . , L, with the initial difference condition

1
α1
= û1 −

�

α1 + A
α1

�2

û2 (245)

and endpoint condition ûL+1 = 0. If L = 1, we simply have û1 = 1/α1.
To solve this recurrence for L > 1, we observe that it can be re-written as

αℓ + A
αℓ

ûℓ+1 − ûℓ =
αℓ−1

αℓ

αℓ
αℓ + A

�

αℓ−1 + A
αℓ−1

ûℓ − ûℓ−1

�

(246)

for ℓ= 2, . . . , L. Then, it is easy to see that

αℓ + A
αℓ

ûℓ+1 − ûℓ =
αℓ−1

αℓ

αℓ
αℓ + A

�

αℓ−1 + A
αℓ−1

ûℓ − ûℓ−1

�

(247)

=
αℓ−1

αℓ

αℓ−2

αℓ−1

αℓ
αℓ + A

αℓ−1

αℓ−1 + A

�

αℓ−2 + A
αℓ−2

ûℓ−1 − ûℓ−2

�

(248)

=
α1

αℓ

αℓ
αℓ + A

αℓ−1

αℓ−1 + A
· · ·

α2

α2 + A

�

α1 + A
α1

û2 − û1

�

, (249)
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hence

ûℓ =
αℓ + A
αℓ

ûℓ+1 +
1
αℓ

αℓ
αℓ + A

αℓ−1

αℓ−1 + A
· · ·

α2

α2 + A
[α1û1 − (α1 + A)û2]. (250)

By the endpoint condition ûL+1 = 0, we then have

ûL =
1
αL

αL

αL + A
αL−1

αL−1 + A
· · ·

α2

α2 + A
[α1û1 − (α1 + A)û2], (251)

hence

ûL−1 =
�

1
αL + A

+
1

αL−1 + A

�

αL−2

αL−2 + A
· · ·

α2

α2 + A
[α1û1 − (α1 + A)û2]. (252)

Iterating backward, we obtain

ûℓ = [α1û1 − (α1 + A)û2]

 

L
∑

j=ℓ

1
α j + A

! 

ℓ−1
∏

j=2

α j

α j + A

!

(253)

for ℓ= 2, . . . , L. In particular, we have

û2 = [α1û1 − (α1 + A)û2]
L
∑

j=2

1
α j + A

. (254)

We now use the initial difference condition to write û2 in terms of û1,

û2 =
�

α1

α1 + A

�2�

û1 −
1
α1

�

, (255)

which gives a closed equation for û1 :

α1û1 − 1= (1+ Aû1)(α1 + A)
L
∑

j=2

1
α j + A

, (256)

and, for ℓ= 2, . . . , L, an expression for ûℓ in terms of û1:

ûℓ = (1+ Aû1)

 

L
∑

j=ℓ

1
α j + A

! 

ℓ−1
∏

j=2

α j

α j + A

!

. (257)

This equation simplifies to

û1

1+ Aû1
=

L
∑

j=1

1
α j + A

, (258)

which yields

û1 =

∑L
j=1

1
α j+A

1− A
∑L

j=1
1
α j+A

. (259)

If L = 1, this recovers the expected result that û1 = 1/α1. From this result, we have

ĉ1 = α1q̂2
1c1û1 (260)

=
q̂1

q1
c1

∑L
j=1

A
α j+A

1−
∑L

j=1
A
α j+A

(261)
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which will allow us to obtain a self-consistent equation given the definition of ĉ1 in terms of
f .

Recalling from §C.3 that

λmax = αL lim
β→∞

�

αL + A
αL

�2

cL , (262)

we must compute cL . Using

q̂2
LcL = ĉL −

�

αL + A
αL

�2

ĉL+1, (263)

we have

cL =
1

q̂2
L

ĉL =
α1c1

αL

q̂2
1

q̂2
L

(1+ Aû1)

 

L
∏

j=2

α j

α j + A

!

(264)

as ĉL+1 = 0 and ĉℓ = α1q̂2
1c1ûℓ by definition, and

ûL =
1
αL
(1+ Aû1)

 

L
∏

j=2

α j

α j + A

!

. (265)

Then, as

q̂ℓ = β
L
∏

j=ℓ

�

1+
A
α j

�

, (266)

we have

q̂2
1

q̂2
L

=
L−1
∏

j=1

�

α j + A

α j

�2

(267)

hence

αL

�

αL + A
αL

�2

cL = α1c1
q̂1

β
(1+ Aû1). (268)

We now note that we have

1+ Aû1 =
1

1−
∑L

j=1
A
α j+A

, (269)

hence

αL

�

αL + A
αL

�2

cL = α1c1
q̂1

β

1

1−
∑L

j=1
A
α j+A

. (270)

This is the result reported in §C.3.
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