Replica method for eigenvalues of real Wishart product matrices

Jacob A. Zavatone-Veth ${ }^{1,2 \star}$ and Cengiz Pehlevan ${ }^{3,2 \star}$
1 Department of Physics, Harvard University, Cambridge, MA, USA
2 Center for Brain Science, Harvard University, Cambridge, MA, USA
3 John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
* jzavatoneveth@g.harvard.edu, cpehlevan@seas.harvard.edu

December 8, 2022

Abstract

We show how the replica method can be used to compute the asymptotic eigenvalue spectrum of a real Wishart product matrix. For unstructured factors, this provides a compact, elementary derivation of a polynomial condition on the Stieltjes transform first proved by Müller [IEEE Trans. Inf. Theory. 48, 2086-2091 (2002)]. We then show how this computation can be extended to ensembles where the factors have correlated rows. Finally, we derive polynomial conditions on the average values of the minimum and maximum eigenvalues, which match the results obtained by Akemann, Ipsen, and Kieburg [Phys. Rev. E 88, 052118 (2013)] for the complex Wishart product ensemble.

Contents

1 Introduction 2
1.1 Applications of Wishart product matrices in science and technology 2
1.2 Roadmap 3
2 Results 3
2.1 The Edwards-Jones method 3
2.2 Spectral moments for unstructured factors 4
2.3 Spectral moments for factors with correlated rows 5
3 Conclusion 8
A Computing the Stieltjes transform for unstructured factors 9
A. 1 Step I: Evaluating the moments of the partition function 9
A. 2 Step II: The replica-symmetric saddle point equations 11
B Computing the Stieltjes transform for correlated factors 14
B. 1 Step I: Evaluating the moments of the partition function 14
B. 2 Step II: The replica-symmetric saddle point equations 16
C Direct computation of the minimum and maximum eigenvalues 20
C. 1 Summary of results 21
C. 2 Step I: Evaluating the moments of the partition function 23
C. 3 Step II: The replica-symmetric saddle point equations 24
C. 4 Simplifying the saddle point equations for the extremal eigenvalues 28

1 Introduction

In this note, we describe how the replica method from the statistical mechanics of disordered systems may be used to obtain the asymptotic density of eigenvalues for a Wishart product matrix

$$
\begin{equation*}
\mathbf{K}=\frac{1}{n_{L} \cdots n_{1}} \mathbf{X}_{1}^{\top} \cdots \mathbf{X}_{L}^{\top} \mathbf{X}_{L} \cdots \mathbf{X}_{1} \tag{1}
\end{equation*}
$$

where the factors

$$
\begin{equation*}
\mathbf{X}_{\ell} \in \mathbb{R}^{n_{\ell} \times n_{\ell-1}} \tag{2}
\end{equation*}
$$

are independent Gaussian random matrices. In the simplest case, the factors are real Ginibre random matrices, i.e., they have independent and identically distributed standard real Gaussian elements $\left(X_{\ell}\right)_{i j} \sim \mathcal{N}(0,1)$, though the complex Gaussian case is also often studied [1-15]. We will also consider cases in which the elements of each factor are correlated.

Not all of our final results are novel. Rather, our overarching objective in reporting these replica-theoretic derivations are to note their simplicity, as the replica method has to the best of our knowledge not seen broad application to the study of product random matrices [9], despite its common usage in other areas of random matrix theory [16-22]. For a discussion of the application of the cavity method to Wishart product matrices, we direct the reader to the work of Dupic and Pérez Castillo [9], or to recent work by Cui, Rocks, and Mehta [23].

1.1 Applications of Wishart product matrices in science and technology

The spectral statistics of Wishart product matrices are of interest in many areas of physics and applied mathematics [7, 8]. For example, they describe the covariance statistics of Gaussian data propagated through noisy linear vector channels [1]-in other words, the covariance statistics of certain linear latent variable models [24]—and transport in simple models for chaotic systems [11,25]. Both real and complex Wishart product matrices are of particular interest in mathematical physics because certain features are amenable to exact study [2-13, 15].

Most commonly, Wishart product matrices are studied either at finite size or in one of three asymptotic limits. Adopting the nomenclature that the factor dimensions n_{ℓ} are the "widths" and the number of factors L is the "depth" of the product, these limiting regimes are as follows:

- The thermodynamic limit, in which the widths are taken to infinity proportionally, i.e.,

$$
\begin{equation*}
n_{0}, \cdots, n_{L} \rightarrow \infty \quad \text { with } \quad \frac{n_{\ell}}{n_{0}} \rightarrow \alpha_{\ell} \in(0, \infty) \tag{3}
\end{equation*}
$$

for fixed depth L [1-4, 8, 26, 27]. This is the regime on which we focus.

- The ergodic limit, in which the depth $L \rightarrow \infty$ for fixed widths $n_{\ell}[7,8,12,26,28]$.
- The double-scaling, or critical, regime, in which the depth L and widths n_{ℓ} tend jointly to infinity $[7,8,11,15,27-29]$.

Properties of the thermodynamic limit of real Wishart product matrices have recently attracted attention in the machine learning community, as they appear as the Neural Network Gaussian Process Kernel Gram matrix of a deep linear network with Gaussian inputs [23, 27, 30-34, 34-36]. In this case, n_{0} represents the number of datapoints on which the kernel is evaluated, n_{1} is the input dimensionality, and n_{2}, \ldots, n_{L} are the widths of the hidden layers. The spectrum of this kernel matrix determines the generalization properties of a network in the limit of infinite hidden layer width [31-33]. The present note is based on our recent work on deep linear networks in Ref. [31]; we direct the interested reader to that work and references therein for more background on generalization in deep linear neural networks.

1.2 Roadmap

Our paper is organized as follows:

- In §2.1, we briefly introduce the Edwards-Jones [18] approach to computing the resolvent of a random matrix using the replica method.
- In §2.2, we apply the Edward-Jones method to compute the limiting spectral statistics of Wishart product matrices with uncorrelated factors. The details of this computation are deferred to Appendix A. This recovers a polynomial condition on the resolvent first proved by Müller [1].
- In §2.3, we extend this approach to structured Wishart product matrices where the factors have correlated rows, deferring the details of the computation to Appendix B. We obtain a condition on the resolvent in terms of the spectral generating functions of the factor correlations, which to our knowledge as not previously been reported for $L>1$ [37].
- In §3, we conclude by discussing the outlook for the application of the replica method to product matrix ensembles.
- In Appendix C, as an additional demonstration of replica approaches to Wishart product matrices, we compute the minimum and maximum eigenvalues of an uncorrelated Wishart product matrix directly by applying the replica method to the low-temperature partition function of a spherical spin glass [18,38-40]. The resulting polynomial conditions on the minimum and maximum eigenvalues match the results obtained by Akemann, Ipsen, and Kieburg [5] for the complex Wishart product ensemble.

2 Results

Before summarizing our results, let us briefly record our notational conventions. We denote vectors and matrices by bold lowercase and uppercase Roman letters, respectively, e.g., \mathbf{x} and \mathbf{X}. For an integer m, \mathbf{I}_{m} denotes the $m \times m$ identity matrix, while $\mathbf{1}_{m}$ denotes the m-dimensional vector with all elements equal to 1 . Finally, we warn the reader that we will often leave implicit the domains of integrals.

2.1 The Edwards-Jones method

In the thermodynamic limit $n_{0}, \cdots, n_{L} \rightarrow \infty, n_{\ell} / n_{0} \rightarrow \alpha_{\ell} \in(0, \infty)$, the eigenvalue density $\rho(\lambda)$ of K is self-averaging, and can be conveniently described in terms of its Stieltjes transform

$$
\begin{equation*}
G(z)=\lim _{n_{0}, \ldots, n_{L} \rightarrow \infty} \frac{1}{n_{0}} \operatorname{tr}\left[\left(\mathbf{K}-z \mathbf{I}_{n_{0}}\right)^{-1}\right] \tag{4}
\end{equation*}
$$

from which the limiting density can be recovered via

$$
\begin{equation*}
\rho(\lambda)=\lim _{\epsilon \downarrow 0} \frac{1}{\pi} \operatorname{Im} G(\lambda-i \epsilon) . \tag{5}
\end{equation*}
$$

To compute the the Stieltjes transform using the replica method from the statistical physics of disordered systems [16,41,42], we follow a standard approach, introduced by Edwards and Jones [18]. This method proceeds by writing

$$
\begin{equation*}
G(z)=\frac{\partial g}{\partial z} \tag{6}
\end{equation*}
$$

for

$$
\begin{equation*}
g(z)=\lim _{n_{0}, \ldots, n_{L} \rightarrow \infty} \frac{2}{n_{0}} \log Z(z) \tag{7}
\end{equation*}
$$

where the partition function is

$$
\begin{equation*}
Z(z)=\int_{\mathbb{R}^{n_{0}}} d \mathbf{w} \exp \left(-\frac{i}{2} \mathbf{w}^{\top}\left(z \mathbf{I}_{n_{0}}-\mathbf{K}\right) \mathbf{w}\right) \tag{8}
\end{equation*}
$$

In the thermodynamic limit, we expect $g(z)$ to be self-averaging, i.e., to concentrate around its expectation $\mathbb{E} g$ over the random factors \mathbf{X}_{ℓ}. The expectation $\mathbb{E} \log Z$ can be evaluated using the identity $\mathbb{E} \log Z=\lim _{m \rightarrow 0} m^{-1} \log \mathbb{E} Z^{m}$ and a standard non-rigorous interchange of limits:

$$
\begin{equation*}
g=\lim _{n_{0}, \ldots, n_{L} \rightarrow \infty} \frac{2}{n_{0}} \mathbb{E} \log Z=\lim _{m \rightarrow 0} \lim _{n_{0}, \ldots, n_{L} \rightarrow \infty} \frac{2}{m n_{0}} \log \mathbb{E} Z^{m} \tag{9}
\end{equation*}
$$

As usual, we evaluate the moments $\mathbb{E} Z^{m}$ for non-negative integer m, and assume that they can be safely analytically continued to $m \rightarrow 0$ [41,42]. Here, as in other applications of the replica trick to the Stieltjes transform, the annealed average is exact, in the sense that the replica-symmetric saddle point is replica-diagonal [16-18] (see Appendices A and B).

2.2 Spectral moments for unstructured factors

In Ref. [1], Müller proved that the Stieltjes transform of a Wishart product matrix with unstructured factors (i.e., $\left.\left(X_{\ell}\right)_{i j} \sim_{\text {i.i.d. }} \mathcal{N}(0,1)\right)$ satisfies the polynomial equation

$$
\begin{equation*}
\frac{z G(z)+1}{G(z)}=\prod_{\ell=1}^{L}\left(1-\frac{z G(z)+1}{\alpha_{\ell}}\right) \tag{10}
\end{equation*}
$$

see also Refs. [3-5, 9, 10]. As noted by Burda et al. [3], the condition (10) can be expressed more compactly as

$$
\begin{equation*}
z=\frac{M(z)+1}{M(z)} \prod_{\ell=1}^{L}\left(1+\frac{M(z)}{\alpha_{\ell}}\right) \tag{11}
\end{equation*}
$$

in terms of the moment generating function

$$
\begin{equation*}
M(z)=\sum_{k=1}^{\infty} \frac{1}{z^{k}} \frac{1}{n_{0}} \operatorname{tr}\left(\mathbf{K}^{k}\right)=\frac{1}{n_{0}} \operatorname{tr}\left[\left(\mathbf{I}_{n_{0}}-\mathbf{K} / z\right)^{-1}\right]-1=-z G(z)-1 \tag{12}
\end{equation*}
$$

where we assume that the formal series converges. Our first result is a derivation, presented in Appendix A, of (10) using the Edwards-Jones method outlined in §2.1.

Figure 1: Eigenvalue densities for unstructured Wishart product matrices for depths $L=1$ (left) and $L=2$ (right) for varying widths $\alpha_{1}=\cdots=\alpha_{L}=\alpha$, indicated by shades of red. Solid lines show the result of solving equation (15) numerically, while shaded areas show the results of numerical eigendecompositions of matrices of size $n_{0}=2048$. Importantly, each empirical histogram is obtained for a single realization of the random matrix.

In the case $L=1$, the equation for the Stieltjes transform reduces to

$$
\begin{equation*}
\frac{z G(z)+1}{G(z)}=1-\frac{z G(z)+1}{\alpha_{1}} \tag{13}
\end{equation*}
$$

which can be re-written as

$$
\begin{equation*}
0=z+\frac{1}{G(z)}-\frac{\alpha_{1}}{\alpha_{1}+G(z)} \tag{14}
\end{equation*}
$$

which is the familiar result for a Wishart matrix. In the equal-width case $\alpha_{1}=\cdots=\alpha_{L}=\alpha$, we have the simplification

$$
\begin{equation*}
\frac{z G(z)+1}{G(z)}=\left(1-\frac{z G(z)+1}{\alpha}\right)^{L} \tag{15}
\end{equation*}
$$

In the context of deep linear neural networks, this special case has a natural interpretation as a network with hidden layer widths equal to the input dimensions. If $L=2$, this is a cubic equation, which can be solved in radicals, though the result is not particularly illuminating [9,23]. In the square case $\alpha_{1}=\cdots=\alpha_{L}=1$, we have the further simplification

$$
\begin{equation*}
0=z^{L} G(z)^{L+1}-z G(z)-1 \tag{16}
\end{equation*}
$$

As shown in previous works, this can be solved to obtain an exact expression for the eigenvalue density [10]. More generally, the equation (10) must be solved numerically. We show examples for $L=1$ and $L=2$ in Figure 1, demonstrating excellent agreement with numerical experiment. We direct the reader to previous work by Burda et al. [3] and by Dupic and Pérez Castillo [9] for further examples.

2.3 Spectral moments for factors with correlated rows

Importantly, the replica approach is not limited to the study of ensembles where the factors have independent and identically distributed entries. It also allows one to tackle with relative ease the more general setting where the factors are independent Gaussian matrices with
independent columns and correlated rows, i.e.,

$$
\begin{align*}
\mathbb{E}\left[\left(X_{\ell}\right)_{i j}\right] & =0, \tag{17}\\
\mathbb{E}\left[\left(X_{\ell}\right)_{i j}\left(X_{\ell}\right)_{k l}\right] & =\left(\Sigma_{\ell}\right)_{i k} \delta_{j l} \tag{18}
\end{align*}
$$

for some covariance matrices $\Sigma_{\ell} \in \mathbb{R}^{n_{\ell} \times n_{\ell}}$. This ensemble describes the kernel of a deep linear neural network with correlated input features and correlated neurons, or more generally the covariance of a linear latent variable model [24]. We can equivalently define this ensemble by

$$
\begin{equation*}
\mathbf{K}=\frac{1}{n_{L} \cdots n_{1}} \mathbf{Z}_{1}^{\top} \boldsymbol{\Sigma}_{1}^{1 / 2} \cdots \mathbf{Z}_{L}^{\top} \boldsymbol{\Sigma}_{L} \mathbf{Z}_{L} \cdots \boldsymbol{\Sigma}_{1}^{1 / 2} \mathbf{Z}_{1} \tag{19}
\end{equation*}
$$

for \mathbf{Z}_{ℓ} an unstructured Ginibre matrix with standard Gaussian elements $\left(Z_{\ell}\right)_{i j} \sim \mathcal{N}(0,1)$. This makes it clear that we may take the covariance matrices Σ_{ℓ} to be diagonal without loss of generality, as the random Gaussian factors are rotation-invariant. For the thermodynamic limit to be well-defined, we have in mind an ensemble defined by sequences of covariance matrices $\boldsymbol{\Sigma}_{\ell}\left(n_{\ell}\right)$ such that the spectral statistics of these matrices tend to deterministic limits (see Appendix B for our precise assumptions on these matrices).

For matrices from this correlated ensemble, we show in Appendix B that the moment generating function $M(z)$ of K satisfies the self-consistent equation

$$
\begin{equation*}
z=\frac{M(z)+1}{M(z)} \prod_{\ell=1}^{L}\left[\frac{M(z)}{\alpha_{\ell}} M_{\ell}^{-1}\left(\frac{M(z)}{\alpha_{\ell}}\right)\right] . \tag{20}
\end{equation*}
$$

Here, the functions

$$
\begin{equation*}
M_{\ell}(z)=\lim _{n_{\ell} \rightarrow \infty} \frac{1}{n_{\ell}} \operatorname{tr}\left[\left(z \mathbf{I}_{n_{\ell}}-\boldsymbol{\Sigma}_{\ell}\right)^{-1} \boldsymbol{\Sigma}_{\ell}\right] \tag{21}
\end{equation*}
$$

are the moment generating functions of the matrices Σ_{ℓ}, and the inverse functions $M_{\ell}^{-1}(z)$ satisfy $\left(M_{\ell}^{-1} \circ M_{\ell}\right)(z)=z$. This condition can of course be equivalently written in terms of the resolvent $G(z)=-[(M(z)+1) / z]$. Moreover, the inverses of the spectral generating functions can be equivalently expressed in terms of the S-transform from free probability theory [26].

In the case $L=1$, this ensemble reduces to the ordinary correlated Wishart ensemble [37, 43, 44], and (20) recapitulates the result previously obtained by Burda et al. [37]. In this case, we can use the assumed invertibility of M_{1} to write

$$
\begin{equation*}
M_{1}\left(\frac{\alpha_{1} z}{M(z)+1}\right)=\frac{M(z)}{\alpha_{1}} . \tag{22}
\end{equation*}
$$

However, the general $L>1$ case does not appear to have been reported in the literature [24, 37, 43-45].

It is easy to confirm that this result reduces to that which we obtained before for the unstructured case. For $\Sigma_{\ell}=\mathbf{I}_{n_{\ell}}$, we have

$$
\begin{equation*}
M_{\ell}(z)=\frac{1}{z-1} \tag{23}
\end{equation*}
$$

and

$$
\begin{equation*}
M_{\ell}^{-1}(z)=1+\frac{1}{z}, \tag{24}
\end{equation*}
$$

Figure 2: Eigenvalue densities for structured Wishart product matrices for depths $L=1$ (left) and $L=2$ (right) of width $\alpha_{1}=\cdots=\alpha_{L}=\alpha=4$. The correlation structure is as described in the main text, with $M_{1}(z)$ given by (26) with $\gamma=1 / 8$ and varying signal eigenvalues σ, indicated by shades of green. Solid lines show the result of solving equation (27) numerically, while shaded areas show the results of numerical eigendecompositions of matrices of size $n_{0}=2048$. Importantly, each empirical histogram is obtained for a single realization of the random matrix.
hence (20) reduces to (11). Another simplifying case is when all layers are identically structured, i.e., $M_{1}(z)=\cdots=M_{L}(z)$, and the widths are equal, i.e., $\alpha_{1}=\cdots=\alpha_{L}=\alpha$. Then, we have the simplified condition

$$
\begin{equation*}
M_{1}\left(\frac{\alpha}{M(z)}\left(\frac{M(z) z}{1+M(z)}\right)^{1 / L}\right)=\frac{M(z)}{\alpha} . \tag{25}
\end{equation*}
$$

To gain intuition for how the structured case differs from the unstructured setting, we consider a simple example. With the application of neural network kernels in mind, we include structured correlations only in \mathbf{X}_{1}, corresponding to the case in which the dataset is composed of independent samples drawn from a Gaussian distribution with correlated dimensions. We keep the remaining factors unstructured-i.e., $\Sigma_{\ell}=\mathbf{I}_{n_{\ell}}$ for $\ell=2, \ldots, L —$ corresponding to a setting in which the weights of the network are drawn independently. This is the standard setting for deep linear neural networks, where the weights at initialization are assumed to be independent and identically distributed [27,30, 32, 33].

As a toy model for structured data, we consider a gapped model in which a fraction $\gamma \in[0,1]$ of the eigenvalues of Σ_{1} are equal to $\sigma>1$, while the remainder are equal to unity. In the case $\gamma=0$, this reduces to the unstructured spectrum considered before. For simplicity, we restrict our attention to equal-width factors $\alpha_{1}=\cdots=\alpha_{L}=\alpha$. With this setup, we have

$$
\begin{equation*}
M_{1}(z)=\gamma \frac{\sigma}{z-\sigma}+(1-\gamma) \frac{1}{z-1} \tag{26}
\end{equation*}
$$

and the simplified condition on the generating function

$$
\begin{equation*}
M_{1}\left(\frac{\alpha z}{(1+M(z))(1+M(z) / \alpha)^{L-1}}\right)=\frac{M(z)}{\alpha} \tag{27}
\end{equation*}
$$

We show examples of this model for $L=1$ and $L=2$ in Figure 2, demonstrating excellent agreement with numerical experiment. As the signal eigenvalue σ increases, we see that the bulk density separates into two components. It will be interesting to investigate this effect, and other effects of structured correlations, in future work.

Figure 3: Eigenvalue densities for structured Wishart product matrices for depths $L=1$ (left) and $L=2$ (right) of width $\alpha_{1}=\cdots=\alpha_{L}=\alpha=4$. The correlation structure is as described in the main text, with $M_{1}(z)=\cdots=M_{L}(z)$ given by (26) with $\gamma=1 / 8$ and varying signal eigenvalues σ, indicated by shades of purple. Solid lines show the result of solving equation (25) numerically, while shaded areas show the results of numerical eigendecompositions of matrices of size $n_{0}=2048$. Importantly, each empirical histogram is obtained for a single realization of the random matrix.

For this simple data model, we can also study the case in which all layers include identical structure, i.e., $M_{1}(z)=M_{2}(z)=\cdots=M_{L}(z)$. In the equal-width case $\alpha_{1}=\cdots=\alpha_{L}=\alpha$, this gives the simplified condition noted above in (25). In Figure 3, we compare the results of solving (25) for this model to numerical experiments, showing excellent agreement. Interestingly, in this case the gap in the spectrum that is present for $L=1$ (for which this model is identical to that considered above and in Figure 2) is not present at $L=2$.

3 Conclusion

We have shown that the replica method affords a useful approach to the study of product random matrices. These derivations are straightforward, but they are of course not mathematically rigorous [41, 42]. We conclude by briefly discussing the utility of these results vis-à-vis open questions in the study of product random matrices.

The most notable utility of statistical physics methods, including the replica trick, in random matrix theory is that they allow for the study of non-invariant ensembles. Dating back to the seminal work of Bray and Rogers [17,46], sparse ensembles have been of particular interest $[9,17,40]$. We hope that the methods described in this work will enable further investigation of products of sparse random matrices and of other non-invariant product ensembles. It will also be interesting to investigate Gaussian ensembles with general correlations within and between the factor matrices [9,37,44, 45]. We remark that the approaches used in this work are particularly simple due to the independence of different factors, i.e., $\mathbb{E}\left[\left(X_{\ell}\right)_{i j}\left(X_{\ell^{\prime}}\right)_{k l}\right]=0$ if $\ell \neq \ell^{\prime}$, hence studying ensembles with correlated factors would require a somewhat different replica-theoretic setup.

In the context of neural networks, the structured ensemble with row-wise correlations studied in this work has a natural interpretation as the neural network Gaussian process kernel of a deep linear network where the input dimensions are correlated but the datapoints are independent samples, and the weights of each layer are correlated across the neurons within each layer but not across the inputs to the layer. It will be interesting to study the spectra of such kernel matrices in greater detail in future work. To enable future studies of generalization in
deep nonlinear random feature models and wide neural networks [31,47], it will be important to extend to extend these approaches to the nonlinear setting [34-36, 48]. Finally, it will be interesting to investigate the spectra resulting from the non-Gaussian factor distributions that arise in trained Bayesian neural networks [32,33].

Acknowledgements

We are indebted to Gernot Akemann for his helpful comments, and for drawing our attention to recent work on the double-scaling regime. We also thank Boris Hanin for inspiring discussions, and Blake Bordelon for comments on an early version of this manuscript. Finally, we thank the referees for their useful suggestions.

Author contributions JAZ-V conceived the project, performed all research, and wrote the paper. CP supervised the project and contributed to review and editing.

Funding information JAZ-V and CP were supported by a Google Faculty Research Award and NSF DMS-2134157.

A Computing the Stieltjes transform for unstructured factors

In this appendix, we derive the result (10) for the Stieltjes transform of a Wishart product matrix with unstructured factors. Our starting point is the partition function (8) in the EdwardsJones [18] approach. We divide the details of the derivation into two parts. In §A.1, we evaluate the moments of the partition function. Then, in §A.2, we derive the replica-symmetric saddle point equations and use them to obtain the desired condition on $G(z)$ and $M(z)$.

A. 1 Step I: Evaluating the moments of the partition function

Introducing replicas indexed by $a=1, \ldots, m$, the moments of the partition function (8) expand as

$$
\begin{equation*}
\mathbb{E} Z^{m}=\int \prod_{a=1}^{m} d \mathbf{w}^{a} \exp \left(-\frac{i z}{2} \sum_{a=1}^{m}\left\|\mathbf{w}^{a}\right\|^{2}\right) \mathbb{E} \exp \left(\frac{i}{2 n_{L} \cdots n_{1}} \sum_{a=1}^{m}\left(\mathbf{w}^{a}\right)^{\top} \mathbf{X}_{1}^{\top} \cdots \mathbf{X}_{L}^{\top} \mathbf{X}_{L} \cdots \mathbf{X}_{1} \mathbf{w}^{a}\right) . \tag{28}
\end{equation*}
$$

Using the fact that the rows of \mathbf{X}_{L} are independent and identically distributed standard Gaussian random vectors in $\mathbb{R}^{n_{L-1}}$, we have

$$
\begin{align*}
& \mathbb{E}_{\mathbf{X}_{L}} \exp \left(\frac{i}{2 n_{L} \cdots n_{1}} \sum_{a=1}^{m}\left(\mathbf{w}^{a}\right)^{\top} \mathbf{X}_{1}^{\top} \cdots \mathbf{X}_{L}^{\top} \mathbf{X}_{L} \cdots \mathbf{X}_{1} \mathbf{w}^{a}\right) \tag{29}\\
& \quad=\operatorname{det}\left(\mathbf{I}_{n_{L-1}}-\frac{i}{n_{L} \cdots n_{1}} \sum_{a=1}^{m} \mathbf{X}_{L-1} \cdots \mathbf{X}_{1} \mathbf{w}^{a}\left(\mathbf{w}^{a}\right)^{\top} \mathbf{X}_{1}^{\top} \cdots \mathbf{X}_{L-1}^{\top}\right)^{-n_{L} / 2} \tag{30}\\
& \quad=\operatorname{det}\left(\mathbf{I}_{m}-\mathbf{C}_{L}\right)^{-n_{L} / 2} \tag{31}
\end{align*}
$$

where in the last line we have applied the Weinstein-Aronszajn identity to express the determinant in terms of the Wick-rotated overlap matrix

$$
\begin{equation*}
C_{L}^{a b} \equiv \frac{i}{n_{L} \cdots n_{1}}\left(\mathbf{w}^{a}\right)^{\top} \mathbf{X}_{1}^{\top} \cdots \mathbf{X}_{L-1}^{\top} \mathbf{X}_{L-1} \cdots \mathbf{X}_{1} \mathbf{w}^{b} \tag{32}
\end{equation*}
$$

We enforce the definition of these order parameters using Fourier representations of the δ distribution with corresponding Lagrange multipliers $\hat{C}_{L}^{a b}$, writing

$$
\begin{align*}
1=\int & \frac{d \mathbf{C}_{L} d \hat{\mathbf{C}}_{L}}{\left(4 \pi i / n_{L}\right)^{m(m+1) / 2}} \exp \left(-\frac{n_{L}}{2} \operatorname{tr}\left(\mathbf{C}_{L} \hat{\mathbf{C}}_{L}\right)\right) \\
& \times \exp \left(\frac{i}{2 n_{L-1} \cdots n_{1}} \sum_{a, b=1}^{m} \hat{C}_{L}^{a b}\left(\mathbf{w}^{a}\right)^{\top} \mathbf{X}_{1}^{\top} \cdots \mathbf{X}_{L-1}^{\top} \mathbf{X}_{L-1} \cdots \mathbf{X}_{1} \mathbf{w}^{b}\right) \tag{33}
\end{align*}
$$

Here, the integrals over \mathbf{C}_{L} are taken over $m \times m$ imaginary symmetric matrices, while the integrals over $\hat{\mathbf{C}}_{L}$ are taken over imaginary symmetric matrices. This yields

$$
\begin{align*}
\mathbb{E} Z^{m}=\int & \frac{d \mathbf{C}_{L} d \hat{\mathbf{C}}_{L}}{\left(4 \pi i / n_{L}\right)^{m(m+1) / 2}} \exp \left(-\frac{n_{L}}{2}\left[\operatorname{tr}\left(\mathbf{C}_{L} \hat{\mathbf{C}}_{L}\right)+\log \operatorname{det}\left(\mathbf{I}_{m}-\mathbf{C}_{L}\right)\right]\right) \\
& \times \int \prod_{a=1}^{m} d \mathbf{w}^{a} \exp \left(-\frac{i z}{2} \sum_{a=1}^{m}\left\|\mathbf{w}^{a}\right\|^{2}\right) \\
& \times \mathbb{E}_{\mathbf{X}_{1}, \ldots, \mathbf{X}_{L-1}} \exp \left(\frac{i}{2 n_{L-1} \cdots n_{1}} \sum_{a, b=1}^{m} \hat{C}_{L}^{a b}\left(\mathbf{w}^{a}\right)^{\top} \mathbf{X}_{1}^{\top} \cdots \mathbf{X}_{L-1}^{\top} \mathbf{X}_{L-1} \cdots \mathbf{X}_{1} \mathbf{w}^{b}\right) \tag{34}
\end{align*}
$$

We can easily see that \mathbf{X}_{L-1} may be integrated out using a similar procedure, and that this may be iterated backwards by introducing order parameters

$$
\begin{equation*}
C_{\ell}^{a b} \equiv \frac{i}{n_{1} \cdots n_{\ell}}\left(\mathbf{w}^{a}\right)^{\top} \mathbf{X}_{1}^{\top} \cdots \mathbf{X}_{\ell-1}^{\top} \mathbf{X}_{\ell-1} \cdots \mathbf{X}_{1} \mathbf{w}^{b} \tag{35}
\end{equation*}
$$

yielding

$$
\begin{align*}
\mathbb{E} Z^{m}= & \int \frac{d \mathbf{C}_{1} d \hat{\mathbf{C}}_{1}}{\left(4 \pi i / n_{1}\right)^{m(m+1) / 2}} \cdots \int \frac{d \mathbf{C}_{L} d \hat{\mathbf{C}}_{L}}{\left(4 \pi i / n_{L}\right)^{m(m+1) / 2}} \\
& \exp \left(-\frac{1}{2} \sum_{\ell=1}^{L} n_{\ell}\left[\operatorname{tr}\left(\mathbf{C}_{\ell} \hat{\mathbf{C}}_{\ell}\right)+\log \operatorname{det}\left(\mathbf{I}_{m}-\mathbf{C}_{\ell} \hat{\mathbf{C}}_{\ell+1}\right)\right]\right) \\
& \times \int \prod_{a=1}^{m} d \mathbf{w}^{a} \exp \left(-\frac{i z}{2} \sum_{a=1}^{m}\left\|\mathbf{w}^{a}\right\|^{2}+\frac{i}{2} \sum_{a, b=1}^{m} \hat{C}_{1}^{a b}\left(\mathbf{w}^{a}\right)^{\top} \mathbf{w}^{b}\right), \tag{36}
\end{align*}
$$

where we have defined $\hat{\mathbf{C}}_{L+1} \equiv \mathbf{I}_{m}$ for brevity. We then can evaluate the remaining Gaussian integral over \mathbf{w}^{a} :

$$
\begin{align*}
& \int \prod_{a=1}^{m} d \mathbf{w}^{a} \exp \left(-\frac{i z}{2} \sum_{a=1}^{m}\left\|\mathbf{w}^{a}\right\|^{2}+\frac{i}{2} \sum_{a, b=1}^{m} \hat{C}_{1}^{a b}\left(\mathbf{w}^{a}\right)^{\top} \mathbf{w}^{b}\right) \tag{37}\\
& \quad=\int \prod_{a=1}^{m} d \mathbf{w}^{a} \exp \left(-\frac{i}{2} \sum_{a, b=1}^{m}\left(z \delta_{a b}-\hat{C}_{1}^{a b}\right)\left(\mathbf{w}^{a}\right)^{\top} \mathbf{w}^{b}\right) \tag{38}\\
& \quad=(2 \pi)^{n_{0} m / 2} \operatorname{det}\left(\hat{\mathbf{C}}_{1}-z \mathbf{I}_{m}\right)^{-n_{0} / 2} \tag{39}
\end{align*}
$$

Therefore, we have

$$
\begin{equation*}
\mathbb{E} Z^{m}=\int \frac{d \mathbf{C}_{1} d \hat{\mathbf{C}}_{1}}{\left(4 \pi i / n_{1}\right)^{m(m+1) / 2}} \cdots \int \frac{d \mathbf{C}_{L} d \hat{\mathbf{C}}_{L}}{\left(4 \pi i / n_{L}\right)^{m(m+1) / 2}} \exp \left(-\frac{n_{0} m}{2} S\left(\mathbf{C}_{1}, \hat{\mathbf{C}}_{1}, \ldots, \mathbf{C}_{L}, \hat{\mathbf{C}}_{L}\right)\right) \tag{40}
\end{equation*}
$$

for

$$
\begin{align*}
S\left(\mathbf{C}_{1}, \hat{\mathbf{C}}_{1}, \ldots, \mathbf{C}_{L}, \hat{\mathbf{C}}_{L}\right)= & \frac{1}{m} \log \operatorname{det}\left(\hat{\mathbf{C}}_{1}-z \mathbf{I}_{m}\right)-\log (2 \pi) \\
& +\frac{1}{m} \sum_{\ell=1}^{L} \alpha_{\ell}\left[\operatorname{tr}\left(\mathbf{C}_{\ell} \hat{\mathbf{C}}_{\ell}\right)+\log \operatorname{det}\left(\mathbf{I}_{m}-\mathbf{C}_{\ell} \hat{\mathbf{C}}_{\ell+1}\right)\right] \tag{41}
\end{align*}
$$

where we recall the definition $\hat{\mathbf{C}}_{L+1} \equiv \mathbf{I}_{m}$. In the thermodynamic limit $n_{0}, n_{1}, \ldots, n_{L} \rightarrow \infty$, this integral can be evaluated using the method of steepest descent, yielding

$$
\begin{equation*}
-\frac{2}{n_{0}} \mathbb{E} \log Z=\operatorname{cox}_{\mathbf{C}_{1}, \hat{\mathbf{c}}_{1}, \ldots, \mathrm{C}_{L}, \hat{\mathbf{c}}_{L}}^{\operatorname{extr}} S \tag{42}
\end{equation*}
$$

where the notation extr means that S should be evaluated at the saddle point

$$
\begin{equation*}
\frac{\partial S}{\partial \mathbf{C}_{\ell}}=\frac{\partial S}{\partial \hat{\mathbf{C}}_{\ell}}=\mathbf{0} \quad(\ell=1, \ldots, L) \tag{43}
\end{equation*}
$$

A. 2 Step II: The replica-symmetric saddle point equations

As is standard in the replica method (see e.g. Ref. [41]), we will consider replica-symmetric (RS) saddle points, where the order parameters take the form

$$
\begin{align*}
& \mathbf{C}_{\ell}=q_{\ell} \mathbf{I}_{m}+c_{\ell} \mathbf{1}_{m} \mathbf{1}_{m}^{\top}, \tag{44}\\
& \hat{\mathbf{C}}_{\ell}=\hat{q}_{\ell} \mathbf{I}_{m}+\hat{c}_{\ell} \mathbf{1}_{m} \mathbf{1}_{m}^{\top} \tag{45}
\end{align*}
$$

Under this Ansatz, we will now simplify S in the limit $m \rightarrow 0$ using standard identities (see Ref. [31] and Refs. [41, 42]). We have

$$
\begin{align*}
\lim _{m \rightarrow 0} \frac{1}{m} \operatorname{tr}\left(\mathbf{C}_{\ell} \hat{\mathbf{C}}_{\ell}\right) & =\lim _{m \rightarrow 0}\left[q_{\ell} \hat{q}_{\ell}+q_{\ell} \hat{c}_{\ell}+c_{\ell} \hat{q}_{\ell}+m c_{\ell} \hat{c}_{\ell}\right] \tag{46}\\
& =q_{\ell} \hat{q}_{\ell}+q_{\ell} \hat{c}_{\ell}+c_{\ell} \hat{q}_{\ell} \tag{47}
\end{align*}
$$

Using the matrix determinant lemma, we have

$$
\begin{align*}
\lim _{m \rightarrow 0} \frac{1}{m} \log \operatorname{det}\left(\hat{\mathbf{C}}_{1}-z \mathbf{I}_{m}\right) & =\lim _{m \rightarrow 0} \frac{1}{m} \log \operatorname{det}\left[\left(\hat{q}_{1}-z\right) \mathbf{I}_{m}+\hat{c}_{1} \mathbf{1}_{m} \mathbf{1}_{m}^{\top}\right] \tag{48}\\
& =\log \left(\hat{q}_{1}-z\right)+\lim _{m \rightarrow 0} \frac{1}{m} \log \left(1+\frac{m \hat{c}_{1}}{\hat{q}_{1}-z}\right) \tag{49}\\
& =\log \left(\hat{q}_{1}-z\right)+\frac{\hat{c}_{1}}{\hat{q}_{1}-z} \tag{50}
\end{align*}
$$

and, similarly,

$$
\begin{equation*}
\lim _{m \rightarrow 0} \frac{1}{m} \log \operatorname{det}\left(\mathbf{I}_{m}-\mathbf{C}_{\ell} \hat{\mathbf{C}}_{\ell+1}\right)=\log \left(1-q_{\ell} \hat{q}_{\ell+1}\right)-\frac{q_{\ell} \hat{c}_{\ell+1}+c_{\ell} \hat{q}_{\ell+1}}{1-q_{\ell} \hat{q}_{\ell+1}} \tag{51}
\end{equation*}
$$

This gives

$$
\begin{align*}
\lim _{m \rightarrow 0} S= & \log \left(\hat{q}_{1}-z\right)+\frac{\hat{c}_{1}}{\hat{q}_{1}-z} \\
& +\sum_{\ell=1}^{L} \alpha_{\ell}\left(q_{\ell} \hat{q}_{\ell}+q_{\ell} \hat{c}_{\ell}+c_{\ell} \hat{q}_{\ell}+\log \left(1-q_{\ell} \hat{q}_{\ell+1}\right)-\frac{q_{\ell} \hat{c}_{\ell+1}+c_{\ell} \hat{q}_{\ell+1}}{1-q_{\ell} \hat{q}_{\ell+1}}\right) \tag{52}
\end{align*}
$$

with the boundary condition $\hat{q}_{L+1}=1, \hat{c}_{L+1}=0$.
We also have

$$
\begin{equation*}
G(z)=-\lim _{m \rightarrow 0} \frac{\partial S}{\partial z}=-\frac{1}{z-\hat{q}_{1}}-\frac{\hat{c}_{1}}{\left(z-\hat{q}_{1}\right)^{2}} \tag{53}
\end{equation*}
$$

where the order parameters are to be evaluated at their saddle point values.
From the equation $\partial S / \partial q_{\ell}=0$, we have

$$
\begin{equation*}
0=\hat{q}_{\ell}+\hat{c}_{\ell}-\frac{\hat{q}_{\ell+1}}{1-q_{\ell} \hat{q}_{\ell+1}}-\frac{\hat{c}_{\ell+1}}{1-q_{\ell} \hat{q}_{\ell+1}}-\frac{q_{\ell} \hat{c}_{\ell+1}+c_{\ell} \hat{q}_{\ell+1}}{\left(1-q_{\ell} \hat{q}_{\ell+1}\right)^{2}} \hat{q}_{\ell+1} \tag{54}
\end{equation*}
$$

for $\ell=1, \ldots, L$. From the equations $\partial S / \partial \hat{q}_{\ell}=0$, we have

$$
\begin{equation*}
0=-\frac{1}{z-\hat{q}_{1}}-\frac{\hat{c}_{1}}{\left(z-\hat{q}_{1}\right)^{2}}+\alpha_{1}\left(q_{1}+c_{1}\right) \tag{55}
\end{equation*}
$$

if $\ell=1$, and

$$
\begin{equation*}
0=\alpha_{\ell}\left(q_{\ell}+c_{\ell}\right)-\alpha_{\ell-1}\left(\frac{q_{\ell-1}}{1-q_{\ell-1} \hat{q}_{\ell}}+\frac{c_{\ell-1}}{1-q_{\ell-1} \hat{q}_{\ell}}+\frac{q_{\ell-1} \hat{c}_{\ell}+c_{\ell-1} \hat{q}_{\ell}}{\left(1-q_{\ell-1} \hat{q}_{\ell}\right)^{2}} q_{\ell-1}\right) \tag{56}
\end{equation*}
$$

if $\ell>1$. From $\partial S / \partial c_{\ell}=0$, we have

$$
\begin{equation*}
0=\hat{q}_{\ell}-\frac{\hat{q}_{\ell+1}}{1-q_{\ell} \hat{q}_{\ell+1}} \tag{57}
\end{equation*}
$$

for $\ell=1, \ldots, L$. Finally, from $\partial S / \partial \hat{c}_{\ell}=0$ we have

$$
\begin{equation*}
0=-\frac{1}{z-\hat{q}_{1}}+\alpha_{1} q_{1} \tag{58}
\end{equation*}
$$

if $\ell=1$ and

$$
\begin{equation*}
0=\alpha_{\ell} q_{\ell}-\alpha_{\ell-1} \frac{q_{\ell-1}}{1-q_{\ell-1} \hat{q}_{\ell}} \tag{59}
\end{equation*}
$$

for $\ell>1$.
Simplifying, we find that the replica-nonuniform components are determined by the system

$$
\begin{array}{rlr}
\hat{q}_{\ell} & =\frac{\hat{q}_{\ell+1}}{1-q_{\ell} \hat{q}_{\ell+1}} & (\ell=1, \ldots, L) \\
q_{1} & =\frac{1}{\alpha_{1}} \frac{1}{z-\hat{q}_{1}} & \\
q_{\ell} & =\frac{\alpha_{\ell-1}}{\alpha_{\ell}} \frac{q_{\ell-1}}{1-q_{\ell-1} \hat{q}_{\ell}} & (\ell=2, \ldots, L) \tag{62}
\end{array}
$$

while the uniform components are determined by

$$
\begin{array}{lr}
\hat{c}_{\ell}=\frac{\hat{c}_{\ell+1}+c_{\ell} \hat{q}_{\ell+1}^{2}}{\left(1-q_{\ell} \hat{q}_{\ell+1}\right)^{2}} & (\ell=1, \ldots, L) \\
c_{1}=\frac{1}{\alpha_{1}} \frac{\hat{c}_{1}}{\left(z-\hat{q}_{1}\right)^{2}} & \\
c_{\ell}=\frac{\alpha_{\ell-1}}{\alpha_{\ell}} \frac{c_{\ell-1}+q_{\ell-1}^{2} \hat{c}_{\ell}}{\left(1-q_{\ell-1} \hat{q}_{\ell}\right)^{2}} & (\ell=2, \ldots, L) \tag{65}
\end{array}
$$

Recalling the boundary condition $\hat{q}_{L+1}=1, \hat{c}_{L+1}=0$, it is easy to see that we should have $c_{\ell}=\hat{c}_{\ell}=0$ for all $\ell=1, \ldots, L$. Then, the Stieltjes transform is given by $G(z)=-\alpha_{1} q_{1}$, where q_{1} is determined by the system

$$
\begin{array}{rlrl}
\hat{q}_{\ell} & =\frac{\hat{q}_{\ell+1}}{1-q_{\ell} \hat{q}_{\ell+1}} & (\ell=1, \ldots, L) \\
q_{1} & =\frac{1}{\alpha_{1}} \frac{1}{z-\hat{q}_{1}} & & \\
q_{\ell} & =\frac{\alpha_{\ell-1}}{\alpha_{\ell}} \frac{q_{\ell-1}}{1-q_{\ell-1} \hat{q}_{\ell}} & (\ell=2, \ldots, L) . \tag{68}
\end{array}
$$

These equations can be simplified with a bit of algebra, as in our prior work [31]. From the equation

$$
\begin{equation*}
\hat{q}_{\ell}=\frac{\hat{q}_{\ell+1}}{1-q_{\ell} \hat{q}_{\ell+1}} \tag{69}
\end{equation*}
$$

we have

$$
\begin{equation*}
q_{\ell}=\frac{\hat{q}_{\ell}-\hat{q}_{\ell+1}}{\hat{q}_{\ell} \hat{q}_{\ell+1}} \tag{70}
\end{equation*}
$$

for $\ell=1, \ldots, L$. Then, for $\ell=2, \ldots, L$, the equation

$$
\begin{equation*}
q_{\ell}=\frac{\alpha_{\ell-1}}{\alpha_{\ell}} \frac{q_{\ell-1}}{1-q_{\ell-1} \hat{q}_{\ell}} \tag{71}
\end{equation*}
$$

yields

$$
\begin{equation*}
\frac{\hat{q}_{\ell}-\hat{q}_{\ell+1}}{\hat{q}_{\ell} \hat{q}_{\ell+1}}=\frac{\alpha_{\ell-1}}{\alpha_{\ell}} \frac{\hat{q}_{\ell-1}}{\hat{q}_{\ell}} \frac{\hat{q}_{\ell-1}-\hat{q}_{\ell}}{\hat{q}_{\ell-1} \hat{q}_{\ell}} . \tag{72}
\end{equation*}
$$

If we define A by

$$
\begin{equation*}
\alpha_{1} q_{1} \hat{q}_{1}=A \tag{73}
\end{equation*}
$$

such that

$$
\begin{equation*}
\frac{\hat{q}_{1}-\hat{q}_{2}}{\hat{q}_{1} \hat{q}_{2}}=\frac{A}{\alpha_{1} \hat{q}_{1}} \tag{74}
\end{equation*}
$$

we have

$$
\begin{align*}
\frac{\hat{q}_{2}-\hat{q}_{3}}{\hat{q}_{2} \hat{q}_{3}} & =\frac{\alpha_{1}}{\alpha_{2}} \frac{\hat{q}_{1}}{\hat{q}_{2}} \frac{\hat{q}_{1}-\hat{q}_{2}}{\hat{q}_{1} \hat{q}_{2}} \tag{75}\\
& =\frac{A}{\alpha_{2} \hat{q}_{2}} \tag{76}
\end{align*}
$$

It is then easy to see that

$$
\begin{equation*}
q_{\ell}=\frac{\hat{q}_{\ell}-\hat{q}_{\ell+1}}{\hat{q}_{\ell} \hat{q}_{\ell+1}}=\frac{A}{\alpha_{\ell} \hat{q}_{\ell}} \tag{77}
\end{equation*}
$$

for $\ell=1, \ldots, L$. This yields the backward recurrence

$$
\begin{equation*}
\hat{q}_{\ell}=\left(1+\frac{A}{\alpha_{\ell}}\right) \hat{q}_{\ell+1} \tag{78}
\end{equation*}
$$

for $\ell=1, \ldots, L$, which can be solved using the endpoint condition $\hat{q}_{L+1}=1$, yielding

$$
\begin{equation*}
\hat{q}_{\ell}=\prod_{j=\ell}^{L}\left(1+\frac{A}{\alpha_{j}}\right) . \tag{79}
\end{equation*}
$$

Then, using the fact that q_{1} and \hat{q}_{1} are related by the equation

$$
\begin{equation*}
q_{1}=\frac{1}{\alpha_{1}} \frac{1}{z-\hat{q}_{1}} \tag{80}
\end{equation*}
$$

we have

$$
\begin{equation*}
\hat{q}_{1}=-\frac{1-z \alpha_{1} q_{1}}{\alpha_{1} q_{1}} \tag{81}
\end{equation*}
$$

so

$$
\begin{equation*}
A=-\left(1-z \alpha_{1} q_{1}\right) \tag{82}
\end{equation*}
$$

Therefore, we have the equation

$$
\begin{equation*}
-\frac{1-z \alpha_{1} q_{1}}{\alpha_{1} q_{1}}=\prod_{\ell=1}^{L}\left(1-\frac{1-z \alpha_{1} q_{1}}{\alpha_{\ell}}\right) \tag{83}
\end{equation*}
$$

which, substituting in $G(z)=-\alpha_{1} q_{1}$, yields the condition

$$
\begin{equation*}
\frac{z G(z)+1}{G(z)}=\prod_{\ell=1}^{L}\left(1-\frac{z G(z)+1}{\alpha_{\ell}}\right) \tag{84}
\end{equation*}
$$

on the Stieltjes transform. This is the result claimed in (10).

B Computing the Stieltjes transform for correlated factors

In this appendix, we derive the result (20) for the Stieltjes transform of a Wishart product matrix with row-wise correlated factors. This computation parallels our analysis of the unstructured case in §A. Again, our starting point is the Edwards-Jones [18] partition function, and we once again first evaluate its moments in §B. 1 and then derive and simplify the replicasymmetric saddle point equations in §B.2.

B. 1 Step I: Evaluating the moments of the partition function

Introducing replicas indexed by $a=1, \ldots, m$, the moments of the partition function (8) expand as

$$
\begin{equation*}
\mathbb{E} Z^{m}=\int \prod_{a=1}^{m} d \mathbf{w}^{a} \exp \left(-\frac{i z}{2} \sum_{a=1}^{m}\left\|\mathbf{w}^{a}\right\|^{2}\right) \mathbb{E} \exp \left(\frac{i}{2 n_{L} \cdots n_{1}} \sum_{a=1}^{m}\left(\mathbf{w}^{a}\right)^{\top} \mathbf{X}_{1}^{\top} \cdots \mathbf{X}_{L}^{\top} \mathbf{X}_{L} \cdots \mathbf{X}_{1} \mathbf{w}^{a}\right) \tag{85}
\end{equation*}
$$

We will first integrate out \mathbf{X}_{L}. For brevity, define the matrix $\mathbf{A}_{L} \in \mathbb{R}^{n_{L-1} \times m}$ by

$$
\begin{equation*}
\left(A_{L}\right)_{j a}=\frac{1}{n_{L} \cdots n_{1}}\left(\mathbf{X}_{L-1} \cdots \mathbf{X}_{1} \mathbf{w}^{a}\right)_{j} \tag{86}
\end{equation*}
$$

such that the required expectation is

$$
\begin{equation*}
\mathbb{E}_{\mathbf{X}_{L}} \exp \left(\frac{i}{2 n_{L} \cdots n_{1}} \sum_{a=1}^{m}\left(\mathbf{w}^{a}\right)^{\top} \mathbf{X}_{1}^{\top} \cdots \mathbf{X}_{L}^{\top} \mathbf{X}_{L} \cdots \mathbf{X}_{1} \mathbf{w}^{a}\right)=\mathbb{E}_{\mathbf{X}_{L}} \exp \left(\frac{i}{2} \operatorname{tr}\left[\mathbf{A}_{L}^{\top} \mathbf{X}_{L}^{\top} \mathbf{X}_{L} \mathbf{A}_{L}\right]\right) . \tag{87}
\end{equation*}
$$

Let $\mathbf{Z}_{L} \in \mathbb{R}^{n_{L} \times n_{L-1}}$ be a real Ginibre random matrix, with independent and identically distributed elements $Z_{i j} \sim \mathcal{N}(0,1)$, such that

$$
\begin{equation*}
\mathbf{X}_{L}=\Sigma_{L}^{1 / 2} \mathbf{Z}_{L} \tag{88}
\end{equation*}
$$

in distribution. The required expectation then becomes

$$
\begin{equation*}
\mathbb{E}_{\mathbf{Z}_{L}} \exp \left(\frac{i}{2} \operatorname{tr}\left[\mathbf{A}_{L}^{\top} \mathbf{Z}_{L}^{\top} \boldsymbol{\Sigma}_{L} \mathbf{Z}_{L} \mathbf{A}_{L}\right]\right) . \tag{89}
\end{equation*}
$$

This expectation can be easily evaluated using column-major vectorization

$$
\begin{align*}
\mathbb{E}_{\mathbf{Z}_{L}} \exp \left(\frac{i}{2} \operatorname{tr}\left[\mathbf{A}_{L}^{\top} \mathbf{Z}_{L}^{\top} \boldsymbol{\Sigma}_{L} \mathbf{Z}_{L} \mathbf{A}_{L}\right]\right) & =\mathbb{E}_{\mathbf{Z}_{L}} \exp \left(\frac{i}{2} \operatorname{tr}\left[\mathbf{Z}_{L}^{\top} \boldsymbol{\Sigma}_{L} \mathbf{Z}_{L} \mathbf{A}_{L} \mathbf{A}_{L}^{\top}\right]\right) \tag{90}\\
& =\mathbb{E}_{\mathbf{Z}_{L}} \exp \left(\frac{i}{2} \operatorname{vec}\left(\mathbf{Z}_{L}\right)^{\top}\left[\left(\mathbf{A}_{L} \mathbf{A}_{L}^{\top}\right) \otimes \boldsymbol{\Sigma}_{L}\right] \operatorname{vec}\left(\mathbf{Z}_{L}\right)\right) \tag{91}\\
& =\operatorname{det}\left(\mathbf{I}_{n_{L} n_{L-1}}-i\left(\mathbf{A}_{L} \mathbf{A}_{L}^{\top}\right) \otimes \boldsymbol{\Sigma}_{L}\right)^{-1 / 2}, \tag{92}
\end{align*}
$$

where vec(•) denotes the column-major vectorization of a matrix and \otimes denotes the Kronecker product [49]. Using the mixed-product property of the Kronecker product and the Weinstein-Aronszajn identity [49, 50], we have

$$
\begin{align*}
\operatorname{det}\left(\mathbf{I}_{n_{L} n_{L-1}}-i\left(\mathbf{A}_{L} \mathbf{A}_{L}^{\top}\right) \otimes \boldsymbol{\Sigma}_{L}\right) & =\operatorname{det}\left(\mathbf{I}_{n_{L} n_{L-1}}-i\left(\mathbf{A}_{L} \otimes \boldsymbol{\Sigma}_{L}\right)\left(\mathbf{A}_{L}^{\top} \otimes \mathbf{I}_{n_{L}}\right)\right) \tag{93}\\
& =\operatorname{det}\left(\mathbf{I}_{m n_{L}}-i\left(\mathbf{A}_{L}^{\top} \otimes \mathbf{I}_{n_{L}}\right)\left(\mathbf{A}_{L} \otimes \boldsymbol{\Sigma}_{L}\right)\right) \tag{94}\\
& =\operatorname{det}\left(\mathbf{I}_{m n_{L}}-i\left(\mathbf{A}_{L}^{\top} \mathbf{A}_{L}\right) \otimes \boldsymbol{\Sigma}_{L}\right) . \tag{95}
\end{align*}
$$

But, we recognize that

$$
\begin{equation*}
i \mathbf{A}_{L}^{\top} \mathbf{A}_{L}=\mathbf{C}_{L}, \tag{96}
\end{equation*}
$$

where \mathbf{C}_{L} is the Wick-rotated overlap matrix we encountered in our previous calculation:

$$
\begin{equation*}
C_{L}^{a b} \equiv \frac{i}{n_{L} \cdots n_{1}}\left(\mathbf{w}^{a}\right)^{\top} \mathbf{X}_{1}^{\top} \cdots \mathbf{X}_{L-1}^{\top} \mathbf{X}_{L-1} \cdots \mathbf{X}_{1} \mathbf{w}^{b} . \tag{97}
\end{equation*}
$$

We enforce the definition of these order parameters using Fourier representations of the δ distribution with corresponding Lagrange multipliers $\hat{C}_{L}^{a b}$, which gives

$$
\begin{align*}
\mathbb{E} Z^{m}=\int & \frac{d \mathbf{C}_{L} d \hat{\mathbf{C}}_{L}}{\left(4 \pi i / n_{L}\right)^{m(m+1) / 2}} \exp \left(-\frac{n_{L}}{2}\left[\operatorname{tr}\left(\mathbf{C}_{L} \hat{\mathbf{C}}_{L}\right)+\frac{1}{n_{L}} \log \operatorname{det}\left(\mathbf{I}_{m n_{L}}-\mathbf{C}_{L} \otimes \boldsymbol{\Sigma}_{\mathbf{L}}\right)\right]\right) \\
& \times \int \prod_{a=1}^{m} d \mathbf{w}^{a} \exp \left(-\frac{i z}{2} \sum_{a=1}^{m}\left\|\mathbf{w}^{a}\right\|^{2}\right) \\
& \times \mathbb{E}_{\mathbf{X}_{1}, \ldots, \mathbf{X}_{L-1}} \exp \left(\frac{i}{2 n_{L-1} \cdots n_{1}} \sum_{a, b=1}^{m} \hat{C}_{L}^{a b}\left(\mathbf{w}^{a}\right)^{\top} \mathbf{X}_{1}^{\top} \cdots \mathbf{X}_{L-1}^{\top} \mathbf{X}_{L-1} \cdots \mathbf{X}_{1} \mathbf{w}^{b}\right) \tag{98}
\end{align*}
$$

Here, the integrals over \mathbf{C}_{L} are taken over $m \times m$ imaginary symmetric matrices, while the integrals over $\hat{\mathbf{C}}_{L}$ are taken over imaginary symmetric matrices.

As in the unstructured case, we can see that this procedure can be iterated backwards by introducing order parameters

$$
\begin{equation*}
C_{\ell}^{a b} \equiv \frac{i}{n_{1} \cdots n_{\ell}}\left(\mathbf{w}^{a}\right)^{\top} \mathbf{X}_{1}^{\top} \cdots \mathbf{X}_{\ell-1}^{\top} \mathbf{X}_{\ell-1} \cdots \mathbf{X}_{1} \mathbf{w}^{b} \tag{99}
\end{equation*}
$$

yielding

$$
\begin{align*}
\mathbb{E} Z^{m}=\int & \frac{d \mathbf{C}_{1} d \hat{\mathbf{C}}_{1}}{\left(4 \pi i / n_{1}\right)^{m(m+1) / 2}} \cdots \int \frac{d \mathbf{C}_{L} d \hat{\mathbf{C}}_{L}}{\left(4 \pi i / n_{L}\right)^{m(m+1) / 2}} \\
& \exp \left(-\frac{1}{2} \sum_{\ell=1}^{L} n_{\ell}\left[\operatorname{tr}\left(\mathbf{C}_{\ell} \hat{\mathbf{C}}_{\ell}\right)+\frac{1}{n_{\ell}} \log \operatorname{det}\left[\mathbf{I}_{m n_{\ell}}-\left(\mathbf{C}_{\ell} \hat{\mathbf{C}}_{\ell+1}\right) \otimes \mathbf{\Sigma}_{\ell}\right]\right]\right) \\
& \times \int \prod_{a=1}^{m} d \mathbf{w}^{a} \exp \left(-\frac{i z}{2} \sum_{a=1}^{m}\left\|\mathbf{w}^{a}\right\|^{2}+\frac{i}{2} \sum_{a, b=1}^{m} \hat{C}_{1}^{a b}\left(\mathbf{w}^{a}\right)^{\top} \mathbf{w}^{b}\right) \tag{100}
\end{align*}
$$

where we have defined $\hat{\mathbf{C}}_{L+1} \equiv \mathbf{I}_{m}$ for brevity. The remaining integral over \mathbf{w}^{a} is identical to the unstructured case, hence we obtain

$$
\begin{equation*}
\mathbb{E} Z^{m}=\int \frac{d \mathbf{C}_{1} d \hat{\mathbf{C}}_{1}}{\left(4 \pi i / n_{1}\right)^{m(m+1) / 2}} \cdots \int \frac{d \mathbf{C}_{L} d \hat{\mathbf{C}}_{L}}{\left(4 \pi i / n_{L}\right)^{m(m+1) / 2}} \exp \left(-\frac{n_{0} m}{2} S\left(\mathbf{C}_{1}, \hat{\mathbf{C}}_{1}, \ldots, \mathbf{C}_{L}, \hat{\mathbf{C}}_{L}\right)\right) \tag{101}
\end{equation*}
$$

for

$$
\begin{align*}
S\left(\mathbf{C}_{1}, \hat{\mathbf{C}}_{1}, \ldots, \mathbf{C}_{L}, \hat{\mathbf{C}}_{L}\right)= & \frac{1}{m} \log \operatorname{det}\left(\hat{\mathbf{C}}_{1}-z \mathbf{I}_{m}\right)-\log (2 \pi) \\
& +\frac{1}{m} \sum_{\ell=1}^{L} \alpha_{\ell}\left[\operatorname{tr}\left(\mathbf{C}_{\ell} \hat{\mathbf{C}}_{\ell}\right)+\frac{1}{n_{\ell}} \log \operatorname{det}\left[\mathbf{I}_{m n_{\ell}}-\left(\mathbf{C}_{\ell} \hat{\mathbf{C}}_{\ell+1}\right) \otimes \mathbf{\Sigma}_{\ell}\right]\right] \tag{102}
\end{align*}
$$

where we recall the definition $\hat{\mathbf{C}}_{L+1} \equiv \mathbf{I}_{m}$.
In the thermodynamic limit, we expect that

$$
\begin{equation*}
\frac{1}{n_{\ell}} \log \operatorname{det}\left[\mathbf{I}_{m n_{\ell}}-\left(\mathbf{C}_{\ell} \hat{\mathbf{C}}_{\ell+1}\right) \otimes \mathbf{\Sigma}_{\ell}\right] \sim \mathcal{O}(1) \tag{103}
\end{equation*}
$$

provided that the spectrum of $\boldsymbol{\Sigma}_{\ell}$ is sufficiently generic. It clearly holds in the unstructured case $\boldsymbol{\Sigma}_{\ell}=\sigma_{\ell} \mathbf{I}_{n_{\ell}}$, in which we have

$$
\begin{equation*}
\frac{1}{n_{\ell}} \log \operatorname{det}\left[\mathbf{I}_{m n_{\ell}}-\left(\mathbf{C}_{\ell} \hat{\mathbf{C}}_{\ell+1}\right) \otimes \mathbf{\Sigma}_{\ell}\right]=\log \operatorname{det}\left[\mathbf{I}_{m}-\sigma_{\ell} \mathbf{C}_{\ell} \hat{\mathbf{C}}_{\ell+1}\right] \tag{104}
\end{equation*}
$$

Under the assumption that this scaling is valid, we can evaluate the required integrals using the method of steepest descent.

B. 2 Step II: The replica-symmetric saddle point equations

We now make an RS Ansatz

$$
\begin{align*}
& \mathbf{C}_{\ell}=q_{\ell} \mathbf{I}_{m}+c_{\ell} \mathbf{1}_{m} \mathbf{1}_{m}^{\top} \tag{105}\\
& \hat{\mathbf{C}}_{\ell}=\hat{q}_{\ell} \mathbf{I}_{m}+\hat{c}_{\ell} \mathbf{1}_{m} \mathbf{1}_{m}^{\top} \tag{106}
\end{align*}
$$

The only new terms relative to our calculation in the unstructured case are

$$
\begin{equation*}
\frac{1}{m n_{\ell}} \log \operatorname{det}\left[\mathbf{I}_{m n_{\ell}}-\left(\mathbf{C}_{\ell} \hat{\mathbf{C}}_{\ell+1}\right) \otimes \mathbf{\Sigma}_{\ell}\right] \tag{107}
\end{equation*}
$$

If we assume that the annealed approximation is valid, and that $c_{\ell}=\hat{c}_{\ell}=0$, then we immediately obtain

$$
\begin{align*}
\frac{1}{m n_{\ell}} \log \operatorname{det}\left[\mathbf{I}_{m n_{\ell}}-\left(\mathbf{C}_{\ell} \hat{\mathbf{C}}_{\ell+1}\right) \otimes \mathbf{\Sigma}_{\ell}\right] & =\frac{1}{m n_{\ell}} \log \operatorname{det}\left[\mathbf{I}_{m n_{\ell}}-\left(q_{\ell} \hat{q}_{\ell+1} \mathbf{I}_{m}\right) \otimes \mathbf{\Sigma}_{\ell}\right] \tag{108}\\
& =\frac{1}{m n_{\ell}} \log \operatorname{det}\left[\mathbf{I}_{m} \otimes\left(\mathbf{I}_{n_{\ell}}-q_{\ell} \hat{q}_{\ell+1} \mathbf{\Sigma}_{\ell}\right)\right] \tag{109}\\
& =\frac{1}{n_{\ell}} \log \operatorname{det}\left(\mathbf{I}_{n_{\ell}}-q_{\ell} \hat{q}_{\ell+1} \mathbf{\Sigma}_{\ell}\right) \tag{110}\\
& =\mathbb{E}_{\sigma_{\ell}} \log \left(1-q_{\ell} \hat{q}_{\ell+1} \sigma_{\ell}\right) \tag{111}
\end{align*}
$$

where σ_{ℓ} are the eigenvalues of Σ_{ℓ} and $\mathbb{E}_{\sigma_{\ell}}$ denotes expectation with respect to their limiting measure.

More generally, we have

$$
\begin{align*}
& \operatorname{det}\left[\mathbf{I}_{m n_{\ell}}-\left(\mathbf{C}_{\ell} \hat{\mathbf{C}}_{\ell+1}\right) \otimes \boldsymbol{\Sigma}_{\ell}\right] \tag{112}\\
& =\operatorname{det}\left[\mathbf{I}_{m n_{\ell}}-q_{\ell} \hat{q}_{\ell+1} \mathbf{I}_{m} \otimes \boldsymbol{\Sigma}_{\ell}-\left(q_{\ell} \hat{\hat{l}}_{\ell+1}+c_{\ell} \hat{q}_{\ell+1}+m c_{\ell} \hat{\imath}_{\ell+1}\right)\left(\mathbf{1}_{m} \mathbf{1}_{m}^{\top}\right) \otimes \boldsymbol{\Sigma}_{\ell}\right] \tag{113}\\
& =\operatorname{det}\left[\mathbf{I}_{m} \otimes\left(\mathbf{I}_{n_{\ell}}-q_{\ell} \hat{q}_{\ell+1} \boldsymbol{\Sigma}_{\ell}\right)-\left(q_{\ell} \hat{\imath}_{\ell+1}+c_{\ell} \hat{q}_{\ell+1}+m c_{\ell} \hat{c}_{\ell+1}\right)\left(\mathbf{1}_{m} \otimes \Sigma_{\ell}\right)\left(\mathbf{1}_{m}^{\top} \otimes \mathbf{I}_{n_{\ell}}\right)\right] \tag{114}
\end{align*}
$$

Assuming that $\mathbf{I}_{n_{\ell}}-q_{\ell} \hat{q}_{\ell+1} \Sigma_{\ell}$ is invertible, we may use the multiplicative property of the determinant and the mixed-product property of the Kronecker product to expand this as

$$
\begin{align*}
& \operatorname{det}\left(\mathbf{I}_{n_{\ell}}-q_{\ell} \hat{q}_{\ell+1} \boldsymbol{\Sigma}_{\ell}\right)^{m} \\
& \times \operatorname{det}\left\{\mathbf{I}_{m n_{\ell}}-\left(q_{\ell} \hat{c}_{\ell+1}+c_{\ell} \hat{q}_{\ell+1}+m c_{\ell} \hat{c}_{\ell+1}\right)\left[\mathbf{1}_{m} \otimes\left(\mathbf{I}_{n_{\ell}}-q_{\ell} \hat{q}_{\ell+1} \boldsymbol{\Sigma}_{\ell}\right)^{-1} \boldsymbol{\Sigma}_{\ell}\right]\left(\mathbf{1}_{m}^{\top} \otimes \mathbf{I}_{n_{\ell}}\right)\right\} . \tag{115}
\end{align*}
$$

Then, by the Weinstein-Aronszajn identity, we have

$$
\begin{align*}
& \operatorname{det}\left\{\mathbf{I}_{m n_{\ell}}-\left(q_{\ell} \hat{c}_{\ell+1}+c_{\ell} \hat{q}_{\ell+1}+m c_{\ell} \hat{c}_{\ell+1}\right)\left[\mathbf{1}_{m} \otimes\left(\mathbf{I}_{n_{\ell}}-q_{\ell} \hat{q}_{\ell+1} \boldsymbol{\Sigma}_{\ell}\right)^{-1} \boldsymbol{\Sigma}_{\ell}\right]\left(\mathbf{1}_{m}^{\top} \otimes \mathbf{I}_{n_{\ell}}\right)\right\} \tag{116}\\
& =\operatorname{det}\left\{\mathbf{I}_{n_{\ell}}-\left(q_{\ell} \hat{c}_{\ell+1}+c_{\ell} \hat{q}_{\ell+1}+m c_{\ell} \hat{c}_{\ell+1}\right)\left(\mathbf{1}_{m}^{\top} \otimes \mathbf{I}_{n_{\ell}}\right)\left[\mathbf{1}_{m} \otimes\left(\mathbf{I}_{n_{\ell}}-q_{\ell} \hat{q}_{\ell+1} \boldsymbol{\Sigma}_{\ell}\right)^{-1} \boldsymbol{\Sigma}_{\ell}\right]\right\} \tag{117}\\
& =\operatorname{det}\left[\mathbf{I}_{n_{\ell}}-m\left(q_{\ell} \hat{c}_{\ell+1}+c_{\ell} \hat{q}_{\ell+1}+m c_{\ell} \hat{c}_{\ell+1}\right)\left(\mathbf{I}_{n_{\ell}}-q_{\ell} \hat{q}_{\ell+1} \boldsymbol{\Sigma}_{\ell}\right)^{-1} \boldsymbol{\Sigma}_{\ell}\right] . \tag{118}
\end{align*}
$$

Therefore, we have

$$
\begin{align*}
& \frac{1}{m n_{\ell}} \operatorname{det}\left[\mathbf{I}_{m n_{\ell}}-\left(\mathbf{C}_{\ell} \hat{\mathbf{C}}_{\ell+1}\right) \otimes \mathbf{\Sigma}_{\ell}\right] \tag{119}\\
& =\frac{1}{n_{\ell}} \log \operatorname{det}\left(\mathbf{I}_{n_{\ell}}-q_{\ell} \hat{q}_{\ell+1} \boldsymbol{\Sigma}_{\ell}\right) \\
& \quad+\frac{1}{m n_{\ell}} \log \operatorname{det}\left[\mathbf{I}_{n_{\ell}}-m\left(q_{\ell} \hat{c}_{\ell+1}+c_{\ell} \hat{q}_{\ell+1}+m c_{\ell} \hat{c}_{\ell+1}\right)\left(\mathbf{I}_{n_{\ell}}-q_{\ell} \hat{q}_{\ell+1} \boldsymbol{\Sigma}_{\ell}\right)^{-1} \boldsymbol{\Sigma}_{\ell}\right] . \tag{120}
\end{align*}
$$

Assuming no issues arise in interchanging limits in m and n_{ℓ}, we can then use the series expansion of the log-determinant near the identity [33] to obtain

$$
\begin{align*}
& \frac{1}{m n_{\ell}} \log \operatorname{det}\left[\mathbf{I}_{n_{\ell}}-m\left(q_{\ell} \hat{c}_{\ell+1}+c_{\ell} \hat{q}_{\ell+1}+m c_{\ell} \hat{c}_{\ell+1}\right)\left(\mathbf{I}_{n_{\ell}}-q_{\ell} \hat{q}_{\ell+1} \Sigma_{\ell}\right)^{-1} \boldsymbol{\Sigma}_{\ell}\right] \tag{121}\\
& =-\left(q_{\ell} \hat{c}_{\ell+1}+c_{\ell} \hat{q}_{\ell+1}\right) \frac{1}{n_{\ell}} \operatorname{tr}\left[\left(\mathbf{I}_{n_{\ell}}-q_{\ell} \hat{q}_{\ell+1} \boldsymbol{\Sigma}_{\ell}\right)^{-1} \boldsymbol{\Sigma}_{\ell}\right]+\mathcal{O}(m) \tag{122}\\
& =-\left(q_{\ell} \hat{c}_{\ell+1}+c_{\ell} \hat{q}_{\ell+1}\right) \mathbb{E}_{\sigma_{\ell}}\left[\frac{\sigma_{\ell}}{1-q_{\ell} \hat{q}_{\ell+1} \sigma_{\ell}}\right]+\mathcal{O}(m) . \tag{123}
\end{align*}
$$

Combining this with our results from the unstructured case, we obtain

$$
\begin{align*}
\lim _{m \rightarrow 0} S= & \log \left(\hat{q}_{1}-z\right) \\
+ & +\frac{\hat{c}_{1}}{\hat{q}_{1}-z} \\
& +\sum_{\ell=1}^{L} \alpha_{\ell}\left(q_{\ell} \hat{q}_{\ell}+q_{\ell} \hat{c}_{\ell}+c_{\ell} \hat{q}_{\ell}+\mathbb{E}_{\sigma_{\ell}} \log \left(1-q_{\ell} \hat{q}_{\ell+1} \sigma_{\ell}\right)\right. \tag{124}\\
& \left.\quad-\left(q_{\ell} \hat{c}_{\ell+1}+c_{\ell} \hat{q}_{\ell+1}\right) \mathbb{E}_{\sigma_{\ell}}\left[\frac{\sigma_{\ell}}{1-q_{\ell} \hat{q}_{\ell+1} \sigma_{\ell}}\right]\right)
\end{align*}
$$

with the boundary condition $\hat{q}_{L+1}=1, \hat{c}_{L+1}=0$.
As in the unstructured case, we have

$$
\begin{equation*}
G(z)=-\lim _{m \rightarrow 0} \frac{\partial S}{\partial z}=-\frac{1}{z-\hat{q}_{1}}-\frac{\hat{c}_{1}}{\left(z-\hat{q}_{1}\right)^{2}} \tag{125}
\end{equation*}
$$

where the order parameters are to be evaluated at their saddle point values.
From the equations $\partial S / \partial q_{\ell}=0$, we have

$$
\begin{equation*}
0=\hat{q}_{\ell}+\hat{c}_{\ell}-\left(\hat{q}_{\ell+1}+\hat{c}_{\ell+1}\right) \mathbb{E}_{\sigma_{\ell}}\left[\frac{\sigma_{\ell}}{1-q_{\ell} \hat{q}_{\ell+1} \sigma_{\ell}}\right]-\left(q_{\ell} \hat{c}_{\ell+1}+c_{\ell} \hat{q}_{\ell+1}\right) \hat{q}_{\ell+1} \mathbb{E}_{\sigma_{\ell}}\left[\left(\frac{\sigma_{\ell}}{1-q_{\ell} \hat{q}_{\ell+1} \sigma_{\ell}}\right)^{2}\right] \tag{126}
\end{equation*}
$$

for all $\ell=1, \ldots, L$. From the equations $\partial S / \partial \hat{q}_{\ell}=0$, we have

$$
\begin{equation*}
0=-\frac{1}{z-\hat{q}_{1}}-\frac{\hat{c}_{1}}{\left(z-\hat{q}_{1}\right)^{2}}+\alpha_{1}\left(q_{1}+c_{1}\right) \tag{127}
\end{equation*}
$$

for $\ell=1$ and

$$
\begin{align*}
0= & \alpha_{\ell}\left(q_{\ell}+c_{\ell}\right)-\alpha_{\ell-1}\left(q_{\ell-1}+c_{\ell-1}\right) \mathbb{E}_{\sigma_{\ell-1}}\left[\frac{\sigma_{\ell-1}}{1-q_{\ell-1} \hat{q}_{\ell} \sigma_{\ell-1}}\right] \\
& -\alpha_{\ell-1}\left(q_{\ell-1} \hat{c}_{\ell}+c_{\ell-1} \hat{q}_{\ell}\right) q_{\ell-1} \mathbb{E}_{\sigma_{\ell-1}}\left[\left(\frac{\sigma_{\ell-1}}{1-q_{\ell-1} \hat{q}_{\ell} \sigma_{\ell-1}}\right)^{2}\right] \tag{128}
\end{align*}
$$

for $\ell=2, \ldots, L$. From $\partial S / \partial c_{\ell}=0$, we have

$$
\begin{equation*}
0=\hat{q}_{\ell}-\hat{q}_{\ell+1} \mathbb{E}_{\sigma_{\ell}}\left[\frac{\sigma_{\ell}}{1-q_{\ell} \hat{q}_{\ell+1} \sigma_{\ell}}\right] \tag{129}
\end{equation*}
$$

for $\ell=1, \ldots, L$. Finally, from $\partial S / \partial \hat{c}_{\ell}=0$, we have

$$
\begin{equation*}
0=-\frac{1}{z-\hat{q}_{1}}+\alpha_{1} q_{1} \tag{130}
\end{equation*}
$$

for $\ell=1$ and

$$
\begin{equation*}
0=\alpha_{\ell} q_{\ell}-\alpha_{\ell-1} q_{\ell-1} \mathbb{E}_{\sigma_{\ell-1}}\left[\frac{\sigma_{\ell-1}}{1-q_{\ell-1} \hat{q}_{\ell} \sigma_{\ell-1}}\right] \tag{131}
\end{equation*}
$$

for $\ell=2, \ldots, L$.
As in the unstructured case, we can decouple the replica-uniform components from the replica-uniform components. This yields the system

$$
\begin{align*}
\hat{q}_{\ell} & =\hat{q}_{\ell+1} \mathbb{E}_{\sigma_{\ell}}\left[\frac{\sigma_{\ell}}{1-q_{\ell} \hat{q}_{\ell+1} \sigma_{\ell}}\right] & & (\ell=1, \ldots, L) \tag{132}\\
q_{1} & =\frac{1}{\alpha_{1}} \frac{1}{z-\hat{q}_{1}} & & \tag{133}\\
q_{\ell} & =\frac{\alpha_{\ell-1}}{\alpha_{\ell}} q_{\ell-1} \mathbb{E}_{\sigma_{\ell-1}}\left[\frac{\sigma_{\ell-1}}{1-q_{\ell-1} \hat{q}_{\ell} \sigma_{\ell-1}}\right] & & (\ell=2, \ldots, L) \tag{134}
\end{align*}
$$

for the non-uniform components. Given a solution to that system, the replica-uniform components are determined by the linear system

$$
\begin{align*}
\hat{c}_{\ell}= & \hat{c}_{\ell+1} \mathbb{E}_{\sigma_{\ell}}\left[\frac{\sigma_{\ell}}{1-q_{\ell} \hat{q}_{\ell+1} \sigma_{\ell}}\right] \\
& +\left(q_{\ell} \hat{c}_{\ell+1}+c_{\ell} \hat{q}_{\ell+1}\right) \hat{q}_{\ell+1} \mathbb{E}_{\sigma_{\ell}}\left[\left(\frac{\sigma_{\ell}}{1-q_{\ell} \hat{q}_{\ell+1} \sigma_{\ell}}\right)^{2}\right] \quad(\ell=1, \ldots, L) \tag{135}\\
c_{1}= & \frac{1}{\alpha_{1}} \frac{\hat{c}_{1}}{\left(z-\hat{q}_{1}\right)^{2}} \tag{136}\\
c_{\ell}= & \frac{\alpha_{\ell-1}}{\alpha_{\ell}} c_{\ell-1} \mathbb{E}_{\sigma_{\ell-1}}\left[\frac{\sigma_{\ell-1}}{1-q_{\ell-1} \hat{q}_{\ell} \sigma_{\ell-1}}\right] \\
& +\frac{\alpha_{\ell-1}}{\alpha_{\ell}}\left(q_{\ell-1} \hat{c}_{\ell}+c_{\ell-1} \hat{q}_{\ell}\right) q_{\ell-1} \mathbb{E}_{\sigma_{\ell-1}}\left[\left(\frac{\sigma_{\ell-1}}{1-q_{\ell-1} \hat{q}_{\ell} \sigma_{\ell-1}}\right)^{2}\right] \quad(\ell=2, \ldots, L) . \tag{137}
\end{align*}
$$

Recalling the boundary condition $\hat{q}_{L+1}=1, \hat{c}_{L+1}=0$, it is easy to see that we should have $c_{\ell}=\hat{c}_{\ell}=0$ for all $\ell=1, \ldots, L$. Thus, as in the unstructured case, the annealed average is exact. The Stieltjes transform is then given by $G(z)=-\alpha_{1} q_{1}$, where q_{1} is determined by the system

$$
\begin{array}{ll}
\hat{q}_{\ell}=\hat{q}_{\ell+1} \mathbb{E}_{\sigma_{\ell}}\left[\frac{\sigma_{\ell}}{1-q_{\ell} \hat{q}_{\ell+1} \sigma_{\ell}}\right] & (\ell=1, \ldots, L) \\
q_{1}=\frac{1}{\alpha_{1}} \frac{1}{z-\hat{q}_{1}} & \\
q_{\ell}=\frac{\alpha_{\ell-1}}{\alpha_{\ell}} q_{\ell-1} \mathbb{E}_{\sigma_{\ell-1}}\left[\frac{\sigma_{\ell-1}}{1-q_{\ell-1} \hat{q}_{\ell} \sigma_{\ell-1}}\right] & (\ell=2, \ldots, L) \tag{140}
\end{array}
$$

with boundary condition $\hat{q}_{L+1}=1$. As a sanity check, we can see immediately that this reduces to our earlier result in the unstructured case $\Sigma_{\ell}=\mathbf{I}_{n_{\ell}}$.

We can simplify this result in terms of standard objects in random matrix theory. We have

$$
\begin{equation*}
\mathbb{E}_{\sigma_{\ell}}\left[\frac{q_{\ell} \hat{q}_{\ell+1} \sigma_{\ell}}{1-q_{\ell} \hat{q}_{\ell+1} \sigma_{\ell}}\right]=M_{\ell}\left(\frac{1}{q_{\ell} \hat{q}_{\ell+1}}\right) \tag{141}
\end{equation*}
$$

for $M_{\ell}(z)$ the moment generating function of Σ_{ℓ}. Then, we have

$$
\begin{align*}
q_{\ell} \hat{q}_{\ell} & =M_{\ell}\left(\frac{1}{q_{\ell} \hat{q}_{\ell+1}}\right) & & (\ell=1, \ldots, L) \tag{142}\\
q_{1} & =\frac{1}{\alpha_{1}} \frac{1}{z-\hat{q}_{1}} & & \tag{143}\\
q_{\ell} \hat{q}_{\ell} & =\frac{\alpha_{\ell-1}}{\alpha_{\ell}} M_{\ell-1}\left(\frac{1}{q_{\ell-1} \hat{q}_{\ell}}\right) & & (\ell=2, \ldots, L) . \tag{144}
\end{align*}
$$

Thus, for $\ell=2, \ldots, L$, we have

$$
\begin{align*}
q_{\ell} \hat{q}_{\ell} & =\frac{\alpha_{\ell-1}}{\alpha_{\ell}} M_{\ell-1}\left(\frac{1}{q_{\ell-1} \hat{q}_{\ell}}\right) \tag{145}\\
& =\frac{\alpha_{\ell-1}}{\alpha_{\ell}} q_{\ell-1} \hat{q}_{\ell} . \tag{146}
\end{align*}
$$

This relation can easily be iterated backward to give

$$
\begin{equation*}
q_{\ell} \hat{q}_{\ell}=\frac{\alpha_{1}}{\alpha_{\ell}} q_{1} \hat{q}_{1} \tag{147}
\end{equation*}
$$

for all $\ell=1, \ldots, L$, where the $\ell=1$ case is of course a tautology.
This re-writing is useful because the equation

$$
\begin{equation*}
q_{1}=\frac{1}{\alpha_{1}} \frac{1}{z-\hat{q}_{1}} \tag{148}
\end{equation*}
$$

gives \hat{q}_{1} in terms of $G=-\alpha_{1} q_{1}$:

$$
\begin{equation*}
\hat{q}_{1}=z+\frac{1}{G(z)} . \tag{149}
\end{equation*}
$$

Thus,

$$
\begin{equation*}
\alpha_{1} q_{1} \hat{q}_{1}=-G(z) \hat{q}_{1}=-z G(z)-1=M(z) \tag{150}
\end{equation*}
$$

Assuming that for all $\ell=1, \ldots, L$ the functions M_{ℓ} are invertible, with inverses $M_{\ell}^{-1}(z)$ satisfying $\left(M_{\ell}^{-1} \circ M_{\ell}\right)(z)=z$, we have

$$
\begin{align*}
\frac{1}{q_{\ell} \hat{q}_{\ell+1}} & =M_{\ell}^{-1}\left(q_{\ell} \hat{q}_{\ell}\right) \tag{151}\\
& =M_{\ell}^{-1}\left(\frac{M(z)}{\alpha_{\ell}}\right) \tag{152}
\end{align*}
$$

for all $\ell=1, \ldots, L$. Using the boundary condition $\hat{q}_{L+1}=1$, we then have

$$
\begin{equation*}
\frac{1}{q_{L}}=M_{L}^{-1}\left(\frac{M(z)}{\alpha_{L}}\right) \tag{153}
\end{equation*}
$$

For $\ell=1, \ldots, L-1$, we can multiply through by $q_{\ell+1} \hat{q}_{\ell+1}$ to obtain

$$
\begin{align*}
\frac{q_{\ell+1}}{q_{\ell}} & =q_{\ell+1} \hat{q}_{\ell+1} M_{\ell}^{-1}\left(\frac{M(z)}{\alpha_{\ell}}\right) \tag{154}\\
& =\frac{M(z)}{\alpha_{\ell+1}} M_{\ell}^{-1}\left(\frac{M(z)}{\alpha_{\ell}}\right) . \tag{155}
\end{align*}
$$

This gives

$$
\begin{align*}
\frac{1}{q_{1}} & =\frac{1}{q_{L}} \prod_{\ell=1}^{L-1} \frac{q_{\ell+1}}{q_{\ell}} \tag{156}\\
& =M_{L}^{-1}\left(\frac{M(z)}{\alpha_{L}}\right) \prod_{\ell=1}^{L-1}\left[\frac{M(z)}{\alpha_{\ell+1}} M_{\ell}^{-1}\left(\frac{M(z)}{\alpha_{\ell}}\right)\right] \tag{157}\\
& =\frac{\alpha_{1}}{M(z)} M(z) \prod_{\ell=1}^{L}\left[\frac{M(z)}{\alpha_{\ell}} M_{\ell}^{-1}\left(\frac{M(z)}{\alpha_{\ell}}\right)\right] \tag{158}
\end{align*}
$$

or, using $\alpha_{1} q_{1}=-G(z)=[M(z)+1] / z$,

$$
\begin{equation*}
z=\frac{M(z)+1}{M(z)} \prod_{\ell=1}^{L}\left[\frac{M(z)}{\alpha_{\ell}} M_{\ell}^{-1}\left(\frac{M(z)}{\alpha_{\ell}}\right)\right] . \tag{159}
\end{equation*}
$$

This is the result claimed in (20).

C Direct computation of the minimum and maximum eigenvalues

In this appendix, we describe a direct replica-theoretic approach to computing the minimum and maximum eigenvalues of unstructured Wishart product matrices.

C. 1 Summary of results

In the thermodynamic limit, we expect the minimum and maximum eigenvalues of \mathbf{K} to be self-averaging. Conditions on these eigenvalues can be obtained from the condition (10) on the Stieltjes transform (see Ref. [5]), but they can also be computed using a direct, physically meaningful method.

In this approach, the eigenvalues are interpreted as the ground-state energies of a spherical spin glass, as studied by Kosterlitz, Thouless, and Jones [51], and in subsequent random matrix theory works [38-40]. Our starting point is the min-max characterization of the minimum and maximum eigenvalues as Rayleigh quotients:

$$
\begin{equation*}
\lambda_{\min }(\mathbf{K})=\min _{\mathbf{w} \in \mathbb{R}^{n_{0}},\|\mathbf{w}\|=1} \mathbf{w}^{\top} \mathbf{K} \mathbf{w}, \quad \lambda_{\max }(\mathbf{K})=\max _{\mathbf{w} \in \mathbb{R}^{n_{0}},\|\mathbf{w}\|=1} \mathbf{w}^{\top} \mathbf{K w} . \tag{160}
\end{equation*}
$$

We first consider the computation of the maximum eigenvalue. We introduce a Gibbs distribution at inverse temperature $\beta>0$ over vectors in the sphere $\mathbb{S}^{n_{0}-1}\left(\sqrt{n_{0}}\right)$ of radius $\sqrt{n_{0}}$ in n_{0} dimensions, with density

$$
\begin{equation*}
p(\mathbf{w} ; \beta, \mathbf{K})=\frac{1}{Z(\beta, \mathbf{K})} \exp [-\beta E(\mathbf{w}, \mathbf{K})] \tag{161}
\end{equation*}
$$

with respect to the Lebesgue measure on the sphere. Here,

$$
\begin{equation*}
E(\mathbf{w}, \mathbf{K})=-\frac{1}{2} \mathbf{w}^{\top} \mathbf{K} \mathbf{w} \tag{162}
\end{equation*}
$$

is the energy function associated to the maximization problem (160), and the partition function is

$$
\begin{equation*}
Z(\beta, \mathbf{K})=\int_{\mathbb{S}^{n_{0}-1}\left(\sqrt{n_{0}}\right)} d \mathbf{w} \exp [-\beta E(\mathbf{w}, \mathbf{K})] \tag{163}
\end{equation*}
$$

As $\beta \rightarrow \infty$, the Gibbs distribution (161) will concentrate on the ground state of (162), which is the eigenvector of \mathbf{K} corresponding to its maximum eigenvalue. We denote averages with respect to the Gibbs distribution (161) by $\langle\cdot\rangle_{\beta, \mathrm{K}}$. Then, recalling our definition of E in (162) and the Rayleigh quotient (160), we have

$$
\begin{equation*}
\mathbb{E} \lambda_{\max }(\mathbf{K})=\lim _{\beta \rightarrow \infty} \mathbb{E} \frac{2}{n_{0}}\langle E\rangle_{\beta, \mathbf{K}}=\lim _{\beta \rightarrow \infty} \frac{\partial g(\beta, \mathbf{K})}{\partial \beta}, \tag{164}
\end{equation*}
$$

where we have defined the reduced free energy per site

$$
\begin{equation*}
g(\beta, \mathbf{K})=-\frac{2}{n_{0}} \mathbb{E} \log Z(\beta, \mathbf{K}) \tag{165}
\end{equation*}
$$

In the thermodynamic limit, we expect $\log z$ to be self-averaging, and it can be computed using the replica method.

We can also use this setup to compute the minimum eigenvalue. We can see that this computation is identical up to a sign, and that

$$
\begin{equation*}
\mathbb{E} \lambda_{\min }(\mathbf{K})=-\lim _{\beta \rightarrow \infty} \mathbb{E} \frac{2}{n_{0}}\langle E\rangle_{-\beta, \mathbf{K}}=\lim _{\beta \rightarrow \infty} \frac{\partial g(-\beta, \mathbf{K})}{\partial \beta} . \tag{166}
\end{equation*}
$$

Deferring the details of the replica computation to §C, we find that the maximum eigenvalue can be written as

$$
\begin{equation*}
\mathbb{E} \lambda_{\max }=\frac{1}{1-\sum_{\ell=1}^{L} \frac{A}{\alpha_{\ell}+A}} \prod_{\ell=1}^{L}\left(1+\frac{A}{\alpha_{\ell}}\right) \tag{167}
\end{equation*}
$$

Figure 4: Maximum (left) and minimum (right) eigenvalues of Wishart product matrices for varying depths L (with higher values indicated by lighter shades of blue) and varying widths $\alpha_{1}=\alpha_{2}=\cdots=\alpha_{L}=\alpha$. In each panel, the theoretical predictions from equations (173) and (175), respectively, are plotted as solid lines, while the open circles show the results of numerical eigendecompositions for 10 realizations of matrices of size $n_{0}=1000$.
where A is a positive solution to the equation

$$
\begin{equation*}
A=\frac{1}{\sum_{\ell=1}^{L} \frac{A}{\alpha_{\ell}+A}}-1 \tag{168}
\end{equation*}
$$

This computation is somewhat more tedious than that of the Stieltjes transform, as the replicasymmetric saddle point is not replica-diagonal. Considering the minimum eigenvalue, as the rank of \mathbf{K} is at most $\min \left\{n_{0}, \ldots, n_{L}\right\}$,

$$
\begin{equation*}
\mathbb{E} \lambda_{\min }(\mathbb{K})=0 \quad \text { if } \quad \min \left\{\alpha_{1}, \ldots, \alpha_{L}\right\}<1 \tag{169}
\end{equation*}
$$

If $\min \left\{\alpha_{1}, \ldots, \alpha_{L}\right\}>1$, then we expect the minimum eigenvalue to be almost surely positive, and to be determined by an almost identical equation as the maximum eigenvalue, up to a sign:

$$
\begin{equation*}
\mathbb{E} \lambda_{\min }=\frac{1}{1+\sum_{\ell=1}^{L} \frac{B}{\alpha_{\ell}-B}} \prod_{\ell=1}^{L}\left(1-\frac{B}{\alpha_{\ell}}\right) \tag{170}
\end{equation*}
$$

where $B>0$ solves

$$
\begin{equation*}
B=\frac{1}{\sum_{\ell=1}^{L} \frac{B}{\alpha_{\ell}-B}}+1 \tag{171}
\end{equation*}
$$

These conditions are identical to those obtained by Akemann, Ipsen, and Kieburg [5] for the complex Wishart ensemble.

As noted by Akemann, Ipsen, and Kieburg [5], these equations are exactly solvable in the equal-width case $\alpha_{1}=\cdots=\alpha_{L}=\alpha$. With this constraint, A is determined by the quadratic equation $L A^{2}+(L-1) A-\alpha=0$, which gives

$$
\begin{equation*}
A=\frac{\sqrt{4 L \alpha+(L-1)^{2}}-(L-1)}{2 L} \tag{172}
\end{equation*}
$$

and thus

$$
\begin{equation*}
\mathbb{E} \lambda_{\max }=\frac{\alpha+A}{\alpha-(L-1) A}\left(1+\frac{A}{\alpha}\right)^{L} \tag{173}
\end{equation*}
$$

Considering the minimum eigenvalue, we have the quadratic equation $L B^{2}-(L-1) B-\alpha=0$, which yields

$$
\begin{equation*}
B=\frac{\sqrt{4 L \alpha+(L-1)^{2}}+(L-1)}{2 L} \tag{174}
\end{equation*}
$$

and thus

$$
\begin{equation*}
\mathbb{E} \lambda_{\min }=\frac{\alpha-B}{\alpha+(L-1) B}\left(1-\frac{B}{\alpha}\right)^{L} \tag{175}
\end{equation*}
$$

If $L=1$, this recovers the familiar results for Wishart matrices. In the square case $\alpha=1$, we have the further simplification

$$
\begin{equation*}
\mathbb{E} \lambda_{\max }=(L+1)\left(1+\frac{1}{L}\right)^{L} \tag{176}
\end{equation*}
$$

while $\lambda_{\text {min }}=0$, as noted previously by Dupic and Pérez Castillo [9]. In Figure 4, we show that these results display excellent agreement with numerical eigendecompositions.

As in our derivation of the Stieljes transform in §A, we divide the replica computation of the minimum and maximum eigenvalues into two parts. We first compute the moments of the partition function in §C.2, and then simplify the replica-symmetric saddle point equations in §С.3.

C. 2 Step I: Evaluating the moments of the partition function

Again, we introduce replicas indexed by $a=1, \ldots, m$, which gives the moments of the partition function for the spherical spin glass (163) as

$$
\begin{equation*}
\mathbb{E} Z^{m}=\int \prod_{a} d \mathbf{w}^{a}\left[\prod_{a=1}^{m} \delta\left(1-\frac{1}{n_{0}}\left\|\mathbf{w}^{a}\right\|^{2}\right)\right] \mathbb{E} \exp \left(\frac{\beta}{2 n_{L} \cdots n_{1}} \sum_{a=1}^{m}\left(\mathbf{w}^{a}\right)^{\top} \mathbf{X}_{1}^{\top} \cdots \mathbf{X}_{L}^{\top} \mathbf{X}_{L} \cdots \mathbf{X}_{1} \mathbf{w}^{a}\right) \tag{177}
\end{equation*}
$$

where we enforce the spherical constraints with δ-distributions. It is easy to see that the matrices \mathbf{X}_{ℓ} can be integrated out much as before, except for the fact that the order parameters we introduce should be real, i.e.,

$$
\begin{equation*}
C_{\ell}^{a b} \equiv \frac{1}{n_{1} \cdots n_{\ell}}\left(\mathbf{w}^{a}\right)^{\top} \mathbf{X}_{1}^{\top} \cdots \mathbf{X}_{\ell-1}^{\top} \mathbf{X}_{\ell-1} \cdots \mathbf{X}_{1} \mathbf{w}^{b} \tag{178}
\end{equation*}
$$

and that the boundary condition is now $\hat{\mathbf{C}}_{L+1}=\beta \mathbf{I}_{m}$. Iterating backwards, this yields

$$
\begin{align*}
\mathbb{E} Z^{m}= & \int \frac{d \mathbf{C}_{2} d \hat{\mathbf{C}}_{2}}{\left(4 \pi i / n_{2}\right)^{m(m+1) / 2}} \cdots \int \frac{d \mathbf{C}_{L} d \hat{\mathbf{C}}_{L}}{\left(4 \pi i / n_{L}\right)^{m(m+1) / 2}} \\
& \exp \left(-\frac{1}{2} \sum_{\ell=2}^{L} n_{\ell}\left[\operatorname{tr}\left(\mathbf{C}_{\ell} \hat{\mathbf{C}}_{\ell}\right)+\log \operatorname{det}\left(\mathbf{I}_{m}-\mathbf{C}_{\ell} \hat{\mathbf{C}}_{\ell+1}\right)\right]\right) \\
& \times \int \prod_{a=1}^{m} d \mathbf{w}^{a}\left[\prod_{a=1}^{m} \delta\left(1-\frac{1}{n_{0}}\left\|\mathbf{w}^{a}\right\|^{2}\right)\right] \operatorname{det}\left(\mathbf{I}_{m}-\mathbf{C}_{1} \hat{\mathbf{C}}_{2}\right)^{-n_{1} / 2} \tag{179}
\end{align*}
$$

where we recall that

$$
\begin{equation*}
C_{1}^{a b}=\frac{1}{n_{1}}\left(\mathbf{w}^{a}\right)^{\top} \mathbf{w}^{b} \tag{180}
\end{equation*}
$$

By the spherical constraint, we have

$$
\begin{equation*}
C_{1}^{a a}=\frac{n_{0}}{n_{1}}=\frac{1}{\alpha_{1}} \tag{181}
\end{equation*}
$$

It is therefore useful to instead introduce order parameters

$$
\begin{equation*}
F^{a b}=\frac{1}{n_{0}}\left(\mathbf{w}^{a}\right)^{\top} \mathbf{w}^{b} \tag{182}
\end{equation*}
$$

via Fourier representations of the δ-distribution, such that $F^{a a}=1$ and $\mathbf{C}_{1}=\mathbf{F} / \alpha_{1}$. Integrating over \mathbf{F} with $F^{a a}=1$, the corresponding Lagrange multipliers $\hat{F}^{a a}$ automatically enforce the spherical constraint. Then, after evaluating the remaining unconstrained Gaussian integral over \mathbf{w}^{a}, we obtain

$$
\begin{equation*}
\mathbb{E} Z^{m}=\int \frac{d \mathbf{F} d \hat{\mathbf{F}}}{\left(4 \pi i / n_{0}\right)^{m(m+1) / 2}} \int \frac{d \mathbf{C}_{2} d \hat{\mathbf{C}}_{2}}{\left(4 \pi i / n_{2}\right)^{m(m+1) / 2}} \cdots \int \frac{d \mathbf{C}_{L} d \hat{\mathbf{C}}_{L}}{\left(4 \pi i / n_{L}\right)^{m(m+1) / 2}} \exp \left(\frac{n_{0} m}{2} S\right) \tag{183}
\end{equation*}
$$

for

$$
\begin{align*}
S\left(\mathbf{F}, \hat{\mathbf{F}}, \mathbf{C}_{2}, \hat{\mathbf{C}}_{2}, \cdots, \mathbf{C}_{L}, \hat{\mathbf{C}}_{L}\right)= & \frac{1}{m} \operatorname{tr}(\mathbf{F} \hat{\mathbf{F}})-\frac{1}{m} \log \operatorname{det}(\hat{\mathbf{F}})-\frac{1}{m} \alpha_{1} \log \operatorname{det}\left(\mathbf{I}_{m}-\alpha_{1}^{-1} \mathbf{F} \hat{\mathbf{C}}_{2}\right) \\
& \left.-\sum_{\ell=2}^{L} \alpha_{\ell}\left[\operatorname{tr}\left(\mathbf{C}_{\ell} \hat{\mathbf{C}}_{\ell}\right)+\log \operatorname{det}\left(\mathbf{I}_{m}-\mathbf{C}_{\ell} \hat{\mathbf{C}}_{\ell+1}\right)\right]\right) . \tag{184}
\end{align*}
$$

As in our computation of the Stieltjes transform, this integral can be evaluated using the method of steepest descent. Again, we will consider only replica-symmetric saddle points.

C. 3 Step II: The replica-symmetric saddle point equations

We make an RS Ansatz

$$
\begin{array}{rlrl}
\mathbf{F} & =(1-f) \mathbf{I}_{m}+f \mathbf{1}_{m} \mathbf{1}_{m}^{\top} & & \\
\hat{\mathbf{F}} & =(\hat{F}-\hat{f}) \mathbf{I}_{m}+\hat{f} \mathbf{1}_{m} \mathbf{1}_{m}^{\top} & & (\ell=2, \ldots, L) \\
\mathbf{C}_{\ell} & =q_{\ell} \mathbf{I}_{m}+c_{\ell} \mathbf{1}_{m} \mathbf{1}_{m}^{\top} & & (\ell=2, \ldots, L) . \\
\hat{\mathbf{C}}_{\ell} & =\hat{q}_{\ell} \mathbf{I}_{m}+\hat{c}_{\ell} \mathbf{1}_{m} \mathbf{1}_{m}^{\top} & \tag{188}
\end{array}
$$

Again, we use standard identities to obtain

$$
\begin{gather*}
\lim _{m \rightarrow 0} \frac{1}{m} \log \operatorname{det}(\hat{\mathbf{F}})=\log (\hat{F}-\hat{f})+\frac{\hat{f}}{\hat{F}-\hat{f}}, \tag{189}\\
\lim _{m \rightarrow 0} \frac{1}{m} \operatorname{tr}(\mathbf{F} \hat{\mathbf{F}})=\hat{F}-f \hat{f}, \tag{190}
\end{gather*}
$$

and

$$
\begin{equation*}
\lim _{m \rightarrow 0} \frac{1}{m} \log \operatorname{det}\left(\mathbf{I}_{m}-\alpha_{1}^{-1} \mathbf{F} \hat{\mathbf{C}}_{2}\right)=\log \left(1-\alpha_{1}^{-1}(1-f) \hat{q}_{2}\right)-\frac{\alpha_{1}^{-1}(1-f) \hat{c}_{2}+\alpha_{1}^{-1} f \hat{q}_{2}}{1-\alpha_{1}^{-1}(1-f) \hat{q}_{2}} \tag{191}
\end{equation*}
$$

yielding

$$
\begin{align*}
\lim _{m \rightarrow 0} S= & \hat{F}-f \hat{f}-\log (\hat{F}-\hat{f})-\frac{\hat{f}}{\hat{F}-\hat{f}} \\
& -\alpha_{1}\left(\log \left(1-\alpha_{1}^{-1}(1-f) \hat{q}_{2}\right)-\frac{\alpha_{1}^{-1}(1-f) \hat{c}_{2}+\alpha_{1}^{-1} f \hat{q}_{2}}{1-\alpha_{1}^{-1}(1-f) \hat{q}_{2}}\right) \\
& -\sum_{\ell=2}^{L} \alpha_{\ell}\left(q_{\ell} \hat{q}_{\ell}+q_{\ell} \hat{c}_{\ell}+c_{\ell} \hat{q}_{\ell}+\log \left(1-q_{\ell} \hat{q}_{\ell+1}\right)-\frac{q_{\ell} \hat{c}_{\ell+1}+c_{\ell} \hat{q}_{\ell+1}}{1-q_{\ell} \hat{q}_{\ell+1}}\right) \tag{192}
\end{align*}
$$

where we recall the endpoint condition $\hat{q}_{L+1}=\beta, \hat{c}_{L+1}=0$.
For brevity, we define $q_{1}=\alpha_{1}^{-1}(1-f)$ and $c_{1}=\alpha_{1}^{-1} f$. Then, by comparison with our previous results, the saddle point equations for $\ell=2, \ldots, L$ are

$$
\begin{align*}
\hat{q}_{\ell} & =\frac{\hat{q}_{\ell+1}}{1-q_{\ell} \hat{q}_{\ell+1}} \tag{193}\\
q_{\ell} & =\frac{\alpha_{\ell-1}}{\alpha_{\ell}} \frac{q_{\ell-1}}{1-q_{\ell-1} \hat{q}_{\ell}} \tag{194}\\
\hat{c}_{\ell} & =\frac{\hat{c}_{\ell+1}+c_{\ell} \hat{q}_{\ell+1}^{2}}{\left(1-q_{\ell} \hat{q}_{\ell+1}\right)^{2}} \tag{195}\\
c_{\ell} & =\frac{\alpha_{\ell-1}}{\alpha_{\ell}} \frac{c_{\ell-1}+q_{\ell-1}^{2} \hat{c}_{\ell}}{\left(1-q_{\ell-1} \hat{q}_{\ell}\right)^{2}} \tag{196}
\end{align*}
$$

The saddle point equation $\partial S / \partial \hat{F}=0$ yields

$$
\begin{equation*}
0=1+\frac{\hat{f}}{(\hat{F}-\hat{f})^{2}}-\frac{1}{\hat{F}-\hat{f}} \tag{197}
\end{equation*}
$$

while the equation $\partial S / \partial \hat{f}=0$ yields

$$
\begin{equation*}
0=-f-\frac{\hat{f}}{(\hat{F}-\hat{f})^{2}} \tag{198}
\end{equation*}
$$

hence we have

$$
\begin{equation*}
\hat{F}-\hat{f}=\frac{1}{1-f} \tag{199}
\end{equation*}
$$

and

$$
\begin{equation*}
\hat{f}=-\frac{f}{(1-f)^{2}} \tag{200}
\end{equation*}
$$

Finally, the equation $\partial S / \partial f=0$ yields

$$
\begin{equation*}
0=-\hat{f}-\frac{\hat{q}_{2}^{2} c_{1}+\hat{c}_{2}}{\left(1-q_{1} \hat{q}_{2}\right)^{2}} \tag{201}
\end{equation*}
$$

Then, we can easily eliminate the Lagrange multipliers \hat{F} and \hat{f}. The remaining system can be
written compactly as

$$
\begin{align*}
\hat{q}_{\ell}=\frac{\hat{q}_{\ell+1}}{1-q_{\ell} \hat{q}_{\ell+1}} & (\ell=2, \ldots, L) \tag{202}\\
q_{\ell}=\frac{\alpha_{\ell-1}}{\alpha_{\ell}} \frac{q_{\ell-1}}{1-q_{\ell-1} \hat{q}_{\ell}} & (\ell=2, \ldots, L) \tag{203}\\
\hat{c}_{\ell}=\frac{\hat{c}_{\ell+1}+c_{\ell} \hat{q}_{\ell+1}^{2}}{\left(1-q_{\ell} \hat{q}_{\ell+1}\right)^{2}} & (\ell=1, \ldots, L) \tag{204}\\
c_{\ell}=\frac{\alpha_{\ell-1}}{\alpha_{\ell}} \frac{c_{\ell-1}+q_{\ell-1}^{2} \hat{c}_{\ell}}{\left(1-q_{\ell-1} \hat{q}_{\ell}\right)^{2}} & (\ell=2, \ldots, L),
\end{align*}
$$

where we have the definitions

$$
\begin{align*}
& q_{1} \equiv \alpha_{1}^{-1}(1-f) \tag{206}\\
& c_{1} \equiv \alpha_{1}^{-1} f \tag{207}\\
& \hat{c}_{1} \equiv \frac{f}{(1-f)^{2}} \tag{208}
\end{align*}
$$

and the endpoint conditions

$$
\begin{align*}
& \hat{q}_{L+1}=\beta \tag{209}\\
& \hat{c}_{L+1}=0 \tag{210}
\end{align*}
$$

Moreover, we have

$$
\begin{align*}
\mathbb{E} \lambda_{\max } & =-\lim _{\beta \rightarrow \infty} \lim _{m \rightarrow 0} \frac{\partial S}{\partial \beta} \tag{211}\\
& =-\alpha_{L} \lim _{\beta \rightarrow \infty}\left(\frac{q_{L}}{1-\beta q_{L}}-\frac{c_{L}}{\left(1-\beta q_{L}\right)^{2}}\right) \tag{212}
\end{align*}
$$

where the order parameters are to be evaluated at their saddle point values. Our task is therefore to solve the saddle point equations in the zero temperature limit.

We first simplify the replica-nonuniform saddle point equations using the same trick as before. To do so, it is useful to define an auxiliary variable \hat{q}_{1} by

$$
\begin{equation*}
\hat{q}_{1}=\frac{\hat{q}_{2}}{1-q_{1} \hat{q}_{2}} \tag{213}
\end{equation*}
$$

such that the system of equations is identical to what we encountered in §A.2. Then, letting

$$
\begin{equation*}
A=\alpha_{1} q_{1} \hat{q}_{1} \tag{214}
\end{equation*}
$$

we have the backward recurrence

$$
\begin{equation*}
\hat{q}_{\ell}=\left(1+\frac{A}{\alpha_{\ell}}\right) \hat{q}_{\ell+1} \tag{215}
\end{equation*}
$$

for $\ell=1, \ldots, L$, which can be solved using the endpoint condition $\hat{q}_{L+1}=\beta$, yielding

$$
\begin{equation*}
\hat{q}_{\ell}=\beta \prod_{j=\ell}^{L}\left(1+\frac{A}{\alpha_{j}}\right) . \tag{216}
\end{equation*}
$$

This shows that we should have $\hat{q}_{\ell} \sim \mathcal{O}(\beta)$ and $q_{\ell} \sim \mathcal{O}(1 / \beta)$. With these scalings, we have

$$
\begin{equation*}
\mathbb{E} \lambda_{\max }=\alpha_{L} \lim _{\beta \rightarrow \infty} \frac{c_{L}}{\left(1-\beta q_{L}\right)^{2}} \tag{217}
\end{equation*}
$$

To obtain q_{L}, we use the equation

$$
\begin{equation*}
q_{\ell}=\frac{A}{\alpha_{\ell} \hat{q}_{\ell}} \tag{218}
\end{equation*}
$$

which gives

$$
\begin{equation*}
q_{L}=\frac{A}{\alpha_{L} \hat{q}_{L}}=\frac{A}{\beta\left(\alpha_{L}+A\right)} \tag{219}
\end{equation*}
$$

hence

$$
\begin{equation*}
\mathbb{E} \lambda_{\max }=\alpha_{L} \lim _{\beta \rightarrow \infty}\left(\frac{\alpha_{L}+A}{\alpha_{L}}\right)^{2} c_{L} \tag{220}
\end{equation*}
$$

The equations for the replica-uniform components can be simplified after a bit of tedious but straightforward algebra. Deferring the details of this computation to Appendix C.4, we obtain an expression for c_{L} in terms of c_{1},

$$
\begin{equation*}
\alpha_{L}\left(\frac{\alpha_{L}+A}{\alpha_{L}}\right)^{2} c_{L}=\alpha_{1} c_{1} \frac{\hat{q}_{1}}{\beta} \frac{1}{1-\sum_{j=1}^{L} \frac{A}{\alpha_{j}+A}} \tag{221}
\end{equation*}
$$

along with the condition

$$
\begin{equation*}
\hat{c}_{1}=\frac{\hat{q}_{1}}{q_{1}} c_{1} \frac{\sum_{\ell=1}^{L} \frac{A}{\alpha_{\ell}+A}}{1-\sum_{\ell=1}^{L} \frac{A}{\alpha_{\ell}+A}} \tag{222}
\end{equation*}
$$

where we again have defined $A=\alpha_{1} q_{1} \hat{q}_{1}$.
Combining these results with the definitions

$$
\begin{align*}
q_{1} & \equiv \alpha_{1}^{-1}(1-f) \tag{223}\\
c_{1} & \equiv \alpha_{1}^{-1} f \tag{224}\\
\hat{c}_{1} & \equiv \frac{f}{(1-f)^{2}} \tag{225}
\end{align*}
$$

we obtain a closed equation for A,

$$
\begin{equation*}
\frac{1}{A}=\frac{\sum_{\ell=1}^{L} \frac{A}{\alpha_{\ell}+A}}{1-\sum_{\ell=1}^{L} \frac{A}{\alpha_{\ell}+A}} \tag{226}
\end{equation*}
$$

along with the equation

$$
\begin{equation*}
\mathbb{E} \lambda_{\max }=\lim _{\beta \rightarrow \infty} f \frac{\hat{q}_{1}}{\beta} \frac{1}{1-\sum_{\ell=1}^{L} \frac{A}{\alpha_{\ell}+A}} \tag{227}
\end{equation*}
$$

To solve these equations in the limit $\beta \rightarrow \infty$, it is clear that we should have $\hat{q}_{1} \sim \mathcal{O}(\beta)$ and $1-f \sim \mathcal{O}(1 / \beta)$, such that $A=\alpha_{1} q_{1} \hat{q}_{1}=(1-f) \hat{q}_{1} \sim \mathcal{O}(1)$. Then, A is determined by the limiting equation

$$
\begin{equation*}
\frac{1}{A}=\frac{\sum_{\ell=1}^{L} \frac{A}{\alpha_{\ell}+A}}{1-\sum_{\ell=1}^{L} \frac{A}{\alpha_{\ell}+A}} \tag{228}
\end{equation*}
$$

and the maximum eigenvalue is given by

$$
\begin{equation*}
\mathbb{E} \lambda_{\max }=\frac{1}{1-\sum_{\ell=1}^{L} \frac{A}{\alpha_{\ell}+A}} \prod_{\ell=1}^{L}\left(1+\frac{A}{\alpha_{\ell}}\right) . \tag{229}
\end{equation*}
$$

As physical solutions have $A>0$, we can re-write the equation for A as

$$
\begin{equation*}
A=\frac{1}{\sum_{\ell=1}^{L} \frac{A}{\alpha_{\ell}+A}}-1 \tag{230}
\end{equation*}
$$

This is the result claimed in §C.1. It is easy to confirm that this is identical to the condition given in equations (70) and (71) of Akemann, Ipsen, and Kieburg [5] for the complex Wishart case, with their $\hat{v}_{\ell}=\alpha_{\ell}-1$ and $\hat{u}_{0}=-(A+1)$.

We finally consider the computation of the minimum eigenvalue. In this case, we must take $\beta \rightarrow-\infty$ through negative values of β, hence we expect $B=-(1-f) \hat{q}_{1} \sim \mathcal{O}(1)$ to be positive. If we directly apply the results of the preceding section with the substitution $A=-B$, we obtain the condition

$$
\begin{equation*}
B=\frac{1}{\sum_{\ell=1}^{L} \frac{B}{\alpha_{\ell}-B}}+1 \tag{231}
\end{equation*}
$$

and the equation

$$
\begin{equation*}
\mathbb{E} \lambda_{\min }=\frac{1}{1+\sum_{\ell=1}^{L} \frac{B}{\alpha_{\ell}-B}} \prod_{\ell=1}^{L}\left(1-\frac{B}{\alpha_{\ell}}\right) \tag{232}
\end{equation*}
$$

as claimed.

C. 4 Simplifying the saddle point equations for the extremal eigenvalues

In this appendix, we solve the saddle point equations for the replica-uniform components of the order parameters in our computation of the minimum and maximum eigenvalues. This analysis amounts to solving a recurrence relation, and follows our approach in [31].

We first eliminate the variables c_{ℓ} by solving the equation

$$
\begin{equation*}
\hat{c}_{\ell}=\frac{\hat{c}_{\ell+1}+c_{\ell} \hat{q}_{\ell+1}^{2}}{\left(1-q_{\ell} \hat{q}_{\ell+1}\right)^{2}} \tag{233}
\end{equation*}
$$

to obtain

$$
\begin{equation*}
c_{\ell}=\left(\frac{1-q_{\ell} \hat{q}_{\ell+1}}{\hat{q}_{\ell+1}}\right)^{2} \hat{c}_{\ell}-\frac{1}{\hat{q}_{\ell+1}^{2}} \hat{c}_{\ell+1} \quad(\ell=1, \ldots, L) \tag{234}
\end{equation*}
$$

Then, for $\ell=2, \ldots, L$, the equation

$$
\begin{equation*}
c_{\ell}=\frac{\alpha_{\ell-1}}{\alpha_{\ell}} \frac{c_{\ell-1}+q_{\ell-1}^{2} \hat{c}_{\ell}}{\left(1-q_{\ell-1} \hat{q}_{\ell}\right)^{2}} \tag{235}
\end{equation*}
$$

yields a three-term recurrence

$$
\begin{equation*}
\frac{\alpha_{\ell-1}}{\alpha_{\ell}} \hat{c}_{\ell-1}=\left[\frac{\hat{q}_{\ell}^{2}}{\hat{q}_{\ell+1}^{2}}\left(1-q_{\ell} \hat{q}_{\ell+1}\right)^{2}+\frac{\alpha_{\ell-1}}{\alpha_{\ell}} \frac{1-q_{\ell-1}^{2} \hat{q}_{\ell}^{2}}{\left(1-q_{\ell-1} \hat{q}_{\ell}\right)^{2}}\right] \hat{c}_{\ell}-\frac{\hat{q}_{\ell}^{2}}{\hat{q}_{\ell+1}^{2}} \hat{c}_{\ell+1} \tag{236}
\end{equation*}
$$

for $\ell=2, \ldots, L$, with initial difference condition

$$
\begin{equation*}
c_{1}=\left(\frac{1-q_{1} \hat{q}_{2}}{\hat{q}_{2}}\right)^{2} \hat{c}_{1}-\frac{1}{\hat{q}_{2}^{2}} \hat{c}_{2} \tag{237}
\end{equation*}
$$

and endpoint condition $\hat{c}_{L+1}=0$. Substituting in the formula

$$
\begin{equation*}
q_{\ell}=\frac{A}{\alpha_{\ell} \hat{q}_{\ell}} \tag{238}
\end{equation*}
$$

and using the recurrence

$$
\begin{equation*}
\hat{q}_{\ell}=\left(1+\frac{A}{\alpha_{\ell}}\right) \hat{q}_{\ell+1} \tag{239}
\end{equation*}
$$

we have

$$
\begin{equation*}
q_{\ell} \hat{q}_{\ell+1}=\frac{A}{\alpha_{\ell}} \frac{\hat{q}_{\ell+1}}{\hat{q}_{\ell}}=\frac{A}{\alpha_{\ell}+A} \tag{240}
\end{equation*}
$$

hence we obtain the simplified recurrence

$$
\begin{equation*}
\frac{\alpha_{\ell-1}}{\alpha_{\ell}} \hat{c}_{\ell-1}=\frac{\alpha_{\ell}+\alpha_{\ell-1}+2 A}{\alpha_{\ell}} \hat{c}_{\ell}-\left(\frac{\alpha_{\ell}+A}{\alpha_{\ell}}\right)^{2} \hat{c}_{\ell+1} \tag{241}
\end{equation*}
$$

and the initial difference condition

$$
\begin{equation*}
\hat{q}_{1}^{2} c_{1}=\hat{c}_{1}-\left(\frac{\alpha_{1}+A}{\alpha_{1}}\right)^{2} \hat{c}_{2} \tag{242}
\end{equation*}
$$

We now further simplify our task by defining new variables \hat{u}_{ℓ} such that

$$
\begin{equation*}
\hat{c}_{\ell}=\alpha_{1} \hat{q}_{1}^{2} c_{1} \hat{u}_{\ell} \tag{243}
\end{equation*}
$$

which obey the recurrence

$$
\begin{equation*}
\frac{\alpha_{\ell-1}}{\alpha_{\ell}} \hat{u}_{\ell-1}=\frac{\alpha_{\ell}+\alpha_{\ell-1}+2 A}{\alpha_{\ell}} \hat{u}_{\ell}-\left(\frac{\alpha_{\ell}+A}{\alpha_{\ell}}\right)^{2} \hat{u}_{\ell+1} \tag{244}
\end{equation*}
$$

for $\ell=2, \ldots, L$, with the initial difference condition

$$
\begin{equation*}
\frac{1}{\alpha_{1}}=\hat{u}_{1}-\left(\frac{\alpha_{1}+A}{\alpha_{1}}\right)^{2} \hat{u}_{2} \tag{245}
\end{equation*}
$$

and endpoint condition $\hat{u}_{L+1}=0$. If $L=1$, we simply have $\hat{u}_{1}=1 / \alpha_{1}$.
To solve this recurrence for $L>1$, we observe that it can be re-written as

$$
\begin{equation*}
\frac{\alpha_{\ell}+A}{\alpha_{\ell}} \hat{u}_{\ell+1}-\hat{u}_{\ell}=\frac{\alpha_{\ell-1}}{\alpha_{\ell}} \frac{\alpha_{\ell}}{\alpha_{\ell}+A}\left[\frac{\alpha_{\ell-1}+A}{\alpha_{\ell-1}} \hat{u}_{\ell}-\hat{u}_{\ell-1}\right] \tag{246}
\end{equation*}
$$

for $\ell=2, \ldots, L$. Then, it is easy to see that

$$
\begin{align*}
\frac{\alpha_{\ell}+A}{\alpha_{\ell}} \hat{u}_{\ell+1}-\hat{u}_{\ell} & =\frac{\alpha_{\ell-1}}{\alpha_{\ell}} \frac{\alpha_{\ell}}{\alpha_{\ell}+A}\left[\frac{\alpha_{\ell-1}+A}{\alpha_{\ell-1}} \hat{u}_{\ell}-\hat{u}_{\ell-1}\right] \tag{247}\\
& =\frac{\alpha_{\ell-1}}{\alpha_{\ell}} \frac{\alpha_{\ell-2}}{\alpha_{\ell-1}} \frac{\alpha_{\ell}}{\alpha_{\ell}+A} \frac{\alpha_{\ell-1}}{\alpha_{\ell-1}+A}\left[\frac{\alpha_{\ell-2}+A}{\alpha_{\ell-2}} \hat{u}_{\ell-1}-\hat{u}_{\ell-2}\right] \tag{248}\\
& =\frac{\alpha_{1}}{\alpha_{\ell}} \frac{\alpha_{\ell}}{\alpha_{\ell}+A} \frac{\alpha_{\ell-1}}{\alpha_{\ell-1}+A} \cdots \frac{\alpha_{2}}{\alpha_{2}+A}\left[\frac{\alpha_{1}+A_{1}}{\alpha_{1}} \hat{u}_{2}-\hat{u}_{1}\right] \tag{249}
\end{align*}
$$

hence

$$
\begin{equation*}
\hat{u}_{\ell}=\frac{\alpha_{\ell}+A}{\alpha_{\ell}} \hat{u}_{\ell+1}+\frac{1}{\alpha_{\ell}} \frac{\alpha_{\ell}}{\alpha_{\ell}+A} \frac{\alpha_{\ell-1}}{\alpha_{\ell-1}+A} \cdots \frac{\alpha_{2}}{\alpha_{2}+A}\left[\alpha_{1} \hat{u}_{1}-\left(\alpha_{1}+A\right) \hat{u}_{2}\right] \tag{250}
\end{equation*}
$$

By the endpoint condition $\hat{u}_{L+1}=0$, we then have

$$
\begin{equation*}
\hat{u}_{L}=\frac{1}{\alpha_{L}} \frac{\alpha_{L}}{\alpha_{L}+A} \frac{\alpha_{L-1}}{\alpha_{L-1}+A} \cdots \frac{\alpha_{2}}{\alpha_{2}+A}\left[\alpha_{1} \hat{u}_{1}-\left(\alpha_{1}+A\right) \hat{u}_{2}\right] \tag{251}
\end{equation*}
$$

hence

$$
\begin{equation*}
\hat{u}_{L-1}=\left(\frac{1}{\alpha_{L}+A}+\frac{1}{\alpha_{L-1}+A}\right) \frac{\alpha_{L-2}}{\alpha_{L-2}+A} \cdots \frac{\alpha_{2}}{\alpha_{2}+A}\left[\alpha_{1} \hat{u}_{1}-\left(\alpha_{1}+A\right) \hat{u}_{2}\right] \tag{252}
\end{equation*}
$$

Iterating backward, we obtain

$$
\begin{equation*}
\hat{u}_{\ell}=\left[\alpha_{1} \hat{u}_{1}-\left(\alpha_{1}+A\right) \hat{u}_{2}\right]\left(\sum_{j=\ell}^{L} \frac{1}{\alpha_{j}+A}\right)\left(\prod_{j=2}^{\ell-1} \frac{\alpha_{j}}{\alpha_{j}+A}\right) \tag{253}
\end{equation*}
$$

for $\ell=2, \ldots, L$. In particular, we have

$$
\begin{equation*}
\hat{u}_{2}=\left[\alpha_{1} \hat{u}_{1}-\left(\alpha_{1}+A\right) \hat{u}_{2}\right] \sum_{j=2}^{L} \frac{1}{\alpha_{j}+A} \tag{254}
\end{equation*}
$$

We now use the initial difference condition to write \hat{u}_{2} in terms of \hat{u}_{1},

$$
\begin{equation*}
\hat{u}_{2}=\left(\frac{\alpha_{1}}{\alpha_{1}+A}\right)^{2}\left(\hat{u}_{1}-\frac{1}{\alpha_{1}}\right) \tag{255}
\end{equation*}
$$

which gives a closed equation for \hat{u}_{1} :

$$
\begin{equation*}
\alpha_{1} \hat{u}_{1}-1=\left(1+A \hat{u}_{1}\right)\left(\alpha_{1}+A\right) \sum_{j=2}^{L} \frac{1}{\alpha_{j}+A} \tag{256}
\end{equation*}
$$

and, for $\ell=2, \ldots, L$, an expression for \hat{u}_{ℓ} in terms of \hat{u}_{1} :

$$
\begin{equation*}
\hat{u}_{\ell}=\left(1+A \hat{u}_{1}\right)\left(\sum_{j=\ell}^{L} \frac{1}{\alpha_{j}+A}\right)\left(\prod_{j=2}^{\ell-1} \frac{\alpha_{j}}{\alpha_{j}+A}\right) \tag{257}
\end{equation*}
$$

This equation simplifies to

$$
\begin{equation*}
\frac{\hat{u}_{1}}{1+A \hat{u}_{1}}=\sum_{j=1}^{L} \frac{1}{\alpha_{j}+A} \tag{258}
\end{equation*}
$$

which yields

$$
\begin{equation*}
\hat{u}_{1}=\frac{\sum_{j=1}^{L} \frac{1}{\alpha_{j}+A}}{1-A \sum_{j=1}^{L} \frac{1}{\alpha_{j}+A}} \tag{259}
\end{equation*}
$$

If $L=1$, this recovers the expected result that $\hat{u}_{1}=1 / \alpha_{1}$. From this result, we have

$$
\begin{align*}
\hat{c}_{1} & =\alpha_{1} \hat{q}_{1}^{2} c_{1} \hat{u}_{1} \tag{260}\\
& =\frac{\hat{q}_{1}}{q_{1}} c_{1} \frac{\sum_{j=1}^{L} \frac{A}{\alpha_{j}+A}}{1-\sum_{j=1}^{L} \frac{A}{\alpha_{j}+A}} \tag{261}
\end{align*}
$$

which will allow us to obtain a self-consistent equation given the definition of \hat{c}_{1} in terms of f.

Recalling from §C. 3 that

$$
\begin{equation*}
\lambda_{\max }=\alpha_{L} \lim _{\beta \rightarrow \infty}\left(\frac{\alpha_{L}+A}{\alpha_{L}}\right)^{2} c_{L} \tag{262}
\end{equation*}
$$

we must compute c_{L}. Using

$$
\begin{equation*}
\hat{q}_{L}^{2} c_{L}=\hat{c}_{L}-\left(\frac{\alpha_{L}+A}{\alpha_{L}}\right)^{2} \hat{c}_{L+1} \tag{263}
\end{equation*}
$$

we have

$$
\begin{equation*}
c_{L}=\frac{1}{\hat{q}_{L}^{2}} \hat{c}_{L}=\frac{\alpha_{1} c_{1}}{\alpha_{L}} \frac{\hat{q}_{1}^{2}}{\hat{q}_{L}^{2}}\left(1+A \hat{u}_{1}\right)\left(\prod_{j=2}^{L} \frac{\alpha_{j}}{\alpha_{j}+A}\right) \tag{264}
\end{equation*}
$$

as $\hat{c}_{L+1}=0$ and $\hat{c}_{\ell}=\alpha_{1} \hat{q}_{1}^{2} c_{1} \hat{u}_{\ell}$ by definition, and

$$
\begin{equation*}
\hat{u}_{L}=\frac{1}{\alpha_{L}}\left(1+A \hat{u}_{1}\right)\left(\prod_{j=2}^{L} \frac{\alpha_{j}}{\alpha_{j}+A}\right) . \tag{265}
\end{equation*}
$$

Then, as

$$
\begin{equation*}
\hat{\mathrm{q}}_{\ell}=\beta \prod_{j=\ell}^{L}\left(1+\frac{A}{\alpha_{j}}\right), \tag{266}
\end{equation*}
$$

we have

$$
\begin{equation*}
\frac{\hat{q}_{1}^{2}}{\hat{q}_{L}^{2}}=\prod_{j=1}^{L-1}\left(\frac{\alpha_{j}+A}{\alpha_{j}}\right)^{2} \tag{267}
\end{equation*}
$$

hence

$$
\begin{equation*}
\alpha_{L}\left(\frac{\alpha_{L}+A}{\alpha_{L}}\right)^{2} c_{L}=\alpha_{1} c_{1} \frac{\hat{q}_{1}}{\beta}\left(1+A \hat{u}_{1}\right) . \tag{268}
\end{equation*}
$$

We now note that we have

$$
\begin{equation*}
1+A \hat{u}_{1}=\frac{1}{1-\sum_{j=1}^{L} \frac{A}{\alpha_{j}+A}}, \tag{269}
\end{equation*}
$$

hence

$$
\begin{equation*}
\alpha_{L}\left(\frac{\alpha_{L}+A}{\alpha_{L}}\right)^{2} c_{L}=\alpha_{1} c_{1} \frac{\hat{q}_{1}}{\beta} \frac{1}{1-\sum_{j=1}^{L} \frac{A}{\alpha_{j}+A}} . \tag{270}
\end{equation*}
$$

This is the result reported in §C.3.

References

[1] R. R. Müller, On the asymptotic eigenvalue distribution of concatenated vector-valued fading channels, IEEE Transactions on Information Theory 48(7), 2086 (2002), doi:10.1109/TIT.2002.1013149.
[2] Z. Burda, R. A. Janik and B. Waclaw, Spectrum of the product of independent random Gaussian matrices, Physical Review E 81, 041132 (2010), doi:10.1103/PhysRevE.81.041132.
[3] Z. Burda, A. Jarosz, G. Livan, M. A. Nowak and A. Swiech, Eigenvalues and singular values of products of rectangular Gaussian random matrices, Physical Review E 82, 061114 (2010), doi:10.1103/PhysRevE.82.061114.
[4] Z. Burda, M. Nowak, A. Jarosz, G. Livan and A. Swiech, Eigenvalues and singular values of products of rectangular Gaussian random matrices (the extended version), Acta Physica Polonica B 42(5), 939 (2011), doi:10.5506/aphyspolb.42.939.
[5] G. Akemann, J. R. Ipsen and M. Kieburg, Products of rectangular random matrices: singular values and progressive scattering, Physical Review E 88(5), 052118 (2013), doi:https://doi.org/10.1103/PhysRevE.88.052118, 1307.7560.
[6] J. R. Ipsen and M. Kieburg, Weak commutation relations and eigenvalue statistics for products of rectangular random matrices, Physical Review E 89, 032106 (2014), doi:10.1103/PhysRevE.89.032106, 1310.4154.
[7] J. R. Ipsen, Products of Independent Gaussian Random Matrices, Ph.D. thesis, Bielefeld University, doi:10.48550/arXiv.1510.06128 (2015).
[8] G. Akemann and J. Ipsen, Recent exact and asymptotic results for products of independent random matrices, Acta Physica Polonica B 46(9), 1747 (2015), doi:10.5506/aphyspolb.46.1747, 1502.01667.
[9] T. Dupic and I. Pérez Castillo, Spectral density of products of Wishart dilute random matrices. Part I: the dense case, arXiv (2014), doi:10.48550/ARXIV.1401.7802.
[10] K. A. Penson and K. Życzkowski, Product of Ginibre matrices: Fuss-Catalan and Raney distributions, Physical Review E 83, 061118 (2011), doi:10.1103/PhysRevE.83.061118.
[11] G. Akemann, Z. Burda and M. Kieburg, From integrable to chaotic systems: Universal local statistics of Lyapunov exponents, EPL (Europhysics Letters) 126(4), 40001 (2019), doi:10.1209/0295-5075/126/40001.
[12] P. Kopel, S. O'Rourke and V. Vu, Random matrix products: Universality and least singular values, The Annals of Probability 48(3), 1372 (2020), doi:10.1214/19-AOP1396.
[13] P. J. Forrester and J. R. Ipsen, Real eigenvalue statistics for products of asymmetric real gaussian matrices, Linear Algebra and its Applications 510, 259 (2016), doi:https://doi.org/10.1016/j.laa.2016.08.015.
[14] N. Simm, On the real spectrum of a product of Gaussian matrices, Electronic Communications in Probability 22 (none), 1 (2017), doi:10.1214/17-ECP75.
[15] G. Akemann and S.-S. Byun, The product of m real $n \times n$ ginibre matrices: Real eigenvalues in the critical regime $m=o(n)$, arXiv (2022), doi:10.48550/ARXIV.2201.07668.
[16] M. Advani, S. Lahiri and S. Ganguli, Statistical mechanics of complex neural systems and high dimensional data, Journal of Statistical Mechanics: Theory and Experiment 2013(03), P03014 (2013), doi:10.1088/1742-5468/2013/03/P03014.
[17] V. A. R. Susca, P. Vivo and R. Kühn, Cavity and replica methods for the spectral density of sparse symmetric random matrices, SciPost Physics Lect. Notes p. 33 (2021), doi:10.21468/SciPostPhysLectNotes.33.
[18] S. F. Edwards and R. C. Jones, The eigenvalue spectrum of a large symmetric random matrix, Journal of Physics A: Mathematical and General 9(10), 1595 (1976), doi:10.1088/0305-4470/9/10/011.
[19] A. Cavagna, J. P. Garrahan and I. Giardina, Index distribution of random matrices with an application to disordered systems, Physical Review B 61, 3960 (2000), doi:10.1103/PhysRevB.61.3960.
[20] F. L. Metz, G. Parisi and L. Leuzzi, Finite-size corrections to the spectrum of regular random graphs: An analytical solution, Physical Review E 90, 052109 (2014), doi:10.1103/PhysRevE.90.052109.
[21] F. L. Metz and I. Pérez Castillo, Large deviation function for the number of eigenvalues of sparse random graphs inside an interval, Physical Review Letters 117, 104101 (2016), doi:10.1103/PhysRevLett.117.104101.
[22] I. P. Castillo and F. L. Metz, Large-deviation theory for diluted Wishart random matrices, Physical Review E 97, 032124 (2018), doi:10.1103/PhysRevE.97.032124.
[23] W. Cui, J. W. Rocks and P. Mehta, The perturbative resolvent method: spectral densities of random matrix ensembles via perturbation theory, arXiv (2020), doi:10.48550/ARXIV.2012.00663.
[24] P. Fleig and I. Nemenman, Statistical properties of large data sets with linear latent features, Phys. Rev. E 106, 014102 (2022), doi:10.1103/PhysRevE.106.014102.
[25] A. Crisanti, G. Paladin and A. Vulpiani, Products of random matrices: in Statistical Physics, vol. 104, Springer-Verlag, doi:10.1007/978-3-642-84942-8 (1993).
[26] M. Potters and J.-P. Bouchaud, A First Course in Random Matrix Theory: for Physicists, Engineers and Data Scientists, Cambridge University Press, doi:10.1017/9781108768900 (2020).
[27] B. Hanin, Random neural networks in the infinite width limit as Gaussian processes, arXiv (2021), doi:10.48550/ARXIV.2107.01562.
[28] G. Akemann, Z. Burda and M. Kieburg, Universality of local spectral statistics of products of random matrices, Physical Review E 102(5) (2020), doi:10.1103/physreve.102.052134.
[29] D.-Z. Liu, D. Wang and Y. Wang, Lyapunov exponent, universality and phase transition for products of random matrices, arXiv (2018), doi:10.48550/ARXIV.1810.00433.
[30] J. A. Zavatone-Veth and C. Pehlevan, Exact marginal prior distributions of finite Bayesian neural networks, In A. Beygelzimer, Y. Dauphin, P. Liang and J. W. Vaughan, eds., Advances in Neural Information Processing Systems, vol. 34 (2021), 2104.11734.
[31] J. A. Zavatone-Veth, W. L. Tong and C. Pehlevan, Contrasting random and learned features in deep Bayesian linear regression, Physical Review E 105, 064118 (2022), doi:10.1103/PhysRevE.105.064118.
[32] J. A. Zavatone-Veth and C. Pehlevan, Depth induces scale-averaging in overparameterized linear Bayesian neural networks, In Asilomar Conference on Signals, Systems, and Computers, vol. 55, doi:10.1109/IEEECONF53345.2021.9723137 (2021).
[33] J. A. Zavatone-Veth, A. Canatar, B. S. Ruben and C. Pehlevan, Asymptotics of representation learning in finite Bayesian neural networks, Journal of Statistical Mechanics: Theory and Experiment 2022(11), 114008 (2022), doi:10.1088/1742-5468/ac98a6.
[34] Z. Fan and Z. Wang, Spectra of the conjugate kernel and neural tangent kernel for linearwidth neural networks, In H. Larochelle, M. Ranzato, R. Hadsell, M. Balcan and H. Lin, eds., Advances in Neural Information Processing Systems, vol. 33, pp. 7710-7721. Curran Associates, Inc. (2020).
[35] L. Pastur, On random matrices arising in deep neural networks. Gaussian case, arXiv (2020), doi:10.48550/ARXIV.2001.06188.
[36] J. Pennington and P. Worah, Nonlinear random matrix theory for deep learning, Journal of Statistical Mechanics: Theory and Experiment 2019(12), 124005 (2019), doi:10.1088/1742-5468/ab3bc3.
[37] Z. Burda, J. Jurkiewicz and B. Wacław, Spectral moments of correlated Wishart matrices, Physical Review E 71, 026111 (2005), doi:10.1103/PhysRevE.71.026111.
[38] Y. Kabashima, H. Takahashi and O. Watanabe, Cavity approach to the first eigenvalue problem in a family of symmetric random sparse matrices, Journal of Physics: Conference Series 233(1), 012001 (2010), doi:10.1088/1742-6596/233/1/012001.
[39] Y. Kabashima and H. Takahashi, First eigenvalue/eigenvector in sparse random symmetric matrices: influences of degree fluctuation, Journal of Physics A: Mathematical and Theoretical 45(32), 325001 (2012), doi:10.1088/1751-8113/45/32/325001.
[40] V. A. R. Susca, P. Vivo and R. Kühn, Top eigenpair statistics for weighted sparse graphs, Journal of Physics A: Mathematical and Theoretical 52(48), 485002 (2019), doi:10.1088/1751-8121/ab4d63.
[41] M. Mézard, G. Parisi and M. A. Virasoro, Spin Glass Theory and Beyond: An Introduction to the Replica Method and Its Applications, World Scientific Publishing Company, doi:https://doi.org/10.1142/0271 (1987).
[42] A. Engel and C. van den Broeck, Statistical Mechanics of Learning, Cambridge University Press, doi:https://doi.org/10.1017/CBO9781139164542 (2001).
[43] S. Péché, Non-white Wishart ensembles, Journal of Multivariate Analysis 97(4), 874 (2006), doi:https://doi.org/10.1016/j.jmva.2005.09.001.
[44] T. Wirtz and T. Guhr, Distribution of the smallest eigenvalue in the correlated Wishart model, Physical Review Letters 111, 094101 (2013), doi:10.1103/PhysRevLett.111.094101.
[45] W. Hachem, A. Hardy and J. Najim, Large complex correlated Wishart matrices: Fluctuations and asymptotic independence at the edges, The Annals of Probability 44(3), 2264 (2016), doi:10.1214/15-AOP1022.
[46] G. J. Rodgers and A. J. Bray, Density of states of a sparse random matrix, Physical Review B 37, 3557 (1988), doi:10.1103/PhysRevB.37.3557.
[47] B. Adlam and J. Pennington, Understanding double descent requires a fine-grained biasvariance decomposition, In Advances in Neural Information Processing Systems, vol. 33, pp. 11022-11032 (2020), 2011.03321.
[48] Y. M. Lu and H.-T. Yau, An equivalence principle for the spectrum of random inner-product kernel matrices, arXiv (2022), doi:10.48550/ARXIV.2205.06308.
[49] J. R. Magnus and H. Neudecker, Matrix differential calculus with applications in statistics and econometrics, John Wiley \& Sons, doi:10.1002/9781119541219 (2019).
[50] R. A. Horn and C. R. Johnson, Matrix Analysis, Cambridge University Press, doi:https://doi.org/10.1017/CBO9780511810817 (2012).
[51] J. M. Kosterlitz, D. J. Thouless and R. C. Jones, Spherical model of a spin-glass, Physical Review Letters 36, 1217 (1976), doi:10.1103/PhysRevLett.36.1217.

