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Abstract3

The algebraic framework of the interacting boson model with configuration mixing is em-4

ployed to demonstrate the occurrence of intertwined quantum phase transitions (IQPTs)5

in the 40Zr isotopes with neutron number 52–70. The detailed quantum and classical6

analyses reveal a QPT of crossing normal and intruder configurations superimposed on7

a QPT of the intruder configuration from U(5) to SU(3) and a crossover from SU(3) to8

SO(6) dynamical symmetries.9
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1 Introduction31

Quantum phase transitions [1–3] are qualitative changes in the structure of a physical system32

that occur as a function of one (or more) parameters that appear in the quantum Hamiltonian33

describing the system. In nuclear physics [4], we vary the number of nucleons and examine34

mainly two types of quantum phase transitions (QPTs). The first describes shape phase tran-35

sitions in a single configuration, denoted as Type I. When interpolating between two shapes,36

for example, the Hamiltonian can be written as a sum of two parts37

Ĥ = (1− ξ)Ĥ1 + ξĤ2 , (1)

with ξ the control parameter. As we vary ξ with nucleon number from 0 to 1, the equilibrium38

shape and symmetry of the Hamiltonian vary from those of Ĥ1 to those of Ĥ2. QPTs of this type39

have been studied extensively in the framework of the interacting boson model (IBM) [4–7].40

One example of such QPT is the 62Sm region with neutron number 84–94, where the shape41

evolves from spherical to axially-deformed, with a critical point at neutron number 90.42

The second type of QPT occurs when the ground state configuration changes its character,43

typically from normal to intruder type of states, denoted as Type II QPT. In such cases, the44

Hamiltonian can be written in matrix form [8]. For two configurations A and B we have45

Ĥ =

�

ĤA(ξA) Ŵ (ω)
Ŵ (ω) ĤB(ξB)

�

, (2)

with ξi (i = A, B), the control parameter of configuration (i), and Ŵ , the coupling between46

them with parameterω. QPTs of this type are manifested empirically near (sub-) shell closure,47

e.g. in the light Pb-Hg isotopes, with strong mixing between the configurations [9,10].48

Recently, we have introduced a new type of phase-transitions in even-even [11, 12] and49

odd-mass [13] nuclei called intertwined quantum phase transitions (IQPTs). The latter refers50

to a scenario where as we vary the control parameters (ξA,ξB,ω) in Eq. (2), each of the51

Hamiltonians ĤA and ĤB undergoes a separate and clearly distinguished shape-phase transi-52

tion (Type I), and the combined Hamiltonian simultaneously experiences a crossing of config-53

urations A and B (Type II).54

2 Theoretical framework55

A convenient framework to study the different types of QPTs together is the extension of the56

IBM to include configuration mixing (IBM-CM) [14–16].57

2.1 The interacting boson model with configuration mixing58

The IBM for a single shell model configuration has been widely used to describe low-lying59

quadrupole collective states in nuclei in terms of N monopole (s†) and quadrupole (d†) bosons,60

representing valence nucleon pairs. The model has U(6) as a spectrum generating algebra,61

where the Hamiltonian is expanded in terms of its generators, {s†s, s†dµ, d†
µs, d†

µdµ′}, and con-62

sists of Hermitian, rotational-scalar interactions which conserve the total number of s- and d-63
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bosons N̂ = n̂s + n̂d=s†s+
∑

µ d†
µdµ . The boson number is fixed by the microscopic interpre-64

tation of the IBM [17] to be N =Nπ + Nν, where Nπ (Nν) is the number of proton (neutron)65

particle or hole pairs counted from the nearest closed shell.66

The solvable limits of the model correspond to dynamical symmetries (DSs) associated67

with chains of nested sub-algebras of U(6), terminating in the invariant SO(3) algebra. In the68

IBM there are three DS limits69

U(6) ⊃











U(5) ⊃ SO(5) ⊃ SO(3),

SU(3) ⊃ SO(3),

SO(6) ⊃ SO(5) ⊃ SO(3).

(3)

In a DS, the Hamiltonian is written in terms of Casimir operators of the algebras of a given70

chain. In such a case, the spectrum is completely solvable and resembles known paradigms of71

collective motion: spherical vibrator [U(5)], axially symmetric [SU(3)] and γ-soft deformed72

rotor [SO(6)]. In each case, the energies and eigenstates are labeled by quantum numbers73

that are the labels of irreducible representations (irreps) of the algebras in the chain. The74

corresponding basis states for each of the chains (3) are75

U(5) : |N , nd ,τ, n∆, L〉 , (4a)

SU(3) : |N , (λ,µ), K , L〉 , (4b)

SO(6) : |N ,σ,τ, n∆, L〉 , (4c)

where N , nd , (λ,µ),σ,τ, L label the irreps of U(6), U(5), SU(3), SO(6), SO(5) and SO(3),76

respectively, and n∆, K are multiplicity labels.77

An extension of the IBM to include intruder excitations is based on associating the different78

shell-model spaces of 0p-0h, 2p-2h, 4p-4h, . . . particle-hole excitations, with the corresponding79

boson spaces with N , N+2, N+4, . . . bosons, which are subsequently mixed [15,16]. For two80

configurations the resulting IBM-CM Hamiltonian can be transcribed in a form equivalent to81

that of Eq. (2)82

Ĥ = Ĥ(N)A + Ĥ(N+2)
B + Ŵ (N ,N+2) . (5)

Here, the notations Ô(N) = P̂†
N ÔP̂N and Ô(N ,N ′) = P̂†

N ÔP̂N ′ , stand for an operator Ô, with83

P̂N , a projection operator onto the N boson space. The Hamiltonian Ĥ(N)A represents the N84

boson space (normal A configuration) and Ĥ(N+2)
B represents the N+2 boson space (intruder85

B configuration).86

2.2 Wave functions structure87

The eigenstates |Ψ; L〉 of the Hamiltonian (5) with angular momentum L, are linear combina-88

tions of the wave functions, ΨA and ΨB, in the two spaces [N] and [N + 2],89

|Ψ; L〉= a |ΨA; [N], L〉+ b |ΨB; [N+2], L〉 , (6)

with a2+b2=1. We note that each of the components in Eq. (6), |ΨA; [N], L〉 and |ΨB; [N+2], L〉,90

can be expanded in terms of the different DS limits with its corresponding boson number in91

the following manner92

|Ψi; [Ni], L〉=
∑

α

C (Ni ,L)
α |Ni ,α, L〉 , (7)

where NA= N and NB = N + 2, and α = {nd ,τ, n∆}, {(λ,µ), K}, {σ,τ, n∆} are the quantum93

numbers of the DS eigenstates. The coefficients C (N ,L)
α give the weight of each component94
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in the wave function. Using them, we can calculate the wave function probability of having95

definite quantum numbers of a given symmetry in the DS bases, Eq. (7), for its A or B parts96

U(5) : P(Ni ,L)
nd

=
∑

τ,n∆

[C (Ni ,L)
nd ,τ,n∆

]2, SO(6) : P(Ni ,L)
σ =

∑

τ,n∆

[C (Ni ,L)
σ,τ,n∆

]2, (8a)

SU(3) : P(Ni ,L)
(λ,µ) =

∑

K

[C (Ni ,L)
(λ,µ),K]

2, SO(5) : P(Ni ,L)
τ =

∑

nd ,n∆

[C (Ni ,L)
nd ,τ,n∆

]2. (8b)

Here the subscripts i=A, B denote the different configurations, i.e., NA=N and NB =N + 2.97

Furthermore, for each eigenstate (6), we can also examine its coefficients a and b, which98

portray the probability of the normal-intruder mixing. They are evaluated from the sum of the99

squared coefficients of an IBM basis. For the U(5) basis, we have100

P(NA,L)
a ≡ a2 =

∑

nd ,τ,n∆

|C (NA,L)
nd ,τ,n∆

|2; P(NB ,L)
b ≡ b2 =

∑

nd ,τ,n∆

|C (NB ,L)
nd ,τ,n∆

|2. (9)

where the sum goes over all possible values of (nd ,τ, n∆) in the (Ni , L) space, i = A, B, and101

a2 + b2=1.102

2.3 Geometry103

To obtain a geometric interpretation of the IBM is we take the expectation value of the Hamil-104

tonian between coherent (intrinsic) states [5,18] to form an energy surface105

EN (β ,γ) = 〈β ,γ; N | Ĥ |β ,γ; N〉 . (10)

The (β ,γ) of Eq. (10) are quadrupole shape parameters whose values, (βeq,γeq), at the global106

minimum of EN (β ,γ) define the equilibrium shape for a given Hamiltonian. The values are107

(βeq = 0), (βeq =
p

2,γeq = 0) and (βeq = 1,γeq arbitrary) for the U(5), SU(3) and SO(6) DS108

limits, respectively. Furthermore, for these values the ground-band intrinsic state, |βeq,γeq; N〉,109

becomes a lowest weight state in the irrep of the leading subalgebra of the DS chain, with110

quantum numbers (nd = 0), (λ,µ)= (2N , 0) and (σ=N) for the U(5), SU(3) and SO(6) DS111

limits, respectively.112

For the IBM-CM Hamiltonian, the energy surface takes a matrix form [19]113

E(β ,γ) =

�

EA(β ,γ;ξA) Ω(β ,γ;ω)
Ω(β ,γ;ω) EB(β ,γ;ξB)

�

, (11)

where the entries are the matrix elements of the corresponding terms in the Hamiltonian (2),114

between the intrinsic states of each of the configurations, with the appropriate boson number.115

Diagonalization of this two-by-two matrix produces the so-called eigen-potentials, E±(β ,γ).116

2.4 QPTs and order parameters117

The energy surface depends also on the Hamiltonian parameters and serves as the Landau118

potential whose topology determines the type of phase transition. In QPTs involving a single119

configuration (Type I), the ground state shape defines the phase of the system, which also120

identifies the corresponding DS as the phase of the system. Such Type I QPTs can be studied121

using a Hamiltonian as in Eq. (1), that interpolates between different DS limits (phases) by122

varying its control parameters ξ. The order parameter is taken to be the expectation value of123

the d-boson number operator, n̂d , in the ground state, 〈n̂d〉0+1 , and measures the amount of124

deformation in the ground state.125
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In QPTs involving multiple configurations (Type II), the dominant configuration in the126

ground state defines the phase of the system. Such Type II QPTs can be studied using a Hamil-127

tonian as in Eq. (5), that interpolates between the different configurations by varying its control128

parameters ξA,ξB,ω. The order parameters are taken to be the expectation value of n̂d in the129

ground state wave function, |Ψ; L = 0+1 〉, and in its ΨA and ΨB components, Eq. (6), denoted130

by 〈n̂d〉0+1 , 〈n̂d〉A and 〈n̂d〉B, respectively. The shape-evolution in each of the configurations A131

and B is encapsulated in 〈n̂d〉A and 〈n̂d〉B, respectively. Their sum weighted by the probabili-132

ties of the ΨA and ΨB components 〈n̂d〉0+1 = a2 〈n̂d〉A+ b2 〈n̂d〉B, portrays the evolution of the133

normal-intruder mixing.134

3 QPTs in the Zr isotopes135

Along the years, the Z ≈ 40, A≈ 100 region was suggested by many works to have a ground136

state that is dominated by a normal spherical configuration for neutron numbers 50–58 and137

by an intruder deformed configuration for 60 onward. This dramatic change in structure is138

explained in the shell model by the isoscalar proton-neutron interaction between non-identical139

nucleons that occupy the spin-orbit partner orbitals π1g9/2 and ν1g7/2 [20]. The crossing140

between configurations arises from the promotion of protons across the Z=40 subsell gap.141

The interaction energy results in a gain that compensates the loss in single-particle and pairing142

energy and a mutual polarization effect is enabled. Therefore, the single-particle orbitals at143

higher intruder configurations are lowered near the ground state normal configuration, which144

effectively reverses their order.145

3.1 Model space146

Using the framework of the IBM-CM, we consider 90
40Zr as a core and valence neutrons in147

the 50–82 major shell. The normal A configuration corresponds to having no active protons148

above Z = 40 sub-shell gap, and the intruder B configuration corresponds to two-proton ex-149

citation from below to above this gap, creating 2p-2h states. Therefore, the IBM-CM model150

space employed in this study, consists of [N]⊕ [N + 2] boson spaces with total boson number151

N = 1,2, . . . 8 for 92−106Zr and N̄ = 7̄, 6̄ for 108,110Zr, respectively, where the bar over a number152

indicates that these are hole bosons.153

3.2 Hamiltonian and E2 transitions operator154

In order to describe the spectrum of the Zr isotopes, we take a Hamiltonian that has a form as155

in Eq. (5) with entries156

ĤA(ε
(A)
d ,κ(A),χ) = ε(A)d n̂d +κ

(A) Q̂χ · Q̂χ , (12a)

ĤB(ε
(B)
d ,κ(B),χ) = ε(B)d n̂d +κ

(B) Q̂χ · Q̂χ + κ′(B) L̂ · L̂ +∆p , (12b)

where the quadrupole operator is given by Q̂χ = d†s+ s†d̃+χ(d†× d̃)(2), and L̂ =
p

10(d†d̃)(1)157

is the angular momentum operator. Here d̃m = (−1)md−m and standard notation of angular158

momentum coupling is used. The off-set energy between configurations A and B is ∆p, where159

the index p denotes the fact that this is a proton excitation. The mixing term in Eq. (5) between160

configurations (A) and (B) has the form [14–16] Ŵ = ω [ (d† × d†)(0) + (s†)2 ] +H.c., where161

H.c. stands for Hermitian conjugate. The parameters are obtained from a fit, elaborated in162

the appendix of Ref. [12].163

The E2 operator for two configurations is written as T̂ (E2) = e(A)Q̂(N)χ + e(B)Q̂(N+2)
χ , with164

Q̂(N)χ = P̂†
NQ̂χ P̂N and Q̂(N+2)

χ = P†
N+2Q̂χ P̂N+2. The boson effective charges e(A) and e(B) are165
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Figure 1: Comparison between (a) experimental and (b) calculated energy levels
0+1 , 2+1 , 4+1 , 0+2 , 2+2 , 4+2 . Empty (filled) symbols indicate a state dominated by the nor-
mal A configuration (intruder B configuration), with assignments based on Eq. (9).
The symbol[ ,Î, �], indicates the closest dynamical symmetry [U(5), SU(3), SO(6)]
to the level considered, based on Eq. (8). Note that the calculated values start at
neutron number 52, while the experimental values include the closed shell at 50.
References for the data can be found in [12].

determined from the 2+→ 0+ transition within each configuration [12], and χ is the same166

parameter as in the Hamiltonian (12).167

For the energy surface matrix (11), we calculate the expectation values of the Hamilto-168

nians ĤA (12a) and ĤB (12b) in the intrinsic state of Section 2.3 with N and N+2 bosons169

respectively, and a non-diagonal matrix element of the mixing term Ŵ between them. The170

explicit expressions can be found in [12].171

4 Results172

In order to understand the change in structure of the Zr isotopes, it is insightful to examine173

the evolution of different properties along the chain.174

4.1 Evolution of energy levels175

In Fig. 1, we show a comparison between selected experimental and calculated levels, along176

with assignments to configurations based on Eq. (9) and to the closest DS based on Eq. (8),177

for each state. In the region between neutron number 50 and 56, there appear to be two con-178

figurations, one spherical (seniority-like), (A), and one weakly deformed, (B), as evidenced by179

the ratio R4/2, which is R(A)4/2
∼= 1.6 and R(B)4/2

∼= 2.3 at at 52–56. From neutron number 58, there180

is a pronounced drop in energy for the configuration (B) states and at 60, the two configura-181

tions exchange their role, indicating a Type II QPT. At this stage, the B configuration appears182

to undergo a U(5)-SU(3) Type I QPT, similarly to case of the Sm region [14, 21, 22]. Beyond183

neutron number 60, the B configuration is strongly deformed, as evidenced by the small value184

of the excitation energy of the state 2+1 , E2+1
=139.3 keV and by the ratio R(B)4/2=3.24 in 104Zr.185

At still larger neutron number 66, the ground state band becomes γ-unstable (or triaxial) as186

evidenced by the close energy of the states 2+2 and 4+1 , E2+2
= 607.0 keV, E4+1

= 476.5 keV, in187

106Zr, and especially by the results E4+1
=565 keV and E2+2

=485 keV for 110Zr of Ref. [23], a188

signature of the SO(6) symmetry. In this region, the B configuration undergoes a crossover189

from SU(3) to SO(6).190
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Figure 2: Left panels: percentage of the wave functions within the intruder B-
configuration [the b2 probability in Eq. (6)], for the ground 0+1 (bottom) and excited
2+1 (top) states in 92−110Zr. Right panels: evolution of symmetries for the lowest
0+ (bottom) and 2+ (top) state of configuration B along the Zr chain. Shown are
the probabilities of selected components of U(5) ( ), SU(3) (Î), SO(6) (�) and
SO(5) ( ), obtained from Eq. (8). For neutron numbers 52–58 (60–70), 0+B corre-
sponds to the experimental 0+2 (0+1 ) state. For neutron numbers 52–56 (58–70), 2+B
corresponds to the experimental 2+2 (2+1 ) state.

4.2 Evolution of configuration content191

We examine the configuration change for each isotope, by calculating the evolution of the192

probability b2, Eq. (9), of the 0+1 and 2+1 states. The left panels of Fig. 2 shows the percentage193

of the wave function within the B configuration as a function of neutron number across the194

Zr chain. The rapid change in structure of the 0+1 state (bottom left panel) from the normal195

A configuration in 92−98Zr (small b2 probability) to the intruder B configuration in 100−110Zr196

(large b2 probability) is clearly evident, signaling a Type II QPT. The configuration change197

appears however sooner in the 2+1 state (top left panel), which changes to configuration B198

already in 98Zr, in line with [24]. Outside a narrow region near neutron number 60, where199

the crossing occurs, the two configurations are weakly mixed and the states retain a high level200

of purity, especially for neutron number larger than 60.201

4.3 Evolution of symmetry content202

We examine the changes in symmetry of the lowest 0+ and 2+ states within the B configuration,203

which undergoes a Type I QPT. In the right bottom panel of Fig. 2 the red dots represent the204

percentage of the U(5) nd = 0 component in the wave function, P(N+2,L=0)
nd=0 of Eq. (8). It is205

large (≈ 90%) for neutron number 52–58 and drops drastically (≈ 30%) at 60. The drop206

means that other nd 6=0 components are present in the wave function and therefore this state207

becomes deformed. Above neutron number 60, the nd = 0 component drops almost to zero208

(and rises again a little at 70), indicating the state is strongly deformed. To understand the209

type of DS associated with the deformation above neutron number 60, we add in blue triangles210

the percentage of the SU(3) (λ,µ) = (2N + 4,0) component, P(N+2,L=0)
(λ,µ)=(2N+4,0) of Eq. (8) for 60–211

66. For neutron number 60, it is moderately small (≈ 35%), at neutron number 62 it jumps212

(≈ 85%) and becomes maximal at 64 (≈ 92%). This serves as a clear evidence for a U(5)-213

SU(3) Type I QPT. At neutron number 66 the SU(3) (λ,µ)=(2N+4,0) component it is lowered,214

and one sees by the green diamonds the percentage of the SO(6) σ = N + 2 component,215

P(N+2,L=0)
σ=N+2 of Eq. (8). The latter becomes dominant for 66–70 (≈ 99%), suggesting a crossover216

from SU(3) to SO(6).217
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Figure 3: (a) Evolution of order parameters along the Zr chain, normalized (see
text). (b) B(E2) values in W.u. for 2+→ 0+ transitions in the Zr chain. The solid line
(symbols  , �, Î, �) denote calculated results (experimental results). Dotted lines
denote calculated E2 transitions within a configuration. The data for 94Zr, 96Zr, 100Zr,
102Zr and (104Zr, 106Zr) are taken from [25], [26], [27], [28], [29], respectively. For
98Zr (neutron number 58), the experimental values are from [30] (�), from [31]
(Î), and the upper and lower limits (black bars) are from [24,27].

In order to further elaborate the Type I QPT within configuration B from U(5) to SU(3)218

and the subsequent crossover to SO(6), we examine also the evolution of SO(5) symmetry.219

The gray histograms in the right panel of Fig. 2 depict the probability of the τ=0 component220

of SO(5), P(N+2,L=0)
τ=0 of Eq. (8), for 0+B . For neutron numbers 52–56, the 0+B state is composed221

mainly of a single (nd =0,τ=0) component, appropriate for a with state good U(5) DS. For222

neutron number 58, the larger τ= 0 but smaller nd = 0 probabilities imply the presence of223

additional components with (nd 6=0,τ=0). For neutron numbers 60–64, the τ=0 probability224

decreases, implying admixtures of components with (nd 6= 0,τ 6= 0), appropriate for a state225

with good SU(3) DS. For neutron numbers 66–70, the τ = 0 probability increases towards226

its maximum value at 70, appropriate for a crossover to SO(6) structure with good SO(5)227

symmetry.228

In the top right panel of Fig. 2 we observe a similar trend for the 2+B state. For neutron229

numbers 52–58, it is dominated by a single (nd = 1,τ = 1) component. For neutron num-230

ber 60, P
(N+2,L=2+B )
nd=1 is smaller than P

(N+2,L=2+B )
τ=1 , indicating the onset of deformation. For 62–231

64, P
(N+2,L=2+B )
nd=1 is much smaller than P

(N+2,L=2+B )
τ=1 , implying admixtures of components with232

(nd 6= 1,τ 6= 1). For neutron numbers 66–70, P
(N+2,L=2+B )
nd=1 remains small but P

(N+2,L=2+B )
τ=1 in-233

creases towards its maximum value at 70.234

4.4 Evolution of order parameters235

The configuration and symmetry analysis of Sections 4.2 and 4.3 suggest a situation of si-236

multaneous occurrence of Type I and Type II QPTs. The order parameters can give further237

insight to these QPTs. Fig. 3(a) shows the evolution along the Zr chain of the order param-238

eters (〈n̂d〉A , 〈n̂d〉B in dotted and 〈n̂d〉0+1 in solid lines), normalized by the respective boson239

numbers, 〈N̂〉A=N , 〈N̂〉B=N+2, 〈N̂〉0+1 =a2N+b2(N+2). The order parameter 〈n̂d〉0+1 is close240

to 〈n̂d〉A for neutron number 52–58 and coincides with 〈n̂d〉B at 60 and above. The clear jump241

and change in configuration content from 58 to 60 indicates a Type II phase transition [8],242

with weak mixing between the configurations. Configuration A is spherical for all neutron243

numbers, and configuration B is weakly-deformed for neutron number 52–58. From neutron244

number 58 to 60 we see a sudden increase in 〈n̂d〉B that continues towards 64, indicating a245

U(5)-SU(3) Type I phase transition. Then, we observe a decrease from neutron number 66246

onward, due in part to the crossover from SU(3) to SO(6) and in part to the shift from bo-247
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Figure 4: Contour plots in the (β ,γ) plane of the lowest eigen-potential surface, E−(β ,γ),
for the 92−110Zr isotopes.

son particles to boson holes after the middle of the major shell 50–82. These conclusions are248

stressed by an analysis of other observables [12], in particular, the B(E2) values. As shown249

in Fig. 3(b), the calculated B(E2)’s agree with the experimental values and follow the same250

trends as the respective order parameters.251

4.5 Classical analysis252

In Fig. 4, we show the calculated lowest eigen-potential E−(β ,γ), which is the lowest eigen-253

value of the matrix Eq. (11). These classical potentials confirm the quantum results, as they254

show a transition from spherical (92−98Zr), Figs. 4(a)-(d), to a double-minima potential that is255

almost flat-bottomed at 100Zr, Fig. 4(e), to prolate axially deformed (102−104Zr), Figs. 4(f)-(g),256

and finally to γ-unstable (106−110Zr), Figs. 4(h)-(j).257

5 Conclusions and outlook258

The algebraic framework of the IBM-CM allows us to examine QPTs using both quantum and259

classical analyses. We have employed this analysis to the Zr isotopes with A=92–110, which260

exhibit a complex structure that involves a shape-phase transition within the intruder config-261

uration (Type I QPT) and a configuration-change between normal and intruder (Type II QPT),262

namely IQPTs. This was done by analyzing the energies, configuration and symmetry content263

of the wave functions, order parameters and E2 transition rates, and the energy surfaces. Fur-264

ther analysis of other observables supporting this scenario is presented in [12]. Recently, we265

have also exemplified the notion IQPTs in the odd-mass 41Nb isotopes [13] and it would be266

interesting to examine the notion of IQPTs in other even-even and odd-mass chains of isotopes267

in the Z ≈ 40, A≈ 100 region and other physical systems.268
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