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Abstract

Gauge fields are a central concept in fundamental theories of physics, and responsible for
mediating long-range interactions between elementary particles. Recently, it has been
proposed that dynamical gauge fields can be naturally engineered by photons in compos-
ite, neutral quantum gas–cavity systems using suitable atom-photon interactions. Here
we comprehensively investigate nonequilibrium dynamical phases appearing in a two-
leg bosonic lattice model with leg-dependent, dynamical complex tunnelings mediated
by cavity-assisted two-photon Raman processes. The system constitutes a minimal dy-
namical flux-lattice model. We study fixed points of the equations of motion and their
stability, the resultant dynamical phase diagram, and the corresponding phase transi-
tions and bifurcations. Notably, the phase diagram features a plethora of nonequilibrium
dynamical phases including limit-cycle and chaotic phases. In the end, we relate regular
periodic dynamics (i.e., limit-cycle phases) of the system to time crystals.
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1 Introduction

Over the past few decades the rapid advancement in experimental techniques for cooling,
trapping, and manipulating ultracold quantum gases has allowed one to experimentally re-
alize Feynman’s vision of a quantum simulator, i.e, a simple, highly controllable and easy to
monitor test system that can be used to mimic key physical phenomena of more complex sys-
tems [1–6]. One of the most prominent examples is the realization of artificial gauge fields in
ultracold atomic lattices. Gauge fields and potentials play a central role in fundamental phys-
ical theories and are responsible for mediating interactions between elementary particles [7].
Although realistic quantum simulation of the central complex problems in particle physics still
appears as a far distant goal, much progress has been achieved towards key basic demonstra-
tions of the idea [8,9]. It has been realized that under specific conditions the motion of neutral
particles in light fields can mimic the dynamics of charged particles subject to interactions via
Abelian and non-Abelian gauge fields [10,11]. Current experimental realizations of synthetic
gauge fields are based on ultracold quantum gases in optical lattices manipulated by stan-
dard experimental techniques such as the lattice shaking or photon-assisted tunneling [12].
Various experiments have successfully demonstrated the implementation of effective static ar-
tificial gauge potentials for ultracold atoms [13–15], mimicking the spin-orbit coupling [16]
as well as the density-dependent gauge fields [17]. The range of available opportunities for
quantum simulations is presumably even greater and more versatile in driven-dissipative com-
posite quantum-gas–cavity systems [18,19]. As new branch, many-body cavity quantum elec-
trodynamics (QED) has recently attracted a significant attention from both theoretical and
experimental communities [20–24] (cf. Ref. [25] for a review). In contrast to optical lattices
where light can be treated as a classical potential, strong atom-photon coupling in optical cav-
ities induces non-negligible atomic back-action on the dynamics of cavity fields. Hence this
forms a unique platform to study the physics of dynamical gauge potentials. It has already
generated substantial interest in the growing many-body cavity QED community and resulted
in the first experimental observation of a dynamic spin-orbit coupling [24] (for theoretical
works cf. Ref. [25] and references therein).

Here we continue this path to investigate dynamical density-dependent gauge fields in
an ultracold bosonic system, and focus on the reach nonequilibrium dynamical behavior that
we encounter. In particular, we focus on a quasi- one dimensional (1D) geometry of a two-
component Bose-Einstein condensate (BEC) in a transversely pumped two-mode linear cavity
as introduced in our recent Letter [26]. The system can effectively be described by a two-leg
Bose-Hubbard model with leg-dependent, dynamical complex tunneling amplitudes generated
by cavity-assisted two-photon Raman processes. What is important, the cavity-photon assisted
tunneling entails the presence of non-zero atomic currents in our system. With the diagonal
tunneling and the atomic pseudo-spin internal states playing the role of a synthetic dimension
with two sites, the considered model constitutes a minimal flux-lattice model. As such, it
constitutes a first step to the investigation of more complex, dynamical atom-cavity coupled
models.

Specifically, in this work we first show that the non-interacting system can be mathemati-
cally mapped to a collective spin model, which allows for an efficient numerical and analytical
analysis (Sec. 2). Consequently, in Sec. 3 we find and discuss a plethora of nonequilibrium dy-
namical phases including quasi-stationary, limit-cycle, and chaotic phases. Next, in Sec. 4 we
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Figure 1: Sketch of the system. (a) A two-component (↑,↓) Bose gas loaded into an
external one-dimensional optical lattice [the blue lattice in (b), which is not shown
in (a)] perpendicular to the axis of a two-mode optical cavity. (b) Atoms in neigh-
boring sites of the tilted external lattice are Raman coupled with pumping lasers
(thick arrows) and cavity fields (thin arrows), applied independently to each atomic
components. Consequently, an atomic hopping process is necessarily associated with
the emission or absorption of a cavity photon. Atoms interact via two-body contact-
interaction potential with the amplitude V1 for the same components and V2 for the
opposite components. (c) Schematic picture illustrating geometry and hopping pro-
cesses of the effective model. The two pseudo-spin components of the BEC can be
viewed as synthetic spatial dimensions. Hence, the system is effectively equivalent
to a two-leg ladder. The atomic rung tunnelings (i.e., spin-flip processes) are im-
plemented by coupling the two atomic components with a microwave pump with a
strength Ω. The directional atomic tunneling along each leg is proportional to the
pumping strength η and mediated by the cavity fields â and b̂, that in turn are dy-
namically coupled to the atomic density [cf., Eqs. (1) and (2), and the discussion
below them]. The complex atomic hoppings stemming from the phases of the cavity
fields lead a non-zero gauge-invariant magnetic-like flux Φ piercing each plaquette
of the ladder.

support our results with the investigation of the stability of equilibrium points of the derived
equations of motion. In Sec. 5 we check the robustness and validity regime of our findings. In
Sec. 6 we show that regular, periodic dynamical phases (i.e., limit-cycle states) spontaneously
break the continuous time-translation symmetry of the effective Hamiltonian and can be en-
visaged as time crystals. Finally, in Sec. 7 we present the summary and conclude.

2 Physical system and mathematical modelling

Below we first briefly review and summarize the physical model to implement our setup as
proposed in our recent Letter [26]. We start from a (pseudo-) spinor Bose-Einstein condensate
(BEC) in a transverse 1D optical lattice inside an optical cavity, for which in Sec. 2.1 we derive
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an effective Hamiltonian in the form of a two-component Bose-Hubbard model with cavity-
photon-assisted complex tunnelings and optomechanical terms. In a second part, in Sec. 2.2,
we show that without atomic onsite interactions the Hamiltonian can be mapped to a collective
spin problem. In this limit mean-field equations can well approximate the dynamics of the
system.

2.1 Hamiltonian of the system

Before dealing with the full spinor BEC in a multi-mode cavity model, let us first consider a
single-component BEC in an optical lattice, where the atoms can tunnel between neighboring
lattice sites [5]. However, due to time reversal symmetry, an atom following a closed trajec-
tory never accumulates a non-trivial geometric (or Berry) phase. Nonetheless it is possible to
engineer such non-trivial loop phases in tilted optical lattices, where the suppressed tunneling
in the tilt direction is restored via two-photon Raman-laser-assisted hopping with complex am-
plitude. In other words, both the strength and the phase of the tunneling amplitudes can be
experimentally controlled and designed to introduce effective magnetic-like fluxes [11,27,28].

Here, by placing a tilted optical lattice inside an optical cavity with carefully chosen res-
onances, we can replace one of Raman lasers by a cavity field so that the Raman transition
adds or removes a cavity photon per tunneling event. This renders the coupling amplitudes
dynamic to obtain atomic state dependent geometric phases [29–31], i.e., a dynamic gauge
field generated by atomic currents. When we generalize to a multi-component BEC and a
multi-mode cavity, one can then engineer tailored cavity-assisted complex tunnel amplitudes
for all atomic components. Mathematically one can treat the pseudospin states as a synthetic
dimension [32,33]. As a generic particular example, using this analogy in Ref. [26], we have
shown that a quasi-1D, two-component (↑,↓) BEC coupled to two modes (â, b̂) of a linear cav-
ity, as shown in Fig. 1, can be viewed as a Bose-Hubbard ladder pierced with a magnetic-like
flux Φ. There, we have shown in detail how to implement the atomic rung tunnelings (i.e.,
spin-flip processes) by coupling the two atomic components with a microwave pump with a
strength Ω. The directional atomic tunnelings along the legs are mediated by the cavity fields
that are, in turn, dynamically coupled to the atomic density n̄. We refer interesting readers
to our recent article [26] for the details of the implementation of this model as well as the
derivation of the Hamiltonian of the system, and instead here start by only re-expressing the
derived Hamiltonian of the system.

Assuming ħh= 1, the effective Hamiltonian of the system reads [26],

Ĥ = Ĥlegs + Ĥrungs + Ĥph + Ĥa-a, (1)

with

Ĥlegs = −η
∑

j

�

â† ĉ†
↓, j+1 ĉ↓, j + b̂ĉ†

↑, j+1 ĉ↑, j + H.c.
�

, (2a)

Ĥrungs = −Ω
∑

j

�

ĉ†
↓, j ĉ↑, j + H.c.
�

, (2b)

Ĥph = −
�

∆− UN̂↓
�

â†â−
�

∆− UN̂↑
�

b̂† b̂, (2c)

Ĥa-a =
V1

2

∑

j,σ

N̂σ, j

�

N̂σ, j − 1
�

+ V2

∑

j

N̂↑, j N̂↓, j , (2d)

where ĉσ, j is a bosonic operator annihilating a σ-spin atom on j-th lattice site, N̂σ, j = ĉ†
σ, j ĉσ, j

and N̂σ =
∑

j N̂σ, j are local and total number operators, respectively, â and b̂ are cavity photon
annihilation operators for the two modes. Here, η is the pumping strength, ∆ is the pump-
cavity detuning, Ω is the coupling strength between pseudospin components, and V1 and V2
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are the strength of intra- and inter-species contact interactions. Note that the effective cavity
detunings are dispersively shifted by the optomechanical atomic back-action UN̂σ, where U
is the dispersive shift per atom. The photon decay rate, κ, although not included explicitly in
Eq. (1), is accounted for in the Heisenberg equations of motions for the cavity-field operators,

∂t â =
i
ħh
[Ĥ, â]−κâ, (3)

(and analogously for b̂), which is equivalent to the Lindblad-type time evolution of the density
matrix in the Schrödinger picture [25].

Although the analysis of Ref. [26] was focused on the stationary regimes of the Hamilto-
nian (1), we also indicated there the existence of dynamical regimes, such as regular limit-cycle
regimes where the amplitudes of the photonic fields follow closed periodic trajectories on a
complex plane. Since this dynamical behavior stems from the cavity-induced dynamical ge-
ometric phase and the two-body contact interactions do not play any major role [26], in the
following we restrict ourselves to the non-interacting regime V1 = V2 = 0 and set Ĥa-a = 0.
As we will see in the next section, this assumption allows us to greatly simplify the analysis
of the problem. In Sec. 5, we will, however, go back to the fully interacting regime in order
to check the robustness of our findings and the validity of the spin model, i.e., we revisit the
assumption that small interactions do not mix significantly different quasi-momentum sectors
of the Hilbert space.

2.2 Spin mapping

In this section we show that the non-interacting bosonic model of Sec. 2.1 can be mapped to a
collective spin problem, where a thermodynamic limit can be easily applied. Since the lattice
model (1) is translationally invariant, the quasimomentum k is a good quantum number. In
the absences of atom-atom interactions, different quasimomenta are not coupled, that is, the
quasimomentum is conserved during the time evolution. Therefore, if the system is initially
prepared in a single quasimomentum mode, say k = 0, the dynamics of the system will be
restricted to this single quasimomentum Hilbert subspace.1 Thus, by taking the Fourier trans-
form of the atomic operator ĉσ, j =

1
L

∑

k eik j ĉσ,k and restricting to the experimentally relevant
k = 0 subspace, we readily obtain,

∑

j

ĉ†
σ, j+1 ĉ†

σ, j

�

�

�

k=0
=
∑

k

eikN̂σ,k

�

�

�

k=0
= N̂σ,k=0, (4)

and similarly for other operators. To further simply the problem, we exploit the standard
Schwinger-boson spin representation,

Ŝ x
j =

1
2

�

ĉ†
↓, j ĉ↑, j + H.c.
�

, (5a)

Ŝ y
j =

i
2

�

ĉ†
↓, j ĉ↑, j − H.c.
�

, (5b)

Ŝz
j =

1
2

�

N̂↑, j − N̂↓, j
�

. (5c)

After some straightforward algebra the Hamiltonian (1) can be recast as

Ĥ = −2K̂Ŝz − 2ΩŜ x +
1
2

�

â†â+ b̂† b̂
� �

UN̂ − 2∆
�

−
η

2

�

N̂(â+ b̂) +H.c.
�

, (6)

1Although a single mode assumption is experimentally relevant as, usually, before ultracold atoms are loaded
into an optical lattice, a BEC is prepared in a spatially uniform ground state in a zero momentum state, we note
that by loosening this restriction we expect more interesting physics to appear. For example, a vortex state can
exist when the system is prepared in a superposition of two non-equivalent energy minima; see Ref. [26].

5



SciPost Physics Submission

with
K̂ =

U
2

�

â†â− b̂† b̂
�

−
η

2

�

(â− b̂) +H.c.
�

. (7)

Here, N̂ =
∑

j,σ N̂ j,σ = N̂k=0 denotes the total particle number operator which, being a con-

served quantity, can be replaced by its mean value, i.e., N̂ → 〈N̂〉 = N . Furthermore, the
operators Ŝγ =

∑

j Ŝγj = Sγk=0, where γ = x , y, z, represent the components of the collective
spin which fulfill the standard spin algebra commutation relations.

Note that if we assume U = U0/2L and rescale the operators and parameters in the fol-
lowing way,

Ŝα→ ŜαN , η→ η/
p

N , â→ â
p

N , b̂→ b̂
p

N , (8)

then one can write the new, renormalized Hamiltonian as

Ĥ ′ = −2K̂ ′Ŝz − 2ΩŜ x +
1
2

�

â†â+ b̂† b̂
�

(U0n̄− 2∆)−
η

2

�

(â+ b̂) +H.c.
�

, (9)

with

K̂ ′ =
n̄U0

2

�

â†â− b̂† b̂
�

−
η

2

�

(â− b̂) +H.c.
�

, (10)

that does not depend on the system size L, but on the average atomic density n̄= N/2L only.
Consequently, after the rescaling (8), the Heisenberg equations of motion for the spin (i.e.,
atomic) degrees of freedom take a simple form,

∂t Ŝ
x = 2K̂ ′Ŝ y , (11a)

∂t Ŝ
y = 2
�

ΩŜz − K̂ ′Ŝ x
�

, (11b)

∂t Ŝ
z = −2ΩŜ y , (11c)

while the equations for the cavity fields read

∂t â = i
�

∆̂a
eff + iκ
�

â+ iη
�

1
2
− Ŝz
�

, (12a)

∂t b̂ = i
�

∆̂b
eff + iκ
�

b̂+ iη
�

1
2
+ Ŝz
�

, (12b)

with the effective detunings

∆̂a
eff =∆− n̄U0

�

1
2
− Ŝz
�

, ∆̂b
eff =∆− n̄U0

�

1
2
+ Ŝz
�

. (13)

Since the above equations of motion depend only on the density n̄= N/2L, the thermody-
namic limit L →∞, N →∞ such that n̄ = const. is well defined for the system. Therefore,

although the total spin ˆ⃗S is in principle quantized, we can take the thermodynamic limit and
effectively treat the spin classically, further simplifying the problem2. We also assume that the
photonic operators in the thermodynamic limit can be well approximated by their mean-field
coherent amplitudes, i.e., â→ α, b̂→ β , and consequently K̂ ′→ K ′. As long as we are dealing
with large photon numbers, an anihilation of a single photon does not change substantially
the mean number of photons, and therefore, a coherent state approximation for photons is
well justified. It is also true for non- (or weakly) interacting atoms in a thermodynamic limit,
where corrections to the mean-field are suppressed as 1/V (see, for example, Ref. [25]).

2Let us note here that the length |S⃗| = [
∑

γ(S
γ)2]1/2 of the total classical spin S⃗ = (S x , S y , Sz) is conserved

during the time evolution, being |S⃗|= 1/2 after the rescaling (8).
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Furthermore, let us make an observation that if one defines B⃗ = (2Ω, 0, 2K ′), then the spin
equations of motion (11) can be recast in a simple vector form,

∂t S⃗ = S⃗ × B⃗. (14)

Consequently, B⃗ can be considered as an effective magnetic field which, through Eq. (10),
explicitly depends on the cavity operators â and b̂. Although the most interesting scenario is
when B⃗ is time dependent, already in a steady state (i.e., ∂t S⃗ = 0, ∂t â = 0 and ∂t b̂ = 0) the
relation between spin components Sz and S x depends in a non-trivial fashion on the stationary
values of the cavity modes; see Eq. (11b) and our recent Letter [26].

Let us also stress that the spin mapping allows us not only to significantly decrease the
number of degrees of freedom which enormously speeds up the numerical computations, but
also it simplifies the analysis of the system [cf. Sec. 3 for the and dynamical phase diagram
based on the numerical solutions of the equations of motions, and Sec. 4 for the stability
analysis of equilibrium points and phase transitions]. In the following sections we will first
review stationary phases of the system and then completely focus on the plethora of fully
dynamical non-stationary states.

3 Dynamical phase diagram

In this section we will analyze the equations of motion, Eqs. (11)–(12), in the thermodynamic
limit L→∞ and N →∞, keeping n̄= N/2L = const. As we argue in the previous section, in
this limit both the components of the total spin and the cavity fields can be treated as classical
variables, Ŝγ→ Sγ and â→ α, b̂→ β respectively, which greatly simplifies the analysis. From
now on throughout the article we assume that κ determines the energy scale by setting κ= 1.
Also, in order to be consistent with the results of Ref. [26], we take Ω= 1 and ∆= U0 = −6.

We start our analysis with the numerical study of the long-time behavior of the system,
assuming that all atoms are initially in the zero quasimomentum mode and are equally dis-
tributed among the two spin components. In the spin language this assumption corresponds
to the S⃗(t = 0) = (1

2 , 0, 0) initial condition for the Heisenberg equations of motion, Eqs. (11).
We also assume that initially the photonic fields are only marginally populated by choosing α
and β as random complex numbers within a circle of amplitude ε= 0.01; however, the results
do not strongly depend on these initial values.

In order to fully characterize the long-time behavior of the spin model we look at two
macroscopic observables: the z component of the total spin

〈Sz〉t =
1

T2 − T1

∫ T2

T1

Sz(t)dt, (15)

and the vector δS⃗ = (δS x ,δS y ,δSz), with

δSγ = max
t∈[T1,T2]

[Sγ(t)]− min
t∈[T1,T2]

[Sγ(t)]. (16)

Here, T1 and T2 can be chosen arbitrarily provided that T1, T2, T2 − T1≫ κ = 1. The first ob-
servable 〈Sz〉t describes the atomic population imbalance in the two pseudospin components,
and is also related to the photon imbalance in the two photonic modes ∆nph = |α|2 − |β |2,
cf. Eq. (12). The second observable δS⃗ describes maximal fluctuations in spin components
over time. Therefore, the condition δS⃗ ̸= 0 defines non-steady (non-stationary) states and dy-
namical phases. The phase diagram of the model, depicted in Fig. 2, involves both stationary
and dynamical phases.
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Figure 2: Phase diagram of the system. The long-time behavior of the model can be
characterized by two macroscopic observables: the time-averaged, z-component of
the spin 〈Sz〉t [panel (a)] and the vector of maximum spin fluctuations δS⃗ [panel (b),
where CMY color model is used], cf. Eqs. (15) and (16), respectively. Plots reveal
two stationary phases—photon balanced (PB) and photon imbalanced (PI) phases—
as well as four dynamical phases—limit cycle I (LC-I), limit cycle II (LC-II), quasi-
stationary photon imbalance (qs-PI), and chaotic phases. The dynamical phases are
characterized in Table. 1; depicted and further explained in Figs. 3–6. The boundary
between two stationary phases (black dotted) is calculated analytically according to
the Eq. (21). The parameter values are κ = 1, Ω = 1, and ∆ = U0 = −6 with the
initial state S⃗ = (1

2 , 0, 0).

Phase Acronym 〈Sz〉t δS x δS y δSz Stationary Z2 breaking

photon balanced PB 0 0 0 0 ✓
photon imbalanced PI ̸= 0 0 0 0 ✓ ✓
quasi-stationary

qs-PI ̸= 0 ≈ 1 ≈ 1 ≈ 0 ✓
photon imbalanced
limit cycle I LC-I ̸= 0 ̸= 0 ̸= 0 ̸= 0 ✓
limit cycle II LC-II ≈ 0 ≈ 0 ≈ 1 ≈ 1
chaos ≈ 0 ≈ 1 ≈ 1 ≈ 1

Table 1: Stationary and dynamical phases of the system can be fully characterized
by the spin order parameters 〈Sz〉t and δS⃗ = (δS x ,δS y ,δSz), cf. Eqs. (15) and (16),
respectively, as well as Fig. 2. In the phases {PB, PI}, a steady state is reached in a
long-time evolution and, hence, δS⃗ vanishes by definition. While in the other phases
{qs-PI, LC-I, LC-II, chaos}, δS⃗ is non-zero and the system exhibits a dynamical behav-
ior. All the phases, whether stationary or dynamic, can exhibit spontaneous breaking
of the Z2 symmetry of the model (Sz →−Sz , â→ b̂), provided that 〈Sz〉t ̸= 0.

Another important characteristics of the phases of the model is related to the discrete Z2
symmetry of the spin Hamiltonian (6), being invariant under the simultaneous change

Sz →−Sz , â→ b̂. (17)

Once 〈Sz〉t ̸= 0, the Z2 symmetry of the model is spontaneously broken, which also manifests
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itself in the photon imbalance∆nph = |α|2−|β |2 ̸= 0. The Z2 symmetry is broken in a station-
ary photon imbalanced (PI) phase as well as in dynamical, quasi-stationary photon imbalanced
(qs-PI) and limit cycle I (LC-I) phases. See Table 1 for the overview and comparison of distinct
phases of the system.

3.1 Stationary phases

Although in this article our attention is focused on the non-stationary phases of the model,
for the sake of self-consistency and completeness let us briefly overview the stationary phases
of the model that we characterised in detail (using the atomic description) in Ref. [26]. In a
nutshell, there are two distinct classes of steady-state solutions with the respect to the photon-
number difference, ∆nph = |α|2 − |β |2, belonging to either photon balanced (PB) or photon
imbalanced (PI) phases.3 The cavity fields are uniquely determined by the photonic equations
of motions, Eq. (12). In the stationary phases, the cavity field amplitudes, α and β , obtain
non-zero complex phases,

φα = −arctan

�

κ

∆− UN↓

�

, φβ = −arctan

�

κ

∆− UN↑

�

, (18)

that depended nonlinearly on the number of atoms. These time-independent complex phases
results in a magnetic-like flux Φ= φα +φβ piercing each elementary plaquette of the ladder;
see Fig. 1. Notably, even in stationary phases there are non-zero atomic currents along the
legs of the ladder flowing in opposite directions, i.e.,

J↓ = iη
∑

j

〈â† ĉ†
↓, j+1 ĉ↓, j −H.c.〉= 2κ|α|2, (19a)

J↑ = iη
∑

j

〈b̂ĉ†
↑, j+1 ĉ↑, j −H.c.〉= −2κ|β |2, (19b)

where the dissipation plays an essential role in the generation of these currents; see Ref. [26]
for more details.

In the collective spin description that we adopt in this paper (see Sec. 2.2) we distinguish
between the PB and PI phases just by looking at the Sz component of the collective spin, which
can be related to ∆nph through Eqs. (12). Although the greatest benefits of switching to the
spin language will be most evident in the next sections, here we show that already a simple
analysis of the stationary equations of motions allows us to find an analytic expression for the
PB-PI phase boundary.

From the steady-state equation of motion ∂t S⃗ = 0= S⃗× B⃗ one trivially obtains S y = 0 and
Sz = −S x K ′/Ω. Exploiting the normalization condition for the total spin |S⃗|= 1/2 leads to

K ′ = −2ΩSz/
Æ

1− 4(Sz)2. (20)

Making use of Eq. (10) and expanding both sides of Eq. (20) around Sz = 0, we readily obtain
the critical value for the strength of the pump η across the PB-PI phase boundary,

ηc =
(n̄− 2)2∆2 + 4κ2

p

8(n̄− 2)∆(∆2 +κ2)/Ω
. (21)

The analytical curve well matches the numerical boundary between the PB and PI phases;
see the dashed black line in Fig. 2. We note that for the chosen initial conditions in Fig. 2,

3We note that one can further divide the photon balanced (PB) regime into the Meissner (PB-M) and the vortex
(PB-V) phases. However, this distinction is not very relevant in the current analysis. We refer interested readers to
our recent Letter, Ref. [26].
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Figure 3: Quasi-stationary photon imbalanced (qs-PI) phase. (a) Long-time evolution
of the photonic fields exhibits a photon-imbalanced steady-state-like behavior. How-
ever, the qs-PI phase is not stationary as the photons imbalance grows in a long-time
evolution as shown in the inset. Although the photon imbalance could in principle
saturate reaching the steady state, in the qs-PI phase the saturation time approaches
infinity; see the discussion in the main text. (b) The non-stationary character of the
qs-PI phase is evident from the behavior of the S x and S y components of the collective
spin, which perform very fast macroscopic oscillations. (c) The Bloch sphere repre-
sentation of the total spin which oscillates around one of the Z2 symmetry-broken
unstable equilibrium (black) points of the Heisenberg equations; cf. Sec. 4. The pa-
rameters are fixed at n̄ = 1.3 and η = 2.2. The other parameters are the same as in
Fig. 2.

the analytical curve of Eq. (21) also reproduces the boundary between the PB and some of
the non-stationary phases, which does not need to be true for other initial conditions; see
Appendix A.

3.2 Non-stationary phases

Although the existence of non-stationary phases was already signaled in our previous Let-
ter [26], in this article we find and quantitatively characterize a plethora of dynamical phases,
where the system does not reach a steady state in long-time evolution.

We note that throughout this article we consider the red atom-pump detuning regime,
where U0 < 0 and the atoms are high-field seekers which usually leads to steady-state super-
radiant phases. On the contrary, in the blue detuning regime, U0 > 0 and the particles are
repelled from the maxima of the light potential, which can lead to dynamical instabilities such
as self-ordered stable limit cycles [34] [see also Refs. [35–38] for the study of limit cycles in a
context of time crystals].

Here we find, however, that non-stationary phases can appear for high-field seeking atoms
U0 < 0 as long as the effective cavity-pump detunings

∆σeff =∆
�

1− n̄
�

1
2
± Ŝz
��

, (22)

change sign from negative to positive, which may only happen for n̄ > 1; see Sec. 2.2. In the
computed phase diagram shown in Fig. 2, we distinguish four distinct non-stationary dynam-
ical phases: a quasi-stationary photon imbalanced (qs-PI) state, two limit cycle (LC-I, LC-II)
phases, and a chaotic phase. All of the dynamical phases, discussed below, are summarized in
Table 1 and portrayed in Figs. 3-6.

Quasi-stationary photon imbalanced phase. The quasi-stationary photon imbalanced (qs-
PI) phase is characterized by fast macroscopic oscillations of the S x and S y components of

10



SciPost Physics Submission

Figure 4: The two limit-cycle phases, LC-I and LC-II, are separated by a chaotic
regime. (a) The density |α̃(ω)|2 of one of the photon fields in the frequency do-
main ω for a fixed value of the pumping strength η = 1.4. The transition between
the LC-I and chaotic phases occurs through the frequency period doubling, where the
ratio of consecutive bifurcation intervals is numerically close to the first Feigenbaum
constant; see the discussion in the main text. (b) The photonic field amplitudes on
the complex plane for different atomic density n̄ and the fixed η = 1.4. The black
dots illustrate two repulsive unstable equilibrium points (cf. Sec. 4 for the stability
analysis of the equations of motion). As illustrated in panel (a), with increasing n̄,
one can observe the gradual period doubling of closed limit cycle trajectories in the
LC-I phase before entering the chaotic phase. Eventually, after crossing the chaotic
regime, the system’s dynamics reorganizes and enters the regular LC-II phase. The
other parameters are the same as Fig. 2.

the collective spin, i.e., δS⃗ ≈ (1, 1,0); see Fig. 3. By looking solely at the long-time evolution
of the photonic fields, it might seem that a (photon-imbalanced) steady state is reached, and
therefore, in an experiment the state could be mistaken with the PI phase. Nevertheless,
the qs-PI phase is not stationary, since it violates the steady-state spin equation of motion,
∂t S⃗ = 0= S⃗ × B⃗. For this reason the photon imbalance grows in a long-time evolution and/or
the photon fields perform small-scale oscillations.

Similar to the PI phase, the qs-PI phase also breaks the Z2 symmetry of the model. How-
ever, as mentioned above, the presence of rapid oscillations of S x and S y spin components
distinguishes this phase from the stationary PI phase. Furthermore, despite of what we have
mentioned before, the qs-PI phase appears for sufficiently large pumping strength η already
for n̄ < 1. This simply means that there exists a steady state, S⃗ = ±(0,0,±1/2), but it is
not achievable for a finite evolution time [we elaborate on this more in Sec. 4.1]. The phase
extends to n̄ > 1 regime where the amplitude of Sz oscillations increases and the phase con-
tinuously changes to a limit cycle phase.

Limit cycle phases. The limit cycle phases are characterized by regular oscillations of both
spin and photonic fields, cf. Fig. 5. We have identified two limit cycle phases in our model,
denoted as the Limit Cycle I (LC-I) and Limit Cycle II (LC-II). In the LC-I phase the total
spin performs regular circular oscillations around a mean non-zero value, breaking the Z2
symmetry of the model. While in the LC-I phase all spin components oscillate, i.e., δSγ ̸= 0, in
the LC-II phase the variation of S x is close to zero and δS⃗ ≈ (0, 1,1). Each of the photonic field
amplitudes {α,β} in the LC-I phase follows its own closed regular trajectory on the complex
plane. In the LC-II phase, the Z2 symmetry is not broken as the total spin encircles a big limit-
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Figure 5: There are two distinct dynamical limit-cycle phases in the system: the limit
cycle I (LC-I) phase (top panels, corresponding to n̄ = 1.2 and η = 0.9 in the phase
diagram of Fig. 2) and the limit cycle II (LC-II) phase (bottom panels, n̄ = 1.85 and
η = 1.4). (a) The LC-I phase is characterized by macroscopic oscillations of all spin
components. (b) The collective spin on the Bloch sphere encircles one of the unstable
equilibrium (black) points breaking the Z2 symmetry of the model. (c) Macroscopic
oscillation of the Sz component of the total spin leads to periodic oscillations of the
photonic field amplitudes α and β . (d) On the contrary, the LC-II phase is charac-
terized by large-scale oscillations of only two spin components, namely S y and Sz .
(e) The LC-II phase does not break the Z2 symmetry as the collective spin performs
big limit cycles, which are stable against the competition between the three repelling
unstable equilibrium (black) points. (f) Photonic field amplitudes in the LC-II phase
evolve along one common closed trajectory. The other parameters are the same as
Fig. 2.

cycle trajectory with 〈Sz〉t ≈ 0. The photonic field amplitudes in the LC-II phase evolve along
one common closed trajectory.

Chaotic phase. The chaotic phase is characterized by irregular evolution of the spin and the
photonic fields [cf. Fig. 6]. The irregular trajectories do not cover the whole Bloch sphere
nor the complex plane, but rather form a strange attractor. In Fig. 4 we show the transition
between the two limit cycle phases through the chaotic phase. By increasing n̄ from inside the
LC-I phase and before entering the chaotic phase, one can observe period doubling of closed
limit-cycle trajectories. Eventually, the system’s dynamics reorganize and enter the regular LC-
II phase. The observed period doubling happens only between the LC-I and the chaotic phases.
From the numerical simulations we are able to extract the first few period doubling points in
the density, n̄PD = 1.239, 1.369,1.392, 1.401. It is interesting that the numerical value of the
weighted average of the ratios of consecutive bifurcation intervals,

〈a〉av = 4.57(46), (23)

12



SciPost Physics Submission

Figure 6: The chaotic phase is characterized by irregular evolution of both the col-
lective spin [panels (a)-(b)] and photonic field amplitudes [panel (c)]. Interestingly,
the irregular trajectories do not cover the whole phase-space, rather form strange
attractors in a six dimensional space (cf. Sec. 4). The black points represent repul-
sive unstable fixed points. The atomic density and the pump strengths are fixed at
n̄= 1.55 and η= 1.2. The other parameters are the same as Fig. 2.

is close to the first Feigenbaum constant, δ = 4.669 . . . , for a bifurcation diagram for a non-
linear map [39].

4 Stability of equilibrium points

From a mathematical point of view the Heisenberg equations of motion constitute a set of cou-
pled, non-linear autonomous ordinary differential equations. Hence, the stability of stationary
solutions can be investigated using standard methods available in nonlinear differential equa-
tions textbooks; see for example, Refs. [40,41]. Here we perform the linear stability analysis
by looking at the eigenvalues of the Jacobian matrix, to be discussed in the next subsections.
We see that the stability analysis of equilibrium points predicts stationary and non-stationary
regimes that agree with the dynamical phase diagram in Fig. 2. In particular, a simple stability
analysis of equilibrium points accurately reproduces the phase boundary between the PB-PI
phases (Sec. 4.1). Furthermore, it gives us an insight into the Hopf/pitchfork bifurcations and
phase transitions which we explain in Sec. 4.2.

4.1 Eigenvalues of the Jacobian matrix

In this section we find the equilibrium points of the Heisenberg equations, Eqs. (11)-(12), and
investigate their linear stability. Let us start by writing the Heisenberg equations of motion in
a compact, vector form as

∂tX= F(X), (24)

with X = (Sx , Sy , Sz ,α, ᾱ,β , β̄)T and F(X) = ( f1, f2, f3, f4, f5, f6, f7)T , where f1 = −2iK ′S y is
the right-hand side of the first equation of motion (i.e., for ∂tSx), and similarly for the other
components.

The equilibrium points (or steady-state solutions) of Eq. (24) are defined as ∂tX0 = 0 and,
therefore, can be simply found by solving a set of nonlinear algebraic equations

F(X0) = 0. (25)

Taking a Taylor expansion (up to the linear term) of the right-hand side of Eq. (24) around
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Figure 7: Stability diagram illustrating regions with different number of (stable)
equilibrium points. The density plot is in a good agreement with the numerical phase
diagram of the system, Fig. 2. The lines (a)-(d) corresponds to panels in Fig. 8, which
shows different bifurcation scenarios at phase boundaries. Capital letters correspond
to the table of equilibrium points; see Tab. 2. Note that although the striped area has
two stable equilibrium points, at least one eigenvalue of each of the stable points has
a very small negative real part close to zero, |Re λ| ≤ 10−4. Consequently, the stable
equilibrium point cannot be reached for experimentally relevant evolution times;
cf. Fig. 2.

the equilibrium point X0 yields

∂tX= F(X0) +
∂ F(X)
∂ X

�

�

�

�

X0

(X−X0). (26)

Since ∂tX0 = 0, Eq. (26) can be readily recast in the form,

∂tδX= J0δX, (27)

where δX = X−X0 and J0 = ∂XF(X)
�

�

X0
is the Jacobian matrix. A general solution of Eq. (27)

can be written as a superposition of terms of the form exp(λ j t), where {λ j} is the set of
eigenvalues of the Jacobian J0. Hence, the problem of stability of equilibrium points as well
as dynamics of the system in the vicinity of the equilibrium points is reduced to the analysis
of a few eigenvalues of the Jacobian. In particular, the equilibrium points are stable (i.e.,
the equilibrium points are attractive) if and only if all the eigenvalues of the Jacobian have
negative real parts,

∀ jRe[λ j]< 0. (28)

Moreover, one can gain an important insight into the properties of the set of eigenvalues of
the Jacobian J0 just by looking at the symmetries of F(X).
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S x Sz 〈Ĥ ′〉 Re λ

A -0.50 0.00 0.86 0.85
0.28 -0.41 -0.27 0.09
0.28 0.41 -0.27 0.09
0.50 0.00 -1.14 0.83

B -0.50 0.00 0.66 1.48
0.40 -0.30 -0.38 0.82
0.40 0.30 -0.38 0.82
0.50 0.00 -1.34 2.16

C -0.50 0.00 0.63 1.58
0.46 -0.19 -0.57 0.83
0.46 0.19 -0.57 0.83
0.50 0.00 -1.37 2.35

S x Sz 〈Ĥ ′〉 Re λ

D -0.50 0.00 0.06 2.08
0.16 -0.47 1.74 -0.10
0.16 0.47 1.74 -0.10
0.50 0.00 -1.94 3.06

E -0.50 0.00 0.06 1.83
0.03 -0.49 -3.05 -0.00
0.03 0.49 -3.05 -0.00
0.50 0.00 -1.94 2.70

F -0.50 0.00 0.38 0.90
0.24 -0.44 -1.86 -0.50
0.24 0.44 -1.86 -0.50
0.50 0.00 -1.62 1.51

Table 2: Table of all equilibrium points for the points A-F in Fig. 7, their energy 〈Ĥ ′〉
and real value of the dominant eigenvalue Re λ (i.e., with the maximal real part).
Note that the equilibrium points always have S y = 0, so they can be unambiguously
labeled by S x and Sz spin components.

In our model, because of the conservation of the total spin |S⃗| = 1
2 , there are only six

independent equations and, therefore, one eigenvalue of J0 is identically zero. We can discard
λ = 0 from our analysis as long as we restrict ourselves to a constant spin hypersurface.
Furthermore, one can make a simple observation that

F(X) =
�

U†F(X)U
�∗

, (29)

with U being a unitary, block diagonal matrix,

U=





13 0 0
0 σx 0
0 0 σx



 , (30)

where 13 and σx denote the identity matrix of size 3 and the first Pauli matrix, respectively.
Using Eq. (29) we can immediately infer that the remaining eigenvalues of J0 are either purely
real or come in complex conjugate pairs λi and λ∗i . In the latter case, if the complex conjugate
pair has a positive real part, then the equilibrium point is not stable. However, a stable limit
cycle could appear in its vicinity.

In Fig. 7 we plot the stability phase diagram of the model. Comparing the stability diagram
with the dynamical phase diagram of Fig. 2 reveals that the two phase diagrams are in good
agreement. In particular, the phase boundary between the two stationary phases (PB and PI) is
perfectly reproduced by a line separating regions with one and two stable equilibrium points.
The blue region in Fig. 7, i.e., the region without stable equilibrium points, corresponds to
dynamical phases in Fig. 2. However, in order to recognize different dynamical phases, one
must analyze the behaviour of eigenvalues of the Jacobian corresponding to the equilibrium
points; see Tab. 2. In particular, the LC-I phase (in a vicinity of the point A in Fig. 7) can be
distinguished by looking at the dominant eigenvalues, i.e., eigenvalues with the largest real
part, for the two Sz ̸= 0 equilibrium points. Namely, in the LC-I phase the real parts of the
dominant eigenvalues are small in comparison with a distance on the Bloch sphere between
the two equilibrium points.

A major difference between Fig. 2 and Fig. 7 is the existence of regions with stable equilib-
rium points in the dynamical qs-PI phase. This behaviour can be again explained by analysing
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Figure 8: Nature of bifurcations across the phase transitions. Panels illustrate the be-
havior of the equilibrium points as a function of η for a fixed density n̄. Panels (a)–(d)
correspond to the in Fig. 7. The stable (unstable) solution branches are represented
with blue solid (red dotted) lines. Four different bifurcation types are present in the
system. (a) A supercritical pitchfork bifurcation (n̄ = 0.5). At the critical point ηc ,
the Sz = 0 stable equilibrium point loses its stability, but two new Sz ̸= 0 stable equi-
librium points emerge. (b) A subcritical pitchfork bifurcation (n̄ = 0.9). Although
at η′c two pairs of Sz ̸= 0 stable and unstable branches of solutions emerge, the low-
est energy equilibrium point (corresponding to Sz = 0) loses its stability only after
crossing the critical point ηc . Subcritical pitchfork bifurcations are characteristic of
first-order phase transitions. (c)–(d): Supercritical and subcritical Hopf bifurcations
(n̄= 1.7 and n̄= 1.3, respectively). The panels are similar to (a)–(b), with an impor-
tant difference that at η′′c , the Sz ̸= 0 equilibrium points lose stability. At the critical
point ηc in panel (d) the system jumps to one of the stable, dynamical limit cycles.

the dominant eigenvalues and mean energies at the equilibrium points. In the yellow region
in the vicinity of the point D in Fig. 7 there exist two stable equilibrium points with non-zero
Sz , but their energy is much higher than the energy of other unstable equilibrium points;
see Tab. 2. For this reason, the stable equilibrium points are not reached in the time evolution
unless the initial conditions are fine-tuned to the vicinity of one of the stable points. In the
striped region in Fig. 7, on the other hand, there are two stable equilibrium points with mini-
mal energy, but the real part of the dominant eigenvalue pair is so small (|Reλ| ≤ 10−4) that
the stable points cannot be reached in a finite, experimentally relevant evolution time. This
indicates that there is a continuous crossover between the PI and qs-PI phases.

Finally, in Fig. 7 there exist also narrow red and green regions with six equilibrium points.
In Sec. 4.2, we will see that the existence of such region entails the appearance of subcritical
pitchfork and Hopf bifurcation of solutions [40–42], which we discuss below.
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Figure 9: Supercritical pitchfork bifurcation responsible for a second order phase
transition between the PB and PI phases. The Sz spin component changes alge-
braically Sz∝ (η−ηc)ν after crossing the critical point ηc , which is also illustrated
on a log-log plot in the inset. Note that the fitted critical exponent ν ≈ 0.5 is the
same as in Landau theory [43].

Figure 10: The behavior of eigenvalues of the Jacobian matrix at Hopf bifurcations,
panels corresponding to the bottom row of Fig. 8. Eigenvalues corresponding to the
equilibrium point with Sz > 0 are marked in blue, while red eigenvalues correspond
to the equilibrium point with Sz = 0 and Sx = 1/2. Increasing intensity of points
account for increasing η. (a) Supercritical Hopf bifurcation. A pair of complex con-
jugate eigenvalues cross the imaginary axis. The Sz > 0 stable equilibrium point
become unstable, but a periodic orbit, i.e., a limit cycle, appears. (b) Subcritical
Hopf bifurcation. As before, a pair of complex eigenvalues with Reλ > 0 is respon-
sible for a limit cycle behaviour. Once the Sz = 0 equilibrium point loses its stability,
i.e., when one of the real eigenvalues crosses the imaginary axis, the system jumps
towards one of the stable limit cycle solutions.

4.2 Phase transitions and bifurcations analysis

In this section we focus on bifurcation of solutions across the phase boundary between the
stationary PB-PI phases as well as between the PB and dynamical limit cycle phases.

By definition, a bifurcation is a change of the topological type of the system, e.g. the num-
ber of equilibrium points, as its parameters pass through a critical bifurcation value (see, for
example, Ref. [40–42]). For instance, in the pitchfork bifurcation, which is probably the most
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commonly appearing bifurcation type in physical systems, two new equilibrium points appear
at the critical point while the fixed equilibrium changes its stability. Pitchfork bifurcations (and
also Hopf bifurcations which lead to the appearance of periodic oscillations rather then new
equilibra) have two types – supercritical and subcritical. In Fig. 8 we illustrate four different
types of bifurcation that we observe in our system. Panels (a)–(d) of Fig. 8 correspond to the
lines in Fig. 7, respectively. In particular, Fig. 8(a) shows a standard supercritical bifurcation,
where at the critical ηc the stable Sz = 0 equilibrium point looses its stability and two new
branches of stable solutions with Sz ̸= 0 appear. This bifurcation corresponds to a second
order phase transition where the order parameter scales as

Sz(δη= η−ηc) =

�

0 , δη≤ 0
(δη)ν , δη > 0

. (31)

The value of the critical exponent is found numerically to be ν≈ 0.5, which is in an agreement
with the standard Landau theory of phase transitions [43]; see Fig. 9.

On the contrary, Fig. 8(b) shows an example of a subcritical pitchfork bifurcation which
is responsible for the first order phase transition between the PB-PI phases. In a subcritical
pitchfork bifurcation, despite that at η′c two new stable branches of solutions with Sz ̸= 0
emerge, the Sz = 0 solution loses its stability only at the critical point ηc > η

′
c . Hence, the

order parameter exhibits a discontinuous jump, a characteristic of a first order phase transition.
Finally, Fig. 8(c)–(d) depict Hopf bifurcations across the phase boundaries between the PB

and limit cycle phases. Although at a first glance, the solution branching at the Hopf bi-
furcations is very similar to the behavior of the pitchfork bifurcations, there is an important
difference that at η′′c , the Sz ̸= 0 equilibrium points lose their stability. That means that there is
no stable stationary solution. However, new time-dependent solutions emerge. The behavior
of eigenvalues of the Jacobian at the Hopf bifurcations are depicted in Fig. 10. Specifically,
Fig. 10(a) shows eigenvalues of the Jacobian for one of the Z2 symmetry broken equilibrium
points with non-zero Sz . Below η′′c all eigenvalues have negative real part and, therefore, the
equilibrium point is stable. At the Hopf bifurcation a pair of complex-conjugate eigenvalues
cross the imaginary axis. Thus, the stable equilibrium point becomes unstable, but a periodic
orbit, i.e. a limit cycle, appears. Furthermore, Fig. 10(b) illustrates eigenvalues of the Jaco-
bian for an unstable equilibrium point (blue diamonds) corresponding to the Sz ̸= 0 order
parameter, as well as eigenvalues of the Jacobian for the Sz = 0 equilibrium point (red disks).
Once the latter loses its stability, the solution jumps to one of the stable limit cycle solutions.

5 Validity of the spin model

In this section we take a step back and consider again the full bosonic model, Eq. (1), in order
to investigate the validity and the robustness of our results. In Sec. 2.2, we assumed that the
atoms do not directly interact with each other (non-interacting, ideal bosons) and mapped the
bosonic ladder system to the collective spin problem. By doing so, we restricted our analysis
to a single, k = 0 quasimomentum sector of the Hilbert space.

Here, now we consider the interacting problem with repulsive on-site intra-species (V1 > 0)
and inter-species (V2 > 0) atomic interactions in a chain of L = 51 sites. We evaluate the
contribution from nonzero quasimomenta by solving numerically the full Hamiltonian, but
still in the mean-field regime, as in Ref. [26], due to the huge dimension of the Hilbert space.
For simplicity, in the following we assume that V1 = V2, but we have checked that the results
do not change qualitatively if we loose this assumption. We choose the initial state to be close
to a uniform, k = 0 plane wave, i.e.,

ψσ, j(t = 0) =Nσ
�

1+ r j

�

, r j ∈ [−ε/2,ε/2], (32)
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Figure 11: Density plots depicting the validity of the spin model, where we assume
that small two-body contact interactions do not mix different quasi-momentum sec-
tors of the Hilbert space significantly. We quantify the effect of the intra- (V1) and
inter- (V2) atomic interactions on the single-mode assumption through the quantity
R defined in Eq. (33). (a) Negligible values of R fully justify the single mode assump-
tion for sufficiently small interactions, V1 = V2 = 0.1. (b) For stronger interactions,
V1 = V2 = 0.5, on the other hand, the single-mode approximation is not valid in some
parameter regimes as the contribution from higher quasimomentum states becomes
important.

with ri being a random number from a uniform distribution centered around zero and the
width ε= 2·10−2. The normalization coefficientNσ is calculated numerically in every disorder
realization such that

∑

j |ψσ, j|2 = Nσ. As before, we also assume that α(t = 0) and β(t = 0)
are random complex numbers lying within a complex circle of radius ε. In order to check the
robustness of our results we define a quantity

R= max
σ, t∈[T1,T2]





∑

k ̸=0

�

�ψ̃σ,k(t)
�

�

2

�

�ψ̃σ,k=0(t)
�

�

2



 , (33)

which quantifies the maximal contribution of higher quasimomentum states due to the atom-
atom interaction over the time evolution, where ψ̃σ,k(t) are the Fourier components of the
wavefunction. As in the previous sections, the time interval [T1, T2] can be arbitrarily chosen
as long as T1, T2, T2 − T1≫ 1.

According to the definition (33), the quantity R is close to zero whenever the initial quasi-
momentum k = 0 is the dominant mode. In order to check the validity of the single quasimo-
mentum assumption, we plot the quantity R in Fig. 11 for different values of the interaction
strength, V1 = V2 = 0.1 and V1 = V2 = 0.5. The other parameters are kept the same as before,
i.e., κ= 1, Ω= 1, and ∆= U0 = −6.

From Fig. 11(a), one can readily see that although R is more sensitive in the region with
unbroken Z2 symmetry, the single mode assumption is perfectly valid for sufficiently small
interactions (note the overall scale of the plot). On the other hand, we find that for stronger
atomic contact interactions the single mode assumption is not justified in some regions as
illustrated in Fig. 11(b). Interestingly, it turns out that the higher quasimomentum modes
are occupied most drastically in the dynamical limit cycle phases, which break the continuous
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Figure 12: Time-dependent limit-cycle solutions spontaneously break the time-
translation symmetry of the system. (a) A slight perturbation in initial conditions
results in a solution that is shifted in time by a phase φ0. (b) The histogram of the
phase φ0 distribution over many realizations converges towards a flat distribution,
restoring the time translation symmetry.

time-translation symmetry of the system exhibiting time-crystalline-like behavior. We discuss
this further in the next section.

6 Relation to time crystals

Time crystals are characterised by the spontaneous breaking of time transnational symmetry
[44,45]. Although at first it seemed that coupling with the environment would always destroy
the time crystal order, as in the case of many body localized (MBL) discrete time crystals
(DTC) [46], it has been later realized that driven-dissipative atom-cavity systems not only can
support the time crystal phase in perdiocially driven systems but also can stabilize it [47] as the
dissipation prevents heating to the infinite temperature. Recently a first dissipative discrete
time crystal has been realized in an optical cavity [48].

In this manuscript, the effective Hamiltonian (1) describing our system is time indepen-
dent, i.e., it is invariant under the action of the continuous time translation operator. Nonethe-
less, as we have seen in the previous sections, the solutions in the two limit-cycle regimes break
this continuous time translation symmetry by adopting periodic orbits α(t) = α(t + T ) with
some period T . Indeed, it has been previously postulated that the regular limit cycle dynam-
ics can be related to continuous time crystals [35, 36] (for the experiment see Ref. [38]), as
long as the breaking of the symmetry is spontaneous. Spontaneous breaking of the continu-
ous time symmetry means that if α(t) is a solution, so is α(t +φ0), where φ0 is an arbitrary
phase shift and can be associated with a Goldstone mode [49]. In the process of spontaneous
symmetry breaking the distribution of φ0 in many experimental (or, as in our case, numerical)
independent realizations, slightly different in initial conditions, should be uniform. Indeed, in
our case, the phase φ0 distribution in the limit-cycle phases tends to a flat distribution when
the number of independent numerical simulations is increased. We confirm our findings in
Fig. 12.

Last but not least, let us note that the occupation of higher quasimomentum modes (par-
ticularly in the limit cycles phases) due to the atomic interactions as discussed in Sec. 5 implies
the continuous space-translation symmetry of system is also broken. Combined with the bro-
ken time-translation symmetry in the limit cycle phases, this could lead to the emergence of
space-time crystals. We plan to investigate this highly interesting scenario in the near future.
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7 Summary and conclusions

In this work we have studied nonequilibrium phases of a quasi-1D two-component BEC in a
transversely pumped two-mode linear cavity with cavity-generated dynamical gauge fields.
Our system can be described by a two-leg Bose-Hubbard model with leg-dependent, cavity-
assisted, dynamical complex tunneling amplitudes. Our effective lattice model constitutes a
minimal, dynamical flux-lattice model with only two lattice sites in the transverse (rung) di-
rection. A comprehensive understanding of a minimal model is important in the investigation
of more complicated ones in order to set up a framework for the future research directions.

Using the effective spin mapping of the bosonic operators, we have described the full dy-
namical phase diagram of the model and found a plethora of non-stationary phases, such as
two distinct limit-cycle phases and a chaotic phase. Specifically, we have found a Feigenbaum-
like period doubling leading to chaos and strange attractors. We have also investigated the
equilibrium points of equations of motion as well as their stability, which provides a comple-
mentary understanding of the dynamical phases of the system. The analysis of the eigenvalues
of the Jacobian matrix at equilibrium points has allowed us to recognize pitchfork and Hopf
bifurcations of the dynamical solutions. Finally, we have studied the robustness and validity
regime of our findings and discussed the relation of limit-cycle solutions to time crystals.

Last but not least, we would like to stress that although our considerations in this paper
are focused entirely on weakly interacting ultracold atoms in optical lattices where a collective
spin mapping is justified, our methods and results could be of applicable to other experimental
systems (e.g. Rydberg atoms [50] and trapped ions [51, 52]) where, on the contrary, strong
global-range interactions [53, 54] makes the single spin approximation viable, as in Lipkin-
Meshkov-Glick (LMG) [55] and similar models.
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A Appendix

In this work the parameters of the Hamiltonian, Eq. (6), has been chosen arbitrarily as κ= 1,
Ω= 1 and∆= U0 = −6 with the initial state S⃗ = (1

2 , 0, 0), so that the results of this paper could
be directly compared with the results from our previous Letter, Ref. [26]. In this Appendix
we plot dynamical phase diagrams for different parameters [Fig. 13] and initial conditions
[Fig. 14], showing the same dynamical phases with quantitative differences only.
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[11] N. Goldman, G. Juzeliūnas, P. Öhberg and I. B. Spielman, Light-induced gauge fields
for ultracold atoms, Rep. Prog. Phys. 77(12), 126401 (2014), doi:10.1088/0034-
4885/77/12/126401.

[12] A. Eckardt, Colloquium: Atomic quantum gases in periodically driven optical lattices, Rev.
Mod. Phys. 89, 011004 (2017), doi:10.1103/RevModPhys.89.011004.

[13] M. Aidelsburger, M. Atala, S. Nascimbène, S. Trotzky, Y.-A. Chen and I. Bloch, Experi-
mental realization of strong effective magnetic fields in an optical lattice, Phys. Rev. Lett.
107, 255301 (2011), doi:10.1103/PhysRevLett.107.255301.

23

https://doi.org/doi:10.1515/nanoph-2020-0351
https://doi.org/10.21468/scipostphyslectnotes.11
https://doi.org/10.1088/0034-4885/79/1/014401
https://doi.org/10.1098/rsta.2021.0064
https://doi.org/10.1209/0295-5075/107/26006
https://doi.org/10.1088/0034-4885/77/12/126401
https://doi.org/10.1088/0034-4885/77/12/126401
https://doi.org/10.1103/RevModPhys.89.011004
https://doi.org/10.1103/PhysRevLett.107.255301


SciPost Physics Submission

[14] J. Struck, C. Ölschläger, M. Weinberg, P. Hauke, J. Simonet, A. Eckardt, M. Lewen-
stein, K. Sengstock and P. Windpassinger, Tunable gauge potential for neutral and
spinless particles in driven optical lattices, Phys. Rev. Lett. 108, 225304 (2012),
doi:10.1103/PhysRevLett.108.225304.

[15] M. Aidelsburger, M. Atala, M. Lohse, J. T. Barreiro, B. Paredes and I. Bloch, Realization
of the hofstadter hamiltonian with ultracold atoms in optical lattices, Phys. Rev. Lett. 111,
185301 (2013), doi:10.1103/PhysRevLett.111.185301.

[16] Z. Wu, L. Zhang, W. Sun, X.-T. Xu, B.-Z. Wang, S.-C. Ji, Y. Deng, S. Chen, X.-J. Liu and J.-W.
Pan, Realization of two-dimensional spin-orbit coupling for bose-einstein condensates, Sci-
ence 354(6308), 83 (2016), doi:10.1126/science.aaf6689, https://science.sciencemag.
org/content/354/6308/83.full.pdf.

[17] L. W. Clark, B. M. Anderson, L. Feng, A. Gaj, K. Levin and C. Chin, Observation
of density-dependent gauge fields in a bose-einstein condensate based on micromotion
control in a shaken two-dimensional lattice, Phys. Rev. Lett. 121, 030402 (2018),
doi:10.1103/PhysRevLett.121.030402.

[18] C. Maschler and H. Ritsch, Cold atom dynamics in a quantum optical lattice potential,
Phys. Rev. Lett. 95, 260401 (2005), doi:10.1103/PhysRevLett.95.260401.

[19] H. Ritsch, P. Domokos, F. Brennecke and T. Esslinger, Cold atoms in cavity-
generated dynamical optical potentials, Rev. Mod. Phys. 85, 553 (2013),
doi:10.1103/RevModPhys.85.553.

[20] K. Baumann, C. Guerlin, F. Brennecke and T. Esslinger, Dicke quantum phase tran-
sition with a superfluid gas in an optical cavity, Nature 464(7293), 1301 (2010),
doi:10.1038/nature09009.

[21] J. Klinder, H. Keßler, M. R. Bakhtiari, M. Thorwart and A. Hemmerich, Observation of
a superradiant mott insulator in the dicke-hubbard model, Phys. Rev. Lett. 115, 230403
(2015), doi:10.1103/PhysRevLett.115.230403.

[22] R. Landig, L. Hruby, N. Dogra, M. Landini, R. Mottl, T. Donner and T. Esslinger, Quantum
phases from competing short- and long-range interactions in an optical lattice, Nature
532(7600), 476 (2016), doi:10.1038/nature17409.

[23] C. Georges, J. G. Cosme, L. Mathey and A. Hemmerich, Light-induced co-
herence in an atom-cavity system, Phys. Rev. Lett. 121, 220405 (2018),
doi:10.1103/PhysRevLett.121.220405.

[24] R. M. Kroeze, Y. Guo and B. L. Lev, Dynamical spin-orbit coupling of a quantum gas, Phys.
Rev. Lett. 123, 160404 (2019), doi:10.1103/PhysRevLett.123.160404.

[25] F. Mivehvar, F. Piazza, T. Donner and H. Ritsch, Cavity QED with quantum
gases: new paradigms in many-body physics, Advances in Physics 70(1), 1 (2021),
doi:10.1080/00018732.2021.1969727.

[26] E. Colella, A. Kosior, F. Mivehvar and H. Ritsch, Open quantum system simulation of
faraday’s induction law via dynamical instabilities, Phys. Rev. Lett. 128, 070603 (2022),
doi:10.1103/PhysRevLett.128.070603.

[27] D. Jaksch and P. Zoller, Creation of effective magnetic fields in optical lattices: the
hofstadter butterfly for cold neutral atoms, New Journal of Physics 5, 56–56 (2003),
doi:10.1088/1367-2630/5/1/356.

24

https://doi.org/10.1103/PhysRevLett.108.225304
https://doi.org/10.1103/PhysRevLett.111.185301
https://doi.org/10.1126/science.aaf6689
https://science.sciencemag.org/content/354/6308/83.full.pdf
https://science.sciencemag.org/content/354/6308/83.full.pdf
https://doi.org/10.1103/PhysRevLett.121.030402
https://doi.org/10.1103/PhysRevLett.95.260401
https://doi.org/10.1103/RevModPhys.85.553
https://doi.org/10.1038/nature09009
https://doi.org/10.1103/PhysRevLett.115.230403
https://doi.org/10.1038/nature17409
https://doi.org/10.1103/PhysRevLett.121.220405
https://doi.org/10.1103/PhysRevLett.123.160404
https://doi.org/10.1080/00018732.2021.1969727
https://doi.org/10.1103/PhysRevLett.128.070603
https://doi.org/10.1088/1367-2630/5/1/356


SciPost Physics Submission

[28] C. Sias, H. Lignier, Y. P. Singh, A. Zenesini, D. Ciampini, O. Morsch and E. Arimondo,
Observation of photon-assisted tunneling in optical lattices, Phys. Rev. Lett. 100, 040404
(2008), doi:10.1103/PhysRevLett.100.040404.

[29] C. Kollath, A. Sheikhan, S. Wolff and F. Brennecke, Ultracold fermions in a
cavity-induced artificial magnetic field, Phys. Rev. Lett. 116, 060401 (2016),
doi:10.1103/PhysRevLett.116.060401.

[30] W. Zheng and N. R. Cooper, Superradiance induced particle flow via dynamical gauge
coupling, Phys. Rev. Lett. 117, 175302 (2016), doi:10.1103/PhysRevLett.117.175302.

[31] E. Colella, F. Mivehvar, F. Piazza and H. Ritsch, Hofstadter butterfly in a cavity-
induced dynamic synthetic magnetic field, Phys. Rev. B 100, 224306 (2019),
doi:10.1103/PhysRevB.100.224306.

[32] A. Celi, P. Massignan, J. Ruseckas, N. Goldman, I. B. Spielman, G. Juzeliūnas and
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