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Abstract

We define new velocity and acceleration having dimension of (Leng th)α/(Time) and
(Leng th)α/(Time)2, respectively, based on the fractional addition rule. We discuss the
formulation of fractional Newton mechanics, Galilean relativity and special relativity in
the same setting. We show the conservation of the fractional energy, characterize the
Lorentz transformation and group, and derive the expressions of the energy and mo-
mentum. The two body decay is discussed as a concrete illustration.
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1 Introduction

This work is based on pseudo analysis (see [6] and [7], and references therein for a review). It
is a generalization of the classical analysis, where instead of the field of real numbers a semiring
is taken on a real interval [a, b] ⊂ [−∞,+∞] endowed with pseudo-addition ⊕ and pseudo-
multiplication ⊗. It has different applications in mathematics and physics, e.g. in modeling
nonlinearity, uncertainty in optimization problems, nonlinear partial differential equations,
nonlinear difference equations, optimal control, fuzzy systems, decision making, game theory,
etc. It also gives solutions in the forms, which are not achieved by other approaches, e.g.,
Bellman difference equation, Hamilton Jacobi equation with non-smooth Hamiltonians.

Definition 1.1 The pseudo binary operations are defined by the help of a monotonous bijective
map f , called their generator, as:

x ⊕ f y = f −1( f (x) + f (y)), x 	 f y = f −1( f (x)− f (y)), (1)

x ⊗ f y = f −1( f (x) f (y)), and x � f y = f −1( f (x)/ f (y)), (2)

xn ⊕ f ym = xn + ym, xn 	 f ym = xn − ym, (3)

xn ⊗ f ym = xn ym, and xn � f ym = xn/ym, (4)

�

x ⊕ f y
�n
=

n
∑

k=0

�

n
k

�

xk yn−k,
�

x 	 f y
�n
=

n
∑

k=0

�

n
k

�

(−1)k xk yn−k, (5)

�

x ⊗ f y
�n
= (x y)n, and

�

x � f y
�n
= (x/y)n. (6)

It can be easily checked that the operation ⊕ f and ⊗ f satisfy the commutativity and associativ-
ity properties. Through the map f , we can perform many deformed binary operations [2, 8].
The first use of this pseudo binary operations was made by Einstein (noticed by Chung et
al. [4]) in the velocity addition. The second use was made in constructing the q-additive
entropy theory [1].

Recently, in 2019, Chung and Hassanabadi [4] considered a special choice of f ,

f (x) = |x |α−1 x , α > 0, (7)

so that the deformed multiplication and deformed division may be the same as the ordinary
ones. Using this, these authors studied the anomalous diffusion process by using the α-
deformed mechanics which possesses the α-translation in space x → x ⊕δx . The α-deformed
binary operations, i. e. α-addition, α-subtraction, α-multiplication and α-division take the
form:

a⊕α b = |a|a|α−1 + b|b|α−1|1/α−1(a|a|α−1 + b|b|α−1) (8)

a	α b = |a|a|α−1 − b|b|α−1|1/α−1(a|a|α−1 − b|b|α−1) (9)

a⊗α b = ab, a�α b =
a
b

. (10)

Interestingly, the multiplication and division are invariant under α-deformation.
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In this same spirit, in 2022, Hounkonnou et al proved that a Minkowski phase space en-
dowed with a bracket relatively to a conformable (α-deformed) differential realizes a con-
formable Poisson algebra, confering a bi-Hamiltonian structure to the resulting manifold.
They deduced that the related α-Hamiltonian vector field for a free particle is an infinitesi-
mal Noether symmetry and computed the corresponding α−deformed recursion operator [5].

The present paper is organized as follows. In Section 2, we derive the Newton law of
α−deformed Newton mechanics. Section 3 is devoted to the characterization of α-deformed
Galilean relativity. The α-deformed Galilei group is described, and energy conservation law is
deduced. In Section 4, we study the special relativity with α-translation symmetry. Section 5
deals with an analysis of two body decay.

2 α−deformed Newton mechanics

In an ordinary Newtonian mechanics in one dimension, the Newton velocity is defined as

v =
d x
d t

. (11)

The infinitesimal displacement is invariant under spatial translation x → x + δx and the in-
finitesimal time interval is invariant under temporal translation t → t +δt. If we impose new
translation symmetry based on α-addition rule, we need to change the definition of velocity
so that it may possess this new symmetry. Here we impose two translation symmetries: the
α-translation in position, x → x ⊕α δx , and α-translation in time, t → t ⊕α δt.

Note in 2019, Chung and Hassanabadi [4] defined the deformed velocity, which is invariant
under α-translation in position and ordinary translation in time. Their average velocity is given
by

vave =
fα(x ′ 	α x)

t ′ − t
=
∆αx
∆t

=
|x ′|α−1 x ′ − |x |α−1 x

t ′ − t
. (12)

Taking t ′→ t, we obtain the velocity:

v =
dαx
d t
= α|x |α−1 d x

d t
. (13)

If we impose the α-translation in both time and position, we have to change the definition of
the velocity. In this case, the average α-velocity is furnished by the expression

vα,ave =
fα(x ′ 	α x)
f (t ′ 	α t)

=
∆αx
∆α t

=
|x ′|α−1 x − |x |α−1 x
|t ′|α−1 t ′ − |t|α−1 t

. (14)

Taking t ′→ t leads to the α-velocity:

vα =
dαx
dα t

= t1−α|x |α−1 d x
d t

(15)

Because vα is α-translation invariant, the α-acceleration is defined as

aα =
dvα
dα t
=

1
α

t1−α dvα
d t

(16)

Since the α-velocity and α-acceleration have dimension [Leng th]α/[Time]α and dimension
[Leng th]α/[Time]2α, respectively, the Newton equation is obtained by the relation

|F |α−1F = mαaα or, equivalently, F = m|aα|
1
α−1aα (17)

In mechanics with α-translation symmetry, the α-velocity and α-acceleration have the frac-
tional dimensions which are different from the ordinary case α = 1. But, for the force, we
assumed that it has the same dimension as in the α= 1−mechanics.
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3 α-deformed Galilean Relativity

Based on the new definition of α-velocity and α-acceleration, we define the α-inertial frames
of reference possessing the property that a body with zero net force acting upon these frames
does not α-accelerate; that is, such a body is at rest or moving at a constant α-velocity. Here
we assume the physical laws must be the same in all α-inertial frames of reference. Now let us
consider two inertial frames S(t, x) and S′(t ′, x ′) moving at a relative constant α-velocity uα
with x-axes. The Newton equation is invariant under the transformations

v′α = vα − uα, v′α =
dαx ′

dα t
, x ′ = x 	α |uα|

1
α−1uα t, t ′ = t. (18)

3.1 α-deformed Galilei group

Based on the α-operations for matrices, we can rewrite the coordinate transformations of the
Newton equation as:

�

x ′

t ′

�

= Tα(uα)⊗α

�

x
t

�

=

�

1 −|uα|
1
α−1uα

0 1

�

⊗α

�

x
t

�

. (19)

The transformation matrix Tα(uα) forms a Lie group with the α-multiplication. The following
properties are indeed satisfied:

• Tα(uα)⊗α Tα(vα) = Tα(uα + vα).

• The α-multiplication is associative.

• The identity is Tα(0).

• The inverse is Tα(−uα).

3.2 Energy conservation

Because d x is not invariant under the α-translation, we use α-translational invariant infinites-
imal displacement to get dαx = α|x |α−1d x and define the work,

|W |α−1W = −
∫

dαx |F |α−1F, (20)

having the same dimension as in theα= 1−mechanics. We define the potential energy through
the conservative force,

|F |α−1F = −
dαU
dαx

= −|x |1−α|U |α−1 dU
d x

. (21)

Thus, for the conservative force, we have

|W1→2|α−1W1→2 = −(|U2|α−1U2 − |U1|α−1U1). (22)

Inserting the Newton equation obtained previously (see (17)) into (20), we get

|W1→2|α−1W1→2 = K2 − K1 (23)

where the kinetic energy is given by

K =
1
2

mαv2
α. (24)
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Considering the dimension, the conservation of energy is provided by

|E|α−1E = K + |U |α−1U =
1
2

mαv2
α + |U |

α−1U =
p2
α

2mα
+ |U |α−1U , (25)

where the linear momentum is expressed as pα = mαvα. The energy has the same dimension
as in the α= 1−mechanics, while the linear momentum has fractional dimension.

4 Special relativity with α-translation symmetry

The 3-position in non-relativistic mechanics is changed into 4-position (or event) in the rel-
ativistic mechanics. Let us consider the event P(c t, x , y, z), where c is the Newton speed of
light, (i. e. speed with α= 1). Based on the definition of α-translation invariant infinitesimal
displacement and α-translation invariant infinitesimal time interval, the α-translation invari-
ant distance (α-distance) of infinitesimally close space-time events denoted by dsα is given by

dαs2 = c2αdα t2 − dαx2 − dα y2 − dαz2. (26)

The α-deformed proper time τα is

dατ
2 =

dαs2

c2α
. (27)

4.1 α-Lorentz transformations

The α-Lorentz transformations making invariant the space-time interval

(∆αs)2 = (cα(|t|α−1 t))2 − ((|x |α−1 x))2 (28)

are given by
|x |α−1 x = cα|t ′|α−1 t ′shα(ψ) + |x ′|α−1 x ′chα(ψ) (29)

cα|t|α−1 t = cα|t ′|α−1 t ′chα(ψ) + |x ′|α−1 x ′shα(ψ), (30)

where the little α-deformed hyperbolic functions are defined by

shα(ψ) :=
1
2
(eα(ψ)− eα(−ψ)) = sinh(|ψ|α−1ψ) (31)

chα(ψ) :=
1
2
(eα(ψ) + eα(−ψ)) = cosh(|ψ|α−1ψ) (32)

thα(ψ) :=
shα(ψ)
chα(ψ)

= tanh(|ψ|α−1ψ), eα(x) := e|x |
α−1 x . (33)

The little α-deformed hyperbolic functions obey the relations

ch2
α(ψ)− sh2

α(ψ) = 1. (34)

In terms of the α-deformed binary operations, we get

x = c t ′Shα(ψ)⊕ x ′Chα(ψ), c t = c t ′Chα(ψ)⊕ x ′Shα(ψ), (35)

where the big α-deformed hyperbolic functions are

Chα(ψ) := |chα(ψ)|
1
α−1 chα(ψ), Shα(ψ) := |shα(ψ)|

1
α−1 shα(ψ) (36)
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Thα(ψ) :=
Shα(ψ)
Chα(ψ)

. (37)

obeying |Chα(ψ)|2	|Shα(ψ)|2 = 1. Consider in the coordinate system (c t, x) the origin of the
coordinate system (c t ′, x ′). Then, x ′ = 0, and

x = c t ′Shα(ψ), c t = c t ′Chα(ψ). (38)

Dividing the two equations gives

x
ct
= Thα(ψ), or,

|x |α−1 x
cα|t|α−1 t

= thα(ψ). (39)

Since |x |
α−1 x

|t|α−1 t = vα is the relative uniform α-velocity of the two systems, we identify the physical
meaning of the imaginary "rotation angle ψ" as

thα(ψ) =
vα
cα
= βα. (40)

Using the following identities

chα(ψ) = γα, shα(ψ) = γαβα,where γα =
1

Æ

1− β2
α

, (41)

we obtain the α-deformed Lorentz transformation of the form

|x |α−1 x = γα(|x ′|α−1 x ′ + vα|t ′|α−1 t ′), |t|α−1 t = γα(|t ′|α−1 t ′ +
vα
c2α
|x ′|α−1 x ′). (42)

Expressing the spatial and temporal coordinates in terms of the α-deformed binary operations,
we get

x = Γα(x
′ ⊕ v1/α

α t ′), t = Γα(t
′ ⊕

v1/α
α

c2
x ′), where Γα = γ

1/α
α = (1− βα)−

1
2α . (43)

If we set

uα =

�

|x |α−1

|t|α−1

�

d x
d t

, u′α =

�

|x ′|α−1

|t ′|α−1

�

d x ′

d t ′
, (44)

the addition of α-velocity becomes

uα =
u′α + vα
1+ vαuα

c2α

. (45)

If we regard the α-speed of light as cα, the eq.(44) shows that the α-speed of light remains
invariant, and, hence, the speed of light also remains invariant under the α-deformed Lorentz
transformation.

4.2 α-Lorentz group

Now, let us introduce the four α-velocity. For that, we change the notation as:

c t = x0, x = x1, y = x2, z = x3. (46)

Then, the four α-velocity is given by

ua
α =
|xa|α−1d xa

(d̃τ)α
or, explicitly, u0

α = cαγα, ui
α = v i

αγα, i = 1,2, 3. (47)

Therefore, we have
ηabua

αub
α = c2α. (48)
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4.3 Energy and α-momentum

The four α-momentum is defined as

pa
α = mαua

α (49)

explicitly giving

p0
α = mαcαγα, pi

α = mαv i
αγα, and thus ηabpa

αpb
α = m2αc2α. (50)

Here, we have pa
α 6= (E/c, ~pα) because the energy in α-deformed mechanics has the same unit

as in the undeformed case. Therefore, we set

pa
α =

�

(
E
c
)α, ~pα

�

(51)

Thus, the eq.(50) gives

E2α = c2α|~pα|2 +m2αc4α, and when |~vα| � cα, Eα ≈
|~pα|2

2mα
, (52)

which is the same as the non-relativistic case.

5 Two body decay

The simplest particle reaction is the two-body decay of unstable particles. A well known exam-
ple from nuclear physics is the alpha decay of heavy nuclei. In particle physics, one observes,
for instance, decays of charged pions or kaons into muons and neutrinos, or decays of neutral
kaons into pairs of pions, etc. Consider the decay of a particle of mass M which is initially at
rest. Its four α-momentum is P = (Mα, ~0), where we set c = 1.

This reference frame is called the centre-of mass frame (CMS). Denote the four α-momenta
of the two daughter particles by p1 = (Eα1 , ~pα,1), p2 = (Eα2 , ~pα,2). From the momentum conser-
vation, we get

~pα,1 + ~pα,2 = 0. (53)

The energy conservation is

Mα =
q

|~pα,1|2 +m2α
1 +

q

|~pα,2|2 +m2α
2 (54)

If we set
p = |~pα,1|= |~pα,2|, (55)

we have

p =
1

2Mα

q

(M2α − (mα1 −mα2 )2)(M2α − (mα1 +mα2 )2) (56)

Thus, we have
M ≥ m1 ⊕α m2. (57)

6 Conclusion

This work has addressed the formulation of Newton mechanics, Galilean relativity, and special
relativity in α-deformed binary operation setting.
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