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Abstract

Adiabatic quantum computers, such as the quantum annealers commercialized by D-
Wave Systems Inc., are routinely used to tackle combinatorial optimization problems. In
this article, we show how to exploit them to accelerate equilibrium Markov chain Monte
Carlo simulations of computationally challenging spin-glass models at low but finite tem-
peratures. This is achieved by training generative neural networks on data produced by
a D-Wave quantum annealer, and then using them to generate smart proposals for the
Metropolis-Hastings algorithm. In particular, we explore hybrid schemes by combin-
ing single spin-flip and neural proposals, as well as D-Wave and classical Monte Carlo
training data. The hybrid algorithm outperforms the single spin-flip Metropolis-Hastings
algorithm. It is competitive with parallel tempering in terms of correlation times, with
the significant benefit of a much shorter equilibration time.
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1 Introduction

Simulating the low-temperature equilibrium properties of frustrated, disordered Ising models
is a hard computational task for classical computers. It plays a central role in the under-
standing of glasses [1–3], and it is also connected to relevant quadratic binary optimization
problems, whose solution (in the absence of constraints) corresponds to the identification of
the spin configuration(s) with the lowest energy [4]. Markov chain Monte Carlo (MC) sim-
ulations driven by simple implementations of the Metropolis-Hastings (MH) algorithm [5, 6]
are affected by diverging correlation times at low temperatures [7]. Various smart sampling
schemes have been developed; arguably, the most relevant are parallel tempering (PT) [8] and
the isoenergetic cluster updates [9,10]. Anyway, the research for further developments is still
vivid [11].

In recent years, machine learning (ML) techniques have been widely adopted in computa-
tional physics [12–14]. In particular, generative deep learning has proven promising for accel-
erating stochastic simulations, addressing challenging multimodal molecular systems [15–17],
lattice models [18, 19], ferromagnetic and random spin models [20–22, 22–24], solid-state
systems [25], as well as quantum models [26–31]. If appropriately trained, generative neural
networks (NNs) are able to generate particularly efficient MC updates. However, it was noted
that the training based on the reverse Kullback-Leibler divergence is susceptible to mode col-
lapse problems [15, 17, 32–34]. On the other hand, the unsupervised learning – based on
the forward Kullback-Leibler divergence minimization – is also possible, but it requires train-
ing datasets produced either from previous simulations or from experiments. Simulated data
might be produced, e.g., via sequential tempering [23], but this might involve an uncontrolled
computational cost [34]. This encourages one to explore the experimental route. Interestingly,
it has recently been proven that ML algorithms trained on data produced by quantum experi-
ments are, in theory, able to solve otherwise classically intractable computational tasks [35].

Very recently, a quantum algorithm designed to sample from the Boltzmann distribution of
Ising models has been presented [36,37]. It exploits universal gate-based quantum computers.
While steadily growing, the size of these devices is still too small to clearly observe diverging
correlation times in spin-glass models. On the other hand, the quantum annealers (QAs) com-
mercialized by D-Wave Systems already feature thousands of qubits (see, e.g., Refs. [38,39]).
They are routinely used to tackle optimization problems, and they have also been adopted to
train neural networks [40–43]. Notably, in a recent study they were used to sample rare tran-
sitions in challenging molecular systems [44], but the employed approach required inferring
proposal probabilities via frequency histograms.

In this article, we show how to combine generative deep learning and QAs to improve
thermodynamic-equilibrium simulations of spin glasses. Autoregressive NNs are trained on
spin configurations produced by a D-Wave Advantage QA, and then used to generate smart
proposals for the MH algorithm. The autoregressive property provides the exact proposal
probabilities required to compute the MH acceptance [21, 23], thus avoiding frequency his-
tograms.
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The testbed models we consider are sizable Ising models on square lattices with near-
est neighbor and also next-nearest neighbor frustrated random interactions. We implement
neural MC updates, as well as hybrid sampling schemes which combine neural updates with
standard single spin-flip (SSF) updates. This eliminates possible ergodicity breakdowns due
to configuration-space regions not accessible by the D-Wave samples. The augmentation of
D-Wave configurations with classical MC data is also investigated, as well as the role of dif-
ferent annealing times. We benchmark the hybrid MC scheme against the SSF algorithm and
the powerful PT method. In the challenging low-temperature regime, the hybrid scheme out-
performs the SSF algorithm in terms of correlation times, and it is competitive with PT, with
the significant benefit of a reduced equilibration time. While our method does not require the
D-Wave spin configurations to exactly mimic the Boltzmann distribution, our findings indicate
that they are sufficiently representative of the relevant low-energy sectors to strongly boost
low-temperature equilibrium simulations.

The article is organized as follows: Section 2 introduces the Ising models we consider.
Section 3 describes the SSF-MC algorithm, as well as the neural (N-MC) and the hybrid MC al-
gorithms (H-MC). It also provides some details on our PT simulations. Section 4 introduces the
autoregressive neural networks and their training protocol. Section 5 provides some details
on the quantum annealing protocols performed on the D-Wave Advantage QA and it describes
the sampled configurations. Additional details on the embedding of our lattice setups on Ad-
vantage’s native graph are provided in Appendix A. Appendix B describes the QA’s runtime
utilization. In Section 6 we analyze the performances of the N-MC and of the H-MC algo-
rithms on sizable instances of the adopted spin-glass models. Comparison is made against the
SSF-MC and the PT algorithms. Our main findings are summarized in Section 7, with some
comments on future perspectives.

2 Random Ising Hamiltonians

We consider spin-glass models [45] defined on two-dimensional square lattices. The Hamilto-
nian reads

H(σ) :=
∑

〈i, j〉

Ji jσiσ j , (1)

where σi ∈ {±1} are binary spin variables at the sites i = 1, . . . , N , σ = (σ1, . . . ,σN ) indicates
the whole spin configuration, and N is the total number of spins. Ji j is the coupling between
spins i and j. The symbol 〈i, j〉 indicates that the sum is restricted to nearest-neighbor or up
next nearest-neighbor spins, as detailed below. Open boundary conditions are assumed. The
Boltzmann distribution is defined as

h(σ) := exp [−βH(σ)]/Z , (2)

where β = 1/(kB T ) is the (rescaled) inverse temperature, T is the temperature, and the nor-
malization term Z :=

∑

σ exp [−βH(σ)] is the partition function. Throughout the article,
the energy units are set so that the Boltzmann constant is kB = 1. We are interested in the
thermodynamic properties, such as the average energy per spin E/N := 〈H(σ)〉/N , where the
brackets indicate the expectation value over the Boltzmann distribution.

In the following, three lattice setups will be addressed as a testbed for our methods: (i)
a square lattice with N = 100 spins and only nearest neighbor interaction. The couplings Ji j
are sampled from a Gaussian distribution with zero mean and unit variance, namely, N (0,1).
The corresponding coordination number for internal spins is z = 4. (ii) A square lattice with
N = 484 spins and only nearest-neighbor interaction; here, the couplings are sampled from
a uniform distribution in the range Ji j ∈ [−1,1], namely, Unif[−1, 1]. This model will be
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referred to as the N = 484 (z = 4) setup. (iii) A square lattice with N = 484 spins, including
both nearest-neighbor and next-nearest neighbor couplings on the diagonal, corresponding to
z = 8 for internal spins. All couplings are sampled from Unif[−1, 1]. We refer to this model
also as the N = 484 (z = 8) setup.

The three setups present different levels of difficulty for computational algorithms. Indeed,
the ground-state configurations of square lattices with only nearest-neighbor interactions can
be identified with exact algorithms. Furthermore, while SSF-MC simulations are affected by
long correlation time in the regime β ≃ 1 [46], this model hosts a spin-glass phase with finite
Edward-Anderson order parameter only in the zero-temperature limit [47,48]. The inclusion
of next-nearest neighbor interactions leads to a non-planar topology. In this case, exactly
identifying the ground state is, in general, not possible with polynomial-time algorithms [49].

In Sections 4, 5 and 6, the N = 100 setup (i) is used to illustrate the behavior of the
methods described in Section 3. The N = 484 (z = 4) setup (ii) allows demonstrating that
our H-MC method outperforms the SSF-MC algorithm. In the N = 484 (z = 8) setup (iii),
the SSF-MC algorithm becomes impractical, and we compare the H-MC method against the
powerful PT technique.

3 Markov chain Monte Carlo algorithms

3.1 Single-spin flip Monte Carlo algorithm

MC simulations allow accurately estimating thermodynamic expectation values by sampling
spin configurations according to the Boltzmann distribution Eq. (2) [5]. Starting from an
arbitrary (e.g., random) configuration, random updates from a configurations σ to another
one σ′ are generated according to a transition probability P(σ′|σ). Provided the Markov
chain is irreducible and aperiodic [50], a sufficient condition to ensure convergence to the
target stationary distribution, in our case the Boltzmann distribution h(σ), is represented by
the detailed balance condition

P(σ′|σ)h(σ) = P(σ|σ′)h(σ′), (3)

for all σ and σ′ [51]. A convenient criterion to satisfy Eq. (3) is to decompose the transition
probability P(σ′|σ) using a non-negative column-normalized proposal distribution Q(σ′|σ)
and a suitable acceptance probability A(σ′|σ); one obtains

P(σ′|σ) =

¨

Q(σ′|σ)A(σ′|σ) if σ ̸= σ′,
1−
∑

σ′′ ̸=σQ(σ′′|σ)A(σ′′|σ) if σ = σ′.
(4)

An efficient and popular choice for the acceptance probability, which satisfies Eq. (3), is the
following [5,6]

A(σ′|σ) :=min
�

1,
h(σ′)Q(σ|σ′)
h(σ)Q(σ′|σ)

�

. (5)

Importantly, since only ratios of Boltzmann-distribution values are used, the (intractable) com-
putation of the partition function Z is not required. Moreover, one notices that Eq. (5) simpli-
fies for symmetric proposals, i.e, such that Q(σ′|σ) = Q(σ|σ′) for any σ and σ′. A common
choice for the proposal distribution is the SSF algorithm, whereby the flipping of a randomly
selected spin is proposed. This corresponds to Q(σ′|σ) = 1/N if σ′ and σ differ for one
(and only one) spin, while Q(σ′|σ) = 0 otherwise. While this simple algorithm is suitable for
quite variegate physical systems, it is known to suffer from diverging correlation times close
to phase transitions or in glassy phases, effectively breaking ergodicity in feasible simulation
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times [7]. In Section 6, the SSF simulation times τ, representing the number of sweeps, will
be compared to other algorithms. For the SSF algorithm, a sweep corresponds to N spin-flip
attempts. This definition follows a standard convention adopted in the literature.

3.2 Neural Monte Carlo algorithm

To improve beyond the SSF algorithm, smarter proposal distributions Q(σ′|σ) need to be
implemented. Recent studies proposed using generative NN, specifically, auto-normalizing
flows or autoregressive models. These assign a properly normalized probability (or proba-
bility density, in the case of continuous variables) to each system configuration. We indicate
this probability as q(σ). Furthermore, they allow efficient direct sampling of this probability
distribution, without invoking a Markov process. Henceforth, one sets [21,23]

Q(σ′|σ) = q(σ′). (6)

Formally, convergence to the target distribution is guaranteed as long as q(σ) > 0 for all
configurations σ such that h(σ) > 0. This condition is automatically fulfilled for the autore-
gressive network described in Section 4, since one has q(σ) > 0 for any σ, due to our choice
of output activation function in Eq. (10). In practice, however, q(σ) might be exponentially
small for configurations where the Boltzmann weight is sizable. This would lead to an effective
ergodicity breakdown in feasible simulation times. On the other hand, if the network learns
a good approximation of the Boltzmann distribution, i.e., if q(σ) ∼ h(σ) for all σ, the accep-
tance probability is A(σ′|σ) ≃ 1, leading to an efficient ergodic simulation. This algorithm is
referred to as neural MC (N-MC), and it is detailed in the Algorithm 1.

Algorithm 1 Neural Monte Carlo

Require: τ, NN() ▷ Sweeps and trained NN
σ, q(σ)← NN() ▷ Sample and its probability
i← 1
for i ≤ τ do
σ′, q(σ′)← NN()
r ← h(σ′)

h(σ) ·
q(σ)
q(σ′)

A←min(1, r) ▷ Acceptance probability
if A> Unif[0, 1) then
σ, q(σ)← σ′, q(σ′)

end if
i← i + 1

end for

We point out that the computational cost of neural proposal generation can be off-loaded
and executed by exploiting graphical processing units (GPUs). Each N-MC update requires
the computation of the whole configuration energy. This is comparable to N SSF updates,
assuming that in a single update only the energy difference is computed. Thus, for the N-
MC algorithm, we define a sweep as proposing, and then accepting or rejecting, one system
configuration.

3.3 Hybrid Monte Carlo algorithm

When the generative NN does not efficiently sample all physically relevant spin configurations,
i.e., those corresponding to sizable values of the Boltzmann weight, the N-MC algorithm be-
comes pathologically inefficient. The expectation values estimated in feasible simulation times
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might be biased. This problem might be remediated via a hybrid MC (H-MC) scheme which
(sequentially) combines SSF-MC and N-MC updates1. The sequence satisfies the detailed bal-
ance condition since the individual updates do. Specifically, we implement N SSF updates,
(deterministically) followed by one N-MC update. The whole sequence will be referred to as
one sweep. Its computational cost is of the same order as one sweep of the SSF-MC or the
N-MC algorithms. The H-MC scheme is detailed in Algorithm 2. It aims at eliminating the
drawbacks of both the SSF-MC and the N-MC algorithms, combining their functionalities. The
H-MC updates are supposed to perform large leaps between distance configurations (in terms
of Hamming distance). The SSF moves allow exploring the neighborhoods around the con-
figurations reached by the leaps, allowing exploring regions that cannot be sampled by the
NN.

The inefficiency of the N-MC algorithm is expected to originate from the possible bias
of the configuration dataset used to train the generative NN. As discussed in Section 6, this
problem sometimes occurs with the configurations generated by a D-Wave QA. This device is
designed to sample low-energy configurations. Therefore, the trained NN will not sample high-
energy configurations, which are relevant at high temperatures. Beyond the H-MC scheme,
an alternative (possibly complementary) strategy consists in using hybrid datasets, including
both configurations generated by a D-Wave device and by SSF-MC simulations performed in
the feasible regime, namely, high or intermediate temperatures. Results obtained with this
additional protocol are discussed in Section 6.

Algorithm 2 Hybrid Monte Carlo

Require: τ, N , NN() ▷ Sweeps, spins and NN
σ, q(σ)← NN() ▷ Sample and its probability
i← 1
for i ≤ τ · N +τ do ▷ A step is a SSF sweep plus a NN proposal

if mod (i, N + 1) ̸= 0 then ▷ Attempt N spin flips
k← Unif{1, N} ▷ Pick a spin to flip
σ′← (σ1, · · · ,−σk, · · · ,σN )
r ← h(σ′)/h(σ)
q(σ′)← NN(σ′) ▷ Compute q(σ′)

else ▷ Attempt one neural step
σ′, q(σ′)← NN()
r ← h(σ′)

h(σ) ·
q(σ)
q(σ′)

end if
A←min(1, r)
if A> Unif[0, 1) then
σ, q(σ)← σ′, q(σ′)

end if
i← i + 1

end for

3.4 Parallel Tempering Monte Carlo algorithm

The parallel tempering (PT) method [8, 52], also known as exchange Monte Carlo method,
represents one of the most suitable algorithms to simulate frustrated spin models in the low-
temperature regime. It allows overcoming free energy barriers that separate metastable states,

1A parallel stochastic combination of neural and SSF updates is also possible, but it requires a modified ac-
ceptance probability. Since it does not lead to efficiency improvements in our benchmarks, we do not discuss it
further
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thus performing ergodic simulations even when two or many metastable states compete. It is
employed in Section 6 to simulate the challenging lattice N = 484 (z = 8) setup, for which
the SSF-MC algorithm is impractical. It constitutes a relevant performance benchmark for the
N-MC and the H-MC algorithms.

The PT method is based on M non-interacting replicas of the system, each associated to a
distinct inverse temperature βm, with m= 1, . . . , M , such that βm < βm+1. The spin configura-
tions of each replica are sampled from the Boltzmann distribution hm(σ) at the corresponding
βm. This is achieved with standard SSF-MC updates. Additionally, one introduces swap up-
dates that attempt to exchange the configurations σm and σm+1 associated to two adjacent
replicas. The corresponding acceptance probability is

As(σm,βm|σm+1,βm+1) :=min
�

1, exp(∆)
�

, (7)

where ∆ = (βm+1 − βm)(H(σm+1)− H(σm)). The detailed balance equation is satisfied if the
swaps are proposed independently on the current state [53].

The number of replicas M required for an efficient simulation is known to scale as
p

N [54].
Choosing the inverse temperatures βm is not straightforward. A reasonable ex-ante criterion
is to fix all ratios βm+1/βm to the same constant. This is determined by the smallest inverse
temperatures β1, by the largest one βM , and by the chosen number of replicas M . β1 shall be
small enough to allow an efficient ergodic SSF-MC simulation. βM is chosen according to the
lowest temperature regime of interest. We adopt this criterion in the comparison of correlation
times in Section 6, setting β1 = 0.01, βM = 10, and M = 22. Alternatively, the inverse
temperatures can be chosen so that all average swap acceptance rates are close to, e.g., 20%.
This is a time-consuming procedure, requiring an ex-post parameter optimization. We adopt
this criterion to obtain highly accurate energy expectation values for precise benchmarking.
In this case, we set β1 = 0.1, βM = 10, and M = 40.

Due to the use of replicas, the PT algorithm implies a significant overall computational
overhead compared to the SSF-MC simulations. However, the replicas can be executed in
parallel using different computing cores, and they simultaneously provide information on dif-
ferent temperatures. Furthermore, the cost of swap updates, which is, in practice, mostly
determined by inter-process communications, might be suppressed via an efficient implemen-
tation of inter-process communication. For this, we follow the implementation of Ref. [55].
Therefore, when comparing the PT performance with other algorithms, we define a PT sweep
as N SSF updates per replica and one swap update per pair of adjacent replicas. This choice is
favorable to the PT algorithm, and it is intended to implement a stringent benchmark for the
other MC algorithms.

4 Autoregressive neural networks

Generative neural networks allow inferring an unknown probability distribution p(x ) from a
set of T samples {x (t)}Tt=1 [56]. Here, we consider N -dimensional arrays x = (x1, . . . , xN ),
with x i ∈ {0,1}. These can be associated to spin configurations σ, with σi ∈ {±1}, via the
invertible map x = (σ + 1)/2. For some of the NNs discussed hereafter, the input has to be a
one-dimensional vector. In that case, we flatten the two-dimensional lattice in the row by row
order.

In the N-MC and the H-MC methods of Section 3, the generative NN is used to gener-
ate smart proposals. The NN is required to assign a properly normalized probability to each
configuration, and to allow efficient direct sampling. For this task, recent studies employed
either auto-normalizing flows [17,24,25,33], in the case of continuous-variable problems, or
autoregressive NNs, in the case of spin models. With the autoregressive property, the learned
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probability distribution is written as a product of chained conditional distributions, in the form

p(x ) =
N
∏

i=1

p(x i | x<i), (8)

where x<i = (x1, x2, . . . , x i−1) is a vector with the first i − 1 elements of the input. Configura-
tions can be efficiently generated via ancestral sampling: after i−1 binary variables have been
sampled, one sets x i = 1 with (conditional) probability p(x i | x<i), and x i = 0 with probability
1− p(x i | x<i).

We consider three autoregressive NNs borrowed from the literature, namely, the neural
autoregressive distribution estimator (NADE) [57], the masked autoregressive density esti-
mator (MADE) [58], and the so-called PixelCNN [59]. We train them on datasets of spin
configurations produced by a D-Wave QA. It is found that MADE outperforms NADE in terms
of computational efficiency, both in the training and in the generation phase. Furthermore,
MADE reproduces our training datasets (see Section 5) more accurately than PixelCNN. This
phenomenon is visualized in the histogram of sampled configuration energies of Fig. 1. One
notices that PixelCNN oversamples high-energy configurations. It is worth mentioning that

Figure 1: Histograms of 105 configuration energies per spin H/N , for a N = 100
square lattice with nearest-neighbor couplings. The samples of a D-Wave QA with
annealing time ta = 100µs (grey) are compared with those of three autoregressive
neural networks, namely, NADE, MADE, and PixelCNN. These are trained on the
105 D-Wave configurations. The vertical (red) line corresponds to the ground-state
energy, computed using the McGroundstate solver [60].

PixelCNN was recently been adopted to describe clean ferromagnetic Ising models [21]; we
attribute the inferior performance found here compared to MADE to our choice of random
couplings.

Henceforth, hereafter we illustrate only the architecture of MADE. It is based on an autoen-
coder [56] composed of an input, a hidden, and an output layer with dense connectivity. Its
aim is to obtain a M -dimensional hidden representation f (x ) ∈ RM of the input x , where M
also corresponds to the number of neurons in the hidden layer, such that the (N -dimensional)
reconstruction x̂ is as close as possible to x . Formally, for a standard autoencoder, one has

f (x ) = g (b+W x ) , (9)

x̂ = s (c + V f (x )) , (10)

8



SciPost Physics Submission

Model Input size N Hidden size M Activation Optimizer lr Dataset size T Batch Epochs

MADE 100 100 512 LeakyReLU Adam 5 · 10−3 105 100 10
MADE 484 484 4096 LeakyReLU Adam 5.42 · 10−4 4 · 105 96 30

Table 1: Architecture and hyperparameters of the two autoregressive NNs used for
the N = 100 lattice (MADE 100) and for the two N = 484 (z = 4 and z = 8) setups
(MADE 484).

where W ∈ RM×N , V ∈ RN×M , b ∈ RM and c ∈ RN are trainable weights and biases, and
g(x ) and s(x ) are proper activations functions; we adopt the LeakyRelu [61] and the Sigmoid
function [56], respectively. MADE is trained via unsupervised learning by minimizing the
ensemble binary cross-entropy loss function. For one configuration x , this is defined as

ℓ(x ) :=
N
∑

i=1

[−x i log( x̂ i)− (1− x i) log(1− x̂ i)] . (11)

The weights and biases are optimized via a modified version of stochastic gradient descent,
named ADAM [62]. See also Table 1 for technical details. Notice that x̂ i must represent the
conditional probability p(x i = 1 | x<i). Thus, the loss function also corresponds to the negative
log-likelihood

− log p(x ) =
N
∑

i=1

− log p(x i | x<i)

=
N
∑

i=1

−x i log p(x i = 1 | x<i)− (1− x i) log p(x i = 0 | x<i)

= ℓ(x ).

(12)

To ensure the autoregressive property, two mask matrices M W and MV are introduced.
They are used to eliminate the connections with previous spins in the chosen (raw by raw)
order. Thus, for the autoregressive autoencoder, one has

f (x ) = g
�

b+
�

W ·M W
�

x
�

, x̂ = s
�

c +
�

V ·MV
�

f (x )
�

, (13)

where · indicates here the element-wise product. The masks M W and MV are defined so that
the product M W MV is strictly lower diagonal. We refer the readers to Ref. [58] for the details
on this definition. In principle, one can sample an ensemble of masks fulfilling this property;
however, our tests show no benefit from considering more than one.

All the NNs are implemented in Lightning [63], a PyTorch [64] research framework, and
executed on a NVIDIA RTX A6000 GPU. The most relevant hyperparameters are shown in
Tab. 1; some of them are obtained via the Optuna framework [65]. As common in deep
learning studies, we split each dataset into training and validation sets, with a 80 : 20 ratio.
The MADE is then trained up to 10 or 30 epochs, using an early stopping criterion via the
validation loss function. MADE quickly learns to closely reproduce the energy distribution of
D-Wave samples. This allows us, e.g., to characterize the role of different annealing times in
N-MC simulations. On the other hand, exactly mimicking the training samples is not essential
for the functioning of the N-MC and the H-MC simulations. This means that the training
times could be shortened, and one could adopt MADEs with fewer hidden neurons. In our
implementation, the training of the largest MADE takes approximately 10s per epoch.

As already mentioned, the proposal configurations can be generated independently of the
N-MC and H-MC simulations. This generation can efficiently exploit the massing parallelism of
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modern GPUs. With our platform, generating 105 configurations requires about one minute for
N = 100, and around two minutes and a half for N = 484. Notice that a novel configuration
must be used in each MC-attempted update. This means that the neural proposals, adopted
in the N-MC and the H-MC algorithms, do not constitute a critical computational overhead.

5 Configurations from D-Wave quantum annealers

We generate low-energy spin configurations of the Hamiltonian (1) using a quantum annealer
(QA) [66, 67] powered by D-Wave Systems. It is equipped with the Advantage processor,
featuring more than 5000 programmable qubits. The allowed couplings form the so-called Pe-
gasus graph [39]. The annealing process is described by the following time-dependent Hamil-
tonian

Ĥ := −
A(s)

2
Ĥinit +

B(s)
2

Ĥfinal, (14)

where
Ĥinit :=
∑

i

σ̂x
i , Ĥfinal :=

∑

i

h̃iσ̂
z
i +
∑

i> j

J̃i jσ̂
z
i σ̂

z
j . (15)

In the above equations, σ̂x
i and σ̂z

i are standard Pauli matrices operating on the qubit i, h̃i
and J̃i j are the longitudinal fields and the coupling strengths, respectively, s := t/ta ∈ [0,1]
is a dimensionless time normalized with the annealing time ta, the function A(s) tunes the
intensity of the transverse field operators that form the initial Hamiltonian Ĥinit, while the
function B(s) tunes the scale of problem Hamiltonian Ĥfinal. The latter encodes the classical
Hamiltonian (1), corresponding to the optimization problem to be solved.

Figure 2: Histograms of 105 configuration energies per spin H/N , for the N = 100
lattice with nearest neighbor couplings. The three datasets correspond to three an-
nealing times ta. The vertical (red) line indicates the ground-state energy.

The lattice setups defined in Sections 2 are mapped to the Pegasus graph using the native
heuristic embedding algorithm of the D-Wave interface. This embedding provides the actual
couplings J̃i j (and eventually, longitudinal fields h̃i). In this embedding, (short) qubit chains
are often used to represent logical spins. The most relevant details of the mapping procedure
are provided in Appendix A. Chiefly, we describe the role of the intra-chain coupling strength
on the configuration energies of the generated configurations. It is found that, in some cases,
appropriately tuning this coupling strength allows reaching significantly lower energies.
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N ta Eavg/N Emin/N Egs/N

100 1µs -1.1191 (1) -1.22104 -1.22104

“ 10µs -1.1474 (1) -1.22104 “

“ 100µs -1.17513 (8) -1.22104 “

484 (4) 1µs -0.70212 (2) -0.74331 -0.75503

“ 10µs -0.72117 (1) -0.75119 “

“ 100µs -0.73208 (1) -0.75347 “

484 (8) 1µs -1.04753 (2) -1.09698 -1.09819

“ 10µs -1.06751 (2) -1.09709 “

“ 100µs -1.07829 (1) -1.09816 “

Table 2: Description of the configuration energies per spin H/N sampled by a D-
Wave QA, for our three lattice setups. The average Eavg/N and the minimum Emin/N
energies per spin are reported for three annealing times ta. Sets of 105 or 4 · 105

samples are considered, for N = 100 and N = 484, respectively. The ground-state
energy Egs is exactly computed by the McGroundstate solver [60]. The QA finds it
only for the N = 100 lattice.

The annealing time ta can be set by the user in the range [1, 2000]µs. As reported in Ap-
pendix B, the total amount of time required by the D-Wave system is greater than the annealing
time alone. The tuning functions are such that A(0) = 1 and B(0) = 0, so that the initial state is
dominated by the transfer fields. One also has A(1) = 0 and B(1) = 1. This means that, in the
absence of decoherence and diabatic transitions, the final state corresponds to a ground-state
configuration of the Hamiltonian (1). Assuming coherent annealing, adiabaticity is expected
if the annealing times are allowed to increase with the smallest gap ∆min between adiabatic
ground and first excited states, as: ta ∼ ∆−2

min. Short annealing times and/or decoherence
favor diabatic transitions, meaning that higher energy configurations are sampled. This effect
is analyzed in the energy histogram in Fig. 2, for the lattice setup N = 100 (see definition
in Section 2). Additional characteristics of the sampled energies are reported in Table 2. As
expected, longer annealing times allow more frequent sampling of low energy configurations,
in fact quite close to the ground-state energy.

The ground-state energy is determined using the McGroundstate solver [60], which re-
quires feasible computational times for our lattice setups. Notably, only for the setup with
N = 100 spins the ground-state energy is exactly met at least once among 105 samples. For
the setups N = 484 (z = 4) and N = 484 (z = 8), the lowest sampled energy is slightly higher
than the ground state. This can be attributed to the smaller energy gaps occurring in larger
lattices.

6 Results

Here we analyze the efficiency of the N-MC and of the H-MC simulations driven by generative
NNs, specifically by MADEs, trained on spin configurations generated by a D-Wave QA. Three
testbeds are considered, corresponding to the three lattice setups described in Section 2. They
are referred to as N = 100, N = 484 (z = 4), and N = 484 (z = 8) lattices. Comparisons
are made against conventional SSF-MC simulations and more competitive PT simulations. To
quantify the algorithmic performances, we consider the configuration-energy auto-correlation
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Figure 3: Panel (a): Average energy per spin E/N as a function of the inverse tem-
perature β , for the N = 100 lattice. The SSF-MC simulations (full red circles) are
compared with three N-MC simulations driven by MADEs trained with different an-
nealing times. The horizontal (red) dashed line indicates the ground-state (GS) en-
ergy. Panel (b): E/N versus β for the SSF-MC simulations (full red circles), the N-MC
simulations with annealing time ta = 100µs (green empty rhombi), and the N-MC
simulations corresponding to hybrid training data, including the QA configurations
and SSF-MC simulations at β = 0.5 (blue empty stars). Panel (c): MH acceptance
rates Ar as a function of inverse temperature β . The SSF data (gray dashed curve)
are compared to three N-MC datasets corresponding to different annealing times.

function c(τ), defined as

c(τ) :=
〈Ht+τHt〉 − 〈Ht〉2

〈Ht Ht〉 − 〈Ht〉2
, (16)

where the integers t and τ count MC sweeps, Ht is the energy of the configuration at sweep
t, and the angular brackets indicate the average over the MC samples, discarding the ther-
malization regime. The definition of sweep for each algorithm is provided and motivated in
Section 3. The role of the annealing times on the acceptance rates is also discussed below.

6.1 N = 100 lattice

The N = 100 spin glass is sufficiently small to be amenable to standard SSF-MC simulations,
even in the low-temperature regime β ≃ 1. In Fig. 3, panel (a), we show the average energy
per spin E/N provided by N-MC simulations run for τ= 105 sweeps. Three sets of simulations
are performed, driven by NN trained with three annealing times. While at low temperatures
all of them precisely agree with the (ground truth) SSF-MC results, significant deviations occur
at higher T . The deviations are more sizable for the longer annealing times. We attribute these
discrepancies to the lack of higher-energy samples in the D-Wave configurations, in particular
for longer annealing times (see Fig. 2). Henceforth, the NN never samples high-energy con-
figurations, while these have sizable Boltzmann weight at high T . This leads to an effective
lack of ergodicity in the considered simulation times.

The lack of high-energy samples can be easily remediated considering a hybrid training
dataset, including, e.g., 5·104 D-Wave configurations and just as many classical configurations.
The latter are generated via a SSF-MC simulation performed at the relatively high temperature
β = 0.5. As shown in panel (b) of Fig. 3, this data augmentation completely eliminates the
bias in the N-MC predictions. The D-Wave configurations allow the NN learning how to sample
low energies, while the classical configurations teach how to sample higher energies. This
effect is further illustrate in panel (c), where we compare the acceptance rates of SSF-MC
simulations with those of N-MC simulations based on D-Wave data. As expected, the former
drop in the challenging low T regime, while the N-MC updates become particular effective in
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Figure 4: Panel (a): Average energy per spin E/N as a function of the inverse tem-
perature β , for the N = 484 (z = 4) lattice. The SSF-MC simulations (full red cir-
cles) are compared with an N-MC simulation (orange empty triangles) and with a
H-MC simulations (blue empty circles). The horizontal (red) dashed line indicates
the ground-state (GS) energy. Panel (b): Energy auto-correlation function c(τ) as a
function of the number of sweeps τ. The SSF-MC results at three inverse tempera-
tures (dashed curves) are compared with the corresponding H-MC results. Panel (c):
Configuration energy H/N as a function of the number of sweeps τ. An SSF-MC sim-
ulation at β = 3 (blue curve with shadow) is compared with the corresponding H-MC
result (thick green curve). The semi-transparent shadow represents the fluctuations
among 5 SSF-MC simulations.

that regime. This observation leads us to introduce the H-MC algorithm, which combines the
two types of updates, as discussed in the next subsection. The H-MC algorithm circumvents
the burden of creating the classical-configuration dataset. It is also worth noticing that the
N-MC acceptance rates peak are lower temperatures for longer annealing times. This confirms
that slow annealing allows the D-Wave configurations more accurately mimicking the low-
temperature Boltzmann distribution.

6.2 N = 484 (z = 4) lattice

The larger lattice setup, including N = 484 (z = 4) spins, allows better observing glassy fea-
tures in the β ≳ 1 regime. The SSF-MC simulations are here barely practical, requiring ∼ 108

sweeps for reliable estimations of E/N in the glassy regime. In Fig. 4, panel (a), we compare
these predictions with H-MC results. The latter are obtained with only 4 · 105 sweeps, indi-
cating a computation-time reduction by almost three orders of magnitudes. The agreement is
precise. The correlation functions c(τ) corresponding to the SSF-MC and the H-MC algorithms
are compared in panel (b). In the regime β ≳ 2, the H-MC algorithm outperforms the SSF
algorithm, displaying orders of magnitude shorter correlation times. The performance boost
is noticeable also in the thermalization process, visualized in panel (c) for the β = 3 case. The
SSF-MC simulation equilibrates only after ∼ 105 sweeps, while the H-MC equilibration time is
negligible.

6.3 N = 484 (z = 8) lattice

Including also next nearest-neighbor diagonal couplings, corresponding to lattice connectivity
z = 8 (for inner spins), provides an even more challenging computational testbed. For β ≳ 2.5,
SSF-MC simulations performed with as many as 8 · 107 sweeps fail to ergodically explore the
configuration space, leading to biased E/N estimations. This is shown in the panel (a) of
Fig. 5. A reliable efficiency benchmark is represented by the PT algorithm. Its predictions,
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Figure 5: Panel (a): Average energy per spin E/N as a function of the inverse tem-
perature β , for the N = 484 (z = 8) lattice. The PT results (full yellow circles) are
compared with H-MC simulations (empty blue circles) and with the average of 5
SSF-MC simulations run for 8 · 107 sweeps. The corresponding error-bars represent
the estimated standard deviation of the mean of the 5 simulations. The horizontal
(red) dashed line indicates the ground-state (GS) energy. Panel (b): Energy auto-
correlation function c(τ) as a function of the number of sweeps τ. The PT results
at three inverse temperatures (dashed curves) are compared with the H-MC results
at similar temperatures. Panel (c): Configuration energy H/N as a function of the
number of sweeps τ. A PT simulation at β = 4 (blue curve) is compared with the
corresponding H-MC result (thick green curve), and with the average of 5 SSF-MC
simulations (red curve with shadow).

obtained with 5 ·105 sweeps performed after ex-post parameters optimization (see Section 3),
are found to precisely agree with the H-MC results obtained with 4 · 105 sweeps. Notably, the
agreement extends to extremely low temperatures β ≃ 10, where the energy expectation value
E/N almost coincides with the ground-state energy. Still, H-MC provides a significant benefit:
while the PT simulation equilibrates only after ∼ 104 sweeps, the H-MC displays negligible
equilibration times.

The agreement between H-MC and PT simulations is further established by the energy
histograms shown in panel (a) of Fig. 6 for the β = 10 case. In particular, the zoom on the
low-energy region (see panel (b) of Fig. 6 and Table 2) demonstrates that the H-MC algorithm
frequently samples very low energies, in particular the ground-state energy level, even when
these energies are included neither in the D-Wave training data nor in the 4·105 configurations
generated by the MADE (used as proposals). This indicates that the SSF updates allow the
H-MC algorithm exploring relevant regions outside the reach of the MADE. Still, the neural
updates suppress correlation times by performing large leaps in the configuration space.

7 Conclusions

While QAs are typically employed to tackle combinatorial optimization problems, we have de-
scribed how to exploit them to boost the efficiency of thermodynamic-equilibrium simulations
of Ising models. This is achieved via autoregressive generative NNs. These are trained on
QA-generated data, and then used to drive the MC simulation. The augmentation of QA data
with spin configurations generated by standard MC simulations has been explored. This al-
lows extending the regime of applicability of the purely neural MC algorithm. Chiefly, a hybrid
algorithm has been implemented. It exploits both neural proposals and standard SSF updates.
It allows performing efficient ergodic simulations for challenging frustrated spin-glass models,
both at high and at low temperatures, even approaching the ground-state energy. The neural
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Figure 6: Panel (a): Histograms of 4 ·105 configuration energies per spin H/N , sam-
pled by a PT simulation (blue) and by a H-MC simulation (gray with black contour)
at β = 10, for the N = 484 (z = 8) lattice. The vertical (red) dashed line indicates
the ground-state energy. Panel (b): Low-energy zoom on the histograms of 4 · 105

configuration energies per spin H/N , sampled in a H-MC simulations at β = 10 (gray
with black contour), by a D-Wave QA with annealing time ta = 100µs (blue), and by
the trained MADE (green).

updates allow performing large leaps in configuration space with sufficient acceptance rates.
The standard SSF proposals allow exploring the neighborhoods of the configurations reached
by the neural proposals, thus exploring otherwise unaccessible regions. The hybrid algorithm
outperforms standard SSF simulations, and it is competitive with PT, but with the significant
benefit of a much faster equilibration.

The effect of generating QA configurations with different annealing times ta has been ana-
lyzed. Even for relatively short annealing times, these are found to be sufficiently representa-
tive of the relevant low-energy configurations to provide a speed-up in neural and hybrid MC
simulations. While it has been argued that the samples from the D-Wave QAs might follow a
Boltzmann distribution at an effective temperature [68,69], our neural and hybrid approaches
do not assume this is the case, meaning that the training configurations might follow a dif-
ferent distribution. The MH acceptance stage and the combination with SSF updates anyway
allow us sampling the Boltzmann distribution at the desired temperature without bias.

Future endeavors should focus on further exploring the role of the annealing time in or-
der to optimize the usage of QA time. Auto-correlation functions corresponding to different
observables could be analyzed. The neural cluster updates of Ref. [22] might be introduced
to compensate the expected diminishing of acceptance rates for larger systems. Adaptive MC
schemes featuring on-the-fly learning [17] might also be helpful. Furthermore, protocols to
directly generate proposals from the QA, as recently shown in the case of gate-based quantum
computers [37], might be explored.

Code and datasets To favor future comparative studies, we provide via the Zenodo reposi-
tory our datasets [70], including the couplings Ji j , the D-Wave QA configurations, the energy
expectation values E/N , as well as the codes [71] for training the MADE and for running all
MC algorithms discussed in this article.
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A Optimal intra-chain coupling strength

The lattice setups we consider (see Section 3) cannot always be directly implemented on the
Pegasus graph of the D-Wave Advantage QA. The D-Wave interface uses a heuristic embed-
ding procedure to assign each logical spin variable to one or to more physical qubits of the
device [72]. In the latter case, we have a chain of qubits with a strong nearest-neighbor fer-
romagnetic coupling Jc .

The corresponding Hamiltonian term reads: Ĥchain = −Jc
∑

i

∑ni
〈k,k′〉 σ̂

z
i,kσ̂

z
i,k′ , where σ̂z

i,k
is a Pauli matrix at qubit k of chain i, and ni is the chain length. This term is introduced to
force the ni qubits to act a single variable.

While the D-Wave interface provides reasonably effective default values for Jc , manual
tuning allows users optimizing the QA performance, meaning that the sampling of low-energy
configurations is boosted. Indeed, weak couplings allow the qubits of the same chain to de-
couple, therefore breaking the correspondence with the problem Hamiltonian. In such cases
the spin readout is based on majority voting [73]. Excessive intra-chain couplings induce
clustering phenomena, detrimental for the annealing dynamics [74]. The optimal intra-chain
coupling strength also depends on the typical interaction strengths among logical qubits.

Figure 7: Average energy per spin Eavg/N (orange empty squares) and corresponding
minimum Emin/N (blue full squares) of 103 configurations sampled by a D-Wave QA,
as a function of the intra-chain ferromagnetic coupling Jc . The (green) empty and full
rhombi correspond to the average and minimum obtained with the default coupling
of the D-Wave interface, respectively. Panel (a): the couplings Ji j are sampled from
Unif[−1, 1]. Panel (b): the couplings Ji j = ±1 are sampled from binary random
distribution.

Two exemplary optimizations are visualized in Fig. 7, for the N = 484 (z = 4) lattice setup
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and for the annealing time ta = 10µs. One notices that reducing the intra-chain coupling
compared to the default values allows both the mean and the minimum energies approaching
the exact ground-state value. This effect is more pronounced for the uniform random couplings
Ji j ∼ Unif[−1,1] [panel (a)], compared with, e.g., binary random couplings Ji j = ±1 [panel
(b)]. In fact, the latter case appears to represent a less challenging optimization problem,
given that the minimum energy almost reaches the ground state when the optimal intra-chain
coupling is set.

B D-Wave total run time

It is worth mentioning that the actual utilization time of the D-Wave QA extends beyond the
annealing time ta per sample. For the D-Wave Advantage system, the required time T for one
call to the D-Wave interface is computed as:

T = tp + Ns(ta + tr + td), (17)

where tp is the programming time, tr is the readout time per sample, td is the delay time
between two consecutive readouts per sample, and Ns is the number of requested configura-
tions. Since the allowed call time T is limited, so is the number of configurations that can be
sampled in one system call. For the considered lattices, the number of configurations Ns in a
call ranges from 103 to 104, depending on the problem size and the chosen annealing time.
To generate larger datasets, several system calls are performed and, to ensure consistency, all
QA parameters are fixed and the same embedding map is used. For example, for 100 samples
of the N = 484 (z = 8) lattice setup, with annealing time ta = 100µs, a total of 0.150 seconds
of D-Wave QA time is used, with tp ≃ 15ms, tr ≃ 110µs, and td ≃ 995µs.
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