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Abstract

Using the Lieb–Mattis ordering theorem of electronic energy levels, we identify and con-
struct the Hilbert space of the low energy sector of U(N) quantum Hall/Heisenberg ferro-
magnets at filling factor M for L Landau/lattice sites. The carrier Hilbert space of irre-
ducible representations of U(N) is described by rectangular Young tableaux of M rows and
L columns, and associated with Grassmannian phase spaces U(N)/U(M)×U(N − M). Re-
placing U(N)-spin operators by their expectation values in a Grassmannian coherent state
allows for a semi-classical treatment of the low energy U(N)-spin-wave coherent excitations
(skyrmions) of U(N) quantum Hall ferromagnets in terms of Grasmannian nonlinear sigma
models.
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1 INTRODUCTION

1 Introduction

The magnetic interaction between adjacent 〈α,β〉 dipoles is described by the U(2) (two-component
electrons) Quantum Heisenberg Model Hamiltonian

H = −
1
2

∑

〈α,β〉

Jxσx(α)σx(β) +Jyσy(α)σy(β) +Jzσz(α)σz(β) , (1)

with σx ,y,z(α) Pauli matrices at site α and Jx ,y,z coupling constants. For positive J , the dominant
coupling between two dipoles may cause nearest-neighbors 〈α,β〉 to have lowest energy when
they are aligned (ferromagnetic case). The generalization of this model to N -component electrons
arises in, for example, the two-body exchange interaction for N -component planar electrons in a
perpendicular magnetic field [1], which adopts the form of a U(N) Quantum Hall Ferromagnet
(QHF) Hamiltonian on a square lattice

H = −J
∑

〈α,β〉

N
∑

i, j=1

Si j(α)S ji(β), (2)

written in terms of U(N)-spin operators

Si j(α) = c†
i (α)c j(α),

�

Si j(α), Skl(β)
�

= δαβ(δ jkSil(β)−δilSk j(β)), (3)

realized in terms of creation c†
i (α) and annihilation ci(α) operators of an electron with component

i, j ∈ {1, . . . , N} in a given Landau/lattice site α ∈ {1, . . . , L} of a given Landau level (namely, the
lowest one). The sum over 〈α,β〉 extends over all near-neighbor Landau/lattice sites, and J is the
exchange coupling constant (the spin stiffness for the XY model).

In particular, the electrons become multicomponent when, for example, in addition to the
usual two spin components ↑ and ↓, they acquire extra “pseudospin” internal components associ-
ated with: (a) layer (for multilayer arrangements), (b) valley (like in graphene and other 2D Dirac
materials), (c) sub-lattice, etc. In the case of a bilayer quantum Hall system in the lowest Lan-
dau level, one Landau site can accommodate N = 4 internal states/components |i〉, i = 1,2, 3,4
(“flavors”)

|1〉= | ↑ t〉, |2〉= | ↑ b〉, |3〉= | ↓ t〉, |4〉= | ↓ b〉, (4)

where t and b make reference to the “top” and “bottom” layers, respectively. Since the elec-
tron field has N = 4 degenerate components, the bilayer system possesses an underlying U(4)
symmetry. Likewise, the `-layer case carries a U(2`) symmetry.

For N -component electrons, the Pauli exclusion principle allows M ≤ N electrons per Lan-
dau/lattice site (the filling factor). Selecting a ground state (|0〉F denotes de Fock vacuum)

|Φ0〉= ΠL
α=1Π

M
i=1c†

i (α)|0〉F, (5)

which fills all L lattice sites with the first M internal levels i = 1, . . . , M ≤ N , spontaneously breaks
the U(N) symmetry (SSB) since a general unitary transformation mixes the first M “spontaneously
chosen” occupied internal levels with the N − M unoccupied ones. The ground state |Φ0〉 is still
invariant under the stability subgroup U(M)×U(N−M) of transformations among the M occupied
levels and the N − M unoccupied levels, respectively. Therefore, the transformations that do not
leave |Φ0〉 invariant are parametrized by the Grassmannian coset GN

M = U(N)/U(M)×U(N −M),
which reduces to the well known Bloch sphere S2 = U(2)/U(1)×U(1) for N = 2 spin components
and M = 1 electron per Landau site (“symmetric multi-qubits” [2]).

In this article, we aim to describe the carrier Hilbert space associated with these U(N) rep-
resentations, their coherent states [3], and the classical limit. The structure of the Hilbert space
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for a U(N) QHF with L Landau/lattice sites and filling factor M is sketched in Section 2. U(N)
irreducible representations (IRs) are classified with Young diagrams. Lieb-Mattis ordering of
electronic energy levels (based on the pouring principle for Young diagrams) identifies rectangu-
lar Young diagrams of L columns and M rows as the carrier Hilbert space of the lower energy
sector. We also provide a Fock (boson and fermion) representation of basis states alternative to the
Young tableau representation.

In the classical/continuum limit L → ∞ (large U(N)-spin representations or large number
of lattice sites), the U(N)-spin operators Si j become c-numbers, and the low energy U(N)-spin-
wave coherent excitations are named “skyrmions” [4–6]. These coherent excitations turn out to be
governed by a ferromagnetic order parameter associated with this SSB and labeled by (N−M)×M
complex matrices Z parametrizing the complex Grassmannian manifold GN

M in Section 3. In
fact, Grassmannian nonlinear sigma models (NLσM) describe the classical dynamics associated
with these SU(N) quantum spin chains [7–12], generalizing the SU(2) NLσM for the continuum
dynamics of Heisenberg (anti)ferromagnets [13–15]. In references such as [9, 10], N represents
the number of fermion “flavors”, whereas L is referred to as the number of “colours” nc .

2 Lieb–Mattis Theorem and Low Energy U(N) Ferromagnetism

Given the Fourier transform

Si j(q) =
L
∑

α=1

eiqαSi j(α), (6)

the long-wavelength (low momentum q ' 0) ground state excitations of QHFs are described by
the collective operators

Si j(0) =
L
∑

α=1

Si j(α), (7)

which are invariant under site permutations α↔ α′. The kind of IRs of U(N) related to translation
invariance are those described by rectangular Young diagrams of M rows and L columns

[LM ] = M

�

L
︷ ︸︸ ︷

...
: : :

...
. (8)

This means that physical states are symmetric (bosonic) under permutations of the L lattice sites
and antisymmetric (fermionic) under permutation of the M electrons (the filling factor) at each
lattice site. This reasoning gives an introductory and heuristic proof of the main Proposition 2.

As an interesting comment, in the quantum Hall effect approach, each electron occupies on
average a surface area of 2π`2

B (a Landau site, with `B the magnetic length) that is pierced by one
magnetic flux quantum φ0 = 2πħh/e. This image allows for a dual bosonic Schwinger realization
of collective U(N)-spin operators

Si j =
M
∑

µ=1

a†
iµa jµ, i, j = 1, . . . , N , (9)

this time in terms of creation a†
iµ and annihilation a jµ boson operators of magnetic flux quanta

attached to the electron µ = 1, . . . , M with component i = 1, . . . , N . From the usual bosonic
commutation relations [aiµ, a†

jν] = δi jδµν we recover the U(N)-spin commutation relations (3).
We shall not further pursue this bosonic picture here. For more information, we address the reader
to the Reference [16].
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2 LIEB–MATTIS THEOREM AND LOW ENERGY U(N) FERROMAGNETISM

The Hilbert space of a U(N) QHF with L Landau/lattice sites at integer filling factor M is the
�N

M

�L
-dimensional L-fold tensor product space H⊗L

N [1
M ] =

⊗L
α=1 H

α
N [1

M ]. In Young diagram
notation

M

�

: ⊗ L times. . . ⊗ : ↔ [1M ]⊗L = [1M ]⊗ L. . . ⊗[1M ] . (10)

Basis vectors of HαN [1
M ] are the M-particle Slater determinants (for M = 1 we have “quNits”, as

a N -ary quantum-digit generalization of qubits) written in Fock and Young tableau notation as

ΠM
µ=1c†

iµ
(α)|0〉F =

i1
:

iM

, (11)

obtained by filling out columns of the corresponding Young diagram with components iµ ∈ {1, . . . , N}
in strictly increasing order i1 < · · ·< iM . One can see that there are exactly

�N
M

�

different arrange-
ments of this kind (the dimension of HαN [1

M ]). This tensor product representation of U(N) is
reducible. For example, the Clebsch-Gordan decomposition of a tensor product of L = 2 IRs of
U(N) of shape [1M ], with filling factor M = 2 and N ≥ 4 components, is represented by the
following Young diagrams

⊗ = ⊕ ⊕ ↔ [12]⊗ [12] = [22]⊕ [2, 12]⊕ [14], (12)

where we have highlighted in red the rectangular case [22] for later discussion. The P(= M L)-
particle ground state (5) can be written in Young tableau notation

|Φ0〉= ΠL
α=1Π

M
i=1c†

i (α)|0〉F =
1 ... 1
: : :

M ... M
(13)

and then it belongs to the carrier Hilbert space HN [LM ] of the rectangular IR [LM ]with dimension

D[LM ] =

∏N
i=N−M+1

�i+L−1
i−1

�

∏M
i=2

�i+L−1
i−1

�

M=1
−→

�

L + N − 1
L

�

N=2
−→ L + 1. (14)

Note that H2[L1] is just the usual (2 j + 1)-dimensional Hilbert space for the angular momentum
j = L/2 representation of SU(2). We denote Young diagrams of P = M L boxes/particles by (a
partition of P)

h= [h1, . . . , hN ] =

h1
︷ ︸︸ ︷

... ... ... ... ...
: : : : :

...

h1 ≥ · · · ≥ hN ,
h1 + · · ·+ hN = P.

(15)

The shorthand [h, M. . ., h, 0, . . . , 0] = [hM ] is often used. Before presenting the central proposition
of this work, we should define the concept of “dominance order �” of Young diagrams of P
particles as: h dominates h′ (h is “more symmetric” than h′) if

[h1, . . . , hN ]� [h′1, . . . , h′N ]⇔ h1 + · · ·+ hk ≥ h′1 + · · ·+ h′k ∀k . (16)

Lieb-Mattis’ theorem [17] states that, under general conditions on the symmetric Hamiltonian of
the system, if h � h′ then E(h) < E(h′), with E(h) the ground state energy inside each IR h of
U(N). Then we can establish the following
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Proposition: The rectangular Young diagram of shape [LM ] dominates all Young diagrams
arising in the Clebsch-Gordan direct sum decomposition of the L-fold tensor product (10).

Therefore, the ground state will always belong to the rectangular [LM ] sector. For instance, the
rectangular sector [22] � [2,12] � [14] dominates in the Clebsch-Gordan decomposition (12).
Intuitively, dominance means that one can go from h to h′ by moving a certain number of boxes
from upper rows to lower rows, so that h is “more symmetric”. Therefore, we shall concentrate on
the low-energy carrier Hilbert space HN [LM ] of the rectangular IR [LM ] to which the ground state
|Φ0〉 in (5) belongs. In particular, we shall construct coherent (Skyrmion) ground state excitations.
For the role of other mixed permutation symmetry sectors we address the reader to [18].

3 Grassmannian Coherent States and Nonlinear Sigma Models

Grassmannian (fermionic) coherent states can be seen as U(N) rotations/excitations over the
ground state |Φ0〉

|Z〉L =
exp

�

∑

1≤ j≤M ,M+1≤i≤N+M Zi jSi j

�

|Φ0〉
p

det(1M + Z†Z)
(17)

created by appying U(N)-spin collective Si j , i > j, ladder operators. These Grassmannian coher-
ent states are then labeled by (N − M)× M complex matrices Z . For N = 2 spin components, ↑
and ↓, and M = 1 we recover spin j = L/2 (atomic) coherent states

|z〉L =
ezS21 |Φ0〉
p

1+ |z|2
= (1+ |z|2)− j

j
∑

m=− j

√

√

�

2 j
j −m

�

z j−m| j, m〉, (18)

where we have spanned in terms of the usual angular momentum (Dicke) states {| j, m〉, m= − j, . . . , j},
with |Φ0〉 = | j,− j〉 and z = tan(θ/2)eiφ is the sthereographic projection of the Bloch sphere S2

onto the complex plane C. Actually, atomic coherent states can also be written as a tensor product
of qubits

|z〉L =
�

cos(θ/2)| ↑〉+ sin(θ/2)eiφ | ↓〉
︸ ︷︷ ︸

|z〉

�⊗L
= |z〉⊗L . (19)

For L = 2⇒ j = L/2= 1, we identify the spin triplet | j, m〉 states

|1,1〉= | ↑↑〉, |1,0〉=
| ↑↓〉+ | ↓↑〉
p

2
, |1,−1〉= | ↓↓〉. (20)

For N = 4 and filling factor M = 1 we have

|Z〉L =
[|1〉+ z2|2〉+ z3|3〉+ z4|4〉]⊗L

(1+ |z2|2 + |z3|2 + |z4|2)L/2
, (21)

where Z = (1, z2, z3, z4)t denotes a point on the complex projective spaceCP3 = U(4)/U(1)×U(3)
or the Grassmannian G4

1.
In order to study the semi-classical/thermodynamical limit L→∞ of U(N) QHF, one has to

replace U(N)-spin operators Si j by their coherent state expectation values 〈Z |Si j|Z〉, which play
the role of a matrix order parameter

S(Z)≡ 2
L
〈Z |

�

S −
L
2
1N
�

|Z〉L = Q(Z)†EMQ(Z), (22)

EM = diag(1, M. . . 1,−1, N−M. . . ,−1), (23)
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4 CONCLUSION

with

Q(Z) =

�

∆1 −Z†∆2

Z∆1 ∆2

�

, (24)

∆1 = (1M + Z†Z)−1/2, ∆2 = (1N−M + Z Z†)−1/2. (25)

The low energy physics of the U(N) QHF [when considering only nearest-neighbor interac-
tions Jαβ = J δα,β±1 in the exchange Hamiltonian (1)] is described by a NLσM field theory with
action in the continuum limit (L→∞ and lattice constant `→ 0)

A[Z] =

∫

d x0d x1d x2

�

tr
�

EMQ†∂x0
Q
�

+J tr
�

~∇S · ~∇S
��

, (26)

where ∂x0
≡ ∂0 means partial derivative with respect to time t = x0, ~∇ = (∂x1

,∂x2
) ≡ (∂1,∂2) is

the gradient and ~∇S · ~∇S is the scalar product. The first (kinetic) term of the action is the Berry
term, provided by the coherent state representation of the path integral quantization. The second
term describes the energy cost when the order parameter S is not uniform (see [7–12] and [16] for
more information). The topological current

Jµ =
i

16π
εµνλ tr(S∂νS∂λS) (27)

(ε is the Levi-Civita antisymmetric symbol in 1+2 dimensions) leads to the topological (Pontrya-
gin) charge or Skyrmion number

C =
∫

d x1d x2J0. (28)

See e.g. Ref. [12] for more information.

4 Conclusion

We have presented several group-theoretical tools to study interacting N -component fermions on
a lattice, like U(N) quantum Hall ferromagnets arising from two-body exchange interactions of
N -component fermions. In particular, we have restricted ourselves to the lower energy permuta-
tion symmetry sector (according to the Lieb-Mattis theorem) corresponding to fermion mixtures
described by rectangular Young diagrams with M rows (the filling factor) and L columns (Lan-
dau/lattice sites).

The “spontaneously chosen” ground state |Φ0〉 breaks the original U(N) symmetry and the as-
sociated U(N) ferromagnetic order parameter S [the expectation value of collective U(N)-spin op-
erators S in a Grassmannian coherent state |Z〉] describes coherent state excitations (“Skyrmions”)
in the semi-classical L → ∞ limit, whose dynamics is governed by a Grassmannian nonlinear
sigma model.

The subject of SU(N) fermions and SU(N) magnetism has been recently further fueled in
condensed matter physics with exciting advances in cooling, trapping and manipulating fermionic
alkaline-earth atoms trapped in optical lattices (see e.g. [19, 20] for a realization of a SU(N) gen-
eralization of the Hubbard model). Multilayer quantum Hall arrangements, bearing larger U(N)
symmetries, also display interesting new physics (see [21] for the bilayer case); Such is the case
of superconducting properties of twisted bilayer (and trilayer) graphene predicted by [22] and ob-
served by [23]. Furthermore, magnetic Skyrmion materials display a robust topological magnetic
structure, being a candidate for the next generation of spintronic memory devices.
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