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Abstract

Considering spin degrees of freedom incorporated in the conformal generators, we in-
troduce an intrinsic momentum operator πµ, which is feasible for the Bhabha wave equa-
tion. If a physical stateψph for spin s is annihilated by the πµ, the degree ofψph, degψph,
should equal twice the spin degrees of freedom, 2(2s + 1) for a massive particle, where
the muptiplicity 2 indicates the chirality. The relation degψph = 2(2s+1) holds in the rep-
resentation R5(s, s), irreducible representation of the Lorentz group in five dimensions.

1 Introduction

Conformal symmetry [1] has many applications in string theory and critical phenomena in
condensed matter and statistical physics. For a scalar field, the conformal generators are com-
posed of dilatation D, momentum Pµ, special conformal Kµ, and angular momentum Lµν. For
a multicomponent field Φ, where spin degrees of freedom is incorporated as Lµν→ Lµν+ sµν,
the D and Kµ are generalized as D→ D +∆ and Kµ → Kµ + κµ, while the Pµ, in an ordinary
context [1], remains unchanged as Pµ → Pµ. The unchangeability of Pµ may be because Φ
transforms as a scalar under spacetime translation. If we assume that Φ(x)→ Φ′(x ′) = Φ(x)
under x → x ′ = x + a, that is, Φ′(x) = Φ(x − a) = e−a·PΦ(x), we find it unnecessary to in-
troduce an intrinsic momentum operator πµ as Pµ → Pµ + πµ. Even if we admit the scalar
property of Φ(x) under x → x + a, we can introduce πµ in such a way that the πµ may
annihilate physical states.

This paper aims to introduce such an intrinsic momentum operator πµ, to find that πµ
can realize for a matrix structure in parafermion-based Dirac-like equations, such as spin-1
Kemmer equation [2], and more generally, Bhabha equation [3]. In Sec. 2, we give some
preliminaries concerning the conformal algebra, together with its Casimir operator. In Secs. 3-
5, we deal with theπµ in the case of spin 1

2 , 1, 3
2 , respectively. We devote Sec. 6 to the summary.

2 Preliminaries

We begin with the commutation relations between the intrinsic conformal generators ∆, πµ,
κµ, and sµν, corresponding to D, Pµ, Kµ, and Lµν, respectively. If the intrinsic conformal
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generators satisfy the same commutation relations as ordinary conformal generators, we can
write the non-vanishing commutation relations as

[∆, πµ] = iπµ, [∆, κµ] = −iκµ, [κµ, πν] = 2i(gµν∆− sµν), (1)

[πρ, sµν] = i(gρµπν − gρνπµ), [κρ, sµν] = i(gρµκν − gρνκµ), (2)

[sµν, sρσ] = i(gνρsµσ + gµσsνρ − gµρsνσ − gνσsµρ), (3)

while the vanishing commutation relations are given by

[∆, sµν] = [πµ, πν] = [κµ, κν] = 0. (4)

It should be remarked that (1)-(4) are invariant under the scaling ofπµ and κµ, and also under
the substitution between πµ and κµ as

(∆, πµ, κµ, sµν)→ (∆, λπµ, λ−1κµ, sµν), (5)

(∆, πµ, κµ, sµν)→ (−∆, κµ, πµ, sµν), (6)

where λ ∈ C \ {0}, and use has been made of sνµ = −sµν in (6). Note that (5) represents the
"chiral" transformation g → g ′ = eθ∆ge−θ∆ (g ∈ {∆,πµ,κµ, sµν}), where λ= eiθ .

To check the irreducibility of the representation for the conformal group, it may be avail-
able to obtain the Casimir operator C . Note that although the C is invariant under (5) due
to the chiral transformation, the invariance of C under (6) is somewhat naive. For simplic-
ity, we consider (3+ 1) spacetime dimensions, where the conformal algebra is isomorphic to
so(4,2) [1]. In this case, the order of C is given by 2, 3,4, as in the case of so(6) [4]. Explicitly,
we have C = C2, C3, C4 (the index i in Ci represents the order) as [5]

C2 =
1
2

sµνs
µν +

1
2
{κµ, πµ} −∆2, C3 = ε

µνρσ
�
∆ sµν + {κµ, πν}

�
sρσ,

C4 =
1
2
JµνJ µν − 1

2
{JK ,µ, J µ

P } − 1
16

J 2, (7)

whereJ µν,J µ
K ,J µ

P , andJ are given byJ µν = εµνρσ
�
∆ sρσ +

1
2{κρ, πσ}
�
, J µ

K = ε
µνρσκνsρσ,

J µ
P = ε

µνρσπνsρσ, and J = εµνρσsµνsρσ, with εµνρσ the totally anti-symmetric Levi-Civita
tensor (ε0123 = 1), and {A, B} = AB + BA. It confirms that all the C ’s are invariant under (5).
If the εµνρσ remains invariant under (6), the Ci ’s transform as (C2, C3 C4) → (C2, −C3, C4).
However, the invariance of εµνρσ under (6) is not so trivial, which will be discussed at the end
of the next section and afterward.

3 Spin 1
2

This section deals with the Dirac equation, which describes a spin-1
2 particle. In this case,

the spin operator sµν, which satisfies (3), can be written using the gamma matrix γµ as
sµν = i1

4[γµ, γν], where {γµ, γν} = 2gµν1. The next thing is to obtain πµ from the first
equality in (2) and [πµ, πν] = 0. Considering that [γρ, sµν] = i(gρµγν − gρνγµ), one may
suspect that πµ may be given by πµ = λγµ (λ ∈ C), which, however, would not be appropri-
ate due to [πµ, πν] ̸= 0. This conclusion is not the end of the story. For an even spacetime
dimension, there is a matrix γ5 such that γ2

5 = 1 and {γ5, γµ} = 0. Under the existence of
γ5, the choice of πµ = λ(γµ ± γ5γµ) satisfies the first equality in (2) and [πµ, πν] = 0. In a
similar way, we obtain κµ = λ′(γµ ± γ5γµ) from the second equality in (2) and [κµ, κν] = 0.
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The relation between λ and λ′, along with the remaining generator ∆, can be derived from
(1). To summarize, we have

∆= ±1
2

iγ5, πµ = M
�
1± γ5

2

�
γµ, κµ =

1
M

�
1∓ γ5

2

�
γµ, sµν =

i
4
[γµ, γν], (8)

where the multiplier M ∈ C \ {0} corresponds to λ in (5). Note that the substitution (6) can
be interpreted as γ5→−γ5. Note also that [∆, sµν] = 0.

The fundamental property ofπµ (or κµ) is the nilpotence of order two. Let a±µ := (1±γ5)γµ.
Then it follows that

a+ν a+µ = 0= a−ν a−µ . (9)

To be more exact, we can show that¨
a+µP1 = 0,

a−µP2 = 0,

¨
a+µP2 = 2P1γµ,

a−µP1 = 2P2γµ,
(10)

where P1 =
1
2(1 + γ5) and P2 =

1
2(1 − γ5) represent the projection operators such that

P1 + P2 = 1 and PiP j = δi jPi . In the Dirac theory, it is well known that P1 and P2 are
employed in the chiral decomposition. In this sense, (10) can be derived without recognizing
the concept of the intrinsic momentum operator πµ; the existence of πµ will play a substantial
role in higher spin states.

Now we give some properties concerning the Casimir operators Ci ’s in (7). First, we discuss
the invariance of C3 under (6). Recalling that the substitution (6) corresponds to γ5 → −γ5,
and that γ5 = − 1

4! iε
µνρσγµγνγργσ, we find that γ5 → −γ5 implies that εµνρσ → −εµνρσ. In

this sense, C3 remains invariant under (6). Next, we obtain the relation between C2 and C4.
Note that J µν can be rewritten as 3∆εµνρσsρσ, which leads to JµνJ µν = 9sµνs

µν. In a similar
way, we have {JK ,µ, J µ

P }= −9{κµ, πµ} and 1
16J

2 = 9∆2. Thus we obtain C4 = 9C2. Anyway,
there is no such operator (except a scalar multiple of identity 1) that is commutative with all
the γµ’s, so that the Ci ’s are given by a multiple of identity 1 as (C2, C3, C4) =

15
4 (1, 22, 32)1.

4 Spin 1

This section deals with relativistically invariant wave equations for spin s = 1. For the sake of
simplicity, spacetime dimension d is restricted to (3+ 1). We summarize the wave functions
for a free massive particle in Table 1, to find that the πµ is allowed for the KDP equation
but not for the Proca and the WSG equations. This is because the n× n matrix πµ such that
[πρ, sµν] = i(gρµπν − gρνπµ) is allowed for n= 10, but not for n= 4,6. In what follows, we
concentrate on the KDP equation, where the βµ’s satisfy the trilinear relations

βµβνβρ + βρβνβµ = gµνβρ + gρνβµ (µ,ν,ρ ∈ {0,1,2, 3}). (11)

Note that βi (i = 1,2,3) can be identified with the non-relativistic spin-1 operator si in the
sense that the si ’s satisfy sis jsk + sks jsi = δi jsk +δk jsi .

For n = 10, it is known that [2] there is a matrix ω (= β5) which is given by extending
(11) to those for µ,ν,ρ ∈ {0,1,2, 3,5} with g5µ = gµ5 = δ5µ. Explicitly, we have

ω3 =ω,

¨{ω2, βµ}= βµ,

ωβµω= 0,

¨
βµωβν + βνωβµ = 0,

ωβµβν + βνβµω= gµνω.
(12)
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4. SPIN 1

Table 1: Lorentz invariant wave equations for s = 1 and d = 3 + 1. For the Proca
equation, the upperscript in ψ = (A0, A1, A2, A3) represents the Lorentz vector com-
ponent, and Λµν represents the generator of the Lorentz transformation. For the
WSG equation, si (i = 1,2, 3) is given by the (3 × 3) representation matrix for the
non-relativistic spin-1 operator.

Name Equation Degree of ψ sµν πµ

Proca (□+m2)Aµ = ∂ µ(∂ · A) 4 Λµν NA

WSG [6,7] (□+ γµν∂ µ∂ ν)ψ= 2m2
0ψ 6

¨
s0i =

1
iσ3 ⊗ si

si j = 1⊗ εi jksk
NA

KDP [2,8,9] (iβµ∂ µ +m)ψ= 0 10 i[βµ, βν] ✓

Then the intrinsic conformal generators are given by

∆= ±iω, πµ = M
�
βµ ± [ω, βµ]
�

, κµ =
1
M

�
βµ ∓ [ω, βµ]
�

, sµν = i[βµ, βν]. (13)

Note that (13) reduces to (8) under (βµ,ω)→ 1
2(γµ,γ5). It is not so difficult to obtain from

(11) and (12) the nilpotence of πµ as

α+µα
+
να
+
ρ = 0= α−µα−να−ρ, (14)

where α±µ := βµ ± [ω, βµ]. To be more exact, we have the following relations:¨
α+µP1 = 0,

α−µP3 = 0,

¨
α+µP2 = 2P1βµ,

α−µP2 = 2P3βµ,

¨
α+να

+
µP3 = 2P1Aµν,

α−να−µP1 = 2P3Aµν,
(15)

where Aµν = {βµ,βν} − gµν1, and Pi represents a projection operators as P1 =
1
2ω(ω+ 1),

P2 = 1−ω2, and P3 =
1
2ω(ω−1), so that

∑3
i=1 Pi = 1 and PiP j = δi jPi . Notice that in (15),

the lower relations can derive from the corresponding upper ones through the substitution
ω→−ω. Notice further that Aµν anticommutes with ω, that is

{Aµν, ω}= 0. (16)

The relation (16) leads to [Aµµ, ω2] = 0. Note that Aµµ andω are Lorentz invariant in the sense

that [sαβ , Aµµ] = 0= [sαβ , ω]. This relation implies that Aµµ can be written as Aµµ =
∑2

i=0 ciω
i

(ci ∈ C), where ci (i ≥ 3) is not necessary due to ω3 =ω. Here we have assumed that there is
no Lorentz invariant other than 1,ω, and ω2. In this case, we find that c0 + c2 = 0 = c1 from
{Aµµ, ω} = 0 by (16), and that c0 = 2 from {βν, βµβµ} = 5βν by (11) and {βν, ω2} = βν by
(12). Eventually, we have

βµβ
µ = P2 + 21. (17)

Actually, the relation (17) holds in the ten-dimensional representation [2] for (11) and (12),
which corresponds to the adjoint representation of the Lorentz group in five dimensions (for
the adjoint representation, we have

�
5
2

�
= 10 Lorentz group generators). For later conve-

nience, we rewrite 1
2 sµνs

µν using P2 as

1
2

sµνs
µν = 41−P2, (18)
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where we have used (17), together with P2
2 = P2.

As was mentioned in Sec. 1, the πµ should annihilate the physical state. To check the
validity, we show that the rank of Pk (or equivalently, the trace of Pk) for k = 1,3 equals
the spin degrees of freedom. In the ten-dimensional representation, the eigenvalues of ω are
given by 1,0,−1 appearing 3,4,3 times, respectively. Thus, we obtain

Rank(P1) = Rank(P3) = 3, Rank(P2) = 4.

This result is quite reasonable because the number “3” equals the spin degree of freedom for
a massive particle for s = 1. To confirm the validity, we calculate the 3-dimensional spin
magnitude 〈s〉2 := s 2

12 + s 2
23 + s 2

31 . Let |ψ+ph〉 = P1|ψ〉, |ψ−ph〉 = P3|ψ〉, and |ψun〉 = P2|ψ〉, in

which we have α±µ |ψ±ph〉 = 0. Recalling that 〈s〉2 (= 1
4 sµνs

µν) = 21 − 1
2P2 by (18), and that

PiP j = δi jPi , we obtain 〈s〉2|ψ±ph〉 = s(s + 1)|ψ±ph〉 (s = 1) and 〈s〉2|ψun〉 = 3
2 |ψun〉. These

relations indicate that |ψ±ph〉 represents the spin-1 state, while |ψun〉 does not. Bearing these
findings in mind, we can regard |ψ±ph〉 and |ψun〉 as physical and unphysical states, respectively.

Finally, we give some properties of the Casimir operator C . As in the case of s = 1
2 , the in-

variance of C3 under (6) is guaranteed by the statement that (ω→−ω)=⇒ (εµνρσ→−εµνρσ)
by ω = − i

4ε
µνρσβµβνβρβσ [10, 11]. After a somewhat tedious calculation, we can write

the Ci ’s in (7) as (C2, C3, C4) = (9,48,144)1, which confirms the irreducibility of the ten-
dimensional representation.

5 Spin 3
2

In this section, we consider the (3+ 1)-dimensional Minkowski space, as in the case of s = 1.
Although the Rarita-Schwinger equation is well known as a relativistic invariant wave equation
for s = 3

2 , the intrinsic momentum operator is not allowed, as in the case of the Proca equation.
Instead, we adopt a Dirac-like wave equation for parafermion of order 3, namely (massive)
Bhabha wave equation [3] (see Table 2).

Table 2: Lorentz invariant wave equations for s = 3
2 . For the Rarita equation, ψ

is composed of four Dirac spinors as ψ := (ψ0,ψ1,ψ2,ψ3), where the subscript
represents the Lorentz vector component, so that Λ (= {Λµν}) : ψ 7→ ψ′ acts as
(ψ′)µ = Λνµψν.

Name Equation Degree of ψ sµν πµ

Rarita-Schwinger (εµνρσγ5γν∂ρ +mgµσ)ψσ = 0 4× 4 Λµν +
i
4[γµ, γν] NA

Bhabha (isµ∂ µ +m)ψ= 0 20 i[sµ, sν] ✓

Extending the polynomial relations among the non-relativistic spin operators si ’s (i = 1,2,3)
to those among sµ’s (µ= 0,1, 2,3) in a relativistically covariant way, we obtain¨

sµsνsα + sαsνsµ + gµαsν = sµsαsν + sνsαsµ + gµνsα,

0=
�
sµsνsαsβ − 5

4{sµ, sν}gαβ + 9
16 gµνgαβ
�
+ (perm. of µ,ν,α,β).

(19)

It may be convenient to rewrite the first relation of (19) as [sµ, [sν, sα]] = gµνsα− gµαsν. Note
that 1

2γµ satisfies both relations in (19). This implies that there should exist a polynomial rela-
tion such that p(s0, s1, s2, s3) = 0 with p(s0, s1, s2, s3)|sµ→ 1

2γµ
̸= 0. However, we neglect, for the

time being, such a polynomial relation because it is not irrelevant to the following discussion.
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Suppose that there exists an operator s5 which satisfies (19) for µ,ν,α,β ∈ {0,1,2, 3,5}, with
g5µ = gµ5 = δ5µ. Then the intrinsic conformal generators are given, as is analogous to the
case of s = 1

2 , 1, by

∆= ±is5, πµ = M
�
sµ ± [s5, sµ]
�

, κµ =
1
M

�
sµ ∓ [s5, sµ]
�

, sµν = i[sµ, sν]. (20)

Note that the first equality in (19), together with the existence of s5, is sufficient for (20); the
second equality in (19) is not necessary for (20). Recalling that the first relation in (19) is
satisfied for sµ→ 1

2γµ (s =
1
2) and for sµ→ βµ (s = 1), we find it natural that the relation (20)

is the same form as (8) and (13). For later convenience, we obtain some operators which
anti-commute with s5. Such operators are exemplified as

{s5, Aµ}= 0= {s5, Aρνµ + (perm. of ρ,ν,µ)}, (21)

where Aµ = s5sµs5 − 3
4 sµ, and Aρνµ = sρsνsµ − 7

4 gρνsµ.
The projection operators Pi ’s (i = 1, 2,3, 4) can be written using the minimum polynomial

f (x) with respect to s5 as Pi =
1

f ′(λi)
f (s5)1
s5−λi1

, where f (x) =
∏4

i=1(x −λi), with λ1 =
3
2 , λ2 =

1
2 ,

λ3 = −1
2 , λ4 = −3

2 . Let s±µ := sµ ± [s5, sµ]. Then it follows that (see Appendix A)¨
s+µP1 = 0,

s−µP4 = 0,

¨
s+µP2 = 2P1Xµ,

s−µP3 = 2P4Xµ,

¨
s+ν s+µP3 = 2P1Xνµ,

s−ν s−µP2 = 2P4Xνµ,

¨
s+ρs+ν s+µP4 =

4
3P1Xρνµ,

s−ρs−ν s−µP1 =
4
3P4Xρνµ,

(22)

where Xµ, Xνµ and Xρνµ are given by

Xµ = sµ, Xνµ = {sν, sµ} − sgνµ1, Xρνµ =
�
Yρνµ + (perm. of ρ,ν,µ)

�
,

with s = 3
2 and Yρνµ := sρsνsµ − gρν(ssµ +

1
2s s5sµs5) → Aρνµ − 1

3 gρνAµ (s = 3
2). The rela-

tions (22) lead to s+µ s+ν s+ρs+σPi = 0 = s−µ s−ν s−ρs−σPi (i = 1,2,3, 4), from which, together wirh∑4
i=1 Pi = 1, we obtain the nilpotence of s±µ (of order 4) as

s+µ s+ν s+ρs+σ = 0= s−µ s−ν s−ρs−σ. (23)

Note that by (21), not only have we the anti-commutativity

{Xρνµ, s5}= 0,

but also the anti-commutativities {γµ, γ5}= 0 and (16) can be rewritten using Xµ and Xνµ as

{X ( 1
2 )
µ , γ5}= 0= {X (1)νµ , ω}, (24)

where X
( 1

2 )
µ and X (1)νµ , more generally, X (s)νµ... represents the corresponding Xνµ... for a given spin

s. For example, we have Y
( 1

2 )
ρνµ =

1
8γργνγµ− 1

8 gρνγµ, and Y (1)ρνµ = βρβνβµ− gρνβµ by replacing

(sρ, sν, sµ; s) in Yρνµ with 1
2(γρ,γν,γµ; 1) and (βρ,βν,βµ; 1), respectively. Note further that we

have the following vanishing relations:

X
( 1

2 )
νµ = X

( 1
2 )
ρνµ = 0, X (1)ρνµ = 0,

which, in vew of (22), are due to the relations (9) and (14), respectively.
Now we discuss whether or not physical states can be given by Pk|ψ〉 (k = 1,4) by cal-

culating the rank of Pk. In the Bhabha theory [3] for s = 3
2 , we have two irreducible rep-

resentations R5(
3
2 , 3

2) and R5(
3
2 , 1

2), where R5(s, s̃) represents the spin-s Lorentz group repre-
sentation in five dimensions. Let S := {s1, s2, s3, is0}. For R5(

3
2 , 3

2), the eigenvalues of x ∈ S

6



6. CONCLUSION

are 3
2 , 1

2 ,−1
2 ,−3

2 appearing 4, 6,6, 4 times, respectively; while for R5(
3
2 , 1

2), the eigenvalues of
x ∈ S are 3

2 , 1
2 ,−1

2 ,−3
2 appearing 2,6, 6,2 times, respectively. If s5 realizes, the eigenvalues of

s5 are identical with those of x ∈ S, so that

Rank (P1) = Rank (P4) =

¨
4
�
R5(

3
2 , 3

2)
�

,

2
�
R5(

3
2 , 1

2)
�

,
Rank (P2) = Rank (P3) =

¨
6
�
R5(

3
2 , 3

2)
�

,

6
�
R5(

3
2 , 1

2)
�

.

Thus we obtain in the representation R5(
3
2 , 3

2), the relation Rank (P1) = Rank (P4) = 4, the
spin degrees of freedom for a spin-3

2 massive particle.
The analogous relation holds for a general spin s. Note that by a fundamental property

of the projector, we have Rank (Pi) = Ni , where Ni represents the number of the eigen-
value (s + 1 − i) of s5. Note also that in the representaion R5(s, s̃) (s̃ = s, s − 1, . . .), the
maximum and minimum eigenvalues of s5 [that is, s and (−s), respectively] occur (2s̃ + 1)
times [3]. Considering these two remarks, we obtain in the representation R5(s, s), the relation
Rank (P1) = Rank (P2s+1) = 2s+1, the spin degrees of freedom. To confirm that |ψ+ph〉= P1|ψ〉
and |ψ−ph〉 = P2s+1|ψ〉, in which we have s±µ |ψ±ph〉 = 0, can be regarded as physical states, we

should further show 〈s〉2|ψ±ph〉= s(s+ 1)|ψ±ph〉, which, however, will be discussed elsewhere.

6 Conclusion

We have found that the intrinsic momentum operator πµ = s+µ , s−µ , which we do not introduce
in the ordinary conformal group, is feasible for the Bhabha wave equation, provided that s5,
corresponding to 1

2γ5 (s = 1
2) andω (s = 1), exists. For a general spin s, we can write the intrin-

sic conformal generators as the same relations as (20) and those where s5→ (−s5), satisfying
the invariance under (5) and (6). The fundamental property of πµ is the nilpotence of order
(2s+1). To be more exact, let Pi ’s (i = 1,2, . . . , 2s+1) be the projection operators concerning
the s5 as Pi =

1
f ′(λi)

f (s5)1
s5−λi1

, where f (x) =
∏2s+1

i=1 (x−λi), λi = s+1− i. Then we have the same

hierarchical relation as (22), where X
( 1

2 )
µ , X (1)µν , . . . anti-commute with γ5, ω, . . ., respectively.

As long as the wave function transforms as a scalar under the spacetime translation, either s+µ
or s−µ should annihilate a physical state, so that the relation Rank(Pk) = 2s+1 (k = 1,2s+1) is
required for a massive particle. Fortunately, this relation holds in the representation R5(s, s),
irreducible representation of the Lorentz group in five dimensions.
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A Derivation of (22)

It is not so difficult to obtain Xµ and Xνµ by rewriting s+µP2 and s+ν s+µP3 in such a way that s5
is located as leftward as possible. However, this procedure is not practical for the calculation
of Xρνµ because Xρνµ hinges on s5 so that we may not represent Xρνµ uniquely due to some
relations between s5 and sµ’s. In this sense, it would be better to adopt another approach. We
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start with the following relation:

s+µP4 = 2XµP4 (Xµ = sµ). (25)

Keeping the form of (25) without rearranging s5 leftward, and applying s+ν to both sides of
(25) from the left, then we find it rather simple to obtain

s+ν s+µP4 = 2XνµP4

�
Xνµ = {sν, sµ} − s1, s =

3
2

�
,

where we have used [s+ν , sµ] = [sν, sµ]+gνµs5, together with the relation s5P4 = −sP4. Further
application of s+ρ leads to the relation

s+ρs+ν s+µP4 =
4
3 XρνµP4

�
Xρνµ = Yρνµ + (perm. of ρ,ν,µ)

�
,

where Yρνµ = sρsνsµ − gρν(ssµ +
1
2s s5sµs5). A similar calculation yields s−ρs−ν s−µP1 =

4
3 XρνµP1.

Recalling that {s5, Xρνµ} = 0 by (21) and noticing that P1 ↔ P4 under the substitution
s5→−s5, we finally get the last relation in (22).
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