
The tower of Kontsevich deformations for Nambu–Poisson
structures on Rd: dimension-specific micro-graph calculus

R. Buring1 and A. V. Kiselev2⋆

1 Institut für Mathematik, Johannes Gutenberg–Universität, Staudingerweg 9, D-55128
Mainz, Germany

2 Bernoulli Institute for Mathematics, Computer Science and Artificial Intelligence,
University of Groningen, P.O. Box 407, 9700 AK Groningen, The Netherlands

Present address: Institut des Hautes Études Scientifiques (IHÉS), 35 route de Chartres,
Bures-sur-Yvette, F-91440 France

* A.V.Kiselev@rug.nl

15 December 2022

34th International Colloquium on Group Theoretical Methods in Physics
Strasbourg, 18-22 July 2022

doi:10.21468/SciPostPhysProc.?

Abstract

In Kontsevich’s graph calculus, internal vertices of directed graphs are inhabited by
copies of a given Poisson structure; the Nambu-determinant Poisson brackets are dif-
ferential polynomial in the Casimir(s) and density ϱ times Civita symbol. We resolve the
old vertices into subgraphs such that every new internal vertex contains one Casimir or
one Civita symbol×ϱ. Using this micro-graph calculus, we show that Kontsevich’s tetra-
hedral γ3-flow on the space of Nambu-determinant Poisson brackets over R3 is a Poisson
coboundary: we realize the trivializing vector field X⃗ over R3 using micro-graphs. This X⃗
projects to the known trivializing vector field for the γ3-flow over R2.

Introduction

Kontsevich introduced [9] a universal – for any affine Poisson manifold of dimension d – con-
struction of infinitesimal symmetries for the Jacobi identity: for suitable cocycles γ in the
graph complex, one obtains bi-vector flows Ṗ = Qγ([P]) with differential-polynomial right-

hand sides (with respect to components P i j(x ) of Poisson structures P ∈ Γ (∧2 T M d
aff)). We

detect in [8] that for the tetrahedral graph cocycle γ3 from [9] and for the pentagon-wheel
graph cocycle γ5 (see [7]), the corresponding flows (see [1,4,6]) have a well-defined restric-
tion to the subclass of Nambu-determinant Poisson brackets1 P(ϱ, [a]) on Rd at least in the
following three cases: (i) γ3-cocycle flow Ṗ =Qγ([P]) for P(ϱ, [a]) over R3, (ii) the same γ3-
cocycle and the flow of P(ϱ, [a1], [a2]) overR4, and (iii) the next, γ5-cocycle flow for P(ϱ, [a])
over R3.

1The Nambu-determinant Poisson brackets (with ϱ 6≡ 1 and Casimir(s) aℓ) of f , g ∈ C1(Rd) are, e.g.,

{ f , g}P(ϱ,[a]) = ϱ(x , y, z) ·
���� ax fx gx

ay f y g y
az fz gz

���� on R3 3 x = (x , y, z);

likewise { f , g}P(ϱ,[a1],[a2]) = ϱ(x
1, x2, x3, x4) · det

�
∂ (a1, a2, f , g)/∂ (x1, x2, x3, x4)

�
on R4, and so on; all such for-

mulas are coordinate free (as ϱ(x ) · ∂x1 ∧ . . .∧ ∂xd is a top-degree multivector on Rd).
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To study universal – for all d ¾ 3 – or incidental – at fixed d – (non)triviality of Kontsevich’s
graph flows in the second Poisson cohomology for Nambu-determinant brackets {·, ·}P(ϱ,[a]),
we consider the coboundary equation,

Qγ([P])([ϱ], [a]) = [[P(ϱ, [a]), X⃗ ([ϱ], [a])]], (1)

upon the trivializing vector field solution(s) X⃗ ([ϱ], [a]) with differential-polynomial coeffi-
cients overRd . We discovered in [8] that the γ3-flow overR3 is trivial w.r.t. a unique solution X⃗ ;
we found it by using micro-graphs that resolve ϱ(x ) · Civita symbol against the Casimir(s) aℓ
within copies of Nambu-determinant Poisson brackets {·, ·}P(ϱ,[a]) = ϱ(x )·∑di1,...,id=1 ϵ

i⃗ ·∂i1(a1)·
. . . · ∂id−2

(ad−2) · ∂id−1
⊗ ∂id in the vertices of Kontsevich’s directed graphs for Qγ([P]).

Within the differential calculus of (multi-)vectors X⃗ , P, Qγ, and [[P, X⃗ ]] with differential-
polynomial coefficients over Rd , the Poisson (non)triviality problem for the γ3-flow in di-
mension d = 4 is computationally hard. Yet the dimension-specific micro-graphs offer us a
much more economical way to encode and process all such differential-polynomial structures
over Rd . At the same time, at the level of micro-graphs before they are projected to polyno-
mials, the cocycle equation acquires a previously invisible right-hand side:

Qγ([P])− [[P, X γ]] = ◊([ϱ], [a], 1
2[[P, P]]) + 〈zero micro-graphs〉+ · · · . (2)

Now its r.-h.s. contains differential consequences of Jacobi identity for Nambu bi-vector P(ϱ, [a]),
as well as can it contain non-empty micro-graphs that encode identically zero bi-vectors.

This text is a sequel to [8], which we refer for motivation, notation, and details. The
present paper is structured as follows: in §1, we explain how, for γ= γ3 and d = 3, a solution
of (1) was constructed using micro-graphs, and we discuss its properties. In §2 we explore the
composition of both sides in (2) for larger problems: γ= γ5 or d ¾ 4.

Preliminaries

Kontsevich’s directed graphs are built of n¾ 0 wedges
L←−• R−→, usually drawn in the upper half-

plane H2, over m¾ 0 ordered sinks along R = ∂H2; tadpoles are allowed. Leibniz graphs are
akin: the out-degrees of all but one (or more) vertices equal 2 yet there is (at least) one aerial
vertex of out-degree 3 and its outgoing edges are ordered Left≺Middle≺ Right.2

We shall study only those flows Ṗ = Q([P]) on spaces of bi-vectors P ∈ Γ (∧2 T M d<∞
aff )

which are encoded by Kontsevich’s graphs. From [9] (cf. [4]) we know that from suitable
cocycles γ in the Kontsevich graph complex, one obtains the flows3 Ṗ =Qγ([P])which preserve
the (sub)set of Poisson bi-vectors on M d

aff. (The tetrahedron γ3 and pentagon-wheel cocycle
γ5, see [4,6], are examples of graph cocycles giving such flows.)

Definition 1. The Nambu-determinant Poisson bracket onRd¾3 is the derived bi-vector P(ϱ, [a])
def
= [[. . . [[ϱ · ∂x1 ∧ . . .∧ ∂xd , a1]], . . .]], ad−2]], where ϱ(x ) ·∂x is a d-vector field and scalar func-
tions aℓ are Casimirs (q ¶ ℓ¶ d −2). In global (e.g., Cartesian) coordinates x1, . . . , xd on Rd ,

2 For example, the tripod is a Leibniz graph; like every Leibniz graph, it expands to a linear combination of
Kontsevich’s graphs, namely to the Jacobiator 1

2 [[P, P]] for a bi-vector P whose copies are realized by wedges.
3 The formula of Kontsevich’s graph flow Ṗ =Qγ([P]) can depend on a choice of representative γ for the graph

cohomology class [γ]. Fortunately, the vertex-edge bi-gradings (4,6) for γ3 and (6,10) for two graphs in γ5 are not
yet big enough to provide room for any nonzero coboundaries (from nonzero graphs on 3 vertices and 5 edges or
on 5 vertices and 9 edges, respectively). In other words, the known markers for [γ3] and [γ5] are in fact uniquely
defined modulo constant; we prove this by listing all the admissible (non)zero “potentials” and by taking their
vertex-expanding differentials in the graph complex. This is why, in our present study of the γ3- and γ5-flows on
the spaces of Nambu–Poisson brackets, we do not care about a would-be response of trivializing vector fields X γ

in (2) to shifts of the marker cocycle γ within its graph cohomology class [γ].
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the Nambu bracket of f , g ∈ C1(Rd) is expressed by the formula

{ f , g}P(ϱ,[a]) = ϱ(x ) ·
∑d

i1...,id=1
ϵ ı⃗ · ∂i1(a1) · · ·∂id−2

(ad−2) · ∂id−1
( f ) · ∂id (g), (3)

where ϵi1,...,id is the Civita symbol on Rd : ϵσ(1,...,d) = (−)σ for σ ∈ Sd , otherwise zero.

Remark 1. Nambu–Poisson brackets on Rd¾3 can be obtained from Nambu–Poisson brackets
on Rd+1 by taking ad−1 = ±xd+1 on Rd+1 and by excluding the last Cartesian coordinate xd+1

from the list of arguments for ϱ(x ) and a1, . . . , ad(x ). • By doing the above for d+1= 3, one
obtains a generic bi-vector P = ϱ(x1, x2)∂x1 ∧ ∂x2 , which is Poisson on R2, and the (Nambu)
Poisson bracket { f , g}(x , y) = ϱ(x , y) · ( fx · g y − f y · gx).

Definition 2. Fix the dimension d ¾ 2. A micro-graph is a directed graph built over m¾ 0 sinks,
over n ¾ 0 aerial vertices with out-degree d and ordering of outgoing edges, and over n d-
tuples of aerial vertices with in-degree 1 and no outgoing edges. • The correspondence be-
tween micro-graphs and differential-polynomial expressions in ϱ, a1, . . . , ad−2 and the content
of sink(s) is defined in the same way as the mapping of Kontsevich’s graphs to multi-differential
operators on C∞(M d

aff), see [8, §2.2] or [9].

Example 1. Nambu–Poisson brackets P(ϱ, [a1], . . . , [ad−2]) on Rd are realized using micro-
graphs, namely by resolving ϱ(x ) ·ϵi1,...,id in one vertex against d−2 vertices with the Casimirs
a1, . . . , ad−2. The out-degree of vertex with ϱ(x ) · ϵ ı⃗ equals d; the in-degree of each vertex
with a Casimir equals 1 and its out-degree is zero: the Casimir vertices are terminal (not to be
confused with the two sinks, of in-degree 1, for the Poisson bracket arguments). The ordered
d-tuple of edges is decorated with summation indices: for the Civita symbol ϵi1,...,id in their
common arrowtail vertex, the range is 1¶ iℓ ¶ d for 1¶ ℓ¶ d.

Remark 2. If the wedge tops contain Nambu–Poisson bi-vectors P(ϱ, [a]) on Rd , every Kontse-
vich graph expands to a linear combination of micro-graphs: the arrow(s) originally in-coming
to an aerial vertex with a copy of P, now work(s) by the Leibniz rule over the d − 1 vertices,
with ϱ · ϵ ı⃗ and with a1, . . . , ad−2, in the subgraphs P(ϱ, [a1], . . . , [ad−2]) of the micro-graph.4

Example 2. If d = 2 and (Nambu–)Poisson brackets onR2 are { f , g}(x , y) = ϱ·( fx ·g y− f y ·gx)
as in Remark 1, the only possible Kontsevich graph, ‘sunflower’ built with tadpoles from n= 3
wedges over one sink (see [1, Appendix F, Remark 13]) tautologically expands to a nontriv-
ial linear combination of nonzero micro-graphs on three aerial vertices with ϱ(x , y) · ϵiα jα ,
1¶ α¶ 3. Independently, the linear combination X γ of micro-graphs that encode the trivializ-
ing vector field X⃗ ([ϱ], [a]) for Kontsevich’s γ3-flow for Nambu bi-vectors P(ϱ, [a]) on R3 3 (x ,
y, z), see [8] and §1 below, under the reduction a := z andϱ = ϱ(x , y) becomes a well-defined
vector field on the plane R2 ⊂ R3: the z-component of X⃗ ([ϱ(x , y)], [z]) vanishes. Let us com-
pare the two vector fields on R2.

Proposition 1. The old ‘sunflower’ vector field which trivializes the tetrahedral γ3-flow for
all Poisson brackets on R2 coincides with the new vector field X⃗ ([ϱ(x , y)], [a = z]) from the
trivialization of γ3-flow for the Nambu brackets P(ϱ, [a]) onR3 (both viewed as 1-vector fields
on R2 with differential coefficients in [ϱ]).

Lemma 2. If d = 3 and P(ϱ, [a]) is Nambu, the Jacobiator tri-vector graph Jac(P) remains a
nontrivial linear combination, Jac(P)([ϱ], [a]), of 3 or 6 nonzero micro-graphs, each on m= 3
sinks of in-degree 1, on two trident vertices with ϱ · ϵiα1 iα2 iα3 , and on two terminal vertices of
in-degrees 1 and 2 (if ϱ ≡ const) or (1,1) and (1,2) if ϱ 6≡ const.

This is why linear combinations of Leibniz micro-graphs ◊([ϱ], [a], 1
2[[P, P]]) can con-

tribute nontrivially to the right-hand side of (2).
4But not every micro-graph is obtained from a Kontsevich graph by resolving the old aerial vertices into sub-

graphs.
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1 TRIVIALIZING VECTOR FIELD X⃗ FOR γ3-FLOW OVER R3

1 Trivializing vector field X⃗ for γ3-flow over R3

We recall from [8, §4.1] that, given a suitable graph cocycle γ (e.g., γ3 which we take here),
Kontsevich’s γ-flow Ṗ = Or⃗(γ)(P⊗#Vert(γ)) restricts to the set of Nambu–Poisson bi-vectors
P(ϱ, [a]) such that the velocity of a Casimir aℓ is still encoded by Formality graphs [8, Propo-
sition 2]: ȧℓ = Or⃗(γ)(P ⊗ · · · ⊗ P ⊗ a), whence the velocity ϱ̇([ϱ], [a]) is expressed from the
known ȧ and Ṗ (see [8, Corollary 3]). The Leibniz rule, balancing Ṗ with ϱ̇, ȧ for P linear in ϱ
and the first jets of all aℓ, is then a tautology.

Independently, if Y⃗ is any C1-vector field on Rd with Nambu–Poisson bi-vectors P(ϱ, [a]),
then the evolution LY⃗ (aℓ) = [[Y⃗ , aℓ]] of scalar functions and LY⃗ (ϱ · ∂x ) = [[Y⃗ ,ϱ · ∂x ]] of d-
vectors correlates, by the Leibniz-rule shape of the Jacobi identity for the Schouten bracket
[[·, ·]], with evolution LY⃗ (P) = [[Y⃗ , P]] of Nambu bi-vector P = [[ϱ · ∂x , · · ·a · · ·]], see [8, §2.1].

Our finding in [8, Theorem 8] is that for the graph cocycle γ3 and d = 3, the action
of vector field X⃗ (which trivialzes the γ3-flow Ṗ = Qγ3

([P]) = [[P, X⃗ ]] of Nambu brackets P
on R3) upon P(ϱ, [a]) factors through the initially known – from γ3 – velocities of a and ϱ:
having solved (1) for X⃗ , we then verified that ȧ = [[a, X⃗ ]] and ϱ̇ ∂x = [[ϱ · ∂x , X⃗ ]].

By using this factorization – i.e. the lifting of the sought vector field’s action on the elements
of P(ϱ, [a]) – the other way round, we create an economical scheme to inspect the existence of
trivialzing vector field X⃗ for larger problems (i.e. for bigger graph cocycles or higher dimension
d ¾ 3). When this shortcut works, so that X⃗ is found, it saves much effort. Otherwise, to
establish the (non)existence of X⃗ one deals with a larger PDE, namely Eq. (1).

Open problem 1. Are Nambu–Poisson bi-vectors P(ϱ, [a]) such that the action of trivialz-
ing vector field(s) X⃗ (when such exist(s) for a Kontsevich graph flow) always lifts to the
Casimir(s) aℓ and d-vector field ϱ · ∂x , so that ȧℓ = [[aℓ, X⃗ ]] and ϱ̇ · ∂x = [[ϱ · ∂x , X⃗ ]] ?

Let us illustrate how the shortcut scheme works. We now tune a 1-vector field X⃗ (ϱ, [a])
for the flow Ṗ =Qγ3

([P]) of P(ϱ, [a]) over R3 such that ȧ = [[a, X⃗ ]] and ϱ̇ · ∂x = [[ϱ · ∂x , X⃗ ]],
whence we verify that Ṗ = [[P, X⃗ ([ϱ], [a])]] ∈ im∂P for the Nambu-determinant class of Pois-
son brackets on R3.

The micro-graph expansion of Qγ3
(P) for P(ϱ, [a]) over R3 consists of directed graphs on

2 sinks for f and g, on four terminal vertices for Casimirs a without outgoing arrows, and
on four vertices for ϱ · ϵi jk with three ordered outgoing edges. In every micro-graph in bi-
vector Qγ3

(P) there are 12 edges, with exactly two going towards f and g in the sinks. To
have a solution X⃗ of the equation Qγ3

(P(ϱ, [a])) = [[P, X⃗ ]] using micro-graphs that encode
X⃗ ([ϱ], [a]) we thus need micro-graphs on one sink, three terminal vertices with a, and three
trident vertices for ϱ ·ϵi jk. Of the nine edges in each micro-graph, exactly one goes to the sink,
so that X⃗ is a 1-vector.

We first generate all suitable unlabeled micro-graphs (i.e. without distinction which sinks
are for Casimirs) without tadpoles and with exactly one tadpole. Next, by deciding on the
run which of the four sinks is the argument of 1-vector, we produce 366 1-vector fields with
differential polynomial coefficients in ϱ and a, encoded by micro-graphs. Some of the co-
efficients are identically zero when the sums over three triples of indices in Civita symbols
are fully expanded; there remain 244 nonzero marker micro-graphs in the ansatz for the triv-
ializing vector field X⃗ . Now, we do not attempt solving the big problem Qγ3

(P) = [[P, X⃗ ]]
directly with respect to the 244 coefficients of nonzero marker micro-graphs. Instead, let us
find a vector field X⃗ , realized by 1-vector micro-graphs X γ, which reproduces the known ve-
locities [8, Eq. (11)] of ϱ and Casimir a, that is, we solve the equations ȧ = −[[X⃗ , a]] and
ϱ̇ ∂x ∧ ∂y ∧ ∂z = [[ϱ∂x ∧ ∂y ∧ ∂z , X⃗ ]] with respect to the coefficients in the micro-graph ansatz
for X γ. To determine exactly the number of equations in either linear algebraic system we
keep track of the number of differential monomials appearing when X⃗ acts on either a or ϱ
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2 (NON)TRIVIALITY OF γ3-FLOW FOR NAMBU–POISSON BRACKETS ON R4

as above, and we recall also the differential monomials which already appeared in ȧ and ϱ̇
in the left-hand sides, that is in [8, Eq. (11)]. In this way, we detect that the linear algebraic
system for ȧ contains 2961 equations and the system for ϱ̇ contains 6679 equations. Each
equation is a balance of the coefficient of one differential monomial. We now merge these
two systems of linear algebraic equations upon the coefficients of micro-graphs in the ansatz
for the trivializing vector field X⃗ , and we find a solution. Only 11 coefficients are nonzero.
The analytic formula of this vector field was reported in [8, Theorem 8]. The three equalities,
namely ȧ = −[[X⃗ , a]] and ϱ̇ ∂x ∧ ∂y ∧ ∂z = [[ϱ∂x ∧ ∂y ∧ ∂z , X⃗ ]] implying Qγ3

(P) = [[P, X⃗ ]], are
verified immediately. Here is the encoding of the weighted sum X γ of these 11 micro-graphs
which realize the trivializing vector field X⃗ for the tetrahedral flow Qγ3

(P) = [[P, X⃗ ]] on the
space of Nambu–Poisson structures over R3:

16 * [(0,4), (0,5), (0,6), (5,0), (5,1), (5,6), (6,0), (6,2), (6,3)]
24 * [(0,4), (0,5), (0,6), (5,0), (5,1), (5,6), (6,1), (6,2), (6,3)]
16 * [(0,4), (0,5), (0,6), (5,0), (5,1), (5,2), (6,1), (6,3), (6,5)]

-16 * [(0,4), (0,5), (0,6), (5,0), (5,1), (5,2), (6,1), (6,3), (6,5)]
12 * [(0,4), (0,5), (0,6), (5,1), (5,2), (5,6), (6,1), (6,2), (6,3)]

-12 * [(0,4), (0,5), (0,6), (5,1), (5,2), (5,6), (6,1), (6,2), (6,3)]
24 * [(4,0), (4,1), (4,6), (5,0), (5,1), (5,2), (6,0), (6,2), (6,3)]

-24 * [(4,0), (4,1), (4,6), (5,0), (5,2), (5,4), (6,0), (6,1), (6,3)]
8 * [(4,0), (4,1), (4,5), (5,0), (5,2), (5,6), (6,0), (6,3), (6,4)]

-8 * [(4,0), (4,1), (4,5), (5,2), (5,3), (5,6), (6,0), (6,1), (6,4)]
8 * [(0,4), (0,5), (0,6), (5,0), (5,1), (5,6), (6,2), (6,3), (6,6)]

Remark 3. At the level of micro-graphs, the solution X γ3 contains a tadpole, i.e. a 1-cycle, in
the last graph. In terms of differential polynomials this means the presence of a deriative ∂x i

acting on the coefficient ϱ(x ) near the Civita symbol ϵi jk containing the index i of the base co-
ordinate x i in that derivative; that is, the last term in the vector field X⃗ contains ∂x i (ϱ(x ))·ϵi jk.

Proposition 3. Without tadpoles in the micro-graph ansatz X γ3 , there is no solution X⃗ to the
trivialization problem Qγ3

(P(ϱ, [a])) = [[P, X⃗ ]] at the level of differential polynomials.

Remark 4. The tadpole from X γ survives into the l.-h.s. of Eq. (2) because there is no solution
without tadpoles, so the 11th graph cannot be in the kernel of [[P, ·]]. There must be Leibniz
graph(s) with tadpole in the r.-h.s. to balance the equality.

Remark 5. Over R3, to generate an ansatz for the part of ◊ without tadpoles in the r.-h.s.
of (2), it suffices to take Leibniz micro-graphs on two sinks (receiving exactly one edge into
either sink), with one trident Jacobiator vertex, with two trident vertices for ϱ(x , y, z)×Civita
symbol, and with two terminal vertices for copies of the Casimir a. There are 96 isomorphism
classes of directed graphs with the above out-degree profiles; by filtering them w.r.t. the in-
degree 1 of tri-vector’s sinks, we keep 45.

Likewise, to generate the other part – with one tadpole – of ◊ in the r.-h.s. of (2) for the γ3-
flow Ṗ([ϱ], [a]) over R3, we artificially decrease by one the number of edges in the graphs to
generate – specifically, one of the “Civita” tridents becomes a wedge; the Jacobiator remains
a trident that does not produce a tadpole – and, as soon as these new directed graphs are
produced, we by hand add a tadpole at the lonely Civita vertex.

To conclude this section, we note that existence of a micro-graph solution X γ for (2) in
a fixed dimension d ¾ 2 implies the existence of a solution X⃗ with differential-polynomial
coefficients for problem (1) of triviality of Kontsevich’s tetrahedral flow Ṗ = Or⃗(γ)(P⊗n) on the
space of Nambu-determinant Poisson structures P(ϱ, [a]) overRd . The vector field X⃗ ([ϱ], [a])
trivializing the tetrahedral flow Ṗ = Or⃗(γ3)(P⊗4) over R3 can be derived in precisely this way.

2 (Non)triviality of γ3-flow for Nambu–Poisson brackets on R4

From [8] we know that Kontsevich’s tetrahedral γ3-flow restricts to the space of Nambu-
determinant Poisson bi-vectors P(ϱ, [a1], [a2]) over R4: the differential-polynomial veloci-
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2 (NON)TRIVIALITY OF γ3-FLOW FOR NAMBU–POISSON BRACKETS ON R4

ties ϱ̇ and ȧ1, ȧ2 inducing the graph cocycle evolution Ṗ([ϱ], [a1], [a2]) are stored externally.5

Recall that the evolutions ȧ1, ȧ2(ϱ, [a1], [a2]) are realized by Kontsevich graphs Or⃗(γ3)(P⊗P⊗P
⊗a), hence they are immediately expanded to micro-graph realizations. The evolution ϱ̇([ϱ],
[a1], [a2]) can then be expressed by using micro-graphs with minimal effort.

The problem of Poisson (non)triviality of the tetrahedral γ3-flow for Nambu brackets in
dimension d = 4 is a priori independent from the similar problem in dimension three (the
solution of which has been discussed in the preceding section).

Open problem 2. Is the restriction of Kontsevich’s tetrahedral γ3-flow on the space of Nambu-
determinant Poisson structures P(ϱ, [a1], [a2]) over R4 trivial or not in the second Poisson
cohomology ? That is, at the level of differential polynomials in ϱ and a1, a2 in (multi-)vector
coefficients, is there a vector field X⃗ ([ϱ], [a1], [a2]) satisfying the equation

Qγ3
([P])([ϱ], [a1], [a2]) = [[P, X⃗ ]] ? (1′)

Remark 6. Solving equation (1′) can be attempted, first, strictly at the level of differential poly-
nomials by generating all the homogeneous differential monomials in ϱ,a1,a2 for the d = 4
coefficients X i of the sought vector field X⃗ ([ϱ], [a1], [a2]) =

∑d
i=1 X i ∂i . For the graph co-

cycle γ3, every such monomial contains ϱ3 = ϱ · ϱ · ϱ, a3
1, a3

2 and 11 derivatives falling on
these nine factors; the 12th derivative makes the 1-vector X i ∂i . These twelve derivations ∂x i1 ,
. . ., ∂x i12 are such that {x i1 , . . . , x i12}= {x1, . . . , x4}t {x1, . . . , x4}t {x1, . . . , x4}. Another con-
straint – upon the derivative order profiles in X i([ϱ], [a]), hence in [[P, X⃗ ]] – comes from the
bi-vector Qγ3

(P(ϱ, [a]))with known differential-polynomial coefficients. In effect, terms in X i

can contain only those orders of derivatives which, under [[P, ·]], reproduce the actually exist-
ing profiles of derivatives in Qγ3

([ϱ], [a]). (This technique was illustrated for Eq. (1) with γ3

over R3 in [3, §7.1.5].)
At the level of micro-graphs and Nambu-determinant Poisson structures P(ϱ, [a1], [a2])

over R4, a solution X γ of (2) for the graph cocycle γ3 would be realized by micro-graphs
possibly with tadpoles, on one sink of in-degree 1, three vertices of out-degree 4, and two
triples of terminal vertices for Casimirs a1, a1, a1 and a2, a2, a2. Expanding just one such micro-
graph into a 1-vector on R4 means taking n = 3 sums with d = 4 indices in each sum, every
index running from 1 to d = 4; this gives us 44·44·44 = 224 ≈ 16·106 terms. From Proposition 4
below we read that there are ≈ 20,000 micro-graphs in the ansatz for X γ. This totals with
≈ 320 · 109 differential monomials in the ansatz for trivializing vector field X⃗ on R4.

So, to solve equation (1), let us try solving equation (2) at the level of micro-graphs, i.e.
without projecting down to differential polynomials.

Open problem 3. Is there a vector field X γ (realized by micro-graphs as above) satisfying the
micro-graph equation

Qγ3
(P(ϱ, [a1], [a2]))− [[P, X γ]] = ◊([ϱ], [a], Jac(P)([a], [ϱ])) + 〈zero micro-graphs〉? (2′)

Remark 7. In the right-hand side of (2′) the term ◊([ϱ], [a], Jac(P)([a], [ϱ])) can, firstly,
be a linear combination of Leibniz graphs, that is, ◊1(P(ϱ, [a]), Jac(P)), built from the micro-
graph realizations of the Nambu–Poisson structure P(ϱ, [a1], [a2]) over R4 and then expanded
into the linear combination of micro-graphs: the Leibniz graphs expand to Kontsevich graphs
(by expanding the Jacobiator and Leibniz rules in each graph) and each Kontsevich graph
expands to micro-graphs. Secondly, for a solution X γ to appear, the right-hand side may need
a term ◊2([ϱ], [a], Jac(P(ϱ, [a]])) with a linear combination of Leibniz micro-graphs, which
by definition contain a micro-graph expansion of the Jacobiator, same as above, but also other
micro-graph vertices with ϱ and Casimirs aℓ that do not merge into subgraphs realizing copies

5https://rburing.nl/gcaops/adot_rhodot_g3_4D.txt
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of the Nambu--Poisson bi-vector over R4. To make equation (2′) a strict equality of left- and
right-hand sides, its right-hand side could require addition of zero micro-graphs with outgoing
edge ordering (which equal minus themselves under an automorphism).

Proposition 4. • There are 1, 079 isomorphism classes of directed graphs on one sink, three
vertices of out-degree four, six terminal vertices, and at most one tadpole (of them, 352 are
without a tadpole and 727 have one tadpole).
• Taking those graphs containing a vertex of in-degree one (for the sink), and dynamically
appointing the Casimirs from the multi-set {a1, a1, a1, a2, a2, a2} to the six terminal vertices of
the above graphs, we obtain 38,120 micro-graphs.
• Excluding repetitions in the above set of micro-graphs (e.g., if those micro-graphs are isomor-
phic), still not excluding micro-graphs which equal minus themselves under a symmetry (au-
tomorphism of micro-graph with outgoing edge ordering and known location of a1’s and a2’s)
we obtain 19,957 micro-graphs in the ansatz for X γ that would encode the trivializing vector
field solutions, if any, of coboundary equation (1′).
• Of these 19,957 micro-graphs, one tadpole is present in 13,653 micro-graphs, and there are
no tadpoles in 6,304 micro-graphs.

Construction sketch. The representatives of isomorphism classes of graphs without tadpoles
are generated by the nauty [11] command-line call geng 10 9:12 | directg -e12 | pickg
-d0 -m7 -D4 -M3. Likewise, the graphs with one tadpole are generated by first produc-
ing graphs with one edge fewer, using geng 10 0:12 | directg -e11 | pickg -d0 -m7
-D4, and adding a tadpole to the lonely vertex of out-degree 3 in each graph. For the appoint-
ment of Casimirs to 6 vertices in all different ways, one uses an efficient algorithm to generate
the 20 permutations of the multi-set {a1, a1, a1, a2, a2, a2}.
Remark 8. The gcaops software [2] for calculus in Kontsevich’s graph language (see [1,3,4])
so far does not support the generation and manipulation of directed graphs with tadpoles —
which, we expect, are essential for a solution X γ of (1′) to appear.

Finally, let us examine how an unknown solution of (2) in high dimension d ¾ 4 can be
constrained by using the known solution(s) for similar problem with the same graph flow but
in lower dimension d − 1.

Remark 9. There is no known natural procedure to extend a given micro-graph realization X γd
of trivializing vector field X⃗ d on Rd (for d ¾ 2) to a larger micro-graph realization X γd+1 of
some solution(s) X⃗ d+1 (if any) for Kontsevich’s graph flow (non)triviality problem over Rd+1.
Note that in the next dimension d+1, Civita symbols are realized by micro-graph vertices with
d + 1 outgoing edges, instead of the vertices with d outgoing edges in a given solution X γd .

Conversely, the reduction d + 1 7→ d of dimension for the Nambu-determinant Poisson
structures amounts to setting the last Casimir ad−1 = ±xd+1 and excluding the last coordi-
nate xd+1 from the list of arguments in either ϱ(x1, . . . , xd) or any of the remaining Casimirs
a1, . . . , ad−2. The (un)known trivializing vector field X⃗ d+1 then provides a known solution X⃗ d
and its micro-graph realization X γd . By tracking backwards the correspondence of micro-graphs
under the dimensional reduction, when the (d + 1)th edges are essentially removed from the
Civita symbol vertices, one can conjecture the shape of many micro-graphs in a sought solution
X γd+1 of the larger problem.

Conclusion

We conjecture that over allRd¾3, Kontsevich’s γ3-flows of Nambu–Poisson brackets are cobound-
aries; the trivializing vector fields then project down under Rd → Rd−1.
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