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David Rowe: Totnes, 4/02/1936 — Toronto, 8/05/2020

David Rowe was a highly respected theoretical physicist who made seminal contributions
that improved our understanding of the atomic nucleus, in particular of the collective
behaviour of its constituent nucleons—results he often obtained with the use of sophis-
ticated group-theoretical methods. He will also be remembered as the (co-)author of
monographs on nuclear physics, written with the scientific rigour that was characteris-
tic of his research.

David Rowe was born in Totnes, United Kingdom, on February 4™ 1936 and went to school in
Kingsbridge. He did his undergraduate studies at the Universities of Cambridge and Oxford
and graduated at Oxford University with a PhD in nuclear physics.

David’s scientific career started with a study in experimental nuclear physics [ 1] but quickly
his attention shifted to theoretical physics, where it stayed for the rest of his life. Three post-
doctoral stays turned out to be of crucial importance in the forging of his scientific interests.
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The first was in 1962/63 when he was a Ford Foundation fellow at the Niels Bohr Institute in
Copenhagen, at the forefront of research in nuclear physics at that time. This post-doctoral
stay no doubt must have laid the foundation of his life-long interest in the collective behaviour
of nucleons in the nucleus. From 1963 to 1966 David held a post-doctoral position at the
Atomic Energy Research Establishment at Harwell in England. There also he thrived in a
stimulating intellectual environment where important advances in theoretical physics were
made by John Bell, Phill Elliott, Brian (later Lord) Flowers, Tony Skyrme and others; during
that period he interacted in particular with Tony Lane. His third post-doctoral stay took place
at the University of Rochester in the USA, where he benefitted from the presence of Bruce
French who was, among other things, an expert in the application of group theory in physics.

From 1968 onwards he held a permanent position, first as an associate and later as a full
professor, at the University of Toronto, where he remained for the rest of his career except for
two sabbatical leaves at the University of Sdo Paulo (Brazil) and the University of Canterbury
(UK). He was Associate Dean of the School of Graduate Studies in Physical Sciences from 1984
to 1987. For his contributions to theoretical physics he received the Rutherford Memorial
Medal and Prize of the Royal Society of Canada in 1983, the CAP/CRM Medal and Prize for
Theoretical and Mathematical Physics in 1999 and was elected a Fellow of the Royal Society
of Canada in 1986. In 1998 he retired and became emeritus professor at the University of
Toronto. Freed from teaching and administrative duties, he could devote more time to research
and continued to develop new ideas in theoretical physics until the final days of his life.

A central aim of David’s scientific activity at the beginning of his career was to arrive at a mi-
croscopic understanding of the collective model of the atomic nucleus. This model, proposed
in the 1950s by Aage Bohr and Ben Mottelson, describes nuclear states in terms of vibrations
and rotations of a quantised droplet of dense nuclear matter [2]. While this interpretation
met with a certain success when confronted with spectroscopic data known at that time, a mi-
croscopic understanding of the approach was lacking. That is, its connection with the nuclear
shell model, which describes the nucleus in terms of its constituent neutrons and protons, was
not well understood. At the time when David began pondering this question (mid-1960s), one
important breakthrough had been made by Phil Elliott [3,4], who had shown that rotational
states can be realised in the spherical shell model on the basis of an SU(3) (dynamical) sym-
metry of the nuclear Hamiltonian. Nevertheless, an embedding of the collective model into
the shell model, i.e., the formulation of the collective model as a submodel of the shell model,
had not yet been achieved. Inspired by Elliott’s earlier work, David realised that group theory
would play an essential role in establishing this connection since both the shell model and
the collective model have an algebraic structure. He also realised that earlier attempts, where
the observables are shape coordinates of the nuclear surface and their associated momenta,
cannot lead to a microscopic theory and should be replaced by the monopole and quadrupole
moments of the nuclear density. The combination of these two features—the algebraic struc-
ture of the shell model and the formulation of collective observables in terms of moments—Ied
in a natural way to the symplectic model based on the algebra Sp(3,R), as proposed by David
and his (then) graduate student George Rosensteel in 1977 [5]. Not only is Sp(3,R) a sub-
algebra of the full Lie algebra of shell-model observables (which is infinite dimensional) but
it contains itself SU(3) and CM(3) (the algebra of the collective model) as subalgebras. The
symplectic model therefore provided the first microscopic understanding of the origins of the
rotational dynamics of nuclei, including rigid as well as irrotational flows. It continues to in-
spire present-day nuclear structure. Recently, Sp(3,R) was shown to be a symmetry emerging
from ab initio large-scale shell-model calculations [6].

Throughout his life David remained interested in nuclear collective models, steadily im-
proving our understanding of them as well as enlarging their applicability. An example of the
latter is his proposal of a computationally tractable version of the collective model [ 7], which
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made it much more versatile than in the original numerical implementation. As was so often
the case, David’s formulation was based on an elegant piece of mathematics, namely the cor-
respondence between SO(5), the rotation algebra in five dimensions, and SU(1,1), the algebra
of scale transformations in the radial coordinate. He then exploited the presence of the contin-
uous series of SU(1,1) representations to obtain concrete results in terms of greatly improved
numerical convergence properties. In subsequent work, David and collaborators showed that
the dual pairing of symmetry and dynamical algebras is a feature common to many physical
systems [8], the significance of which therefore largely surpasses that of its application to the
collective model.

Since most models can be assigned an algebraic structure, it became important to construct
unitary representations of Lie algebras in a systematic way. With this goal in mind, David in-
vented a new mathematical structure, namely vector coherent states [9]. VCS theory can be
considered as a physically intuitive version of the mathematical theory of induced represen-
tations and can be used in the construction of not-so-simple irreducible representations of a
Lie algebra, starting from known irreducible representations of one of its subalgebras. VCS
theory provides a powerful technique to derive many concrete results, for example, explicit
expressions for vector coupling coefficients.

A common thread in all research activities of David was the use of symmetries, which arise
if the Hamiltonian of a quantum-mechanical system commutes with a set of transformations
that form a Lie algebra. The concept of symmetry can be further generalised to that of a dy-
namical symmetry when the Hamiltonian leaves invariant the subspaces of the total Hilbert
space that carry the irreducible representations of a subalgebra of the dynamical algebra. In
fact, the algebraic properties of several ‘classical’ nuclear physics models, such as Wigner’s
SU(4) supermultiplet scheme, Racah’s seniority model of pairing, Elliott’s SU(3) description
of rotations and the solvable limits of the interacting boson model (IBM) of Arima and Iachello,
can all be understood as arising from a dynamical symmetry. Often a single model may display
several incompatible dynamical symmetries. This is well known for the IBM, which has three
competing dynamical symmetries (or limits): U(5), SU(3) and SO(6). Competing dynamical
symmetries also occur in the nuclear shell model, where the short-range pair-coupling inter-
action among the nucleons keeps the nucleus spherical and induces an SU(2)-type dynamical
symmetry while the long-range quadrupole interaction favours a deformed equilibrium shape,
corresponding to an SU(3) limit. The properties of systems with competing symmetries can be
elucidated with the notion of quasi-dynamical symmetry: the mixing of different representa-
tions of a dynamical symmetry caused by a competing symmetry frequently occurs in a highly
coherent manner, creating the illusion that the symmetry is preserved. While this concept
can be given a precise formulation in terms of embedded representations [10], the intuitive
interpretation is that the dominant symmetry is distorted but not broken. As the competing
symmetry increases in strength this distortion becomes more important until it reaches break-
ing point and the system enters a transition phase from where a quasi-dynamical symmetry of
the competing phase may emerge. Over the years David and collaborators investigated sev-
eral models with competing symmetries [11-13] the properties of which can be in terms of
quasi-dynamical symmetries.

We close with some heartfelt memories of David as a friend and colleague, which one of
us (JLW) enjoyed for 46 years. David was a private and modest person who loved to think,
share stories with friends, walk, and travel. He was a master of bird photography. He was
an accomplished pianist. He had an infectious sense of humour. Physics discussion could be
very intense, his demand was for logical clarity, often with the sense that only the shadows
of his thinking were accessible to lesser souls. He was, at least for us, one of the giants of
mathematical physics in the latter part of the twentieth century. But one had to listen very
carefully: "when the giants walk by, they do so very silently". Walking by his side was a
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singular experience and a privilege.
David has left a legacy of ideas that we term the Rowe Legacy. To the limits of our ability,
we will see this legacy shared in our role as authors and editors.
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