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Abstract3

Dominant shapes naturally emerge in atomic nuclei from first principles, thereby es-4

tablishing the shape-preserving symplectic Sp(3,R) symmetry as remarkably ubiquitous5

and almost perfect symmetry in nuclei. We discuss the critical role of this emergent6

symmetry in enabling machine-learning descriptions of heavy nuclei, ab initio modeling7

of α clustering and collectivity, as well as tests of beyond-the-standard-model physics.8

In addition, the Sp(3,R) and SU(3) symmetries provide relevant degrees of freedom9

that underpin the ab initio symmetry-adapted no-core shell model with the remarkable10

capability of reaching nuclei and reaction fragments beyond the lightest and close-to-11

spherical species.12
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1 Introduction28

Dominant shapes, often very few in number, naturally emerge in atomic nuclei1. This remark-29

able result has been recently shown by large-scale nuclear simulations from first principles [2].30

Indeed, each nuclear shape respects an exact symmetry, namely, the symplectic Sp(3,R) sym-31

metry [3, 4]. Thereby the outcome of these simulations establishes the symplectic Sp(3,R)32

symmetry as remarkably ubiquitous and almost perfect symmetry in nuclei up through the33

calcium region (anticipated to hold even stronger in heavy nuclei [5]). This outcome also34

exposes for the first time the fundamental role of the Sp(3,R) symmetry and suggests that its35

origin is rooted in the strong nuclear force, in the low-energy regime.36

This builds upon a decades-long research, starting with the pivotal work of Draayer [6,4,37

7,8] and that of Rowe and Rosensteel [3,9,5,10], who have successfully harnessed group the-38

ory as a powerful tool for understanding and computing the intricate structure of nuclei. This39

pioneering work has been instrumental in designing the theory that underpins many highly40

ordered patterns unveiled amidst the large body of experimental data [11, 12, 13]. In addi-41

tion, it has explained phenomena observed in energy spectra, E2 transitions and deformation,42

giant resonances (GR), scissor modes and M1 transitions, electron scattering form factors, as43

well as the interplay of pairing with collectivity. The new developments and insights have44

provided the critical structure raised upon the very foundation laid by Elliott [14, 15, 16]45

and Hecht [17,18], and opened the path for large-scale calculations feasible today on super-46

computers. And while these earlier algebraic models have been very successful in explaining47

dominant nuclear patterns, they have assumed symmetry-based approximations and have of-48

ten neglected symmetry mixing. This establishes Sp(3,R) as an effective symmetry2 for nuclei,49

which may or may not be badly broken in realistic calculations. It is then imperative to probe50

if this symmetry naturally arises within an ab initio framework, which will, in turn, establish51

its fundamental role.52

Indeed, within an ab initio framework without a priori symmetry assumptions, the symmetry-53

adapted no-core shell model (SA-NCSM) [20, 21, 8] with chiral effective field theory (EFT)54

interactions [22,23,24] has recently confirmed the goodness of the symplectic Sp(3,R) sym-55

metry that is only slightly broken. With no parameters to adjust, the SA-NCSM is capable56

then not only to explain but also to predict the emergence of nuclear shapes and collectivity57

across nuclei, even in close-to-spherical nuclear states without any recognizable rotational58

properties.59

Within an ab initio framework, the emergent symmetries play a critical role, as they can60

inform relevant degrees of freedom. In particular, a symmetry-adapted many-body basis can61

be employed, as in the SA-NCSM, thereby providing solutions for drastically reduced sizes of62

the spaces in which particles reside (referred to as “model spaces”’) compared to the corre-63

sponding ultra-large model spaces, without compromising the accuracy of results for various64

nuclear observables. By exploiting symplectic symmetry, ab initio descriptions of spherical65

and deformed nuclei up through the calcium region are now possible without the use of effec-66

1 This publication reuses some material from [1] under the terms of its CC BY license.
2 A familiar example for an effective symmetry is SU(3). While the Elliott model with a single SU(3) irrep

explains ground-state rotational states in deformed nuclei, the SU(3) symmetry is, in general, largely mixed,
mainly due to the spin-orbit interaction (nonetheless, SU(3) has been shown to be an excellent quasi-dynamical
symmetry, that is, each rotational state has almost the same SU(3) content [19]).
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tive charges [21,25,26,8,27]. This allows the SA-NCSM to accommodate even larger model67

spaces and to reach heavier nuclei, such as 20Ne [2], 21Mg [28], 22Mg [29], 28Mg [30], as68

well as 32Ne and 48Ti [31].69

In this paper, we briefly outline the SU(3) and Sp(3,R) schemes utilized by the ab ini-70

tio SA-NCSM. We overview the critical role of the emergent Sp(3,R) symmetry in enabling71

machine-learning descriptions of heavy nuclei [32], ab initio modeling of α clustering and col-72

lectivity, along with tests of beyond-the-standard-model physics [33]. In addition, we show73

that with the help of the SA-NCSM, which expands ab initio applications up to medium-mass74

nuclei by using the dominant symmetry of nuclear dynamics, one can provide solutions to75

reaction processes in this region, with a focus on elastic neutron scattering.76

2 Emergent symmetries in nuclei: Sp(3,R) and SU(3)77

2.1 SU(3) scheme78

It is well known that SU(3) [14, 34, 6, 35, 18] is the symmetry group of the spherical har-79

monic oscillator (HO) that underpins the valence-shell model and the valence-shell SU(3)80

(Elliott) model [14, 15, 16] (for technical details of SU(3), see Ref. [36]). The Elliott model81

has been shown to naturally describe rotations of a deformed nucleus without the need for82

breaking rotational symmetry. But even beyond the valence shell, the SU(3) scheme pro-83

vides a classification of the complete shell-model space in multiple shells, and is related to84

the LS-coupling and j j-coupling schemes via a unitary transformation. It divides the space85

into basis states of definite (λµ) quantum numbers of SU(3) that are linked to the intrinsic86

quadrupole deformation according to the established mapping [37,38,39]. For example, the87

simplest cases, (0 0), (λ0), and (0µ), describe spherical, prolate, and oblate deformation,88

respectively3, while a general nuclear state is typically a superposition of several hundred89

various triaxially deformed configurations. Note that, in this respect, basis states can have90

little to no deformation, and, e.g., about 60% of the ground state of the closed-shell 16O is91

described by a single SU(3) basis state, the spherical (00).92

Specifically, in the SU(3) scheme, in place of the spherical quantum numbers
�

�ηlml
�

, one93

can consider the single-particle HO basis
�

�ηzηxηy

¶

, the HO quanta in the three Cartesian94

directions, z, x , and y , with ηx + ηy + ηz = η (η = 0,1, 2, . . . for s, p, sd, ... shells ).95

For a given HO major shell, the complete shell-model space is then specified by all distin-96

guishable distributions of ηz ,ηx and ηy . E.g., for η = 2, there are 6 different distributions,97

(ηz ,ηx ,ηy) = (2,0, 0), (1,1, 0), (1,0, 1), (0,2, 0), (0,1, 1) and (0, 0,2). The number of these98

configurations is Ωη = (η+ 1)(η+ 2)/2 (spatial degeneracy) and the associated symmetry is99

described by the U(Ωη) unitary group. Each of these (ηz ,ηx ,ηy) configurations can be either100

unoccupied or has maximum of two particles with spins ↑↓.101

As a simple example for an SU(3)-scheme basis state, consider A = 2 protons in the sd102

shell (η = 2) with a particle in the (2,0, 0) level with spin ↑ and another in the (1,1, 0) level103

with spin ↑. The total number of quanta in each direction is (ηtot
z ,ηtot

x ,ηtot
y , ) = (3, 1,0), or104

equivalently, ηtot(λµ) = 4(2 1), where ηtot = ηtot
x + η

tot
y + η

tot
z , together with λ = ηtot

z − η
tot
x105

and µ = ηtot
x − η

tot
y labeling an SU(3) irrep, in addition to the total intrinsic spin and its106

projection SMS . For given (λµ), the quantum numbers κ, L and ML are given by Elliott107

[14,15], according to the SU(3)
κ
⊃ SO(3)L⊃SO(2)ML

, where the label κ distinguishes multiple108

occurrences of the same orbital angular momentum L in the parent irrep (λµ). For our109

3 Following this mapping, quadrupole moments of (00), (λ0), and (0µ) configurations – in a simple classical
analogy to rotating spherical, prolate, and oblate spheroids in the lab frame [40] – are zero, negative, and positive,
respectively.
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example, (λµ) = (2 1) with κ = 1, L = 1, 2,3, and ML = −L,−L + 1, . . . , L. Hence, the set110

{ηA(λµ)κ(LS)J M} completely labels a 2-proton SU(3)-scheme basis state (with ηtot = Aη). A111

basis state in this scheme for a 2-particle system is given by, {a†
(η0)stz

×a†
(η′0)s′ t ′z

}(λµ)κ(LS)J M |0〉,112

which is an SU(3)-coupled product, provided that a† is a proper SU(3) tensor; incidentally, the113

SU(3) tensor a† of rank (λµ) = (η0) coincides with the familiar particle creation operator,114

a†
(η0)lmsσtz

≡ a†
ηlmsσtz

, while the particle annihilation SU(3) tensor of rank (λµ) = (0η) is115

given as ã(0η)l−ms−σtz
= (−1)η+l−m+s−σaηlmsσtz

. Note that for η= η′ = 2, e.g., there are only116

a few 2-proton configurations (λµ) = (4 0) with L = 0, 2,4, (21) with L = 1,2, 3, and (02)117

with L = 0, 2. Furthermore, these basis states are related to LS-coupled basis states (similarly,118

to j j-coupled basis states) via a simple unitary transformation,119

{a†
(η0)stz

× a†
(η′0)s′ t ′z

}(λµ)κ(LS)J M |0〉=
∑

l,l ′
〈(η0)l; (η′0)l ′‖(λµ)κL〉{a†

ηlstz
× a†

η′ l ′s′ t ′z
}(LS)J M |0〉 ,

(1)
where 〈. . . ; . . .‖ . . . 〉 is the SU(3) analog of the familiar reduced Clebsch-Gordan coefficient120

[note that there is no dependence on the particle orbital angular momenta, l and l ′, in the121

SU(3)-scheme basis states].122

An important feature of the SU(3) scheme is that all possible configurations within a123

major HO shell η (for protons or neutrons) are not constructed using the tedious procedure of124

coupling of creation operators referenced above, but are readily available based on the U(Ωη)125

unitary group of the many-body three-dimensional HO. In particular, the basis construction is126

implemented according to the reduction [41]127

U(Ωη) × SU(2)
h

f1, f2, . . . fΩη

i

Sη
∪ αη

SU(3)
(ληµη)

, (2)

with SU(3)(λη µη)
κη
⊃ SO(3)Lη⊃SO(2)MLη

[14, 15], where a multiplicity index αη distinguishes128

multiple occurrences of an SU(3) irrep (ληµη) in a given U(Ωη) irrep labeled by Young129

tableaux, [f] = [ f1, f2, . . . , fΩη], with f1 ≥ f2 ≥ · · · ≥ fΩη and fi = 0 (unoccupied), 1 (oc-130

cupied by a particle), or 2 (occupied by 2 particles of spins ↑↓). An illustrative example for 4131

particles in the p f shell (η= 3) is shown in Table 1.132

2.2 Sp(3,R) scheme133

The key role of deformation in nuclei and the coexistence of low-lying quantum states in134

a single nucleus characterized by configurations with different quadrupole moments [11]135

makes the quadrupole moment a dominant fundamental property of the nucleus. Hence,136

the quadrupole moment Q (or deformation) and the monopole moment r2 (or “size" of the137

nucleus), along with nuclear masses, establishes the energy scale of the nuclear problem.138

Indeed, the nuclear monopole and quadrupole moments underpin the essence of symplectic139

Sp(3,R) symmetry.140

Specifically, for A particles in three-dimensional space, the complete basis for the shell141

model is described by Sp(3A,R)×U(4) [10], where Sp(3A,R) is the group of all linear canon-142

ical transformations of the 3A-particle phase space and Wigner’s supermultiplet group U(4)143

describes the complementary spin-isospin space. A complete translationally invariant shell-144

4
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Spatial d.o.f. Spin d.o.f.
U(10) ⊃ SU(3) SU(2)
[ f1 f2 . . . f10] (λµ) S

(8 2), (71), (44)2, (5 2), (06), (6 0), (3 3)

[22] (1 4), (41), (22)2, (1 1) S = 0

(9 0), (63), (71), (4 4), (2 5), (52)2, (3 3)2

[212] (1 4)2, (41)2, (2 2), (03), (3 0)2, (11) S = 1

(5 2), (06), (33), (2 2), (3 0)

[14] S = 2

Table 1: SU(3)×SU(2)S configurations for 4 protons (neutrons) in the p f shell
(η= 3 with Ωη = 10). Note that a spatial symmetry represented by a Young tableau
h

f1, . . . , fΩη

i

is uniquely determined by its complementary spin symmetry of a given
intrinsic spin Sη (conjugate Young tableaux) ensuring the overall antisymmetriza-
tion of each U(Ωη)×SU(2)Sη configuration with respect to spatial and spin degrees
of freedom (d.o.f.) [41].

model basis is classified according to (see, e.g., [5,10]),145

Sp(3(A− 1),R) × U(4)
∪ ∪

Sp(3,R)×O(A− 1) SU(2)S × SU(2)T
. (3)

The Sp(3,R) scheme utilizes the symplectic group Sp(3,R). It consists of all particle-independent146

linear canonical transformations of the single-particle phase-space observables, the positions147

~ri and momenta ~pi (with particle index i = 1, . . . , A and spacial directions α,β = x , y, z)148

r ′iα =
∑

β

Aαβ riβ + Bαβ piβ (4)

p′iα =
∑

β

Cαβ riβ + Dαβ piβ (5)

that preserve the Heisenberg commutation relations [riα, p jβ] = iħhδi jδαβ [5, 42, 8]. Genera-149

tors of these transformations, symbolically denoted as matrices A, B, C, and D, are constructed150

as “quadratic coordinates" in phase space, ~ri and ~pi , and, most importantly, sum over all the151

particles and act on the space orientation. Hence, the generators include physically relevant152

operators: the total kinetic energy ( p2

2
= 1

2

∑

i ~pi · ~pi), the monopole moment (r2 =
∑

i ~ri ·~ri),153

the quadrupole moment (Q2M =
p

16π/5
∑

i r2
i Y2M (r̂i)), the orbital angular momentum154

(~L =
∑

i ~ri × ~pi), and the many-body harmonic oscillator Hamiltonian (H0 =
p2

2
+ r2

2
). In155

addition, other generators describe multi-shell collective vibrations and vorticity degrees of156

freedom for a description from irrotational to rigid rotor flows.157
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On the contrary, the generators of the complementary O(A) sum over the three spatial158

directions and act on the particle index, with a growing complexity with increasing parti-159

cle number. One can then organize the A-particle model space according to the dual group160

O(A−1), with O(A)⊃ O(A−1)⊃ SA. The O(A) is the group of orthogonal transformations that161

act on the “particle-index" space (transformations of nucleon coordinates, riα →
∑A

j=1 r jαPji ,162

that leave the O(A) scalars rα · rβ =
∑A

i=1 riαriβ invariant for α,β = x , y, z). This scheme is163

reviewed in detail in Refs. [5, 10]. O(A− 1) is the subgroup of O(A) which leaves center-of-164

mass coordinates invariant (note that center-of-mass coordinates are symmetric with respect165

to nucleon indices and, therefore, invariant under SA permutations) and has as a subgroup166

the permutation group SA, which permutes the spatial coordinates of a system of A particles.167

The Sp(3,R) scheme utilizes an important group reduction to classify many-particle basis168

states |σnρωκLM〉 of a symplectic irrep,169

Sp(3,R) ⊃ U(3) ⊃ SO(3) ⊃ SO(2)
σ nρ ω κ L M

, (6)

where σ ≡ Nσ
�

λσ µσ
�

labels the Sp(3,R) irrep, n ≡ Nn
�

λnµn
�

, ω ≡ N
�

λωµω
�

, and170

N = Nσ+Nn is the total number of HO quanta (ρ and κ are multiplicity labels) [5]. The rela-171

tion of these symplectic basis states to M -scheme states of the NCSM is provided in Ref. [43].172

Importantly, a single-particle Sp(3,R) irrep spans all positive-parity (or negative-parity) states173

for a particle in a three-dimensional spherical or triaxial (deformed) harmonic oscillator.174

The translationally invariant (intrinsic) symplectic Sp(3,R) generators can be written as175

SU(3) tensor operators in terms of the harmonic oscillator raising, b†(1 0)
iα = 1p

2
(riα − ipiα),176

and lowering b(01) dimensionless operators (with r and p the laboratory-frame position and177

momentum coordinates and α= 1, 2,3 for the three spatial directions),178

A(20)
LM =

1
p

2

A
∑

i=1

{b†
i × b†

i }
(2 0)
LM −

1
p

2A

A
∑

s,t=1

{b†
s × b†

t }
(2 0)
LM (7)

C (11)
LM =

p
2

A
∑

i=1

{b†
i × bi}

(11)
LM −

p
2

A

A
∑

s,t=1

{b†
s × bt}

(1 1)
LM ,

H(00)
00 =

p
3
∑

i

{b†
i × bi}

(00)
00 −

p
3

A

∑

s,t
{b†

s × bt}
(0 0)
00 +

3

2
(A− 1), (8)

together with B(0 2)
LM = (−)

L−M (A(20)
L−M )

† (L = 0, 2), where the sums run over all A particles of179

the system. Equivalently, the symplectic generators, being one-body-plus-two-body operators180

can be expressed in terms of the fermion creation operator a†
(η0) and its SU(3)-conjugate181

annihilation operator, ã(0η). This is achieved by using the known matrix elements of the182

position and momentum operators in a HO basis, and hence, e.g., the first sum of A(2 0)
LM in Eq.183

(7) becomes,
∑

η

q

(η+1)(η+2)(η+3)(η+4)
12

n

a†
(η+2 0)× ã(0η)

o(20)

LM
[44]. Note that this operator184

describes excitations of a nucleon from the η shell to the η + 2 shell, which corresponds185

to creating two single-particle HO excitation quanta, as manifested in the first term of Eq.186

(7). The eight 0ħhΩ operators C (1 1)
L,M (L = 1, 2) generate the SU(3) subgroup of Sp(3,R).187

They realize the angular momentum operator (dimensionless), L1M = C (1 1)
1M , and the Elliott188

“algebraic" quadrupole moment tensor Qa
2M =

p
3C (1 1)

2M .189

The many-body basis states of an Sp(3,R) irrep are built over a bandhead |σ〉 (defined by190

the usual requirement that the symplectic lowering operators B(0 2)
LM annihilate it) by 2ħhΩ 1p-191

1h monopole or quadrupole excitations, realized by the first term in A(2 0)
LM of Eq. (7), together192

6
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with a smaller 2ħhΩ 2p-2h correction for eliminating the spurious center-of-mass (CM) motion,193

realized by the second term in A(20)
LM :194

|σnρωκ(LSσ)J M〉=
∑

ML MS

〈LML; SσMS| J M〉{{A(2 0)× A(20) · · · × A(2 0)}n×
�

�σ; SσMS
�

}ρωκLML
.

(9)
States within a symplectic irrep have the same spin value, which are given by the spin Sσ195

of the bandhead
�

�σ; Sσ
�

. Symplectic basis states span the entire shell-mode space. A com-196

plete set of labels includes additional quantum numbers |{α}σ〉 that distinguish different197

bandheads with the same Nσ
�

λσ µσ
�

. Remarkably, these Sp(3,R) basis states are in one-198

to-one correspondence with a coupled product of the states of the Bohr vibrational model199

(realized in terms of giant monopole-quadrupole resonance states with irrotational flows),200

{{A(20) × A(2 0) · · · × A(2 0)}n ×
�

�Nσ(00)
�

}(λn µn), and (λσ µσ) deformed states of an SU(3)201

model [42].202

2.3 Ab initio symmetry-adapted no-core shell model203

Not surprisingly, the symplectic Sp(3,R) symmetry, the underlying symmetry of the symplectic204

rotor model [3,5], has been found to play a key role across the nuclear chart – from the lightest205

systems [45,46], through intermediate-mass nuclei [4,47,8], up to strongly deformed nuclei206

of the rare-earth and actinide regions [5, 48, 49, 19]. The results agree with experimental207

evidence that supports formation of enhanced deformation and clusters in nuclei, as well as208

vibrational and rotational patterns, as suggested by energy spectra, electric monopole and209

quadrupole transitions, radii and quadrupole moments [11,29,50].
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Figure 1: Emergence of almost perfect symplectic Sp(3,R) symmetry in nuclei from
first principles, enabling ab initio descriptions of collectivity and clustering. Source:
Figure from [2]@ APS; reproduced with permission.

210

The symmetry-adapted no-core shell model [20, 8, 2] capitalizes on these findings and211

presents solutions in terms of a physically relevant basis of nuclear shapes. It exploits both212

the SU(3) and Sp(3,R) schemes. Indeed, since the symplectic symmetry does not mix nuclear213

shapes, the SA-NCSM provides important insight from first principles into the physics of nuclei214

and their low-lying excitations as dominated by only a few (typically one or two) collective215

shapes – equilibrium shapes with their vibrations – that rotate (Fig. 1).216

By exploiting this almost perfect symmetry, the SA framework resolves the scale explo-217

sion problem in nuclear structure calculations, i.e., the explosive growth in computational218

resource demands with increasing number of particles and model spaces size. We note that219
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the SA-NCSM uses the complete model space (that is, all possible shapes) as usually done in220

conventional shell models, but expands, in a prescribed way, only for those deformed con-221

figurations with vibrations that lie outside of the complete model space. This is critical for222

enhanced prolate deformation, since spherical and less deformed or oblate shapes easily de-223

velop in comparatively small model-space sizes.224

The SA-NCSM, when combined with a high-precision realistic inter-nucleon interaction,225

provides ab initio predictions of nuclear observables. We often adopt the NNLOopt chiral226

potential [51] that is used without 3N forces, which have been shown to contribute minimally227

to the 3- and 4-nucleon binding energy [51]. Chiral potentials are typically parameterized228

by two-nucleon (and three-nucleon) data, whereas the parameters, called the low-energy229

constants (LECs), remain unchanged and are not adjusted from one many-body system to230

another. This ensures a predictive power. At the next-to-next-to-leading order (NNLO), there231

are 14 LECs that enter into the chiral nucleon-nucleon (NN) potential. Our recent findings232

reveal the remarkable result that the chiral potential parameterizations have no significant233

effect on the dominant nuclear features, such as nuclear shape and the associated Sp(3,R)234

symmetry, along with cluster formation (Fig. 2), but only slightly vary details in the nuclear235

wave functions, such as the contributions of the equilibrium deformation and its vibrations236

within the predominant nuclear shape (Fig. 2, left, inset) [52].
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Figure 2: Chiral parameterization independence for nuclear shapes and clus-
ter formation: (Left) Probability amplitude of the predominant Sp(3,R) irrep
Nσ(λσ µσ) = 0(20) (L = 0) in the 6Li 1+ ground state. Inset: Contributions from
the equilibrium shape (symplectic bandhead) and its vibrations (the case for the
NNLOopt is also shown). (Right) α+ d 3S1-wave vs. the relative distance r. Cal-
culated from the 6Li 1+ ground state, computed with the SA-NCSM in the Sp(3,R)
scheme with NNLO chiral potential for 10 HO shells and ħhΩ=15 MeV. The ±10%
variation in the LECs of the chiral potential is shown (left) on the horizontal axis
and (right) by the spread of the curve. Source: Figures adapted/reused from [52]@
Frontiers; reproduced under the terms of its CC BY license.

237

3 Critical Role of Symmetries for Studies and Predictions of Nu-238

clear Properties239

3.1 Machine learning pattern recognition with the SA-NCSM240

Machine learning approaches are ideal for pattern recognition, thereby providing a suitable241

framework to detect and utilize the highly organized patterns in atomic nuclei governed by242

the symplectic Sp(3,R) symmetry.243

Specifically, Ref. [32] introduces a novel machine learning approach to provide further244
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insight into atomic nuclei and to detect orderly patterns amidst a vast data of large-scale245

calculations. The method utilizes a physics-informed neural network that is trained on ab246

initio results from the SA-NCSM for light nuclei. Indeed, the SA-NCSM, which expands ab247

initio applications up to medium-mass nuclei, can reach even heavier nuclei when coupled248

with the machine learning approach. In particular, we find that a neural network trained on249

probability amplitudes for s-and p-shell nuclear wave functions not only predicts dominant250

configurations for heavier nuclei but in addition, when tested for the 20Ne ground state, it251

accurately reproduces the probability distribution (Fig. 3).

Figure 3: A novel machine learning approach coupled with the ab initio SA-NCSM is
capable to detect orderly patterns amidst a vast data of large-scale calculations and
to describe sd-shell nuclei, such as 20Ne (shown), 24Si, 40Mg, and even the extremely
heavy nuclei such as 166,168Er and 236U, by training only on nuclei up to 16O. Source:
Figure from [32]@ APS; reproduced with permission.

252

The nonnegligible configurations predicted by the network provide an important input to253

the SA-NCSM for reducing ultra-large model spaces to manageable sizes that can be, in turn,254

utilized in SA-NCSM calculations to obtain accurate observables. The neural network is ca-255

pable of describing nuclear deformation and is used to track the shape evolution along the256
20−42Mg isotopic chain, suggesting a shape-coexistence that is more pronounced toward the257

very neutron-rich isotopes [32]. Furthermore, the neural network provides first descriptions258

of the structure and deformation of 24Si and 40Mg of interest to x-ray burst nucleosynthe-259

sis, and even of the extremely heavy nuclei such as 166,168Er and 236U, that build upon first260

principles considerations [32].261

3.2 Probing clustering and physics beyond the standard model262

The left-handed vector minus axial-vector (V−A) structure of the weak interaction was postu-263

lated in late 1950’s and early 1960’s guided in large part by a series of beta-decay experiments,264

and later was incorporated in the Standard Model of particle physics. However, in its most265

general form, the weak interaction can also have scalar, tensor, and pseudoscalar terms as266

well as right-handed currents. The β decay of 8Li to 8Be, which subsequently breaks up into267

two α particles, has long been recognized as an excellent testing ground to search for new268

physics (e.g. see [53]) due to the high decay energy and the ease of detecting the β and two α269

particles. These experiments have achieved remarkable precision (e.g., see [54,55]) that now270
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requires confronting the systematic uncertainties that stem from the higher-order corrections271

in nuclear beta decay that are difficult to measure experimentally.
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Figure 4: The ab initio SA-NCSM places unprecedented constraints on higher-
(recoil-) order corrections ( j2/A

2c0 and j3/A
2c0) in the β decay of 8Li→8Be by ad-

dressing the challenging α+α structure of 8Be. The results are essential for largely
improving the sensitivity of high-precision experiments that probe the weak inter-
action theory and test physics beyond the Standard Model [55, 33]. Calculations
performed on the NERSC and Frontera HPC systems. Source: Figures from [33] @
APS; reproduced with permission.

272

As a remarkable result, the ab initio SA-NCSM has recently determined the size of the273

recoil-order form factors in the β decay of 8Li (Fig. 4). It has shown that states of the α+ α274

system not included in the evaluated 8Be energy spectrum have an important effect on all275

j2,3/A
2c0, b/Ac0 and d/Ac0 recoil-order terms, and can explain the elusive MGT discrepancy in276

the A= 8 systems common to all other ab initio approaches.277

The SA-NCSM outcomes of Ref. [33] reduce – by over 50% – the uncertainty on these278

recoil-order corrections. These results help improve the sensitivity of high-precision β-decay279

experiments that probe the V−A structure of the weak interaction in the most stringent limit280

on tensor current contribution to the weak interaction theory to date, established in Ref. [55].281

Furthermore, the SA-NCSM predicted b/Ac0 and d/Ac0 values are important for other inves-282

tigations of the Standard Model symmetries, such as the conserved vector current hypothesis283

and the existence of second-class currents in the weak interaction.284

3.3 Optical potential in the symmetry-adapted framework for nuclear reactions285

In recent years there has been a significant interest in describing nuclear reactions from ab286

initio approaches, and especially in constructing from first principles effective inter-cluster287

interactions, often referred to as optical potentials. Ab initio optical potentials for elastic288

scattering at low energy are of particular interest for experiments at rare isotope beams. To289

utilize the efficacy of the symmetry-adapted basis, we combine the ab initio symmetry-adapted290

no-core shell model with the Green’s function technique (SANCSM/GF) and construct non-291

local optical potentials rooted in first principles [56,57]. Using the Green’s function technique292

ensures that all relevant cluster partitionings are included in the effective potential between293

the two reaction fragments (clusters) that are typically in their ground state in the entrance294

channel. With the view toward studying neutron and proton elastic scattering from deformed295

and heavy targets, we first examine a target of 4He (Fig. 5a), where the effect of the spurious296

center-of-mass motion is most evident.297

In a complementary symmetry-adapted resonating group method (SA-RGM) framework298

[58], one starts from an ab initio description of all particles involved and derives the effec-299

tive potential for localized clusters, which are properly normalized and orthogonalized in the300

10



SciPost Physics Submission

n+4He (E=8 MeV) 
1S1/2 

(a) 

�25

�20

�15

�10

�5

0

0 1 2 3 4 5 6 7 8

r(fm)

�80

�60

�40

�20

0

Nmax = h0i8
Nmax = 6

V
(1

)
⌫
⌫

(r
0 =

1f
m

,r
)

2P3/2

2S1/2

16O(g.s.)+n N2LOsat

X 2.5

X 4.0

n+20Ne (g.s.) 
2D5/2 n+16O(g.s.) 

2P3/2 

n+16O(g.s.) 
2S1/2 

r (fm) 

V
 (r

, r
’=

1 
fm

) (
M

eV
 fm

–3
)  

(a) (b) 

SA (10 shells) 
NCSM (8 shells) 

Figure 5: (a) Translationally invariant non-local optical potential for elastic neutron
scattering for a 4He target at E = 8 MeV center-of-mass energy, calculated in the
SA-NCSM with the Green’s function technique (10 shells, ħhΩ=17MeV). Figure from
[56]. (b) Effective neutron-nucleus non-local potential (translationally invariant) for
the 20Ne ground state, where effects of the target excitations and antisymmetrization
involving three nucleons are neglected (based on ab initio SA-NCSM calculations
of 20Ne with NNLOopt in a model space of 11 shells and ħhΩ=15 MeV inter-shell
distance). Source: Figure from [1] @ Annual Reviews; reproduced under the terms
of its CC BY license.

particle sector, which yields non-local effective nucleon-nucleus interactions for the cluster301

partitioning or channel under consideration. For a single channel, if the effects of the target302

excitations are neglected, the non-local effective nucleon-nucleus interaction can be calcu-303

lated for each partial wave, as illustrated for n+20Ne(0+g.s.) with NNLOopt in 11 shells (Fig.304

5b). While these calculations limit the antisymmetrization to two nucleons only, this is a305

first step toward constructing effective nucleon-nucleus potentials for light and medium-mass306

nuclei for the astrophysically relevant energies [59,60].307

4 Conclusion308

We have discussed the critical role of the emergent Sp(3,R) symmetry in atomic nuclei and309

the associated subgroup SU(3), which in turn underpin the Sp(3,R) and SU(3) schemes.310

By exploiting these schemes, the ab initio SA-NCSM has enabled machine-learning pattern311

recognition and descriptions of heavy nuclei, ab initio modeling of α clustering and collectivity,312

along with tests of beyond-the-standard-model physics. In addition, we show that with the313

help of the SA-NCSM, which expands ab initio applications up to medium-mass nuclei by using314

the dominant symmetry of nuclear dynamics, one can provide solutions to reaction processes315

in this region, with a focus on elastic neutron scattering.316

11



SciPost Physics Submission

Acknowledgements317

We are grateful to J. E. Escher, A. Ekström, D. Rowe, G. Rosensteel, and J. Wood for useful318

discussions, as well as to N.D. Scielzo, M.T. Burkey, A.T. Gallant, G. Savard, and collaborators319

for motivating and providing important insights on the 8Li decay study.320

Funding information This work was supported in part by the U.S. National Science Foun-321

dation (PHY-1913728, PHY-2209060), the U.S. Department of Energy (DE-SC0019521,DE-322

SC0023532) and the Czech Science Foundation (22-14497S). This work was performed under323

the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory un-324

der Contract DE-AC52-07NA27344 and the National Nuclear Security Administration through325

the Center for Excellence in Nuclear Training and University Based Research (CENTAUR) un-326

der Grant No. DE-NA0003841. This work benefited from high performance computational327

resources provided by LSU (www.hpc.lsu.edu), the National Energy Research Scientific Com-328

puting Center (NERSC), a U.S. Department of Energy Office of Science User Facility operated329

under Contract No. DE-AC02-05CH11231, as well as the Frontera computing project at the330

Texas Advanced Computing Center, made possible by National Science Foundation award331

OAC-1818253.332

References333

[1] K. D. Launey, A. Mercenne and T. Dytrych, Nuclear dynamics and reactions in the334

ab initio symmetry-adapted framework, Annu. Rev. Nucl. Part. Sci. 71, 253 (2021),335

doi:10.1146/annurev-nucl-102419-033316.336

[2] T. Dytrych, K. D. Launey, J. P. Draayer, D. J. Rowe, J. L. Wood, G. Rosensteel, C. Bahri,337

D. Langr and R. B. Baker, Physics of nuclei: Key role of an emergent symmetry, Phys. Rev.338

Lett. 124, 042501 (2020), doi:10.1103/PhysRevLett.124.042501.339

[3] G. Rosensteel and D. J. Rowe, Nuclear Sp(3,R) Model, Phys. Rev. Lett. 38, 10 (1977).340

[4] J. Draayer, K. Weeks and G. Rosensteel, Symplectic Shell-model Calculations for 20Ne with341

Horizontal Configuration Mixing, Nucl. Phys. A413, 215 (1984).342

[5] D. J. Rowe, Microscopic theory of the nuclear collective model, Reports on Progr. in Phys.343

48, 1419 (1985).344

[6] J. P. Draayer and Y. Akiyama, Wigner and Racah Coefficients for SU(3), J. Math. Phys.345

14, 1904 (1973).346

[7] A. Blokhin, C. Bahri and J. Draayer, Origin of pseudospin symmetry, Phys. Rev. Lett. 74,347

4149 (1995).348

[8] K. D. Launey, T. Dytrych and J. P. Draayer, Symmetry-guided large-scale shell-model theory,349

Prog. Part. Nucl. Phys. 89, 101 (review) (2016), doi:10.1016/j.ppnp.2016.02.001.350

[9] G. Rosensteel and D. J. Rowe, On the algebraic formulation of collective models iii. the351

symplectic shell model of collective motion, Ann. Phys. N.Y. 126, 343 (1980).352

[10] D. J. Rowe, Dynamical symmetries of nuclear collective models, Prog. Part. Nucl. Phys.353

37, 265 (1996).354

12

https://doi.org/10.1146/annurev-nucl-102419-033316
https://doi.org/10.1103/PhysRevLett.124.042501
https://doi.org/10.1016/j.ppnp.2016.02.001


SciPost Physics Submission

[11] K. Heyde and J. L. Wood, Shape coexistence in atomic nuclei, Rev. Mod. Phys. 83, 1467355

(2011).356

[12] J. L. Wood, Nuclear Collectivity – its emergent nature viewed from phenomenology and357

spectroscopy, In Emergent phenomena in atomic nuclei from large-scale modeling: a358

symmetry-guided perspective, p. 3. World Scientific Publishing Co., ISBN 978-981-3146-359

04-4, 978-981-3146-06-8, doi:10.1142/9789813146051_0001 (2017).360

[13] D. J. Rowe and J. L. Wood, A relationship between isobaric analog states and shape361

coexistence in nuclei, J. Phys. G: Nucl. Part. Phys. 45(6), 06LT01 (2018).362

[14] J. P. Elliott, Collective Motion in the Nuclear Shell Model. I. Classification Schemes for363

States of Mixed Configurations, Proc. Roy. Soc. A 245, 128 (1958).364

[15] J. P. Elliott, Collective Motion in the Nuclear Shell Model. II. The Introduction of Intrinsic365

Wave-Functions, Proc. Roy. Soc. A 245, 562 (1958).366

[16] J. P. Elliott and M. Harvey, Collective Motion in the Nuclear Shell Model. III. The Calculation367

of Spectra, Proc. Roy. Soc. A 272, 557 (1963).368

[17] K. T. Hecht and A. Adler, Generalized seniority for favored J 6= 0 pairs in mixed configura-369

tions, Nucl. Phys. A A137, 129 (1969).370

[18] K. T. Hecht and W. Zahn, An SU(3) approach to nuclear multi-cluster problems, Nucl.371

Phys. A 318, 1 (1979).372

[19] C. Bahri and D. J. Rowe, Su(3)quasi-dynamical symmetry as an organizational mecha-373

nism for generating nuclear rotational motions, Nucl. Phys. A 662, 125 (2000).374

[20] T. Dytrych, K. D. Sviratcheva, C. Bahri, J. P. Draayer and J. P. Vary, Evidence for Symplectic375

Symmetry in ab initio No-core-shell-model Results for Light Nuclei, Phys. Rev. Lett. 98,376

162503 (2007).377

[21] T. Dytrych, K. D. Launey, J. P. Draayer, P. Maris, J. P. Vary, E. Saule, U. Catalyurek,378

M. Sosonkina, D. Langr and M. A. Caprio, Collective Modes in Light Nuclei from First379

Principles, Phys. Rev. Lett. 111, 252501 (2013), doi:10.1103/PhysRevLett.111.252501.380

[22] P. F. Bedaque and U. van Kolck, Effective field theory for few-nucleon systems, Annu. Rev.381

Nucl. Part. Sci. 52(1), 339 (2002), doi:10.1146/annurev.nucl.52.050102.090637.382

[23] E. Epelbaum, A. Nogga, W. Glöckle, H. Kamada, U.-G. Meißner and H. Witala, Three-383

nucleon forces from chiral effective field theory, Phys. Rev. C 66, 064001 (2002).384

[24] D. R. Entem and R. Machleidt, Accurate charge-dependent nucleon-nucleon potential at385

fourth order of chiral perturbation theory, Phys. Rev. C 68, 041001(R) (2003).386

[25] T. Dytrych, P. Maris, K. D. Launey, J. P. Draayer, J. P. Vary, M. Caprio, D. Langr,387

U. Catalyurek and M. Sosonkina, Efficacy of the SU(3) scheme for ab initio large-scale388

calculations beyond the lightest nuclei, Comput. Phys. Commun. 207, 202 (2016),389

doi:10.1016/j.cpc.2016.06.006.390

[26] T. Dytrych, A. C. Hayes, K. D. Launey, J. P. Draayer, P. Maris, J. P. Vary, D. Langr and391

T. Oberhuber, Electron-scattering form factors for 6Li in the ab initio symmetry-guided392

framework, Phys. Rev. C 91, 024326 (2015), doi:10.1103/PhysRevC.91.024326.393

13

https://doi.org/10.1142/9789813146051_0001
https://doi.org/10.1103/PhysRevLett.111.252501
https://doi.org/10.1146/annurev.nucl.52.050102.090637
https://doi.org/10.1016/j.cpc.2016.06.006
https://doi.org/10.1103/PhysRevC.91.024326


SciPost Physics Submission

[27] R. B. Baker, K. D. Launey, S. Bacca, N. N. Dinur and T. Dytrych, Benchmark calculations394

of electromagnetic sum rules with a symmetry-adapted basis and hyperspherical harmonics,395

Phys. Rev. C 102, 014320 (2020), doi:10.1103/PhysRevC.102.014320.396

[28] P. Ruotsalainen, J. Henderson, G. Hackman, G. H. Sargsyan, K. D. Launey, A. Saxena,397

P. C. Srivastava, S. R. Stroberg, T. Grahn, J. Pakarinen, G. C. Ball, R. Julin et al., Isospin398

symmetry in b(e2) values: Coulomb excitation study of 21Mg, Phys. Rev. C 99, 051301399

(2019), doi:10.1103/PhysRevC.99.051301.400

[29] J. Henderson et al., Testing microscopically derived descriptions of nuclear401

collectivity: Coulomb excitation of 22Mg, Phys. Lett. B782, 468 (2018),402

doi:10.1016/j.physletb.2018.05.064, 1709.03948.403

[30] J. Williams, G. C. Ball, A. Chester, T. Domingo, A. B. Garnsworthy, G. Hackman, J. Hen-404

derson, R. Henderson, R. Krücken, A. Kumar, K. D. Launey, J. Measures et al., Struc-405

ture of 28Mg and influence of the neutron p f shell, Phys. Rev. C 100, 014322 (2019),406

doi:10.1103/PhysRevC.100.014322.407

[31] K. D. Launey, A. Mercenne, G. H. Sargsyan, H. Shows, R. B. Baker, M. E. Miora,408

T. Dytrych and J. P. Draayer, Emergent clustering phenomena in the framework of the409

ab initio symmetry-adapted no-core shell model, In Proceedings of the 4th International410

Workshop on ’State of the Art in Nuclear Cluster Physics’ (SOTANCP4), May 2018, Galve-411

ston, Texas, vol. 2038. AIP Conference Proceedings (2018).412

[32] O. M. Molchanov, K. D. Launey, A. Mercenne, G. H. Sargsyan, T. Dytrych and J. P.413

Draayer, Machine learning approach to pattern recognition in nuclear dynamics from414

the ab initio symmetry-adapted no-core shell model, Phys. Rev. C 105, 034306 (2022),415

doi:10.1103/PhysRevC.105.034306.416

[33] G. H. Sargsyan, K. D. Launey, M. T. Burkey, A. T. Gallant, N. D. Scielzo, G. Savard,417

A. Mercenne, T. Dytrych, D. Langr, L. Varriano, B. Longfellow, T. Y. Hirsh et al., Impact of418

clustering on the 8Li β decay and recoil form factors, Phys. Rev. Lett. 128, 202503 (2022),419

doi:10.1103/PhysRevLett.128.202503.420

[34] M. Moshinsky, Wigner Coefficients for the SU3 Group and Some Applications, Rev. Mod.421

Phys. 34, 813 (1962).422

[35] M. Moshinsky, J. Patera, R. T. Sharp and P. Winternitz, Everything you always wanted to423

know about SU(3) ⊃ O(3), Ann. Phys. (N.Y.) 95, 139 (1975).424

[36] V. K. B. Kota, SU(3) Symmetry in Atomic Nuclei, Springer Singapore, ISBN 978-981-15-425

3602-1, doi:10.1007/978-981-15-3603-8 (2020).426

[37] G. Rosensteel and D. J. Rowe, On the shape of deformed nuclei, Ann. Phys. N.Y. 104, 134427

(1977).428

[38] Y. Leschber and J. P. Draayer, Algebraic realization of rotational dynamics, Phys. Letts. B429

190, 1 (1987).430

[39] O. Castaños, J. P. Draayer and Y. Leschber, Shape variables and the shell model, Z. Phys.431

A 329, 33 (1988).432

[40] D. J. Rowe and J. L. Wood, Fundamentals of nuclear models: foundational models, World433

Scientific, Singapore (2010).434

14

https://doi.org/10.1103/PhysRevC.102.014320
https://doi.org/10.1103/PhysRevC.99.051301
https://doi.org/10.1016/j.physletb.2018.05.064
1709.03948
https://doi.org/10.1103/PhysRevC.100.014322
https://doi.org/10.1103/PhysRevC.105.034306
https://doi.org/10.1103/PhysRevLett.128.202503
https://doi.org/10.1007/978-981-15-3603-8


SciPost Physics Submission

[41] J. P. Draayer, Y. Leschber, S. C. Park and R. Lopez, Representations of U(3) in U(N),435

Comput. Phys. Commun. 56, 279 (1989).436

[42] D. Rowe, The fundamental role of symmetry in nuclear models, AIP Conf. Proc. 1541,437

104 (2013).438

[43] T. Dytrych, K. D. Sviratcheva, J. P. Draayer, C. Bahri and J. P. Vary, Ab initio symplectic439

no-core shell model, J. Phys. G: Nucl. Part. Phys. 35, 123101 (2008).440

[44] J. Escher and J. P. Draayer, Fermion realization of the nuclear sp(6,r) model, J. Math.441

Phys. 39, 5123 (1998).442

[45] D. J. Rowe, G. Thiamova and J. L. Wood, Implications of Deformation and Shape Coexis-443

tence for the Nuclear Shell Model, Phys. Rev. Lett. 97, 202501 (2006).444

[46] A. C. Dreyfuss, K. D. Launey, T. Dytrych, J. P. Draayer and C. Bahri, Hoyle state and445

rotational features in Carbon-12 within a no-core shell model framework, Phys. Lett. B446

727, 511 (2013).447

[47] G. K. Tobin, M. C. Ferriss, K. D. Launey, T. Dytrych, J. P. Draayer and C. Bahri, Symplec-448

tic No-core Shell-model Approach to Intermediate-mass Nuclei, Phys. Rev. C 89, 034312449

(2014).450

[48] O. Castaños, P. Hess, J. Draayer and P. Rochford, Pseudo-symplectic model for strongly451

deformed heavy nuclei, Nucl. Phys. A 524, 469 (1991).452

[49] M. Jarrio, J. L. Wood and D. J. Rowe, The SU(3) structure of rotational states in heavy453

deformed nuclei, Nucl. Phys. A 528, 409 (1991).454

[50] M. Freer, H. Horiuchi, Y. Kanada-En’yo, D. Lee and U.-G. Meißner, Mi-455

croscopic clustering in light nuclei, Rev. Mod. Phys. 90, 035004 (2018),456

doi:10.1103/RevModPhys.90.035004.457

[51] A. Ekström, G. Baardsen, C. Forssén, G. Hagen, M. Hjorth-Jensen, G. R. Jansen, R. Mach-458

leidt, W. Nazarewicz et al., An optimized chiral nucleon-nucleon interaction at next-to-459

next-to-leading order, Phys. Rev. Lett. 110, 192502 (2013).460

[52] K. S. Becker, K. D. Launey, A. Ekstrom and T. Dytrych, Ab initio symmetry-adapted emu-461

lator for studying emergent collectivity and clustering in nuclei, Front. Phys. 11, 1064601462

(2023), doi:10.3389/fphy.2023.1064601.463

[53] B. R. Holstein, Recoil effects in allowed beta decay: The elementary particle approach, Rev.464

Mod. Phys. 46, 789 (1974), doi:10.1103/RevModPhys.46.789.465

[54] M. Sternberg, R. Segel, N. Scielzo, G. Savard, J. Clark, P. Bertone, F. Buchinger,466

M. Burkey, S. Caldwell, A. Chaudhuri et al., Limit on tensor currents from li 8 β de-467

cay, Phys. Rev. Lett. 115(18), 182501 (2015).468

[55] M. T. Burkey, G. Savard, A. T. Gallant, N. D. Scielzo, J. A. Clark, T. Y. Hirsh, L. Varriano,469

G. H. Sargsyan, K. D. Launey, M. Brodeur, D. P. Burdette, E. Heckmaier et al., Improved470

limit on tensor currents in the weak interaction from 8Li β decay, Phys. Rev. Lett. 128,471

202502 (2022), doi:10.1103/PhysRevLett.128.202502.472

[56] M. B. Burrows, K. D. Launey et al., Ab initio low-energy optical potentials from the473

symmetry-adapted no-core shell model, (in preparation) (2022).474

15

https://doi.org/10.1103/RevModPhys.90.035004
https://doi.org/10.3389/fphy.2023.1064601
https://doi.org/10.1103/RevModPhys.46.789
https://doi.org/10.1103/PhysRevLett.128.202502


SciPost Physics Submission

[57] M. B. Burrows, K. D. Launey et al., Ab initio optical potentials for elastic scattering at low475

energies using the symmetry-adapted no-core shell model, 2021 Fall Meeting of the Divi-476

sion of Nuclear Physics, APS (meetings.aps.org/Meeting/DNP21/Session/KM.3)477

(2021).478

[58] A. Mercenne, K. Launey, T. Dytrych, J. Escher, S. Quaglioni, G. Sargsyan, D. Langr and479

J. Draayer, Efficacy of the symmetry-adapted basis for ab initio nucleon-nucleus interactions480

for light- and intermediate-mass nuclei, Computer Physics Communications 280, 108476481

(2022), doi:https://doi.org/10.1016/j.cpc.2022.108476.482

[59] A. Mercenne, K. D. Launey, J. E. Escher, T. Dytrych and J. P. Draayer, New Ab Initio483

Approach to Nuclear Reactions Based on the Symmetry-Adapted No-Core Shell Model, In484

N. Orr, M. Ploszajczak, F. Marques and J. Carbonell, eds., Recent Progress in Few-Body485

Physics, vol. 238, p. 253. Springer Proc. Phys., doi:https://doi.org/10.1007/978-3-030-486

32357-8_44 (2020).487

[60] A. Mercenne, K. D. Launey, J. E. Escher, T. Dytrych and J. P. Draayer, New ab initio ap-488

proach to nuclear reactions based on the symmetry-adapted no-core shell model, In J. Es-489

cher, ed., Proceedings of the 6th International Workshop on Compound-Nuclear Reactions490

and Related Topics (CNR*18), p. 73. Berlin: Springer (2021).491

16

https://doi.org/https://doi.org/10.1016/j.cpc.2022.108476
https://doi.org/https://doi.org/10.1007/978-3-030-32357-8_44
https://doi.org/https://doi.org/10.1007/978-3-030-32357-8_44
https://doi.org/https://doi.org/10.1007/978-3-030-32357-8_44

	Introduction
	Emergent symmetries in nuclei: Sp( 3,R ) and SU(3)
	SU(3) scheme
	Sp( 3,R ) scheme
	Ab initio symmetry-adapted no-core shell model

	Critical Role of Symmetries for Studies and Predictions of Nuclear Properties
	Machine learning pattern recognition with the SA-NCSM
	Probing clustering and physics beyond the standard model
	Optical potential in the symmetry-adapted framework for nuclear reactions

	Conclusion
	References

