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Abstract

The clock hypothesis plays an important role in the theory of relativity. To test this hy-
pothesis, a model of an ideal clock is needed. Such a model should have the phase of
its intrinsic periodic motion increasing linearly with the affine parameter of the clock’s
center of mass worldline. A class of relativistic rotators introduced by Staruszkiewicz
in the context of an ideal clock is studied. A singularity in the inverse Legendre trans-
form leading from the Hamiltonian to the Lagrangian leads to new possible Lagrangians
characterised by fixed values of mass and spin.
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1 Introduction

One of the most important concepts in the relativity theory is the proper time. Up to a unit
of time, the proper time of a point-like object is identified with the length of its time-like
worldline. The clock hypothesis states that an ideal clock always measures its proper time
irrespective of the state of motion of that clock. This hypothesis has been verified to a high
degree of precision, however it is not known whether it holds true. Violation of the hypothesis
could occur for extreme accelerations of 1029 m

s2 corresponding to the electron’s Zitterbewegung
frequency. However, such high values of accelerations are not yet experimentally attainable.
Nevertheless, an attempt can be made to theoretically test the clock hypothesis within the
same framework one uses to describe real mechanical systems.

To test the clock hypothesis which refers to classical concepts, a classical model of the ideal
clock must be devised.1 Such a model has been proposed by Staruszkiewicz [2]. The model
is based on the concept of a relativistic rotator – a dynamical system described by position,
a single null direction and two dimensional parameters: mass m and length l. It seems the
model provides the simplest mechanical system with intrdescribe whose clocking frequency
could be fixed by the parameters of spin and mass. In this context, to realise on the classical
level Wigner’s irreducibility idea of quantum systems [3], Staruszkiewicz defined a classical
fundamental dynamical system as one for which the Casimir invariants of the Poincaré group
are given parameters, respectively m2 and −1

4 m4l2, rather than integrals of motion. Among
the entirety of Lagrangians possible for the family of relativistic rotators considered in [2],
there are only two which are fundamental in the above sense. However, later it was shown on
the Lagrangian level [4] that the fundamental rotator in this class is defective as a dynamical
system with 5 degrees of freedom, which explained why the rotation frequency remained
indefinite, contrary to the original motivation.

A fundamental relativistic rotator (with definite frequency), as a purely mathematical con-
struct unrelated to any material mechanism, would be a simple non-quantum device perfectly
tailored to be used as an ideal clock. The mechanism of such a clock can be visualised in the
following way. In the momentum rest frame with suitably chosen coordinate axes, the image of
the spatial direction of the Pauli-Lubański four-vector Wµ could be identified with the equator
on the Riemann sphere of null directions and used as the clock’s face. On the other hand, the
image of the null direction kµ on the same sphere would be a point moving about the equator,
counting the number of times the phase has been increased by 2π, and so it could be used as
the clock’s hand.2

To find a way to stabilise the clocking frequency a new idea was considered [5] based on a
singularity of an inverse Legendre transformation (to be discussed later in this text) which dis-
tinguishes the motion with the speed of light. In this context a few words of clarification seem
necessary here. The space-time geometry of Einstein’s theory of relativity is characterised by
the structure of invariant null cones. As an absolute element of this theory this structure dis-
tinguishes a unique universal velocity for the propagation of signals. In particular, the velocity
of light in Maxwell’s theory must coincide in the instantaneous spaces of arbitrary observers
with this universal value and so be the same regardless of the motion of the light source or the
observer. Furthermore, it is important to stress that the reparametrization invariant condition
ẋ ẋ = 0 for a fourvelocity ẋ sets to unity the value of the velocity tanh(χe) irrespective of any
time-like vector e representing an arbitrary observer, where tanh2(χe) ≡ 1 − (ee)( ẋ ẋ)

(e ẋ)2 . There

1A spatially extended quantum field-theoretical model of a clock devised in the clock hypothesis context [1]
goes beyond this conceptual limitation. The authors concluhasthat no device built according to the rules of quantum
field theory can measure proper time along its path.

2Throughout this paper xµ denotes the position vector, kµ is the single null direction carrying the spinning
degrees of freedom. The scalar product is denoted by x y ≡ ηαβ xα yβ = xα yα (Einstein’s summation convention is
used), where (ηαβ ) = diag(1,−1,−1,−1). Greek indices run over 0,1, 2,3 and 0 stands for the time component.
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is no similar reparametrization-invariant condition that would set the value of velocity for a
subluminal motion (with ẋ ẋ ̸= 0) – the Lobachevsky space of unit fourvelocities e is homo-
geneous, therefore no particular e used to define the (finite) value of the hyperbolic angle χe
can be singled out. This distinguished qualitative feature of the condition ẋ ẋ = 0 should also
have its consequence for classical relativistic dynamical systems (then ẋ and the time-like mo-
mentum of a massive system cannot be colinear). It is also worth pointing out a fact observed
by Dirac in his book [6], which puts the distinguished role of the ẋ ẋ = 0 condition in another
context. From Dirac’s equation, it follows that a measurement of the instantaneous speed of
the electron’s motion gives a value equal to the speed of light. According to Dirac, this result is
generally true in relativistic theory. This observation tempts one to conjecture that worldlines
of classical analogues of quantum elementary particles should be null.

2 Staruszkiewicz class of relativistic rotators.

A class of relativistic rotators is defined by the following Hamiltonian action introduced by
Staruszkiewicz [2]

S = −m

∫

dλ
p

ẋ ẋ f (ξ) , ξ≡ −l2 k̇k̇

(kẋ)2
, f ′(ξ) ̸≡ 0. (1)

Here, the dot denotes differentiation with respect to λ – an arbitrary parameter along the
worldline, and f can be arbitrary non-constant and positive function of a reparametrization
invariant argument ξ depending on the spinning degrees of freedom through a null direction
k (this means that ξ must be a Poincaré scalar invariant with respect to the rescaling of the
null vector k by any function of λ).

Representations of the Poincaré group are enumerated by the eigenvalues of two Casimir
operators (for the case of massive representations). These operators are the square of the mo-
mentum four-vector C1 = pµpµ and the square of the Pauli-Lubański four-vector C2 =WµWµ,
where:

Wµ =
1
2
ϵµναβ pνMαβ , Mαβ = xαpβ − xβ pα +Σαβ .

The expression Σαβ represents the internal angular momentum (spin). To find suitable La-
grangians in the considered class of rotators one can proceed as follows. The conserved quan-
tities pα and Mαβ are determined from the action (1) (with Σαβ = kαπβ − kβπα), where the
momenta canonically conjugated to xµ and kµ read, respectively,

pµ = m

�

f (ξ)
ẋµ
p

ẋ ẋ
− 2ξ f ′(ξ)

p
ẋ ẋ

k ẋ
kµ

�

and πµ = 2m

p
ẋ ẋ

k̇k̇
ξ f ′(ξ)k̇µ.

The corresponding Casimir invariants can now be calculated

C1 = m2[ f 2(ξ)− 4ξ f (ξ) f ′(ξ)], C2 = −4m4l2ξ f 2(ξ)[ f ′(ξ)]2.

By requiring that C1 = m2 and C2 = −
1
4 m4l2, we get two first-order differential equations

that, remarkably, have a common solution of the form f (ξ) =
q

1±
p

ξ. From the result
obtained above, it follows that there are only two relativistic rotators that are fundamental.
The Hamiltonian action describing these rotators takes on the form

S = −m

∫

dλ
p

ẋ ẋ

√

√

√

√1±

√

√

√

−l2 k̇k̇

(kẋ)2
. (2)
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As will be explained below, the dynamical system defined by the action (2) is not suitable as a
clock. However, it is equivalent to a geometric model of a spinning particle introduced earlier
in a different context by Lyakhovich, Segal, and Sharapov [7] and as such can be used with
success.

3 Lagrangian singularity for fundamental rotators with sublumi-
nal intrinsic motion

In the Lagrangian form of dynamics, there are s Lagrangian equations

d
dλ
∂ L
∂ q̇i
−
∂ L
∂ qi
= 0, i = 1, 2, . . . , s

for a dynamical system with s degrees of freedom. In this form the Lagrangian L is assumed
to be a function of s generalised coordinates qi = Qi(λ) and the corresponding velocities
v i = Q̇i(λ) that altogether characterise the physical state of the system. Differentiating the
Lagrange equations with respect to the independent parameter λ, one gets a system of second-
order equations

Hi ja
j =
∂ L
∂ qi
−
∂ 2 L
∂ v i∂ q j

v j −
∂ 2 L
∂ λ∂ v i

, Hi j ≡
∂ 2 L
∂ v i∂ v j

.

Provided that det[Hi j] for this system, one can express accelerations ai = Q̈i(λ) as independent
functions of positions and velocities. When the Hessian determinant det(Hi j) is non-vanishing
the Lagrangian is called regular, otherwise it is called singular. For a singular Lagrangian, there
is an infinite number of accelerations available from which a dynamical system can choose at
any stage of its motion. The regularity (or singularity) is a qualitative feature, independent of
the particular coordinates in which the Lagrangian has been expressed.

One can verify the condition det[Hi j] for all members of the considered family of relativistic
rotators regarded as dynamical systems with 5 degrees of freedom. Following the calculation
presented in [4], one can start with Cartesian coordinates (x , y, z) and spherical angles (ϕ,θ )
describing the position and the null direction in a reference system of some inertial observer.
The arbitrary parameter λ can be set to be proportional to the time of that observer, λ= l−1 t.
Then, in terms of the vector matrices V = [ ẋ , ẏ , ż]T , N = [sinθ cosϕ, sinθ sinϕ, cosθ]T and
W =
�

θ̇ , ϕ̇ sinθ
�T

, the Lagrangian form as defined in (1) gets reduced to

L = −m
p

1− V T V f (ξ), with ξ=
W T W

(1− N T V )2
and f ′(ξ) ̸≡ 0.

The Hessian determinant can be found by taking components of vectors V and W as indepen-
dent velocity variables (linearly related to the original set of velocities) and use some identities
for determinants of block matrices. As shown in [4], the resulting determinant reads

det[Hi j]∝ f 3 (ξ)
�

f ′ (ξ)
�2
�

1+ 2ξ
�

f ′(ξ)
f (ξ)

+
f ′′(ξ)
f ′(ξ)

��

,

where the proportionality factor (not shown) is independent of f . Hence, only with f satis-
fying the differential equation

�

f (ξ) + 2ξ f ′(ξ)
�

f ′(ξ)+2ξ f (ξ) f ′′(ξ) = 0 the Lagrangian will
be singular. This equation has only one solution such that f ′(ξ) ̸≡ 0, namely

f (ξ) = a
q

1± b
p

ξ,
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with a and b being positive integration constants to be set by the Casimir parameters.
Now it becomes clear that the only Lagrangian which is singular in the investigated family

of relativistic rotators is that defined by the action (2). This singularity means that the phase of
the clocking mechanism would remain indeterminate, which is the reason why this dynamical
system cannot be interpreted as a clock.

4 Singularities in the inverse Legendre transformation. Zitterbe-
wegung with the speed of light.

According to Dirac’s method [8], the Hamiltonian for a (reparametrization invariant) relativis-
tic system is a linear combination of first class constraints (that is, whose Poisson bracket with
all other constraints is vanishing). The coefficients of this combination are arbitrary functions
of the independent parameter. There are four such constraints present in the case of funda-
mental relativistic rotators: the first two follow from the requirement imposed on both Casimir
invariants: C1 ≃ m2 and C2 ≃ −

1
4 m4l2; the other two concern the particular realisation of the

spinning degrees of freedom described by a null direction k: kk ≃ 0 and kπ ≃ 0. All of these
constraints are first class. It immediately follows that the total Hamiltonian of the fundamental
relativistic rotator must read

H =
u1

2m

�

pp−m2
�

+
u2

2m

�

pp+
4

l2m2
(kp)2ππ
�

+ u3kπ+ u4kk, (3)

with ui ’s being arbitrary functions.3 Now the Hamiltonian constraints follow from the equa-
tions ∂ui

H = 0 while the velocities are defined through the Hamiltonian equations:

ẋµ =
∂H
∂ pµ

=
u1 + u2

m
pµ + u2

4 (kp)(ππ)
l2m3

kµ,

k̇µ =
∂H
∂ πµ

= u2
4 (kp)2

l2m3
πµ + u3kµ.

(4)

The Lagrangian corresponding to the Hamiltonian (3) can be obtained by applying the inverse
Legendre transformation. The form of the resulting Lagrangian L ≡ pẋ + πk̇ −H, when ex-
pressed in terms of the velocities, is subject to the invertibility of the map (4) restricted to the
submanifold defined by the Hamiltonian constraints. On this submanifold induced is a corre-
sponding map between two sets of scalar variables {u1, u2, u3, kp, pπ} and {k̇k̇, k̇ ẋ , ẋ ẋ , kẋ , kk̇}
which is easier to investigate:

ẋ ẋ = u2
1 − u2

2, kẋ = (u1 + u2)
kp
m

, k̇k̇ = −
4(kp)2

l2m2
u2

2,

k̇ ẋ = (u1 + u2)
�4(kp)(pπ)

m3l2
u2 + u3

�kp
m

, kk̇ = 0.
(5)

The number of new constraints for velocities depends on the rank of the Jacobi matrix of the
above mapping. It can be shown that this rank depends only on the variables u1, u2, and
equals 4 for u2

1 ̸= u2
2 ̸= 0, 3 for u1 = u2 ̸= 0, and 2 for u1 = −u2 ̸= 0.

3The Hamiltonian formulation of the whole class of relativistic rotators was presented in [9]. This formulation
uses minimal phase space in terms of four-vectors. There is also a possible description of dynamical systems in
extended phase spaces that upon reduction should recover the minimal Hamiltonians. In the case of the particular
Hamiltonian (3) such an approach was presented in [10].
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In passing from the Hamiltonian to the Lagrangian, one may first assume that u1 + u2 ̸= 0
and u2 ̸= 0. Then the momenta expressed as functions of velocities and ui ’s read

pµ =
m

u1 + u2
ẋµ −

l2m(u1 + u2)2(k̇k̇− 2u3kk̇)
4(kẋ)2u2

kµ

kẋ
,

πµ =
l2m(u1 + u2)2

4(kẋ)2u2
(k̇µ − u3kµ).

From the constraint equations pp−m2 = 0 and pp+ 4
l2m2 (kp)2(ππ) = 0 two conditions for u1

and u2 follow:

ẋ ẋ
(u1 + u2)2

+
u1 + u2

2u2
ξ= 1 and

(u1 + u2)2

4u2
2

ξ= 1. (6)

The resulting u1, u2 can be expressed as independent functions of the velocities provided that
the Jacobian determinant of the transformation (6) regarded as one leading from variables
( ẋ ẋ ,ξ) to variables (u1, u2) – which, up to a constant factor, is equal to ξ ẋ ẋ

u3
2(u1+u2)

– is non-zero.

In this case the resulting Lagrangian overlaps with that in the action integral (2). However,
assuming that the condition ẋ ẋ ̸= 0 is not satisfied, two other Lagrangians are possible.

In the first case u1 = u2, and the corresponding new velocity constraints follow:

ẋ ẋ
k ẋ
= 0, l2 k̇k̇

k ẋ
+ kẋ = 0.

Then, from (5), u1 = χ, u2 = χ, u3 = ν, kp = m
2χ kẋ and pπ = l2m2

2kẋ

�

k̇ ẋ
k ẋ − ν
�

with χ and ν

being arbitrary functions. After discarding a total derivative involving kk̇ and the higher order
terms in the velocity constraints, the resulting Lagrangian can be cast in the following form
linear in these constraints

L =
mκ
2

ẋ ẋ
k ẋ
+

m
4κ

�

l2 k̇k̇
k ẋ
+ kẋ
�

+Λkk. (7)

Here, κ(χ)≡ kp
m is a new variable independent of velocities while Λ is a Lagrange multiplier.

In the second case, for u1 = −u2, a restricted Legendre transformation should be con-
sidered with pµ left (for a while) unaltered. Using equations (4) and (5), one can find that

π = ∓ lm2

2
k̇−u3k

kp
p
−k̇k̇

and u2 = ∓
lm
2kp

p

−k̇k̇. Now, integrating off the term linear in kk̇ another

Lagrangian is obtained in the form

L = pẋ ±
lm2

2

p

−k̇k̇
kp

+λkk. (8)

Inferred from equations (4) and (5) the result ẋµ = ± lm2

2

p
−k̇k̇
(kp)2 kµ can be re-obtained by per-

forming arbitrary variations of the Lagrangian with respect to pµ, hence e ẋ = ± lm2

2

p
−k̇k̇

2(kp)2 ek for
any vector eµ, and this fact can be used to eliminate pµ from (8). Accordingly, the alternative
form of the above Lagrangian can be taken to be

L = m

�

−4l2k̇k̇
(ek)2(e ẋ)2

�1/4

e ẋ +λ kk,

which involves arbitrary (timelike) eµ satisfying the condition ek ̸= 0 and playing the role of
the initial momentum p.
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5 Conclusion

In this paper, the present status of Staruszkiewicz’s relativistic rotators in free motion was
discussed. The original motivation behind introducing the rotators was the idea of devising
a model of an ideal clock that could be used to test the clock hypothesis [2]. However, the
constraints imposed on the Casimir invariants for the purpose of realising the quantum irre-
ducibility idea on the classical level, lead to singular Lagrangians when subluminal intrinsic
motion is assumed from the start. Then the Hessian determinant for the particular rotator
regarded as a system with 5 degrees of freedom is vanishing, in consequence of which the
clocking rate remains an arbitrary function of the proper time of the momentum rest frame
(while rotators with the usual less stringent constraint of reparametrization invariance remain
well behaved).

However, at the level of constrained Hamiltonians one makes no a priori assumptions about
the velocities. Possible constraints on velocities appear only when passing from the Hamilto-
nian to the Lagrangian. With this method4 one recovers the original Lagrangian with sublu-
minal motion when the rank of this inverse Legendre transformation is maximal. For a lower
rank this transformation becomes singular and one obtains two new Lagrangians (7) and (8)
with intrinsic motion with the speed of light (the motion of the momentum rest frame is still
subluminal).

The dynamical systems described by the new Lagrangians exhibit behaviour that can be
looked at as a counterpart of Zitterbewegung known for two states of Dirac’s free electron
(see the interesting and original discussion by Breit [11]). The existence of the two systems
also conforms with the distinguished role of the constraint ẋ ẋ = 0 as discussed in the intro-
duction. It remains to investigate how these systems would behave when coupled with the
electromagnetic or gravitational field.
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