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Abstract

The construction of negative grade KdV hierarchy is proposed in terms of a Miura-gauge
transformation. Such gauge transformation is employed within the zero curvature rep-
resentation and maps the Lax operator of the mKdV into its couterpart in the KdV setting.
Each odd negative KdV flow is obtained from an odd and its subsequent even negative
mKdV flows. The negative KdV flows are shown to inherit the two different vacua struc-
ture that characterizes the associated mKdV flows.
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1 Introduction

Integrable models have been focus of considerable attention in the past few years. These are
very peculiar two dimensional field theories admitting an infinite number of conservation laws
and soliton solutions. The algebraic construction of integrable models has provided a series of
important achievements which allows its construction and classification in terms of the decom-
position of the affine algebra into graded subspaces. Structural connection and the derivation
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of many properties as the construction of conservation laws and soliton solutions can be set
from the zero curvature representation [1], [2]. In particular the mKdV hierarchy, based on
the affine sl(2) algebra, provides the simplest example of systematic construction of a series
of evolution equations associated to a universal object called Lax operator. For the mKdV case
the relevant decomposition occurs according to the principal gradation. Explicit constructions
for positive and negative graded sub-hierarchies have been obtained. The positive flows are
known to be labelled by odd numbers whilst there are no restriction for the negative [3].

An interesting relation between the KdV and mKdV hierarchies can be realised by the Miura
transformation which maps one hierarchy into the other. In ref. [4], [5] we have related the
two hierarchies by a gauge transformation that maps one Lax operator into the other. Such
Miura-gauge transformation acting upon the zero curvature maps the flows from one hierarchy
into the other. For the positive sub-hierarchy the mapping is one to one, i.e., each flow equation
of mKdV is mapped into its counterpart within the KdV hierarchy. However this is not true
for the negative KdV sub-hierarchy. In sec. 3 we argue that only odd flows are consistent
and hence since there are even and odd flows within the negative mKdV side, there shall be
a mapping of a pair of mKdV flows into a single KdV flow. This is indeed true, in sect. 4 we
construct these mappings and show that an odd and its subsequent even mKdV flows can be
mapped into a single KdV flow. An interesting point to mention is that odd mKdV flows admit
only zero vacuum whilst the even admit strictly non-zero vacuum solutions and the associated
KdV flow ends up inheriting both types of structure.

2 mKdV negative hierarchy

In this section let us review the construction of mKdV hierarchy within the algebraic formalism.
Consider the affine G = ŝl(2) centerless Kac-Moody algebra generated by

h(m) = λmh(0), E(m)±α = λ
mE(0)±α with λ ∈ C and n ∈ Z (1)

satisfying the following algebra
�

h(m), E(n)±α
�

= ±2E(m+n)
±α ,
�

E(m)α , E(n)−α
�

= h(m+n). (2)

Introduce the principal grading operator

Qp = 2λ
d

dλ
+

1
2

h (3)

that decomposes the affine algebra into graded subspaces, i.e., G =
⊕

i Gi with
�

Qp,Ga

�

= aGa, [Ga,Gb] ∈ Ga+b, a, b ∈ Z , (4)

where, for G = ŝl(2),

G2n =
�

h(n) = λnh
	

, G2n+1 = {λn (Eα +λE−α) ,λ
n (Eα −λE−α)} . (5)

A second important ingredient is the choice of a constant grade one element E(1) ∈ G1

E(1) = E(0)α + E(1)−α (6)

such that it decomposes the affine algebra as Ĝ =K⊕M, where K is the Kernel of E(1):

KE = {y ∈K, [y, E(1)] = 0} = {E(n)α + E(n+1)
−α } ∈ G2n+1 (7)
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and M is its complement subspace. We now define the spatial Lax operator to be an universal
algebraic object within the whole hierarchy to be

AmKdV
x (φ) = E(1) + A(0)(φ) = E(0)α + E(1)−α + ∂xφ h(0) =

�

∂xφ 1
λ −∂xφ

�

(8)

where v(x , t−N ) = ∂xφ is the field of the theory. We are interested in the negative time flows
generated by the temporal Lax operator component of the form [3]

AmKdV
t−N

= D(−N) + D(−N+1) + · · ·+ D(−1), N = 1,2, · · · (9)

where D(i) ∈ Gi . Thus, for a given integer N , the zero curvature equation
�

∂x + E(1) + A(0), ∂t−N
+ D(−N) + D(−N+1) + · · ·+ D(−1)

�

= 0 (10)

decomposes according to the grading structure, i.e.,
�

A(0), D(−N)
�

+ ∂x D(−N) = 0, (11)
�

A(0), D(−N+1)
�

+
�

E(1), D(−N)
�

+ ∂x D(−N+1) = 0, (12)
...

...
�

E(1), D(−1)
�

− ∂tN
A(0) = 0. (13)

These eqns. can be solved grade by grade in order to determine D(i) and the evolution equation
for A(0)(φ) according to time t−N is given by (13).

The simplest case is found by taking N = 1, leading to

AmKdV
t−1

= e−2φE(−1)
α + e2φE(0)−α =

�

0 λ−1e−2φ

e2φ 0

�

(14)

associated with the well know sinh-Gordon equation,

φx ,t−1
= e2φ − e−2φ . (15)

Notice that v = ∂xφ = v0 = const. is the vacuum solution of (15) only if v0 = 0→ φ = 0. It
therefore follows that the sinh-Gordon equation only admits zero vacuum solution.

Considering now N = 2, we find

AmKdV
t−2

= h(−1) +
�

2e−2φd−1(e2φ)
�

E(−1)
α − 2e2φd−1(e−2φ)E(0)−α

=

�

λ−1 λ−1
�

2e−2φd−1(e2φ)
�

−2e2φd−1(e−2φ) −λ−1

�

(16)

where we have denoted d−1 f =
∫ x

0 f d x ′. It leads to the following nonlocal equation of motion

φx ,t−2
= −2
�

e−2φd−1(e2φ) + e2φd−1(e−2φ)
�

. (17)

Notice that v = ∂xφ = v0 = const. is the vacuum solution of (17) only if v0 ̸= 0→ φ = v0 x .
Such equation does not admit zero vacuum solution, but a constant vacuum solution v = v0
(φ = v0 x), instead. In fact, it can be showed that all models associated to negative even values
of N only admit non-zero vacuum solutions [3]. Let us consider the zero curvature equation
in the vacuum regime, i.e.,

�

E(1) + v0h(0), D(−N)
vac + D(−N+1)

vac + · · ·+ D(−1)
vac

�

= 0 (18)
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the lowest grade equation is
�

v0h(0), D(−N)
vac

�

= 0 (19)

thus if v0 ̸= 0 D(−N)
vac must commute with h(0) and therefore D(−N)

vac ∈ G−2n and N = 2n. Con-
versely if v0 = 0 the lowest grade eqn. becomes

�

E(1), D(−N)
vac

�

= 0 (20)

thus D(−N)
vac ∈KE and N is odd. Thus, the negative mKdV hierarchy splits in two sub-hierarchies:

one even admitting strictly non-zero vacuum (v0 ̸= 0) and one odd admiting, only zero vac-
uum (v0 = 0) solutions. The systematic construction of soliton solutions for the negative mKdV
hierarchies was previously studied and can be written as follows (see [3]). For the odd sub-
hierarchy the one soliton solution was constructed from dressing the zero vacuum solution
leading to

v(x , t−2n+1) = ∂x ln

�

1− βe2kx+2k−2n+1 t−2n+1

1+ βe2kx+2k−2n+1 t−2n+1

�

with ω−2n+1 = 2k−2n+1. (21)

For the even sub-hierarchy the constant value of the vacuum, v0 introduces a deformation
upon the dressing method. In [3] the solutions were constructed employing deformed vertex
operators yielding for the one soliton,

v(x , t−2n) = v0 + ∂x ln

�

1+ β(v0 − k)e2kx+ω−2n t−2n

1+ β(v0 + k)e2kx+ω−2n t−2n

�

with ω−2n =
2k

v0(k2 − v2
0 )n

(22)

where in both cases β is a free parameter.

3 KdV negative hierarchy

For KdV hierarchy we employ the same algebraic structure of section 3, i.e., principal gradua-
tion, Qp (3) and the constant grade one element E(1) (6). Propose the following Lax operator,

AKdV
x (J) = E(1) + A(−1) = E(0)α + E(1)−α + J E(0)−α =

�

0 1
λ+ J 0

�

(23)

where A(−1) = J E(0)−α ∈ G−1 and J = J(x ,τN ) is the field of KdV hierarchy. For sub-hierarchy
that leads to negative time-flow τ−N , the temporal-part Lax operator is given by

AKdV
τ−N
(J) =D(−N−2) +D(−N−1) + · · ·+D(−1) (24)

where D(i) ∈ Gi . The zero curvature decomposes according to the graded structure as
�

A(−1),D(−N−2)
�

= 0 (25)

∂xD(−N−2) +
�

A(−1),D(−N−1)
�

= 0 (26)

∂xD(−N−1) +
�

E(1),D(−N−2)
�

+
�

A(−1),D(−N)
�

= 0 (27)
...

∂xD(−1) +
�

E(1), D(−2)
�

− ∂τ−N
A(−1) = 0 (28)
�

E(1),D(−1)
�

= 0 (29)

which allows solving for all D(i) and determines the equation of motion (28) according to τ−N .
Notice that the lowest grade equation (25) implies that D(−N−2) is proportional to E(−m)

−α and
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therefore N = 2m− 1. For this reason all equations of motion for KdV hierarchy are associated
with odd temporal flows, in contrast to the mKdV case, where there are equations of motion
associated to both, even and odd flows.

The equations of motion for KdV hierarchy are more conveniently expresed in terms of
non-local field J(x ,τN ) = ∂xη(x ,τN ). The first negative flow is obtained from zero curvature
with N = 1, leads to the following temporal Lax,

AKdV
τ−1

=
ητ−1

2

�

E(−1)
α + E(0)−α
�

+
ηx ,τ−1

4
h(−1) +

2ηxητ−1
−η2x ,τ−1

4
E(−1)
−α

=

� ηx ,τ−1
4λ

ητ−1
2λ

2ηxητ−1
−η2x ,τ−1

4λ +
ητ−1

2 −
ηx ,τ−1

4λ

�

(30)

and equation of motion
4ηxηx ,τ−1

+ 2η2xητ−1
−η3x ,τ−1

= 0. (31)

This equation was first proposed in [6] using inverse of recurssion operator. Later in [7], its
hamiltonian and soliton solutions were discussed.

If we now take N = 3 in (24) and find for the associated temporal Lax,

AKdV
τ−3

=
ητ−3

2

�

E(−1)
α + E(0)−α
�

+
ηx ,τ−3

4
h(−1) −

B
8

�

E(−2)
α + E(−1)

−α

�

+
2ητ−3

ηx −η2x ,τ−3

8
E(−1)
−α −

Bx

16
h(−2) +

B2x −ηx B
8

E(−2)
−α

=

� ηx ,τ−3
4λ −

Bx
16λ2

ητ−3
2λ −

B
8λ2

1
2ητ−3

+
2ητ−3

ηx−η2x ,τ−3
−B

8λ + B2x−ηx B
8λ2 −

ηx ,τ−3
4λ + Bx

16λ2

�

(32)

where

B = d−1(4ηxηx ,τ−3
+ 2η2xητ−3

−η3x ,τ−3
). (33)

The corresponding equation of motion is given by

−
1
2
η5x ,τ−3

+ 4ηx

�

−2ηx ,τ−3
ηx +η3x ,τ−3

−η2xητ−3

�

+ 5η2xη2x ,τ−3

+4ηx ,τ−3
η3x +η4xητ−3

+η2x d−1
�

4ηxηx ,τ−3
+ 2η2xητ−3

−η3x ,τ−3

�

. (34)

Notice that vacuum solution η = η0 = constant, either zero or non-zero, satisfy both
equations of motion (31) and (34). Such behavior differs from the mKdV hierarchy where
the equations of motion associated with odd-time flows are satisfied with zero vacuum and
the even-time flows with non-zero vacuum (constant). This coalescence in vacuum solution
presented in KdV hierarchy can be explained more generally from zero curvature projected
around vacuum, i.e,
�

AKdV
x

�

�

vac , AKdV
τ−N

�

�

vac

�

=
�

E(1) +η0 E(0)−α,D(−N−2)
vac +D(−N−1)

vac + · · ·+D(−1)
vac

�

= 0 (35)

from lowest grade equation
�

η0 E(0)−α,D(−N−2)
vac

�

=
�

η0 E(0)−α, a−N−2 E(−1/2(N+1))
−α

�

= 0 (36)

this equation is automatically satisfied no matter η0 is zero or non-zero if N = 2n − 1. It
therefore follows that the negative KdV hierarchy are associated to odd flows, τ−N = τ−2n−1 and
admit both, zero and non-zero vacuum solutions.

5



SciPost Physics Submission

4 Miura Transformation and Soliton Solutions

In order to map the mKdV and KdV hierarchies let us consider the Miura-gauge transformation
generated by (see [4], [5] )

S1 = eφx E(0)−α =

�

1 0
φx 1

�

(37)

which maps the two Lax operators, AmKdV
x into AKdV

x of eqns. (8) and (23) respectively, i.e.,

AKdV
x = S1AmKdV

x S−1
1 + S1∂xS−1

1 = E(0)α + E(1)−α + J E(0)−α (38)

where
J(x , t) = ∂xη(x , t) = (φx)

2 −φ2x . (39)

We now analyse how S1 acts as local gauge transformation upon AmKdV
t . Let us consider

first its action on an even grade element D(−2n) = c−nh(−n):

D(−2n) → eφx E(0)−α
�

c−nh(−n)
�

e−φx E(0)−α + eφx E(0)−α∂t

�

e−φx E(0)−α
�

= c−nh(−n)
︸ ︷︷ ︸

G−2n

+2c−nφx E(−n)
−α

︸ ︷︷ ︸

G−2n−1

−∂tφx E(0)−α
︸ ︷︷ ︸

G−1

. (40)

On the other hand, if we consider D(−2n+1) = a−nE(−n)
α + b−nE(−n+1)

−α under the local gauge
generated by (37) we find

D(−2n+1) → eφx E(0)−α
�

anE(−n)
α + bnE(−n+1)

−α

�

e−φx E(0)−α + eφx E(0)−α∂t

�

e−φx E(0)−α
�

= − an(φx)
2E(−n)
−α

︸ ︷︷ ︸

G−2n−1

− anφxh(−n)
1
︸ ︷︷ ︸

G−2n

+ anE(−n)
α + bnE(−n+1)

−α
︸ ︷︷ ︸

G−2n+1

−∂tφx E(0)−α
︸ ︷︷ ︸

G−1

. (41)

Thus, any even negative mKdV time flow of the form AmKdV
t−2n

= D(−2n) + D(−2n+1) + · · ·+ D(0)is
mapped into its KdV counterpart with the following graded structure,

AKdV
τ−2n+1

= eφx E(0)−α
�

D(−2n) + D(−2n+1) + · · ·+ D(0)
�

e−φx E(0)−α −φx ,t−2n
E(0)−α

= D(−2n−1) +D(−2n) + · · ·+D(−1). (42)

For odd negative mKdV time flow of the form AmKdV
t−2n+1

= D(−2n+1)+ D(−2n+1)+ · · ·+ D(0) will be
mapped into

AKdV
τ−2n+1

= eφx E(0)−α
�

D(−2n+1) + D(−2n+2) + · · ·+ D(0)
�

e−φx E(0)−α −φx ,t−2n+1
E(0)−α

= D(−2n−1) +D(−2n) +D(−2n+1) + · · ·+D(−1). (43)

Thus, both AmKdV
t−2n+1

and AmKdV
t−2n

are transformed, by the Miura-gauge transformation (37), into

a single graded KdV structure AKdV
τ−2n+1

(42)-( 43) (associated to flow τ−2n+1). We therefore
conclude that both negative even and negative odd mKdV flows collapse within the same KdV odd
flow, i.e.,

tmKdV
−2n+1, tmKdV

−2n =⇒
S1

τKdV
−2n+1. (44)

Notice that this explains why each KdV negative flow admits both zero and non-zero vacuum
solutions. They inherit the zero and the non-zero vacuum information from mKdV negative
odd and its subsequent negative even flows respectively. Let us illustrate explicitly for the first
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two negative mKdV flows, namely, t−1 and t−2.
For tmKdV

−1 the field φ = φ(x , t−1) satisfy the sinh-Gordon eqn (15). We then have

AKdV
τ−1

= S1AmKdV
t−1

S−1
1 + S1∂t−1

S−1
1

= eφx E(0)−α
�

e−2φE(−1)
α + e2φE(0)−α
�

e−φx E(0)−α −φx ,t−1
E(0)−α (45)

leading to

AKdV
τ−1
= e−2φ
�

E(−1)
α + E(0)−α
�

+
ηx ,t−1

4
h(−1) − (φx)

2e−2φE(−1)
−α (46)

where we used the Sinh-Gordon equation of motion, φx ,t−1
= e2φ − e−2φ and Miura transfor-

mation, ηx = (φx)2 −φ2x to simplify some terms. Note that in terms of zero curvature, we
had already constructed AKdV

τ−1
given in (30),

AKdV
τ−1
=
ητ−1

2

�

E(−1)
α + E(0)−α
�

+
ηx ,τ−1

4
h(−1) +

2ηxητ−1
−η2x ,τ−1

4
E(−1)
−α (47)

From the condition for eqns (46) and (47) to agree we find

ητ−1
= 2 · e−2φ(x ,t−1). (48)

On the other hand, if we now use tmKdV
−2 with φ = φ(x , t−2) satisfiyng (17), we get

AKdV
τ−1

= S1AmKdV
t−2

S−1
1 + S1∂t−2

S−1
1 (49)

= eφx E(0)−α
�

h(−1) + 2e−2φd−1(e2φ)E(−1)
α − 2e2φd−1(e−2φ)E(0)−α

�

e−φx E(0)−α −φx ,t−2
E(0)−α

leading to

AKdV
τ−1
= 2e−2φd−1(e2φ)

�

E(−1)
α + E(0)−α
�

+
ηx ,t−2

4
h(−1) + 8(φx −φ2

x e−2φd−1
x e2φ)E(−1)

−α (50)

where we used the equation of motion for tmKdV
−2 (17) and Miura transformation. Thus, (50)

only agrees with (47) if we set

ητ−1
= 2 · 2e−2φ(x ,t−2)d−1(e2φ(x ,t−2)) (51)

Notice that the same AKdV
τ−1

is written in two different ways, one in terms of the sinh-Gordon
field φ(x , t−1) given by (46)-(48) and another, in terms of solution of eqn. (17) namely
φ(x , t−2) in (50)-(51) . This can be checked explicitly with solutions given in (21) and (22)
for n= 1.

5 Conclusion

We have therefore concluded from the above simple example that solutions of the KdV equa-
tion associated to the time flow τ−1 inherits different vacuum structure from a pair of mKdV
solutions (via Miura transformation) . The first associated to mKdV flow t−1, eqn. (15) (with
zero vacuum) satisfying (48) and the second associated to mKdV flow t−2, eqn. (17) (with
non-zero vacuum) satisfying (51). The argument can be easily generalized for higher flows,
each KdV flow admits both, zero and non-zero vaccum solutions. They are constructed from
pair of subsequent of mKdV flows each of them admiting different vacuum structures. We
expect to report in a future publication the generalization of our construction to the Ar - KdV
hierarchy employing the gauge-Miura transformation proposed in [5]. We also expect to dis-
cuss the systematic construction of soliton (multisoliton ) solutions and its vacuum structure
in terms of vertex operators and its deformations in the lines of refs. [3], [4].
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