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Abstract

Having been led by hadron interactions and low-energy photoproduction to SU(4) and
non-compact SU∗(4) symmetry, the general background turned out to be projective ge-
ometry (PG) of P3, or when considering line and Complex geometry to include gauge
theory, aspects of P5. Point calculus and its dual completion by planes introduced qua-
ternary (quadratic) ’invariants’ xµxµ = 0 and pµpµ = 0, and put focus on the intermediary
form (xu) and its treatment. Here, the major result is the identification of the symmetric
20 of SU(4) comprising nucleon and Delta states as related to the quaternary cubic forms
discussed by Hilbert in his work on full invariant systems. So PG determines geometrically
the scene by representations (reps) and invariant theory without having to force affine
restrictions and additional (spinorial or gauge) rep theory.

1 Introduction

When analyzing low-energy hadronic experiments and their degrees of freedom in the con-
text of effective chiral theories, it turned out that with respect to the pion-nucleon-delta
system SU(4) linear states were able to describe the fermionic N - and ∆-states and their
properties linearly. Explicitly, by starting over from current algebra and spectral descrip-
tions (i.e. Goldberger-Treiman, PCAC,. . . [2]), Sudarshan [23] proposed to saturate the Adler-
Weisberger sum rule [1], [25] of the (axial) charge commutators by quasi-particle calculations
based on usual spin-isospin states. Thus, by requiring that the quasi-particle ansatz

N ′dyn = λNstat +
p

1−λ2

∫

π(x)N(x)d4 x (1)

describes the axial coupling g2
A, we’ve showed that the ’dynamic’ states N ′dyn fit perfectly to the

members of the (linear) threefold symmetric rep 20 of SU(4) [5], [6], [7], built symmetrically
out of three fundamental reps 4. The light non-strange mesons π, ω, and ρ fit into the linear
SU(4) rep 15, and due to SU(4) ∼= A3 it is evident from the Dynkin diagram that we can
’embed’ (or identify) two commuting (chiral) SU(2) groups, A1 ⊗ A1. But because SU(4) still
yields well-defined 3-projections of spin and isospin, we cannot only treat the various actions of
SU(2)×SU(2) or the ’spontaneously broken symmetry’ SU(2)×SU(2)/SU(2) of the (nonlinear)
chiral approaches – this rep theory can also handle partially conserved axial currents (’PCAC’)
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in terms of the SU(2) pion field(s). Moreover, in contrary to somewhat tedious and ’higher
order’ calculations in effective chiral approaches, the threshold production amplitude of π0 on
the nucleon (the interactions of 20 with 15 when reduced to the observed ’spin-isospin states’)
yields strong suppression in first order by superselection rules. Last not least, pion scattering on
the nucleon when treated by SU(4) reps yields small charge dependence (’isospin breaking’).
With respect to usual quark descriptions, it is noteworthy that 20 in the spinorial rep yields
three symmetric constituents while 15 comprises the fundamental rep 4 and its conjugate 4∗.

So the manifest question ’Why this?’ lead us to a series of papers (see refs in [12])
to discuss SU(4) and the non-compact group SU∗(4), their common maximal compact sub-
group USp(4) and certain aspects of the associated Riemannian spaces AII∼SU∗(4)/USp(4)
and CI∼USp(4)/SU(2)×U(1). Here, however, it is time to step back from the transformation
groups and related mathematical constructions, and to recall some old relations of Lie theory
with physical and geometrical aspects.

An essential ’in-between’ has been achieved by considering line geometry which allowed
to associate reps of gauge bosons and reps of line Complexe [10], and to identify Lorentz
transformations in Special Relativity as a special transformations of the Plücker-Klein quadric
M4

2 onto itself [12]. This emphasized the importance of treating line Complexe in P5 and their
’reduction’ via the Plücker-Klein quadric to line sets in P3 so that in terms of (line) geometry
of P3 the symplectic transformations reflect mappings of Complexe onto each other, and the
Lorentz (point) transformations of Special Relativity ensure ’invariance of line geometry’ by
restricting the Complexe to transformations of the Plücker-Klein quadric ( [12], IV.C).

This concept on the one hand paved the path to identify the photon rep with a special
line Complex, and it pointed to a possible geometrical/physical background of the 5-dim coset
space SU∗(4)/USp(4), a rank-1 irreducible globally symmetric Riemannian space AII [8], and
the occurrence of symplectic symmetries. On the other hand, it pointed to the necessary treat-
ment of line Complexe, line sets, Congruences or ray systems, and associated reps from scratch.
The 10-dim rank-2 CI-space can be represented once more by SU(2)×U(1) symmetric cosets
which yield a simple background when restricting PG to affine geometry.

Needless to say, that besides the abstraction of ’a point x ’ and the associated evangelism
of (Lagrangean) point motion, we have to consider its dual – the plane u – in P3 as well, or
– as a substitute of both – quadratic line geometry (lines being dual to lines in P3) and using
Hamilton’s approach. So in all cases, reps of ’non-local’ or ’extended’ objects like lines or planes
enter rep theory, although in PG of P3 we can still found on their linearity. More generally,
all such identifications require a priori a stricter treatment of the reps by (Lie) transformation
theory and of their geometry, and a common treatment of lines versus points and planes (which
compels a thorough discussion of conjugation, or duality, too!). In other words, as long as we
treat linear reps and symmetries, we should apply projective geometry (PG) from scratch in
order to derive and treat two aspects consistently: the breakdown to affine geometry by fixing
an ’absolute plane’ in order to connect geometrically to Weyl’s concepts and gauge symmetries
used throughout field and quantum theories, and the metric aspects from the viewpoint of
Cayley and Klein with respect to a given (invariant) polar system (’absolute quadric’) and the
respective transformation groups.

2 The Results

Now, instead of taking the long approach to answer ’why’ SU(4) obviously works with respect
to hadron reps and symmetries, we argue ’top down’ using both our construction scheme of
SU(4) reps, and especially of 20 (see details in [7], app. F.6), as well as Hilbert’s (almost
forgotten) foundations on invariant systems [15].
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Whereas due to the rank-3 group A3 the root system can be ’rotated’ to P3 and serve as a
coordinate system by identifying 4 with the fundamental tetrahedron, the construction of 20
yields a ’threefold’ tetrahedron subdivided by ’4’s, see fig. 1, left. The individual states of 20

Figure 1: Symmetric 20; left: construction by 4 of SU(4) [7], F.6; right: subdivision
by Hilbert [15], §19.

are given and discussed e.g. in [5], [6], and [7].
But using the symmetry group SU(4) requires a treatment of its invariant theory, especially

of the full invariant system. As such, being concerned to construct the full invariant system
with respect to (quaternary) linear transformations, we can use Hilbert’s approach [15] and
the related forms. The approach to rep theory via forms is suitable because the transformation
determinant is 1, so all occurring determinant powers throughout invariant theory are 1, too,
i.e. the respective forms are not altered by additional determinant factors.

Citing Hilbert’s construction scheme ( [15], §19), we find1: ’(. . . ) For example, to construct
the quaternary forms of the 3rd order, we construct a regular tetrahedron in 3-space with edge
length 3, then divide each edge into three equal pieces and draw through the partial points two
parallel planes to each of the four side faces; these planes cut the tetrahedron into regular tetra-
hedra with edge length 1. Each corner point (n1, n2, n3, n4) of these tetrahedra corresponds to a
member of the quaternary cubic form. (. . . )’.

So while we have constructed the rep 20 (fig. 1, left) in a bottom-up approach by means of
roots and the fundamental tetrahedron 4 [7], Hilbert subdivides ’top-down’ the ’large’ tetra-
hedron (fig. 1, right) and identifies each of the 20 intersection/corner points (n1,n2,n3,n4)
with a member of the quaternary cubic form, i.e. with one member of 20, or what we de-
noted initially by a ’Chiron’ [5], [6]. Based on our construction scheme, besides the bridge
to well-established classical invariant theory, we thus have a symbolism at hand to treat the
geometry of P3 in terms of quaternary forms. From the physical point of view, when recalling
the historic and ongoing quest for hadronic states and equations of motions (see e.g. [21] and
references where one tries to separate spin content), we have identified the irrep 20 yielding
physical as well as geometrical background while additionally subordinating into the algebraic
framework of invariant theory2. Whereas synthetic geometry proposes additional rich back-
ground and strategy (see e.g. [19] or [20] §2ff.), the analytical frameworks and tools beyond
just linear algebra, affine geometry and gauge theory still have to be established consistently.
Please note also with respect to physics and affine geometry, that by means of the structures
above, it is straightforward to introduce quaternary barycentric coordinates. As such, masses
and mass relations are linked to geometrical properties, especially with respect to the interior
of the convex hull like in the case of 20, and – appropriately normalized – the four ’coordinates’
sum up to 1. Here, the major result is the geometrical identification of 20 in SU(4) with reps
of cubics, which is a dead giveaway with respect to PG and higher order representations [20].

1ibd. p. 366, translated from German. . .
2In other words, the symmetric threefold ’spinorial’ structure of 20 is based on nothing but the very origins of

invariant theory of transformation groups without the need to introduce additional ’gauge glue’.
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3 The Context

Carrying forward the results of the last section, we can test the symbolism with respect to
P3 if we identify the four members of 4 with points, i.e. the rep 4 with the quaternary point
coordinates xα. So with respect to quaternary forms when multiplying two (a priori different)
point reps 4∼ , we expect a bilinear (symmetric) form (or the polarized form of a quadric)
with dim 10 for the symmetric part, and a line rep of dim 6 for the antisymmetric part. The

symbolism yields ⊗ = ⊕ = 10 ⊕ 6, and from both approaches it is evident

that the limit x → y ’destroys’ the antisymmetric part, and the quadric ’survives’. Formally,
we can introduce a bilinear form B(x , y) so that the set of points {y|B(x , y) = 0} defines ’the
polar’ of x , or an associated linear map mB : V → V ∗ by B(x , y) = 〈mb x , y〉, and by symmetry
〈mb x , y〉 = 〈mb y, x〉. So even analytically, we have tools to treat linear mappings as well
as quadrics in V and V ∗ (by the adjoint map m∗b and the induced quadratic form). To grasp
the physical notation, we can use the ’old geometrical’ notion of points x and planes u, and
their ’products’ (aαxα)n ≡ (ax)n, (bu)n, as well as x · u ≡ (xu), higher orders thereof and
appropriate forms3. So from the symbolism above, 10 relates to the (symmetric) quaternary
quadric whereas 6 relates to (antisymmetric) line reps (which by appropriate complexification
of the Plücker coordinates or using Klein’s linear Complexe [11] can serve as of SO(6)).

If we look for the conjugate of 4, SU(4) requires the conjugate rep ∗ to transform
according to the threefold antisymmetric rep. Written in terms of determinants, it is easy
to see that ∗ has to represent quaternary plane coordinates of 3-space. SU(4) yields
∗ ⊗ = 15 ⊕ [0] where the [0] represents a vanishing 4 × 4-determinant (or a point-

plane incidence (ux) = 0). On the same footing, using ∗ as rep for three linear independent
points (’a plane’), non-vanishing 15 associates a 4th point aα to the plane uα = εαβγδxβ yγzδ,
and aαuα = εαβγδaαxβ yγzδ represents a determinant, or geometrically a tetrahedron (’vol-
ume’). This requires a thorough discussion of ux (or uαxβ , or ax bu) in quaternary invariant
theory4.

Note, however, that this symbolism works by means of the initial analytic rep of linearly
transforming point and plane coordinates in R3, or P3, and their respective analytic reps by
forms, not as a feature of space geometry itself.

4 The Background

Now please recall, that given an irreducible polynomial f ∈ K[xα] and a related hypersurface
V , in order to define a tangential plane (and the tangential space) of V at a regular point p,
we can invoke the hyperplane definition

¦

ν ∈ Kn|
∑

να
∂ f
∂ xα
(p) = 0
©

describing a plane normal
to ∇ f (p). The same mechanism in (finite) geometry can be achieved by considering null
systems [12]. So we have to treat two ’competing’ descriptions, ’moving’ the tangential plane
with respect to the quadric and the (’orthogonal’) null plane with respect to motions along
the normal and their so(4) Lie algebra [12]. Whereas for the tangential discussion and two
point x , y of the quadric, we can use the incidence relations (ux) = (u′ y) = 0, a (null) plane
uα = Aαβ xβ in general will be mapped to the (null) plane of a different linear Complex,
u′α = Bαβ yβ . So relating A and B requires symplectic transformation groups.

3While we have discussed (bu)2 in relation to Dirac’s linearization of pµpµ (see e.g. [11]), (bu)n in general relates
to moments of order n and the tetrahedral Complex; due to the 8-page limit here, we postpone this discussion.

4To pursue the combinatorial aspects in contemporary considerations, one can follow Rota (see e.g. [13], [17],
[14], however, according to his foreword in the reprint of Study’s marvellous work [22] it is worth considering the
classical path, too, as well as Study’s geometrical concepts [22].
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Formally, if in the special incident/tangential case we represent the plane by u= 1
2(u

p+uN )
where up denotes the polar/tangential part and uN the null plane, we can express the ’parts’ of
the plane according to uµ→ ∂ ′µ ∼

1
2(∂µ+Aµνxν), A describes the 6-dim antisymmetric rep of the

null system, or the rep of a (general) linear Complex. Now expressing A via its dual/conjugate
Ac , i.e. Aµν ∼ εµναβAc

αβ
, we find the plane rep uN

µ ∼ εµναβAc
αβ

xν. Here, the ε-’tensor’ formally
ensures the threefold antisymmetry of the coordinate expression, and moreover, it ensures
the point-plane incidence (xu) = 0. For electromagnetism and the electromagnetic field, an
(affine) replacement Aµν → Fµν has been discussed in [24] by 3-vectors E⃗, B⃗, M⃗ and H⃗ to
derive Maxwell’s equations. So the difference in the tangent planes can be seen as a necessary
rotation (or readjustment) of the null lines (i.e. of moments), and symbolically as ∂ ′µ = ∂µ+ũN

µ ,
i.e. by correcting the plane appropriately. The Jacobian J benefits from the polar decomposi-

tion, i.e. for x ′α = fα(xβ) = Aαβ xβ and S2 = xα fα(xβ), we find ∂ fα
∂ xβ
=
∂ x ′α
∂ xβ
= Aαβ ∼= Jαβ .

So using a sphere to represent the quadric above (and to connect to what Weyl5 and Wigner
understood as features of quantum theories), we want to emphasize the underlying line geo-
metric picture. By considering the sphere as a hull with center common to the center of a ray
or line bundle (see fig. 2, right), this introduces immediately two well-known algebraic reps.
In the first approach, we can define operators on the sphere S2 to shift the point p quarterwise
along the great circles while inherently respecting the quadric constraint of the sphere. It is
easy to see that these quarterwise transformation operators fulfill the quaternion algebra (see
fig. 2, left), where −k P = N = ji P ←→ i j = k, i jk = −1. The negative squares map the
points to their ’antipodes’ on the sphere, i.e. using this quadratic algebra, we have an operator
system at hand which respects the (invariant) geometry by means of transformations of points.
In general, we can use the quadratic algebras (or especially Clifford algebras or hypercomplex
number systems) to represent the three possible signatures of the various real cases of quadrics
when the base elements square to q2

N = ±1,0, i.e. also in the hyperbolic and parabolic cases.
For rays or oriented lines this approach yields a 2π-periodicity, i.e. q4 = 1 or reps in terms

Figure 2: Left: Quaternionic action induced by rays and lines; right: line vs. ray
intersections with quadric.

of sin() or cos(), whereas lines yield π-periodicity and tan(). So already this simple classi-
cal picture analytically introduces ’quantum notion’, and if e.g. instead of three rays we use
three lines the spherical triangle has a ’mirror image’ on the opposite side of the sphere6, so
instead of a single quaternionic rep (or SU(2)), we can discuss a twofold quaternionic rep
transformed by SL(1,H)×SL(1,H) (or SU(2)×SU(2)), SL(1,H)×SL(1,H), or coverings like
SL(2,H) or S(SL(1,H)×SL(1,H)).

The second associated algebraic rep, Study’s kinematical mapping7, uses a similar reason-
ing to treat SU(2)×SU(2), where in addition special emphasis is given to projections onto the
conic in the equatorial plane. Like in the first picture by using the equatorial great circle, we

5Recall e.g. [26], III § 16: the system space of quantum mechanics is a ray space, no vector space.
6In PG, we can also perform the shift of the center from 0 to∞ easily (or an appropriate change of points in

the anharmonic ratio), and discuss the associated orientation(s) of the second ’projected triangle’.
7See e.g. [16], Abb. 87, see also Study’s transfer principle and dual numbers [4], §103.
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can thus switch to an alternative, rational parametrization of the (planar) conic, Φ :R→R2,
by means of t →

�

2t
t2+1 , t2−1

t2+1

�

which recovers the ’spinor’ introduction (see e.g. [9], III.C and
III.F). By recalling the projective generation of a conic by two line pencils, we can introduce the
respective pencil coordinates so that the theory of binary forms applies and Clebsch-Gordan
decompositions enter naturally. So these examples reveal an obvious mismatch on the inter-
pretations of algebraic reps vs. physical notion, and more important and induced by the focus
on point calculus, between the number of different physical processes and the amount of al-
legedly independent algebraical descriptions. Here, based on the additional geometrical hint
by Hilbert and invariant theory above, in the next section we follow Plücker, Klein and Lie and
introduce another linear geometrical object, ’the plane’, to keep in touch with PG and classical
(quaternary) invariant theory of P3. Evidently, this well-defined geometrical notion is able to
treat certain tensorial notions common in contemporary (’quantum’) rep theory.

5 Some Consequences

Thus, relying on point reps xα, the geometrical rep theory of P3 has to be completed by dual
plane reps uα, also in order to complete invariant theory8. We have discussed above few com-
binatorial aspects of a symbolism, so before entering algebraical details on invariant systems
comprising x2, u2, x · u, etc., it is worth to scrutinize plane reps u∼ ∗ and their use.

Now, while from classical geometry we know various forms of plane reps in R3, in the
usual (metric) interpretation when given e.g. in the Hesse form ni x i − d = 0 (and which
relates to our tangential definition above), n⃗ describes the normal vector to the plane and d
the distance of the plane with respect to the origin. If we formally introduce homogeneous
point coordinates, x⃗ i →

x i
x0

, and rewrite the form by ni x i − d x0 = 0 = uαxα = (ux), we
thus have metric interpretations of the formal ’plane’ coordinates uα. Exhausting (or even
overexciting) this formalism, we can think of the plane as a tangential plane to a sphere at
distance d, and if we assume propagating spherical waves with velocity c and time t, then
d = c t corresponds formally to the ’energy component’ u0

9.
Here, as a further aspect with respect to the use of exponentials, their partial differenti-

ation and ’plane waves’ in physics, we want to use ’intermediary forms’10 (ux). From above
it is obvious, that this ’distance’ measurement of points with respect to planes can be used to
define the point coordinates, however, one has to work out the dependence from the usual
metric terminology e.g. in the definition of the (Euclidean) coordinates or the distances. To
approach this problem, we can go back to the Cayley-Klein approach, and define the distance
d of two points q1 and q2 by dist(q1, q2) ∼ −2i log DV (q1, q2, R, S) with intersections R, S on
the absolute quadric; DV denotes the anharmonic ratio. If we rewrite the distance d of a point
x to a plane p by d = dist(q1, q2), then id = i x · p ∼ log DV (q1, q2, R, S). Exponentiation
results in exp(id) = exp(i x · p) ∼ DV (q1, q2, R, S) which yields some insight into the ’plane
wave’-approaches, ’second quantization’, ’exponential forms’, etc. in the affine setup x0 = 1.
Whereas the rhs, DV (q1, q2, R, S), is a priori well-defined in PG of P3 for general projective
generalization and accessible by von Staudt’s ’Würfe’ or derived concepts like binary forms or
Hesse transfer, a naive ’relativistic’ expansion x i → xα, pi → pα has to be treated carefully. It is
obvious that these well-defined, projective properties ’scatter’ to individual analytical expan-
sion of exponentials on the lhs, or parts of such series, a fortiori with respect to non-commuting

8Here, we exclude line and Complex reps and their use in force systems, kinematics and gauge theory.
9So based on this identification, care has to be taken when discussing linear roots of quadrics in order to not

produce ’anti-particles’ with opposite sign in the component u0.
10german: ’Zwischenformen’; invariants using both variables and their duals when set to zero represent projec-

tive relations.
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parameters, higher orders or necessary applications of Baker-Campbell-Hausdorff formulæ. As
such, it is easier to start from an intermediary form (x p) and apply quaternary invariant the-
ory from scratch; its exponentiation forces the use of expansions, power series, ordering and
grouping schemes, and their respective comparison(s), i.e. it discharges into series of (ux)n.
The lhs thus complies with the operator and expansion methodology of usual invariant theory.

Now, whereas in the Cayley-Klein approach we can rely on the logarithm to produce metric
and additive quantities from the DV and from PG, the rhs here ’lives’ in pure and strict PG. So
we can use the (partial) differential operators to restore the linearity and the ’vector’ properties
of the originally linear vectors x and p if we use ’new forms’ exp(i(x p)). Then, the action of ∂µ
reproduces ’contravariant’ linear elements, ∂µ exp(i(x p)) ∼ ipµ exp(i(x p)), so that effectively
pµ ∼ −i∂µ provides a ’quantization’. To a certain extent, differential operations in this rep
theory thus replace linear operators or vector space behaviour from general PG. To get rid
of the ’new forms’, however, people have had to introduce additional rules and frameworks,
e.g. the necessary 1-operator in terms of ’delta functions’, ’integration’ over homogeneous point
variables xµ, etc. (see e.g. [18], [3], . . . ). Because such reasoning leads us back to enrich the
intermediary form and its exponential by additional invariants and possible exponentials, we
are faced with the original problem (see above or [15]) of determining the full invariant system
either analytically in terms of points and planes, or with respect to (quadratic) line geometry
and its relations to Complex geometry in P5.

6 Conclusion

By identifying the physical rep 20 geometrically as cubic by means of Hilbert’s construc-
tion [15], we have strengthened the foundations of our SU(4) Ansatz within PG. Although it
is hard to recover physically relevant concepts from today’s jungle of physical and algebraical
phenomenology and empiricism, starting over from quaternary invariant theory provides a
reliable basis and stable guidelines. By means of point and plane reps of P3, we can treat in-
variants (especially covariants) where already the linear and quadratic orders have enormous
physical relevance. Using PG and invariant theory to start over again seems to establish correct
descriptions and an ordering scheme, the more as P5 provides subtle and profound Complex
background as well as important transformation theory and relevant mappings to P3.

Funding information Work has not been externally funded.

References

[1] S. Adler, Calculation of the Axial–Vector Coupling Constant Renormalization in β Decay,
Phys. Rev. Lett. 14, 1051 (1965), https://doi.org/10.1103/PhysRevLett.14.1051

[2] V. de Alfaro, S. Fubini, G. Furlan, C. Rossetti, Currents in Hadron Physics, (Amsterdam,
London: North Holland Publishing Company), 1973

[3] J. D. Bjorken, S. D. Drell, Relativistic Quantum Mechanics, (New York: McGraw-Hill)
1964; Relativistic Quantum Fields, (New York: McGraw-Hill) 1965

[4] W. Blaschke, Vorlesungen über Differentialgeometrie I, (Die Grundlehren der mathematis-
chen Wissenschaft I) (Berlin: Springer) 1921

[5] R. Dahm, M. Kirchbach, Linear Wave Equations and Effective Lagrangeans for Wigner Su-
permultiplets, Int. J. Mod. Phys. A10, 4225 (1994), DOI:10.1142/S0217751X95001960

7



SciPost Physics Submission

[6] R. Dahm, Relativistic SU(4) and Quaternions, Advances in Applied Clifford Algebra 7(S)
337 (1995)

[7] R. Dahm, Spin-Flavour-Symmetrien und das πN∆-System, (Aachen: Shaker Verlag),
1996, ISBN 3-8265-1782-2

[8] R. Dahm, A Symmetry Reduction Scheme of the Dirac Algebra without Dimensional Defects,
Phys. Atom. Nuclei 73(2), 276 (2010), DOI:10.1134/S1063778810020122

[9] R. Dahm, On a Microscopic Description of Space-Time VII – On Spin, J. Phys. Conf. Ser.
965(1), 012012 (2018), DOI:10.1088/1742-6596/965/1/012012

[10] R. Dahm, On a Microscopic Description of Space-Time VIII – On Relativity, Phys. Atom.
Nuclei 81(6), 819 (2018), DOI:10.1134/S1063778818060108

[11] R. Dahm, On A Microscopic Representation of Space-Time III, Adv. Appl. Clifford Algebras
29(1) 20 (2019); DOI:10.1007/s00006-018-0936-x; http://arxiv.org/abs/1508.06872

[12] R. Dahm, On Some Geometrical Aspects of Space-Time Description and Relativity,
https://doi.org/10.48550/arXiv.2002.08889, accepted for publication in: The Future of
Relativity, Gravitation and Cosmology, eds. V. V. Dvoeglazov et al., (Hauppauge, USA:
Nova Science Publishers), ISBN: 979-8-88697-455-3, DOI: 10.52305/RLIT5885

[13] P. Doubilet, G.-C. Rota, Skew-Symmetric Invariant Theory, Adv. Math. 21, 196 (1976),
https://doi.org/10.1016/B978-0-12-428780-8.50015-5

[14] R. Ehrenborg, G.-C. Rota, Apolarity and Canonical Forms for Homogeneous Polynomials,
Europ. J. Combinatorics 14, 157 (1993), https://doi.org/10.1006/eujc.1993.1022

[15] D. Hilbert, Ueber die vollen Invariantensysteme, Math. Ann. 42, 313 (1893)

[16] F. Klein, Vorlesungen über höhere Geometrie, (Die Grundlehren der mathematischen Wis-
senschaft XXII) (Berlin: Springer) 1926

[17] J. P. S. Kung, G.-C. Rota, The Invariant Theory of Binary Forms, Bull. Amer. Math. Soc. 10,
27 (1984), https://doi.org/10.1090/S0273-0979-1984-15188-7

[18] D. Lurie, Particles and Fields, (New York-London-Sydney: Interscience Publishers) 1968

[19] H. Müller, Zur Geometrie auf den Flächen zweiter Ordnung, Math. Ann. 1, 497 (1869)

[20] Th. Reye, Collineare Grundgebilde und ihre Erzeugnisse, Journal für die reine und ange-
wandte Mathematik 74, 1 (1872)

[21] V. M. Simulik, I. I. Vyikon, On the choice of relativistic wave equation for the particle hav-
ing spin s=3/2, J. Phys. Commun. 6, 075008 (2022), https://doi.org/10.1088/2399-
6528/ac7eae

[22] E. Study, Methoden zur Theorie der ternären Formen, (Berlin: Springer), Reprint 1982

[23] E. C. G. Sudarshan, Theory of Approximate Symmetries. In: A. Salam (Dir.), High Energy
Physics and Elementary Particles, (Vienna: IAEA), 1965

[24] M. von Laue, Zur Minkowskischen Elektrodynamik der bewegten Körper, Z. Physik 128,
387 (1950), doi:10.1007/BF01339439

[25] W. I. Weisberger, Renormalization of the Weak Axial–Vector Coupling Constant, Phys. Rev.
Lett. 14, 1047 (1965), https://doi.org/10.1103/PhysRevLett.14.1047

[26] H. Weyl, Gruppentheorie und Quantenmechanik, (2nd ed., Leipzig: Hirzel), 1931

8


	Introduction
	The Results
	The Context
	The Background
	Some Consequences
	Conclusion
	References

