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Abstract

Almost immediately after the seminal papers of Poincaré (1905,1906) and Einstein (1905)
on special relativity, wherein Poincaré established the full covariance of the Maxwell-
Lorentz equations under the scale-extended Poincaré group and Einstein explained the
Lorentz transformation using his assumption that the one-way speed of light in vacuo is
constant and the same for all inertial observers (Einstein’s second postulate), attempts
were made to get at the Lorentz transformations from basic properties of space and time
but avoiding Einstein’s second postulate. Various such approaches usually involve gen-
eral consequences of the relativity principle, such as a group structure to the set of all
admissible inertial transformations and also assumptions about causality and/or homo-
geneity of space-time combined with isotropy of space. The first such attempt is usually
attributed to von Ignatowsky in 1911. It was followed shortly thereafter by a paper of
Frank and Rothe published in the same year. Since then, papers have continued to be
written on the subject even up to the present. We elaborate on some of the results of
such papers paying special attention to a 1968 paper of Bacri and Lévy-Leblond where
possible kinematical groups include the de Sitter and anti-de Sitter groups and lead to
special relativity in de Sitter and anti-de Sitter spaces.
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1 Introduction

On Sept. 24, 1904, in a powerful and prophetic address to the International Congress of Arts
and Sciences in St. Louis, Missouri, Henri Poincaré ushered in the new relativity theory.1 Its
foundation was the "Principle of Relativity," which, according to Poincaré, is [1]:

"that principle according to which the laws of physical phenomena should be the same,
whether for an observer fixed, or for an observer carried along in a uniform move-
ment of translation, so that we have not and could not have any means of discerning
whether or not we are carried along in such a motion.”

Poincaré’s lecture, appropriately delivered in the “New World," elevated the principle of rel-
ativity to a general law of physics on an equal footing with conservation of energy, which
necessarily entails its universality. That this is such was boldly reasserted by him in Ref. [2],
declaring that we shall “admit this law . . . and admit [it] without restriction." The St. Louis
lecture was published and widely read in academic circles worldwide in the ensuing months.
A year later, in Albert Einstein’s first paper on special relativity [3], there is found without ref-
erence a somewhat weaker and less precise rewording of Poincaré’s statement of the relativity
principle. In contrast to Poincaré, Einstein made no claim as to its universality.

Space-time is a four-dimensional Hausdorff manifold M with a smooth differentiable struc-
ture on it. Points in M correspond to events and curves to world lines of particles. Following
Ehlers, Pirani and Schild (EPS) [4], [5] we take the curved analogs of straight world lines in
affine space to be those curves (geodesics) which are ”world lines of freely falling particles" and
“behave infinitesimally like the straight lines of projective (or affine) four-space." A symmetric
affine connection specifies the family of geodesics, with geodesics being curves whose "tangent
directions" are "autoparallel." Translations are one-parameter groups of transformations with
possibly only local C∞ action on M , the geodesics being orbits of points under the action of
the one-parameter translation subgroups.

With geodesics representing world lines of inertial observers and with inertial transfor-
mations being mappings between such geodesics, defined possibly only locally in some cases,
our generalization of the relativity principle to curved space can be formulated in essentially
the same way as Poincaré’s statement of it. Just as in the affine case, the relativity principle
demands that: (i) inertial transformations from one inertial frame to another take geodesics
to geodesics and preserve parallelism of geodesics and (ii) “a group structure for the set of
all inertial transformations" [6] at least in a local sense. We call the set of all such inertial
transformations the relativity group or kinematical group of M . For the global formulation of
Lie groups of transformations acting on a manifold, due in its local form to Sophus Lie, we
refer the reader to [7].

2 Classification of Possible Kinematical Groups

We assume that the kinematical or relativity group contains the rotation group SO(3) as a
subgroup. Furthermore, with translations defined as above and inertial boosts being defined
as "uniform movements of translation," the kinematical group should be a subgroup of the
Lie group of transformations formed out of rotations, translations, inertial boosts and scale
transformation with (skew-symmetric) infinitesimal generators Li j , Pi , L0i (i, j = 1, 2,3) and
S, respectively. Assume scale transformations commute with rotations and inertial boosts,

1The International Congress took place that year in St. Louis along with the other festivities of the 1904 World’s
Fair (Louisiana Purchase Exposition) celebrating the 100th anniversary of the Louisiana purchase of 1803.
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and assuming rotational invariance, which implies that Pi , L0i are SO(3) vector operators, we
obtain

[Li j ,Lkℓ] = −δikL jℓ −δiℓL jk +δ jkLiℓ +δ jℓLik (1)

[Li j ,L0k] = −δikL0 j +δ jkL0i , [Li j ,P0] = 0 , [Li j ,Pk] = −δikP j +δ jkPi (2)

[S,Li j] = 0 , [S,L0i] = 0 (3)

For the other brackets we have [8]:

[P0,Pi] =ωiP0 + γi jP j +
1
2
εikεkmnLmn +αikL0k +κiS (4)

[Pi ,P j] = ιi jP0 + νi jkPk +
1
2
µi jkεkmnLmn +ψi jkL0k +κi jS (5)

[L0i ,P0] = χiP0 +λi jP j +
1
2
ζikεkmnLmn +ηikL0k +λiS (6)

[L0i ,P j] = ρi jP0 +πi jkPk +
1
2
σi jkεkmnLmn +τi jkL0k +ωi jS (7)

[L0i ,L0 j] = ξi jP0 + βi jkPk +
1
2
λi jkεkmnLmn + νi jkL0k +τi jS (8)

[S,P0] = αP0 + βiPi +
1
2
γiεimnLmn +δiL0i + ζS (9)

[S,Pi] = αiP0 + βi jP j +
1
2
γikεkmnLmn +δi jL0 j +ηiS (10)

The other brackets can be simplifed by further exploiting rotational invariance and spa-
tial isotropy which implies that they must be expressible as linear combinations of the basic
generators with the (rotationally) covariant tensor δi j and pseudo-tensor εi jk where δi j is
the Kronecker delta and εi jk is the totally antisymmetric symbol. By using these facts we can
rewrite Eqns. (4) to (10) as [8]

[P0,Pi] =ωiP0 + γPi +
1
2
ϵ εimnLmn +αL0i + κiS (4′)

[Pi ,P j] = ιδi jP0 + νεi jkPk +µLi j +ψεi jkL0k +κδi jS (5′)

[L0i ,P0] = χiP0 +λPi +
1
2
ζεimnLmn +ηL0i +λiS (6′)

[L0i ,P j] = ρδi jP0 +πεi jkPk +σLi j + τ̃εi jkL0k +ωδi jS (7′)

[L0i ,L0 j] = ξδi jP0 + βεi jkPk + λ̃Li j + ν̃εi jkL0k +τδi jS (8′)

[S,P0] = αP0 + βiPi +
1
2
γiεimnLmn +δiL0i + ζS (9′)

[S,Pi] = αiP0 + β̃δi jP j +
1
2
γ̃εimnLmn +δL0i +ηiS (10′)

Next consider the following automorphisms of the relativity group, G: the parity operator, Π,
with action on g, the Lie algebra of G, given by

Π(P0) = P0,Π(Pi) = −Pi ,Π(Li j) = Li j ,Π(L0i) = −L0i ,Π(S) = S, (11)

and the time reversal operator, Θ, with action on g given by

Θ(P0) = −P0,Θ(Pi) = Pi ,Θ(Li j) = Li j ,Θ(L0i) = −L0i ,Θ(S) = S. (12)
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Application of these automorphisms to the commutators, Eqns. (4′) to (10′) gives [8]

[P0,Pi] = αL0i (4′′)

[Pi ,P j] = µLi j + κδi jS= µLi j (5′′)

[L0i ,P0] = λPi (6′′)

[L0i ,P j] = ρδi jP0 (7′′)

[L0i ,L0 j] = λ̃Li j +τδi jS= λ̃Li j (8′′)

[S,P0] = α̃P0 (9′′)

[S,Pi] = β̃Pi (10′′)

where we used the fact that the bracket is skew-symmetric to obtain κ= τ= 0.

Proposition 1
α̃= β̃ = 1. (13)

Proof: Making use of commutators of Eqns. (4′′) to (10′′) we obtain

β̃Pi = [S,Pi] =
1
λ
[S, [L0i ,P0]] = −

1
λ
[L0i , [P0,S]] =

α̃

λ
[L0i ,P0] = α̃Pi

which implies α̃= β̃ . To obtain α̃= 1, use [L01,P1] = ρP0 to get

α̃P0 = [S,P0] =
α̃

ρ
[S, [L01,P1]] =

α̃

ρ
[L01, [S,P1]] =

α̃2

ρ
[L01,P1] = α̃

2P0.

Proposition 2 (Bacry, Lévy-Leblond [8] )

µ−ρα= 0, (14)

λ̃−ρλ= 0. (15)

Proof: Eq. (14) follows from the Jacobi identity

[Pi , [P j ,L0k]] + [P j , [L0k,Pi]] + [L0k, [Pi ,P j]] = 0

together with [Li j ,L0k] = −δikL0 j + δ jkL0i and the commutators before Proposition I. For Eq.
(15) first use the the Jacobi identity

[P0, [Pi ,L0 j]] + [Pi , [L0 j ,P0]] + [L0 j , [P0,Pi]] = 0

and the commutators before Proposition I to obtain

αλ̃−λµ= 0.

Then use this together with Eq. (14) to obtain Eq. (15).

One can show that the remaining Jacobi identities do not lead to any further independent
constraints on the parameters in Eqns. (4′′) to (10′′) [8].

Propositions 1 and 2 imply the classification of admissible g depends upon three indepen-
dent real parameters ρ,α and λ. Let g = g(ρ,α,λ). Then any admissible g(ρ,α,λ) is isomorphic
to g(ρ,α,λ) with ρ,α,λ taking values 1 or 0. The explicit isomorphism is obtained by an ap-
propriate scaling of generators, e.g. L̃0i = φλ(L0i) = λ−1/2L0i with λ > 0 so that [L̃0i , L̃0 j] =
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1
λ
[L0i ,L0 j] = Li j . Thus, up to such isomorphisms, it suffices to restrict ρ,α,λ to values of 0 or

1. Following [8] we are led to the following cases:
Class R (relative time): ρ = 1:

R1. (α = 1, λ = 1) From Eqns. (14) and (15) we have µ ̸= 0 and λ̃ ̸= 0 and from the
commutation relations Eqns. (4

′′
) to (10

′′
) we obtain

g(1,1,1)
∼= CS⊕τ so(5)

with three possible real forms

RS⊕τ so(5) , RS⊕τ so(1,4) , RS⊕τ so(2, 3)

whereCS andRS respectively denote the one-dimensional Lie algebras overC andR generated
by S. (⊕τ means semidirect sum.)

R2. (α= 0, λ= 1⇒ µ= 0, λ̃= 1)

g(1,0,1)
∼= (so(4)⊕CS)⊕τ t4

where t4 is the four dimensional abelian Lie algebra (ideal) over C generated by the P0, Pi
(i = 1, 2,3). Up to isomorphism, all permissible real forms are2

(so(4)⊕RS)⊕τ t4 and (so(1, 3)⊕RS)⊕τ t4

where now so(4) and t4 are real Lie algebras. The case (so(1,3)⊕RS)⊕τ t4 describes standard
Lorentzian relativity exended by scale.

R3. (α= 1, λ= 0⇒ µ= 1, λ̃= 0)

g(1,1,0)
∼= CS⊕τ { eso(4)(Li j ,Pi) ⊕τ t̃

4
(L0i ,P0)

}

where eso(4)(Li j ,Pi) ⊕τ t̃
4 is the semidirect sum of the so(4) generated by Li j and Pi (i = 1, 2,3)

with an abelian Lie algebra t̃4(L0i ,P0)
over C generated by P0 and the L0i (i = 1, 2,3). Permissible

real forms (up to isomorphism) are

RS⊕τ ( eso(4)(Li j ,Pi) ⊕τ t̃
4
(L0i ,P0)

) and RS⊕τ ( eso(1,3)(Li j ,Pi) ⊕τ t̃
4
(L0i ,P0)

)
︸ ︷︷ ︸

para-Poincaré Lie al gebra

.

R4. (α= 0, λ= 0⇒ µ= 0, λ̃= 0) Lie algebra of the (scale-extended) Carroll Group: [8]

g(1,0,0)
∼= (so(3)⊕τ t̃3L0i

⊕CS)⊕τ̃ t4Pµ
There is only one acceptable real form. It is obtained by restricting g(1,0,0) to the reals. It is
the (real) Lie algebra of the (scale-extended) Carroll group.

Class Ã (absolute time): ρ = 0 (⇒ µ= λ̃= 0):3

Ã1. (α= 0, λ= 1)
g(0,0,1)

∼= {g(Li j ,L0k) ⊕CS}
︸ ︷︷ ︸

homogeneous Galilei Lie
algebra (scale extended)

⊕τt4P0,Pi
.

2The reason why the real form containing so(2, 2) is not permitted is due to our assumption of rotational sym-
metry, which we made at the very start and which implies that admissible Lie algebras must contain the subalgebra
so(3).

3Our description of this class differs slighty from that in [8] so we put tildes on the A’s to distinguish them from
Bacry and Lévy-Lebond’s A’s in Ref. [8], i.e. Ã1 instead of A1 of Bacry, Lévy-Lebond etc.
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There is only one acceptable real form obtained by restricting g(0,0,1) to the reals. It is the
(real) Lie algebra of the (scale-extended) inhomogeneous Galilei group.

Ã2. (α= 1, λ= 0)

g(0,1,0)
∼= {{so(3)Li j

⊕CS} ⊕τ t3Pi
} ⊕τ t4(P0,L0i)

It’s easy to see that g(0,1,0)
∼= g(0,0,1) and that there is only one acceptable real form obtained

by restricting g(0,1,0) to the reals.
Ã3. (α= 1, λ= 1)

g(0,1,1)
∼= CS⊕τ n.

n is the ideal generated by Li j , L0i , P0, Pi and its two admissible real forms are the Lie algebras
of the two Newton-Hooke groups [8].

Ã4. (α= 0, λ= 0)
g(0,0,0)

∼= (so(3)Li j
⊕CS)⊕τ t7(L0i ,P0,Pi)

where t7(L0i ,P0,Pi)
is the 7 dimensional abelian ideal generated by the L0i , P0, Pi (i = 1, 2,3).

g(0,0,0) is the Lie algebra, extended by scale, of what is called the static group or Aristotle group.

3 Reduction of Symmetry and Non-Compactness of the evL0i

The classification just given is at the Lie algebra level. The corresponding kinematical groups
are obtained by suitable “exponentiation" [7] and restriction to subgroups [2]. As in [8],
we consider only those cases for which any one-parameter subgroup of boosts “in any given
direction forms a noncompact subgroup," i.e. the subgroups evL0i are noncompact subgroups.
This eliminates several of the listed real forms in the above classification. In particular, the
first real form in the R2 case, which is {so(4)(Li j ,L0i) ⊕RS} ⊕τ t4, is excluded as a possible
kinematical group, since so(4)(Li j ,L0i) is compact.

Following Poincaŕe in Ref. [2], we must, due to physical requirements, restrict the kine-
matical group to a subgroup. It should be a subgroup of the scale extended group with scale
transformations depending upon the boost parameter, v: “. . . we should consider only certain
transformations in this group; we must assume that λ [the scale transformation] is a function
of v, and it is a question of choosing this function in such a way that this part of the group,
which will be denoted by P, is itself a group [2]." For standard Lorentzian relativity (the sec-
ond real form in the R2 case) this leads us to the result that λ = λv = ±1 (cf. [2]). Poincaré’s
argument for reduction of the scale extended Lorentz group to SO0(1, 3)×Σ2

∼= SO(1, 3) with
Σ2 = {I4,−I4} runs as follows. Let

Λ(v) =







coshβ sinhβ 0 0
sinhβ coshβ 0 0

0 0 1 0
0 0 0 1







(β = arctanhv). “Any [homogeneous] transformation of the group P may be regarded as a
transformation of the form λvΛ(v) preceded and followed by suitable rotations" (KAK decom-
position for scale extended SO0(1,3) restricted to the homogeneous part of P). We easily show
that RπλvΛ(v)R−1

π = λvΛ(−v) where Rπ is a rotation about the y axis by π. Since the homo-
geneous part of P consists of all matrices of the form λvΛ(Rv)R′ with v ∈ R and R, R′ ∈ SO(3),
λvΛ(−v) is in P. It will equal λ−vΛ(−v) for λv = λ−v . So λv should be an even function of
v.
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Now the inverse of λvΛ(v) is λv
−1Λ(−v). In order for this to be in P it must equal

λ−vΛ(−v) = λvΛ(−v) which leads to λ−1
v = λv . Hence λ2

v = 1 ⇒ λv = ±1 and, with ⋊
denoting semidirect product, we have:

Theorem 1 (Poincaré [2])
Reduction of symmetry for the SO0(1,3) real form of Case R2 (scale extended SO0(1, 3)⋊T4)

leads to P = SO(1,3)⋊T4, the proper inhomogeneous Lorentz group, as the kinematical group of
special relativity. P contains space-time inversion−I4 and its connected component is SO0(1,3)⋊T4.

Even though the homogeneous part of the Galilean group is not semisimple, Poincaré’s argu-
ments leading to Theorem 1 carry over to the scale extended Galilean group (Case Ã1) and
they lead to the same conclusions, namely that {(SO(3)⋊ N3)×Σ2} ⋊ T4 is the kinematical
group, where N3 is the 3 dimensional subgroup of Galilean boosts and Σ2 = {I4,−I4}, with
−I4 being space-time inversion.

For the real forms RS⊕τ so(1,4) and RS⊕τ so(2,3) of Case R1, the situtation regarding re-
duction of scale is even more interesting. It is due to the fact that the connected components of
the Lie groups associated with so(1,4) and so(2, 3) have group decompositions into subgroups
which involve SO(1,3) instead of SO0(1, 3) as one of the factors [9]. Since SO(1, 3) has two
disconnected components, the generalization of Poincaré’s argument to these cases is more
complicated. It again leads to λv = ±1. However, we are free to set λv as +1 or −1 on either
component. This leads to several choices for the relativity group, involving improper O(1, 4)
or O(2,3) transformations. Such additional structures could possibly lead to novel results in
descriptions of elementary systems [10], [11] for relativistic quantum mechanics on de Sitter
or anti-de Sitter space based on projective representations of O(1, 4) or O(2,3), respectively.
Although this is surely something well worth exploring, page limitations do not permit us to
go further into the matter.

4 Other Approaches and Conclusion

There are other approaches to describing possible space-time structures and associated kine-
matical groups. The causality approach starts with a partial ordering on space time, M . Causal
automorphisms on M are automorphisms which preserve the partial ordering. The set of
all causal automorphisms forms a group, which, for M being an affine space, turns out to
be the scale extended inhomogeneous orthochronous Lorentz group (Alexandrov-Zeeman re-
sult) [12], [13]. Lalan’s 1937 classification [14] of all possible linear kinematics in two space-
time dimensions compatible with the relativity principle is based on the Frank and Rothe pa-
per [15]. Another very interesting approach going back to V. Gorini [16] rests on a physical
assumption which essentially means that the set of inertial transformations taking frames at
rest to frames at rest is the group O(3). He proves that the only subgroups of GL(4,R) sat-
isfying this physical assumption are the proper orthochronous Galilean group and the proper
orthochronous Lorentz group, along with isomorphic copies of it obtained by a rescaling of the
boost generators [16].

In conclusion, incorporating scale symmetry into the analysis of classifications of possible
kinematical groups leads to more interesting possible structures regarding discrete transfor-
mations like time reversal and spatial inversion, especially for the cases involving the de Sitter
and anti-de Sitter groups.
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