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Abstract

We define the concept of Mixed Symmetry Quantum Phase Transition (MSQPT), consid-
ering each permutation symmetry sector µ of an identical particles system, as singularities
in the properties of the lowest-energy state into each µ when shifting a Hamiltonian con-
trol parameter λ. A three-level Lipkin-Meshkov-Glick (LMG) model is chosen to typify our
construction. Firstly, we analyze the finite number N of particles case, proving the pres-
ence of MSQPT precursors. Then, in the thermodynamic limit N → ∞, we calculate the
lowest-energy density inside each sector µ, augmenting the control parameter space by µ,
and showing a phase diagram with four different quantum phases.
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2 THE 3-LEVEL LMG MODEL. U(L) UNIRREPS AND QPT PRECURSORS

1 Introduction

When studying quantum systems of identical particles, e.g. bosons and fermions, permutation
symmetry becomes crucial. A nontrivial example is that of N identical particles distributed in
a set of L levels (H⊗N

L as Hilbert space) and a second quantized Hamiltonian describing pair
correlations [1]. In particular, the condition of identical atoms allows to use permutation symmetry
SN to decompose H⊗N

L into a “Clebsh-Gordan” direct sum of unitary irreducible representations
(unirreps or sectors) of U(L). We shall use Young tableaux as a useful graphical method to depict
this decomposition.

It is common in the literature the restriction to the totally symmetric unirrep or sector when
studying quantum phase transitions (QPTs) of critical quantum systems in the thermodynamic
limit N →∞, like in Refs. [2–4], reducing Hilbert space H⊗N

L dimension from LN to, for example,
�N+L−1

N

�

= N + 1 for L = 2. This means to make the particles indistinguishable, which is a
broadly assumed procedure without any evident physical justification (usually for computational
benefit). Therefore, we are devoted to study the role of these often disregarded mixed permutation
symmetry sectors in this work. As a paradigmatic case, we will use the Lipkin-Meshkov-Glick
(LMG) Hamiltonian for L = 3 levels (2), where λ will be the control parameter used to detect
critical phenomena (QPTs). The case L = 2 (see [5]) is not considered because all sectors can be
reduced to the symmetric one, and the cases L > 3 provide an extra difficulty when minimizing
the energy surface of the Hamiltonian. We address the reader to Ref. [6] for more information.

The organization of this article is the following; in Section 2 we focus on a simplified version
of the Hamiltonian for L = 3 levels, and examine the numerical/exact lowest-energy state inside
different permutation symmetry sectors for a finite number of particles N . In Section 3, we find
mixed symmetry quantum phase transitions (MSQPTs) in the thermodynamic limit N →∞ using
variational states. At the end, in Sec. 4, we give the conclusions.

2 The 3-level LMG model. U(L) unirreps and QPT precursors

Models describing pairing correlations are usually described by a Hamiltonian in the second quan-
tization form

HL =
L
∑

i=1

N
∑

µ=1

εic
†
iµciµ −

L
∑

i, j,k,l=1

N
∑

µ,ν=1

λkl
i j c†

iµc jµc†
kνclν , (1)

where ciµ (c†
iµ) destroys (creates) a particle in the µ state of the level i. Precisely, there is a finite

number N of identical particles distributed over L energy levels (N -fold degenerate). Pairs of
particles are scattered between the L levels when considering the two-body residual interactions
of strength λ, so that the total number of particles remains constant.

In our case, we focus on L = 3 level systems and apply the following list of restrictions to
the Hamiltonian (1): Firstly, we define U(L) generators as Si j =

∑N
µ=1 c†

iµc jµ according to the
Jordan-Schwinger map [7, 8]. Secondly, we disregard interactions for particles in the same level
and consider equal interactions in different levels, i.e. λkl

i j =
λ

N(N−1)δikδ jl(1− δi j) . Thirdly, we
transform the Hamiltonian into an energy density (intensive quantity) by separating the interaction
strength λ by the total particle pairs N(N − 1). Fourthly, we place the levels symmetrically about
the level i = 2, ε3 = −ε1 = ε/N and ε2 = 0. Eventually, the Hamiltonian turns into the 3-level
simplified version of the LMG Hamiltonian,

H3 =
ε

N
(S33 − S11)−

λ

N(N − 1)

3
∑

i 6= j=1

S2
i j . (2)
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2 THE 3-LEVEL LMG MODEL. U(L) UNIRREPS AND QPT PRECURSORS

It can be regarded as an extension of the paradigmatic L = 2 levels LMG Hamiltonian used in the
shell model [9, 10].

An interesting property of the 3-level LMG Hamiltonian (2) is that the λ-interaction only
scatters pairs of particles, and therefore, conserves the parity Πi = exp(iπSii) of the population
Sii in each level i = 1,2, 3. Consequently, the parity symmetry is described by the parity group
Z2×Z2×Z2 with the constraint Π1Π2Π3 = (−1)N . This symmetry will be spontaneously broken
in the thermodynamic limit N →∞ leading to a highly degenerated ground state [11]. In addi-
tion, if we choose basis vectors adapted to irreducible representations of the Lie group U(3), the
Hamiltonian matrix (2) will be block diagonal, and hence the procedure presented in the following
paragraphs.

We want to focus on the decomposition of the N -fold tensor product Hilbert space H⊗N
L of N

L-level atoms into U(L) unirreps. In particular, we shall use Young tableaux and Gelfand-Tsetlin
(GT) patterns along this article since they are powerful diagrammatic methods (see [7,12] for more
details and definitions). The fundamental L × L representation of U(L) is given by a Young box

, and states of one particle by Weyl patterns/tableaux, 1 = |1〉, 2 = |2〉, 3 = |3〉, . . . In
the case L = 3, we apply the Gram-Schmidt orthonormalization procedure to the columns of a
complex triangular matrix T in order to obtain unitary matrices of U(3)

T =





1 0 0
α 1 0
β γ 1





G-S
−−→ V =











1p
`1

−ᾱ−γβ̄p
`1`2

−β̄+ᾱγ̄p
`2

αp
`1

1+ββ̄−αγβ̄p
`1`2

−γ̄p
`2

βp
`1

γ−βᾱ+γαᾱp
`1`2

1p
`2











, (3)

which is parameterized by the complex parameters α,β ,γ ∈ C, where `1 = |T †T |1 = 1+αᾱ+ββ̄
and `2 = |T †T |2 = 1+ γγ̄+ (β −αγ)

�

β̄ − ᾱγ̄
�

. Actually, the addition of the three Cartan phases
u j = eiθ j ∈ U(1), j = 1,2, 3 completes the parameterization as U = V · diag(u1, u2, u3) ∈U(3).
This parameterization is chosen for convenience and is derived from the Bruhat decomposition,
which is a general version of the Gauss-Jordan elimination and is related to the Schubert cell
decomposition of flag manifolds [13]. However, there are many others relevant parameterizations
in the field of spin coherent states such as [14–17].

The LN -dimensional Hilbert space H⊗N
L is represented by the N -fold tensor product repre-

sentation ⊗ (N). . . ⊗ . The Hilbert space is reducible into invariant subspaces, which are
graphically represented by Young frames of h1 + · · ·+ hL = N boxes labeled by h = [h1, . . . , hL],
where hi is the number of boxes in a row i = 1, . . . , L, fulfilling h1 ≥ · · · ≥ hL .

We shall remind that Weyl patterns symbolize the different vectors of a given representation
(Young frame). They are in semistandard form when labels (numbers) inside the pattern increase
from the right to the left, and strictly increase from the top to the bottom. An important result is that
the number of semistandard form Weyl patterns is the dimension of the unirrep. Another useful
definition is the weight of a Weyl pattern, which is the vector w= (w1, . . . , wL)whose components
wk are the population of level k, with w1 + · · ·+ wL = N . The lexicographical rule states that a
state of weight w has lower weight than another with weight w′ if the first non-zero coefficient of
w− w′ is positive. Notably, the highest weight (HW) vector of a unirrep h = [h1, h2, h3] of U(3)
is w= (h1, h2, h3).

The semistandard form Weyl patterns are in one-to-one correspondence with Gelfand-Tsetlin
(GT) patterns [7], another useful diagrammatic method to express the vectors spanning U(L) unir-
reps. GT patterns are labeled by vectors |m〉, and are useful for obtaining the eigenvalues and
matrix elements 〈m|Si j|m′〉 of the collective operators Si j in each unirrep h. This is called the
Gelfand-Tsetlin method [18, 19].

From this point on, we shall study the symmetry classification of the LMG U(3) Hamiltonian
(2) eigenstates, and some QPT precursors. The free LMG U(3) Hamiltonian is obtained by taking
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3 THERMODYNAMIC LIMIT AND MSQPTS

λ = 0 in (2), H(0) = ε
N (S33 − S11), ε > 0. According to the Lieb-Mattis theorem [20, 21], the

lowest-energy eigenstate is the highest weight vector of the fully symmetric unirrep h= [N , 0, 0],
which corresponds to arrange all the particles in the level i = 1, |ψ0〉 = |mhw〉 = 1 · · · 1 (N
boxes). The excited states have an energy En =

n−N
N ε, n= 1, . . . , 2N , and are highly degenerated,

except for E0 and E2N . For instance, the states 1 · · · 1 2 and 1 · · · 1
2

have the same energy

E1.
The two-body interactions governed by λ lift the degeneracy of the eigenstates. For instance,

the lowest energy in the unirrep h = [3, 1,0] is below the third lowest energy in h = [4,0, 0] for
λ < 1, hence mixed symmetry sectors (such as h= [3,1, 0]) should not be disregarded in general
when studying excited states and their energies.

At this point, it is convenient to define the concept of Mixed Symmetry Quantum Phase Tran-
sition (MSQPT) in a nutshell. We want to analyze critical behavior into each Hilbert subspace
Hh corresponding to a unirrep h of U(3), as Hamiltonian evolution does not mix different sec-
tors h. Consequently, we choose the lowest-energy vector |ψh

0〉 inside each Hh, and seek abrupt
changes in its structure when shifting λ in the thermodynamic limit N →∞. But before doing
that, we should consider QPT precursors for finite N (exact eigenstates), which are calculated with
exact/numerical Hamiltonian eigenstates and can anticipate the approximate situation of critical
points. One of them is the fidelity [22, 23], measuring how similar (overlap) two states are in the
vicinity (δλ� 1) of λ, Fψ(λ,δλ) = |〈ψ(λ)|ψ(λ+δλ)〉|2. The fidelity reaches a minimum in the
proximity of a critical point λ(0), when the state |ψ(λ)〉 suffers a drastic change of its structure.
Another precursor, which is less sensitive to the step size δλ, is the susceptibility

χψ(λ,δλ) = 2
1− Fψ(λ,δλ)

(δλ)2
, (4)

which reaches a maximum in the vicinity of the critical point λ(0).
Figure 1a shows the susceptibility of the exact/numerical ground state (GS) of the LMG U(3)

model for different number of particles N . We have done the calculations numerically, giving a
matrix form to the Si j operators using the GT basis |m〉 in each unirrep. In particular, thanks to
the Lieb-Mattis theorem [20, 21], we know that the GS belongs to the fully symmetric irrep, re-
ducing the computations to h= [N , 0, 0] in this case. The susceptibility is sharper as N increases,
predicting a critical point around λ ' 0.55ε for the highest N = 100 curve, which is a precursor
of the QPT eventually occurring exactly at λ(0) = 0.5ε as we will see in Section 3.

On the other hand, Figure 1b displays the susceptibility of the exact lowest-energy vector
inside different mixed symmetry sectors (unirreps h) for a fixed number of particles N = 30. Now,
the would-be critical points (maximum of the susceptibility) move along the different sectors; they
shift to the right from h = [30, 0,0] to h = [20, 10,0] (cyan dashed line), and to the left from
h = [20,10, 0] to h = [15,15, 0] (magenta dashed line). Consequently, the figure envisages a
quadruple point at the unirrep h = [2N/3, N/3,0]. The maxima at the right in the figure are
precursor of another QPT at λ ' 1.5ε, but it is in a different scale and requires a higher N to be
properly characterized.

3 Thermodynamic limit and MSQPTs

We shall start this section talking about coherent states. They are excellent variational (semi-
classical) states, as they reproduce the structure and mean energy density of lowest-energy states
inside each symmetry sector h at N → ∞. For a detailed explanation, see the reference [24],
and [5] for the U(2) case. In our case, we follow the Perelomov’s construction [25, 26] of the
coherent states in a given unirrep h of U(L). Namely, we rotate the HW vector state |mhw〉 of a
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Figure 1: (a) Susceptibility χψ of the ground stateψh=[N ,0,0]
0 of the 3-level LMG Hamil-

tonian (2) for different values of the control parameter λ and the total number of particles
N . It predicts a QPT whose critical point is around λ(0) ' 0.55. (b) Susceptibility χψh

0

(in logarithmic scale) of the lowest-energy vector ψh
0 into different sectors h for a fixed

number of N = 30 atoms. The dashed lines interpolate between the maxima of the sus-
ceptibilities, which are precursors of the would-be critical points dividing phase I from
phase II (cyan), and phase I from phase IV (magenta) (see later on Figure 2 for the dif-
ferent phases). The turn away point, where both dashed lines meet, corresponds to the
unirrep h = [20,10, 0], where four phases will coincide (see later on Sec. 3). We use ε
units for λ and a step size δλ= 0.01 in both figures.

unirrep h by a unitary matrix U ∈U(3) parameterized as in (3), |h, U〉 = Kh(U)|h;α,β ,γ}, where
|h;α,β ,γ} = eβS31 eαS21 eγS32 |mhw〉, and Kh(U) is a normalization factor. For the totally symmet-
ric unirrep h= [N , 0, 0], the highest weight state is invariant under a U(2) subgroup, thus, any one
of the exponential factors can be eliminated to properly define a U(3) CS. The coherent state ex-
pectation values si j = 〈h, U |Si j|h, U〉 of the basic symmetry operators Si j can be easily calculated
in the differential representation (see the Appendix A of [6] for a detailed calculation).

From now on, it is convenient to relabel U(3) unirreps h = [h1, h2, h3] by parameters µ,ν
(we only need two parameters because of the constraint h1 + h2 + h3 = N .). More explicitly,
h3 = νN , h2 = (1−µ)(1−ν)N , h1 = µ(1−ν)N , for allν ∈ [0, 1

3], µ ∈ [
1
2 , 1−2ν

1−ν ], becoming con-
tinuous parameters in the thermodynamic limit. Then, we are able to define the energy surface of a
Hamiltonian density H into the Hilbert space sector (µ,ν) as EU

µ,ν(ε,λ) = limN→∞〈h, U |H|h, U〉.
That is, the coherent state expectation value of the Hamiltonian density in the thermodynamic limit
(N →∞). In the LMG U(3) case,

EU
µ,ν(ε,λ) = lim

N→∞

 

ε(s33 − s11)
N

−
λ
∑3

i 6= j=1 s2
i j

N(N − 1)

!

, (5)

which depends on the type of unirrep (µ,ν), the complex coordinates of U (α,β and γ), and
the control parameters ε and λ. We fix ε and measure the energy surface and λ in ε units, since
EU
µ,ν(ε,λ) = εEU

µ,ν(1,λ/ε). In addition, we benefit from h= [h1, h2, h3] and h′ = [h1−h3, h2−h3, 0]
being equivalent SU(3) unirreps and obtain the expression EU

µ,ν(ε,λ) = (1−3ν)EU
µ̃,0(ε, (1−3ν)λ),

µ̃ = µ(1−ν)−ν
1−3ν , so we restrict to the study of the parent case ν = 0,µ ∈ [1

2 , 1]. For µ = 1, we have
the totally symmetric representations, with a four-dimensional phase space α,β ∈ C and an energy
surface

E(α,β)
1,0 (ε,λ) = ε

ββ̄ − 1

αᾱ+ ββ̄ + 1
−λ

α2
�

β̄2 + 1
�

+
�

β2 + 1
�

ᾱ2 + β̄2 + β2

�

αᾱ+ ββ̄ + 1
�2 , (6)
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3 THERMODYNAMIC LIMIT AND MSQPTS

which is invariant under α→−α, β →−β , thus preserving the discrete parity symmetry inherited
from the Hamiltonian). For µ= 1/2, the representations are linked to rectangular Young tableaux
(h1 = N/2= h2), and the energy surface EU

1
2 ,0
(ε,λ) = 1

2 E(γ,β ′)
1,0 (ε, λ2 ), β

′ = β−αγ, can be obtained

from the totally symmetric case. The intermediate values µ ∈ (1
2 , 1) give a six-dimensional phase

space (flag manifold structure [13]) α,β ,γ ∈ C, whose explicit energy surface expression is bulky.
Henceforward we minimize in the phase space coordinates the energy density of the parent

case (take ν= 0,µ ∈ [1
2 , 1] in (5)), i.e. we find the minimum energy

E(0)µ (ε,λ) =minU∈U(3)E
U
µ,0(ε,λ), ∀µ ∈ [

1
2

,1]. (7)

As we can see in Figure 2, the representation label µ behaves as an additional control parameter,
differentiating four different quantum phases (I, II, III and IV) in the λ-µ plane (color lines).
The transitions between phases for µ 6= 1 can be understood as MSQPTs. We can also find
the aforementioned quadruple point at (λ,µ)q = (3ε/2,2/3), where the four phases coexist. The
MSQPTs are second-order phase transitions as the second derivatives ∂µµE(0)µ (ε,λ),∂λλE(0)µ (ε,λ),
and ∂µλE(0)µ (ε,λ) are discontinuous at critical points.
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Figure 2: Lowest-energy density E(0)µ (ε,λ) of the parental case (7) for different values
of the control parameter λ and the unirrep continuous parameter µ, varying from µ = 1
(black curve) to µ = 1/2 (light yellow curve), with a step size of δµ = 0.01. There are
four different quantum phases in the phase diagram, which coincide at a quadruple point
(λ,µ)q = (3/2, 2/3). The phases are separated by curves of critical points in color red,
magenta, green, and blue. Both axes are in ε units.

The minimization gives many critical points α0,β0,γ0 in the phase space with the same E(0)µ ,
so the lowest-energy state for a general µ is highly degenerated. This behavior is easier to show in
the fully symmetric case µ = 1 (lowest lines of Figure 2), where there are three different phases
and two second-order QPTs at λ(0)I↔II = ε/2 and λ(0)II↔III = 3ε/2. The critical values of α and β
which make the energy surface minimum are real numbers which have the properties α±0 (ε,λ) = 0
∀0≤ λ≤ ε

2 , and β±0 (ε,λ) = 0 ∀0≤ λ≤ 3ε
2 (check the reference [6] for an explicit expression of

the minimum energy surface and the critical points). Therefore, there is a single minimum in phase
I, 0 ≤ λ/ε ≤ 1/2, located at α = β = 0; a double minimum in phase II, 1/2 ≤ λ/ε ≤ 3/2„ with
β = 0; and a quadruple minimum in phase III, λ/ε≥ 3/2. This degenerated minima effect is due
to the spontaneous breakdown of the discrete parity symmetry of the Hamiltonian, as in the limit
N →∞, the four coherent states |α±0 ,β±0 〉 reach the same minimum energy E(0)1 (minimization
of the symmetric case µ = 1, ν = 0 in (5)). The parity restoration of the GS is discussed in the
references [27, 28].
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4 Conclusion

QPTs research in many-body systems usually presuppose the particle indistinguishability, restrict-
ing the scope to the fully symmetric representation (µ= 1), which is often not a general procedure.
That is why we have defined MSQPTs as QPTs of the lowest-energy state in a particular symmetry
sector µ. As a test model, we have chosen an extension of the ubiquitous LMG model to L = 3
levels.

Firstly, we have done numerical calculations for a finite number of particles N to obtain
QPT precursors, such as the susceptibility, which anticipate the QPT in the thermodynamic limit
N → ∞. In general, the precursors give a better approximation to the critical points when in-
creasing N .

Secondly, using coherent (semiclassical) states, we have considered the thermodynamic limit
N →∞ and minimized the energy surface in different unirreps. The critical points λ(0), where
the MSQPTs occur, turn out to depend on the representation index µ. Therefore, we have extended
the phase diagram in an extended control parameter space (λ,µ). In addition, there are evidences
of a quadruple point where four different phases coincide at µ= 2/3. We have also discussed that
the lowest-energy state for general representation µ is degenerated, because of the spontaneous
breakdown of the discrete parity symmetry of the Hamiltonian in the limit N →∞.

To conclude, we propose for further research the possible overlap between MSQPT and ES-
QPT [29], and the exploitation of permutation symmetry in the realm of quantum technolo-
gies [30].
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[2] S. Gnutzmann and M. Kuś, Coherent states and the classical limit on irreducible su3
representations, Journal of Physics A: Mathematical and General 31, 9871 (1999),
doi:10.1088/0305-4470/31/49/011.
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