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Abstract

In this contribution we present a general procedure that allows the construction of non-
commutative spaces with quantum group invariance as the quantization of their associ-
ated coisotropic Poisson homogeneous spaces coming from a coboundary Lie bialgebra
structure. The approach is illustrated by obtaining in an explicit form several noncom-
mutative spaces from (3+1)D (A)dS and Poincaré coisotropic Lie bialgebras. In particu-
lar, we review the construction of the κ-Minkowski and κ-(A)dS spacetimes in terms of
the cosmological constant Λ. Furthermore, we present all noncommutative Minkowski
and (A)dS spacetimes that preserved a quantum Lorentz subgroup. Finally, it is also
shown that the same setting can be used to construct the three possible 6D κ-Poincaré
spaces of time-like worldlines. Some open problems are also addressed.
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1 Introduction

The aim of this contribution is twofold. Firstly, we present a systematic "six-step" procedure
that allows the construction of different noncommutative spaces with a common underlying
homogeneous space G/H where G is a Lie group and H is the isotropy Lie subgroup. The
approach requires starting with a coboundary Lie bialgebra (g,δ(r)) such that g is the Lie
algebra of G and δ is the cocommutator obtained from a classical r-matrix r [1,2]. The main
requirement for our development is that δ must satisfy the coisotropic condition δ(h) ⊂ h∧ g
with respect to the isotropy Lie algebra h of H [3–5]. Since coboundary Lie bialgebras are
the tangent counterpart of Poisson–Lie groups (G,Π) with a Poisson structure Π, the latter just
comes from the so-called Sklyanin bracket in this quantum group setting. Therefore, this leads
to coisotropic Poisson homogeneous spaces (G/H,π) where the Poisson structure π on G/H
is obtained via canonical projection of the Poisson–Lie structure Π on the Lie group G. The
quantization of (G/H,π) gives rise to the corresponding noncommutative space.

Secondly, we illustrate this approach by reviewing, from this general perspective, several
very recent noncommutative spaces that could be of interest in a quantum gravity frame-
work [6]. In particular, throughout the paper we will focus on the (3+1)D (Anti-)de Sitter (in
short (A)dS)) and Poincaré Lie groups and their associated (3+1)D homogeneous spacetimes
together with the 6D Poincaré homogeneous space of time-like geodesics.

The structure of the paper is as follows. In the next section we recall the main necessary
mathematical notions and geometric structures. And, as the main result, we present the six-
step approach to noncommutative spaces from coisotropic Poisson homogeneous spaces. In
Section 3 we apply this procedure in order to recover the well-known κ-Minkowski space-
time [7] as well as the (3+1)D κ-(A)dS spacetimes [8]. In Section 4, we present other non-
commutative (3+1)D Minkowski and (A)dS spacetimes, which are quite different from the
usual κ-spacetimes ones, by requiring to preserve a quantum Lorentz subalgebra [9].

Now, we stress that in many proposals to quantum gravity theories from quantum groups
their cornerstone is usually focused on the (3+1)D noncommutative spacetimes (in general,
the κ-Minkowski spacetime), forgetting the role that 6D quantum spaces of geodesics could be
played. In fact, in our opinion, any consistent theory should consider, simultaneously, both a
(3+1)D noncommutative spacetime and a 6D noncommutative space of worldlines. With this
idea and by taking into account the very same six-step procedure of Section 2, we construct
the 6D κ-Poincaré quantum space of time-like geodesics [10] in Section 5. Furthermore, there
exist two other types of κ-Poincaré deformations beyond the usual "time-like" one; namely, the
"space-like" and the "light-like" deformations (see [11, 12] and references therein). Thus, we
also present in Section 5 these two remaining and very recently obtained 6D noncommutative
Poincaré spaces of geodesics [12].

Finally, some remarks and open problems are addressed in the last section.

2 Noncommutative spaces from Poisson homogeneous spaces

In this section, we firstly review the basic mathematical tools necessary for the paper and,
secondly, we present a general approach that allows one to construct noncommutative spaces
from coisotropic Poisson homogeneous spaces.

Let G be a Lie group with Lie algebra g of dimension d. We consider a decomposition of
g, as a vector space, given by the sum of two subspaces

g= h⊕ t, [h,h] ⊂ h. (1)
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A generic `-dimensional (`D) homogeneous space is defined as the left coset space

M` = G/H, (2)

where H is the (d − `)D isotropy subgroup with Lie algebra h (1). Hence we can identify the
tangent space at every point m= gH ∈ M`, g ∈ G, with the subspace t:

Tm(M
`) = TgH(G/H)' g/h' t= span {T1, . . . , T`}. (3)

The generators of the isotropy subalgebra h keep a point on M` invariant, the origin O, playing
the role of rotations around O, while the ` generators belonging to t move O along ` basic
directions, thus behaving as translations on M`. The local coordinates (t1, . . . , t`) associated
with the translation generators of t (3) give rise to ` coordinates on M`.

A Poisson–Lie (PL) group is a pair (G,Π)where G is a Lie group andΠ is a Poisson structure
such that the Lie group multiplication µ : G × G→ G is a Poisson map with respect to Π on G
and the product Poisson structure ΠG×G = Π⊕Π on G × G. The relation between the Poisson
bivector field and the Poisson bracket is given by

(d f1 ⊗ d f2)Π= { f1, f2}Π. (4)

A Poisson manifold (M ,π) is a manifold M endowed with a Poisson structure π on M . A
Poisson homogeneous space (PHS) for a PL group (G,Π) is a Poisson manifold (M ,π) which
is endowed with a transitive group action α : (G × M ,Π ⊕ π) → (M ,π) which is a Poisson
map. Throughout this paper we shall consider that the manifold is a homogeneous space
M ≡ M` = G/H (2). Moreover, we restrict to the case when the Poisson structure π on M`

can be obtained by canonical projection of the PL structure Π on G.
Next, a Lie bialgebra is a pair (g,δ) where g is a Lie algebra and δ : g→ g ∧ g is a linear

map called the cocommutator satisfying the following two conditions [2]:
(i) δ is a 1-cocycle:

δ([X i , X j]) = [δ(X i), X j ⊗ 1+ 1⊗ X j] + [X i ⊗ 1+ 1⊗ X i , δ(X j)], ∀X i , X j ∈ g. (5)

(ii) The dual map δ∗ : g∗ ⊗ g∗→ g∗ is a Lie bracket on the dual Lie algebra g∗ of g.
Coboundary Lie bialgebras [1,2] are those provided by a skewsymmetric classical r-matrix

r ∈ g∧ g in the form
δ(X i) = [X i ⊗ 1+ 1⊗ X i , r], ∀X i ∈ g, (6)

such that r must be a solution of the modified classical Yang–Baxter equation (mCYBE)

[X i ⊗ 1⊗ 1+ 1⊗ X i ⊗ 1+ 1⊗ 1⊗ X i , [[r, r]] ] = 0, ∀X i ∈ g, (7)

where [[r, r]] is the Schouten bracket defined by

[[r, r]] := [r12, r13] + [r12, r23] + [r13, r23], (8)

such that

r12 = r i jX i ⊗ X j ⊗ 1, r13 = r i jX i ⊗ 1⊗ X j , r23 = r i j1⊗ X i ⊗ X j , (9)

and hereafter sum over repeated indices will be understood unless otherwise stated. If the
Schouten bracket (8) does not vanish the Lie algebra g is said to be endowed with a quasitri-
angular or standard Lie bialgebra structure (g,δ(r)). The vanishing of the Schouten bracket
(8) leads to the classical Yang–Baxter equation (CYBE) [[r, r]] = 0 and (g,δ(r)) is called a
triangular or nonstandard Lie bialgebra.
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The main point now is that coboundary Lie bialgebras (g,δ(r)) are the tangent counter-
part of coboundary PL groups (G,Π) [2], where the Poisson structure Π on G is given by the
Sklyanin bracket

{ f1, f2}= r i j
�

X L
i f1 X L

j f2 − X R
i f1 X R

j f2
�

, f1, f2 ∈ C(G), (10)

such that X L
i and X R

i are left- and right-invariant vector fields defined by

X L
i f (g) =

d
dt

�

�

�

�

t=0
f
�

g etYi
�

, X R
i f (g) =

d
dt

�

�

�

�

t=0
f
�

etYi g
�

, (11)

where f ∈ C(G), g ∈ G and Yi ∈ g. The quantization (as a Hopf algebra) of a PL group (G,Π)
is just the corresponding quantum group.

Given a PHS (M` = G/H,π) with an underlying coboundary Lie bialgebra (g,δ(r)) of
(G,Π), the Poisson structure π on M`, coming from canonical projection of the PL structure Π
on G, is only ensured to be well-defined whenever the so-called coisotropy condition for the
cocommutator δ with respect to the isotropy subalgebra h of H is fulfilled [3–5], namely

δ(h) ⊂ h∧ g. (12)

This condition means that the commutation relations that define the noncommutative space
M`

z , with underlying classical space M` (2) and quantum deformation parameter q = ez , at
the first-order in all the quantum coordinates ( t̂1, . . . , t̂`) close on a Lie subalgebra which is
just the annihilator h⊥ of h on the dual Lie algebra g∗:

h⊥ ≡ M`
z . (13)

The duality between the generators of t (3) and the quantum coordinates ( t̂1, . . . , t̂`) spanning
M`

z is determined by a canonical pairing given by the bilinear form

〈 t̂ j , Tk〉= δ
j
k , ∀ j, k. (14)

Noncommutative spaces can finally be obtained as quantizations of coisotropic PHS in all or-
ders in the quantum coordinates ( t̂1, . . . , t̂`), so completing the initial quantum space M`

z (13)
which just determines the Lie-algebraic (linear) contribution.

A general approach in order to construct any noncommutative space from any coisotropic
PHS (M` = G/H,π) with coboundary Lie bialgebra (g,δ(r)), so fulfilling (12), is summarized
in six steps (see [9,12] and references therein) as follows:

1. Consider a faithful representation ρ of the Lie algebra g.

2. Compute, by exponentiation, an element of the Lie group G according to the left coset
space M` = G/H (2) in the form

GM` = exp
�

t1ρ(T1)
�

· · · exp
�

t`ρ(T`)
�

H, (15)

where (T1, . . . , T`) are the translation generators on M`, H is the (d − `)D isotropy sub-
group, and (t1, . . . , t`) are local coordinates associated with the above translation gener-
ators of t (3). Note that these coordinates are independent of the representation chosen
in the previous step, provided that it is faithful.

3. Calculate the corresponding left- and right-invariant vector fields (11) from GM` (15).
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4. Consider a classical r-matrix (7) so determining a coboundary Lie bialgebra (g,δ(r))
(either of quasitriangular or triangular type), which is the tangent counterpart of the
corresponding coboundary PL group (G,Π).

5. Obtain the Poisson brackets among the local translation coordinates (t1, . . . , t`) via the
Sklyanin bracket (10) from the chosen classical r-matrix. The resulting expressions de-
fine the coisotropic PHS.

6. Finally, quantize the PHS thus obtaining the noncommutative space in terms of the quan-
tum coordinates ( t̂1, . . . , t̂`).

In the next sections we illustrate the above procedure by applying it to several (A)dS and
Poincaré quantum deformations giving rise to noncommutative spaces that could be relevant
in a quantum gravity framework [6].

3 κ-Minkowski and κ-(A)dS noncommutative spacetimes

Let us consider the (3+1)D Poincaré and (A)dS Lie algebras expressed as a one-parametric
family of Lie algebras denoted by gΛ depending on the cosmological constant Λ. In a kinemat-
ical basis spanned by the generators of time translations P0, spatial translations P= (P1, P2, P3),
boost transformations K= (K1, K2, K3) and rotations J= (J1, J2, J3), the commutation relations
of gΛ are given by

[Ja, Jb] = εabcJc , [Ja, Pb] = εabc Pc , [Ja, Kb] = εabcKc ,
[Ka, P0] = Pa, [Ka, Pb] = δabP0, [Ka, Kb] = −εabcJc ,
[P0, Pa] = −ΛKa, [Pa, Pb] = ΛεabcJc , [Ja, P0] = 0.

(16)

From now on, Latin indices run as a, b, c = 1, 2,3 while Greek ones run as µ = 0, 1,2, 3. The
Lie algebra gΛ comprises the dS algebra so(4,1) for Λ > 0, the AdS algebra so(3, 2) for Λ < 0
and the Poincaré one iso(3,1) when Λ= 0.

The first step in our approach is to consider a faithful representation ρ : gΛ→ End(R5) for
X ∈ gΛ, that reads

ρ(X ) = xµρ(Pµ) + ξ
aρ(Ka) + θ

aρ(Ja) =











0 Λx0 −Λx1 −Λx2 −Λx3

x0 0 ξ1 ξ2 ξ3

x1 ξ1 0 −θ3 θ2

x2 ξ2 θ3 0 −θ1

x3 ξ3 −θ2 θ1 0











. (17)

By exponentiation we obtain a one-parametric family of Lie groups, GΛ, that covers the dS
SO(4,1) for Λ > 0, the AdS SO(3,2) for Λ < 0, and the Poincaré ISO(3,1) for Λ = 0. The
(3+1)D Minkowski and (A)dS homogeneous spacetimes (2), M3+1

Λ , are defined by

M3+1
Λ = GΛ/H, H = SO(3,1) = 〈K,J〉, (18)

where the Lie algebra h of H is the Lorentz subalgebra and t= span {Pµ} (1). Observe that the
constant sectional curvature of M3+1

Λ is ω= −Λ.
Our aim now is to construct the κ-noncommutative counterpart of M3+1

Λ (18). According
to (15) (step 2 in Section 2) we compute GΛ in terms of local coordinates (xµ,ξa,θ a) as

GΛ = exp
�

x0ρ(P0)
�

exp
�

x1ρ(P1)
�

exp
�

x2ρ(P2)
�

exp
�

x3ρ(P3)
�

H, (19)
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where the Lorentz subgroup H = SO(3, 1) is parametrized by

H = exp
�

ξ1ρ(K1)
�

exp
�

ξ2ρ(K2)
�

exp
�

ξ3ρ(K3)
�

exp
�

θ1ρ(J1)
�

exp
�

θ2ρ(J2)
�

exp
�

θ3ρ(J3)
�

.
(20)

Notice that here the index `= 4 in (2) and the generic local coordinates (t1, t2, t3, t4) in (15)
corresponds to the spacetime coordinates (x0, x1, x2, x3).

Following the step 3 in Section 2 we compute the left- and right-invariant vector fields (11)
from GΛ. In the step 4 we have to consider a classical r-matrix and we distinguish two cases
between κ-Poincaré with Λ= 0 and κ-(A)dS with Λ 6= 0.

The κ-Poincaré classical r-matrix is a solution of the mCYBE (7) and reads [7,13]

r0 =
1
κ
(K1 ∧ P1 + K2 ∧ P2 + K3 ∧ P3), (21)

that satisfies the coisotropy condition (12) with respect to h= span{K, J} and where the quan-
tum deformation parameter κ= 1/z. The corresponding Sklyanin bracket (10) leads to linear
Poisson brackets for the classical coordinates xµ which determine the κ-Minkowski PHS. This
can therefore be quantized directly in terms of the quantum coordinates x̂µ. Hence we recover
well-known κ-Minkowski spacetime [7] (see also [5,11,14,15] and references therein) which
is of Lie-algebraic type:

[ x̂0, x̂a] = −
1
κ

x̂a, [ x̂a, x̂ b] = 0, (22)

completing the final steps 5 and 6 in Section 2.
When Λ 6= 0 we consider the κ-(A)dS classical r-matrix, which is also a a solution of the

mCYBE (7), given by [8,16,17]

rΛ =
1
κ
(K1 ∧ P1 + K2 ∧ P2 + K3 ∧ P3 +ηJ1 ∧ J2), (23)

such that the parameter η is related to the cosmological constant Λ and the sectional curvature
ω of the (A)dS spacetimes (18) by

ω= η2 = −Λ. (24)

Thus η is real for AdS and a purely imaginary number for dS. The Sklyanin bracket now gives
rise to the (nonlinear) κ-(A)dS PHS in the form [8]

{x0, x1}= −
1
κ

tanh(ηx1)

η cosh2(ηx2) cosh2(ηx3)
,

{x0, x2}= −
1
κ

tanh(ηx2)

η cosh2(ηx3)
,

{x0, x3}= −
1
κ

tanh(ηx3)
η

,

(25)

{x1, x2}= −
1
κ

cosh(ηx1) tanh2(ηx3)
η

,

{x1, x3}=
1
κ

cosh(ηx1) tanh(ηx2) tanh(ηx3)
η

,

{x2, x3}= −
1
κ

sinh(ηx1) tanh(ηx3)
η

.

(26)
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Consequently, in contrast to the κ-Minkowski spacetime (22) when Λ 6= 0 the 3-space (26),
determined by xa, is no longer commutative and ordering ambiguities arise in (25) and (26)
which precludes a direct quantization. This problem can be circumvented by introducing five
ambient coordinates in the (A)dS spacetimes (18) denoted (s4, sµ) ∈ R5 such that they fulfil
the pseudosphere constraint

ΣΛ ≡ (s4)2 −Λ(s0)2 +Λ
�

(s1)2 + (s2)2 + (s3)2
�

= 1. (27)

These read [8,9]

s4 = cos(ηx0) cosh(ηx1) cosh(ηx2) cosh(ηx3),

s0 =
sin(ηx0)
η

cosh(ηx1) cosh(ηx2) cosh(ηx3),

s1 =
sinh(ηx1)

η
cosh(ηx2) cosh(ηx3),

s2 =
sinh(ηx2)

η
cosh(ηx3),

s3 =
sinh(ηx3)

η
,

(28)

and the spacetime coordinates xµ are called geodesic parallel coordinates. Notice also that
qµ = sµ/s4 are Beltrami projective coordinates in M3+1

Λ (18) which can be obtained through
the projection with pole (0,0, 0,0, 0) ∈ R5 of a point with ambient coordinates (s4, sµ) onto
the projective hyperplane with s4 = +1 (see [18] for details). Next, if we compute the Pois-
son brackets among (s4, sµ) from (25) and (26), consider the quantum coordinates (ŝ4, ŝµ)
along with the ordered monomials (ŝ0)k (ŝ1)l (ŝ3)m (ŝ2)n (ŝ4) j , we finally obtain the κ-(A)dS
spacetimes M3+1

Λ,κ expressed as a quadratic algebra [8]

[ŝ0, ŝa] = −
1
κ

ŝa ŝ4, [ŝ4, ŝa] =
η2

κ
ŝ0ŝa, [ŝ0, ŝ4] = −

η2

κ
Ŝη/κ,

[ŝ1, ŝ2] = −
η

κ
(ŝ3)2, [ŝ1, ŝ3] =

η

κ
ŝ3ŝ2, [ŝ2, ŝ3] = −

η

κ
ŝ1ŝ3,

(29)

where the quantum 3-space Ŝη/κ operator is given by

Ŝη/κ = (ŝ1)2 + (ŝ2)2 + (ŝ3)2 +
η

κ
ŝ1ŝ2. (30)

Obviously, Jacobi identities are satisfied. We remark that M3+1
Λ,κ (29) has a Casimir operator

Σ̂Λ,κ = (ŝ
4)2 −Λ(ŝ0)2 +

Λ

κ
ŝ0ŝ4 +Λ Ŝη/κ, (31)

which is the quantum analogue of the pseudosphere (27) (recall that Λ= −η2 (24)).
As expected, under the flat limit η → 0 (i.e., Λ → 0), the ambient coordinates (s4, sµ)

(28) provide the usual Cartesian ones (1, xµ) in the Minkowski spacetime and the κ-(A)dS
spacetimes (29) reduce to the κ-Minkowski spacetime (22).

4 Noncommutative (A)dS and Minkowski spacetimes with quan-
tum Lorentz subgroups

In this section we present very recent results concerning (3+1)D noncommutative (A)dS and
Minkowski spacetimes that preserve a quantum Lorentz subgroup which were obtained in [9]

7
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by following the same six-step procedure described in Section 2. We advance that these are
quite different from the κ-Minkowski (22) and κ-(A)dS (29) spacetimes reviewed in the pre-
vious section. Hence, we keep the same notation as in Section 3, in particular we shall make
use of the expressions (16)–(20), (24), (27) and (28).

We consider the family of the (3+1)D Poincaré and (A)dS Lie algebras gΛ (16) and search
for classical r-matrices (7) that keep the Lorentz subalgebra h = span{K, J} = so(3,1) as a
sub-Lie bialgebra, that is,

δ (h) ⊂ h∧ h, (32)

which is a more restrictive version of the coisotropy condition (12). This restriction implies
that the corresponding PHS is constructed through the Lorentz isotropy subgroup H = SO(3, 1)
such that (H,Π|H) is a PL subgroup of (GΛ,Π) and it is called a PHS of Poisson subgroup type.

Then we start with the most general element r ∈ gΛ ∧ gΛ. Since the dimension of gΛ is
d = 10, r depends on 45 initial deformation parameters. From it, we directly compute the
cocommutator δ (6) such that (gΛ,δ(r)) defines a Lie bialgebra if and only if r is a solution of
the mCYBE (7). Moreover, we have to impose the condition (32).

The simplest case is to require that δ (h) = 0 which means that the Lorentz subgroup
remains underformed. The final result is summarized as [9]:

Proposition 1. The only PL group (GΛ,Π) such that Π|H = 0 is the trivial one.

Therefore the only PHS (M3+1
Λ = GΛ/H,π) of Poisson Lorentz subgroup type such that

Π|H = 0 is the trivial one. In other words, there does not exist any quantum deformation of
the (3+1)D Poincaré and (A)dS Lie algebras preserving the Lorentz subalgebra h underformed.

Now the main question is whether there exists a quantum deformation of gΛ preserving
a non-trivial quantum Lorentz subalgebra, that is, δ (h) ⊂ h ∧ h 6= 0. The answer is positive.
By taking into account previous results concerning quantum Poincaré groups [19, 20] and
quantum deformations of the Lorentz algebra h = so(3, 1) [21], it can be proven that the
classification of the quantum deformations of gΛ keeping a quantum Lorentz subalgebra can
be casted into three types as follows [9]:

Proposition 2. There exist three classes of PHS (M3+1
Λ = GΛ/H,π) for each of the maximally

symmetric relativistic spacetimes of constant curvature (Minkowski and (A)dS) (18) such that
the isotropy Lorentz subgroup H is a PL subgroup of (GΛ,Π). All of them are obtained from
coboundary PL structures on their respective isometry group GΛ which are determined, up to gΛ-
isomorphisms, by the classical r-matrices

rI = z (K1 ∧ K2 + K1 ∧ J3 − K3 ∧ J1 − J1 ∧ J2)

− z′ (K2 ∧ K3 − K2 ∧ J2 − K3 ∧ J3 + J2 ∧ J3),

rII = z K1 ∧ J1,

rIII = z (K1 ∧ K2 + K1 ∧ J3),

(33)

where z and z′ are free quantum deformation parameters. These three classical r-matrices are
solutions of the CYBE [[r, r]] = 0.

Hence the three classes correspond to triangular or nonstandard deformations. Types II and
III would provide one-parametric deformations, while type I would lead to a two-parametric
one with arbitrary deformation parameters z and z′. Recall that the κ-gΛ deformations de-
scribed in the previous section have a quasitriangular or standard character.

Next we apply the approach presented in Section 2 in order to construct the correspond-
ing PHS from the above classical r-matrices in terms of the local coordinates xµ through the
Sklyanin bracket (10). However, the resulting expressions are rather cumbersome and strong

8
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Table 1: The three types of (A)dS and Minkowski noncommutive spacetimes with quantum
Lorentz subgroups determined by Proposition 2. These are expressed in quantum ambient
spacetime coordinates ŝµ (28) or in (ŝ± = ŝ0 ± ŝ1, ŝ2, ŝ3). The quantum coordinate ŝ4 always
commutes with ŝµ.

Type I rI = z(K1 ∧ K2 + K1 ∧ J3 − K3 ∧ J1 − J1 ∧ J2)

−z′(K2 ∧ K3 − K2 ∧ J2 − K3 ∧ J3 + J2 ∧ J3)

• Subfamily with z = 0

[ŝ−, ŝ2] = −2z′ŝ+ŝ3 [ŝ−, ŝ3] = 2z′ŝ+ŝ2 [ŝ2, ŝ3] = z′(ŝ+)2 [ŝ+, · ] = 0

• Subfamily with z′ = 0

[ŝ−, ŝ+] = 2zŝ+ŝ2 [ŝ−, ŝ2] = zŝ−ŝ+ − 2z(ŝ3)2 [ŝ−, ŝ3] = 2zŝ3ŝ2

[ŝ2, ŝ3] = zŝ+ŝ3 [ŝ+, ŝ2] = −z(ŝ+)2 [ŝ+, ŝ3] = 0

Type II rII = zK1 ∧ J1

[ŝ0, ŝ1] = 0 [ŝ0, ŝ2] = zŝ1ŝ3 [ŝ0, ŝ3] = −zŝ1ŝ2

[ŝ2, ŝ3] = 0 [ŝ1, ŝ2] = zŝ0ŝ3 [ŝ1, ŝ3] = −zŝ0ŝ2

Type III rIII = z(K1 ∧ K2 + K1 ∧ J3)

[ŝ2, ŝ+] = z(ŝ+)2 [ŝ2, ŝ−] = −zŝ−ŝ+ [ŝ−, ŝ+] = 2zŝ+ŝ2 [ŝ3, ŝµ] = 0

ordering ambiguities appear, so there is no a direct quantization for any class. In order to solve
this problem we proceed similarly to the κ-(A)dS spacetimes (29). We again consider the am-
bient coordinates (s4, sµ) (28) (subjected to the pseudosphere constraint (27)), compute their
PL brackets from those initially given in terms of xµ, and finally obtain the corresponding non-
commutive spacetimes by choosing an appropriate order in the quantum coordinates (ŝ4, ŝµ)
(so satisfying the Jacobi identities).

As a final result, we display in Table 1 all the (3+1)D Minkowski and (A)dS noncommutive
spacetimes that preserve a non-trivial quantum Lorentz subgroup [9].

Now some remarks are in order.

• The ambient quantum coordinate ŝ4 is always a central element for all the three types
of noncommutive spacetimes, [ŝ4, ŝµ] = 0, so that these are just defined by the (3+1)
quantum variables ŝµ.

• In this respect, we remark that the corresponding noncommutive Minkowski spacetimes
can directly be obtained through the flat limit Λ → 0 (or η → 0), in such a man-
ner that the quantum coordinates (ŝ4, ŝµ) reduce to the usual quantum Cartesian ones
(1, x̂µ). Since ŝ4 is absent in all the expressions presented in Table 1, the noncommutive
Minkowski spacetimes adopt the very same formal expressions in the quantum Cartesian
coordinates x̂µ.

• For types I and III it is found that the explicit noncommutive spacetimes are naturally
adapted to a null-plane basis [9,22] and for this reason we have considered the quantum
coordinates (ŝ± = ŝ0 ± ŝ1, ŝ2, ŝ3) instead of ŝµ. Thus they lead to ( x̂± = x̂0 ± x̂1, x̂2, x̂3)
for the Minkowski cases.
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• In type I we have distinguished two subfamilies with either z or z′ equal to zero in order
to clarify the presentation of the results. Nevertheless, observe that the general noncom-
mutive spacetimes of type I is just the superposition (the sum) of both subfamilies.

• We remark that the type II noncommutative spacetime has already been obtained for
the quadratic Minkowski case in [23] (set ŝµ ≡ x̂µ) by following a different approach
from ours; that is, from a twisted quantum Poincaré group and then applying the FRT
procedure. Notice that, in fact, the classical r-matrix rII (33) is just a Reshetikhin twist.

• Finally, the type III noncommutative spacetimes can be regarded as (2+1)D quantum
spaces since the quantum coordinate ŝ3 is a central operator, [ŝ3, · ] = 0. We recall that
when this structure is, again, only applied to the Minkowski case ( x̂± = x̂0 ± x̂1, x̂2), it
was already obtained from a Drinfel’d double structure of the (2+1)D Poincaré group
in [24]. In addition, we stress that the corresponding quantum algebra for gΛ comes from
the lower dimensional Lorentz subalgebra so(2,1) spanned by {J3, K1, K2} which is just
the well-known nonstandard (or Jordanian) quantum deformation of sl(2,R)' so(2, 1)
(see [25–28]). For higher-dimensional quantum (A)dS algebras keeping such a nonstan-
dard quantum sl(2,R) Hopf subalgebra we refer to [29].

5 κ-Poincaré space of time-like worldlines and beyond

So far we have constructed several (3+1)D Minkowski and (A)dS noncommutive spacetimes
by applying the approach given in Section 2. However, we stress that such a procedure is rather
general and can be applied to any homogeneous space. Hence in this section we shall consider
the 6D homogeneous space of time-like Poincaré geodesics and obtain its κ-noncommutative
version [10].

With this aim we consider the following Cartan decomposition of the Poincaré algebra
gΛ ≡ g and GΛ ≡ G with commutation relations (16) with Λ= 0 (see (1)):

g= ttl ⊕ htl, ttl = span{P,K}, htl = span{P0, J}= R⊕ so(3). (34)

The homogeneous space of time-like geodesics is of dimension six and is defined by

Wtl = G/Htl, (35)

where the isotropy subgroup Htl = R⊗ SO(3) comes from the Lie subalgebra htl (34).
By following the procedure presented in Section 2, we first parametrize the Poincaré Lie

group from the 5D matrix representation (17) with Λ= 0 taking into account the order given
in (15), that is,

GWtl
= exp

�

η1ρ(K1)
�

exp
�

y1ρ(P1)
�

exp
�

η2ρ(K2)
�

exp
�

y2ρ(P2)
�

× exp
�

η3ρ(K3)
�

exp
�

y3ρ(P3)
�

Htl,
(36)

where Htl is the stabilizer of the worldline corresponding to a massive particle at rest at the
origin of the (3+1)D Minkowski spacetime, namely

Htl = exp
�

φ1ρ(J1)
�

exp
�

φ2ρ(J2)
�

exp
�

φ3ρ(J3)
�

exp
�

y0ρ(P0)
�

. (37)

Therefore the classical coordinates (t1, . . . , t`) in (15) correspond to (ηa, ya) in (36) (recall
that now `= 6). Next we consider the κ-Poincaré r-matrix (21) and by projecting the Sklyanin
bracket (10) to the homogeneous space (35) we obtain a coisotropic PHS for the classical space
of time-like geodesics which can be straightforwardly quantized since no ordering problems

10
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appear. In this way, the κ-Poincaré space of time-like geodesics Wtl,κ in terms of the six quan-
tum coordinates ( ŷa, η̂a) turns out to be [10]:

[ ŷ1, ŷ2] =
1
κ

�

ŷ2 sinh η̂1 −
ŷ1 tanh η̂2

cosh η̂3

�

,

[ ŷ1, ŷ3] =
1
κ

�

ŷ3 sinh η̂1 − ŷ1 tanh η̂3
�

,

[ ŷ2, ŷ3] =
1
κ

�

ŷ3 cosh η̂1 sinh η̂2 − ŷ2 tanh η̂3
�

,

[ ŷ1, η̂1] =
1
κ

�

cosh η̂1 cosh η̂2 cosh η̂3 − 1
�

cosh η̂2 cosh η̂3
,

[ ŷ2, η̂2] =
1
κ

�

cosh η̂1 cosh η̂2 cosh η̂3 − 1
�

cosh η̂3
,

[ ŷ3, η̂3] =
1
κ

�

cosh η̂1 cosh η̂2 cosh η̂3 − 1
�

,

(38)

together with
[η̂a, η̂b] = 0, ∀a, b, [ ŷa, η̂b] = 0, a 6= b. (39)

The above commutators can also be written in terms of quantum Darboux operators (q̂a, p̂a)
on a 6D smooth submanifold (η1,η2,η3) 6= (0,0, 0); these are defined by

q̂1 :=
cosh η̂2 cosh η̂3

cosh η̂1 cosh η̂2 cosh η̂3 − 1
ŷ1,

q̂2 :=
cosh η̂3

cosh η̂1 cosh η̂2 cosh η̂3 − 1
ŷ2,

q̂3 :=
1

cosh η̂1 cosh η̂2 cosh η̂3 − 1
ŷ3,

p̂a := η̂a,

(40)

where the ordering (η̂a)m ( ŷa)n has to be preserved. They lead to the canonical commutation
relations

�

q̂a, q̂b
�

=
�

p̂a, p̂b
�

= 0,
�

q̂a, p̂b
�

=
1
κ
δab. (41)

From these expressions we find that the noncommutative space Wtl,κ can be regarded as three
copies of the usual Heisenberg–Weyl algebra of quantum mechanics where the deformation
parameter κ−1 replaces the Planck constant ħh. We also recall that a first phenomenological
analysis for Wtl,κ, expressed in the form (38) and (39), was performed in [30].

So far we have constructed the noncommutative space Wtl,κ from the usual "time-like" κ-
Poincaré deformation with classical r-matrix (21). However we remark that there exist two
other possible κ-Poincaré deformations provided by "space-like" and "light-like" classical r-
matrices [10,11]. The quantization procedure described in Section 2 can similarly be applied
to these remaining cases in order to construct the quantum counterpart of the 6D homogeneous
space Wtl (35). Therefore we shall keep exactly the expressions (36) and (37) together with
the associated invariant vector fields and only change the underlying r-matrix. In what follows
we summarize the final results which were recently obtained in [12].

We consider the "space-like" r-matrix given by

r =
1
κ
(K3 ∧ P0 + J1 ∧ P2 − J2 ∧ P1) , (42)

11
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which is also a solution of the mCYBE (7), so quasitriangular. The corresponding quantum
Poincaré algebra was obtained in [31] (c.f. Type 1. (a) with z = 1/κ). When computing
the PHS it is found that again there are no ordering problems so that this can be quantized
directly leading to the commutation relations defining Wtl,κ from the "space-like" κ-Poincaré
deformation; these are

[ ŷ1, ŷ2] = −
1
κ

ŷ1 tanh η̂2 tanh η̂3,

[ ŷ1, ŷ3] =
1
κ

ŷ1

cosh η̂3
,

[ ŷ2, ŷ3] =
1
κ

ŷ2

cosh η̂3
,

[ ŷ1, η̂1] = −
1
κ

tanh η̂3

cosh η̂2
,

[ ŷ2, η̂2] = −
1
κ

tanh η̂3,

[ ŷ3, η̂3] = −
1
κ

sinh η̂3,

(43)

with the same vanishing brackets given by (39).
Finally, in the kinematical basis (16) with Λ = 0 the "light-like" κ-Poincaré deformation is

determined by

r =
1
κ
(K3 ∧ P0 + K1 ∧ P1 + K2 ∧ P2 + K3 ∧ P3 + J1 ∧ P2 − J2 ∧ P1) , (44)

which is triangular with vanishing Schouten bracket. This element provides the so-called "null-
plane" quantum Poincaré algebra introduced in [32, 33] (where z = 1/κ) in terms of a null-
plane basis [22] instead of the kinematical one. Notice that the "light-like" r-matrix (44) is
just the sum of the "time-like" r-matrix (21) and the "space-like" one (42). Consequently, as
expected, the resulting PHS can directly be quantized giving rise to Wtl,κ from the "light-like"
κ-Poincaré deformation which turns out to be given by the sum of (38) and (43) (preserving
the same vanishing brackets (39)); namely

[ ŷ1, ŷ2] =
1
κ

�

ŷ2 sinh η̂1 −
ŷ1 tanh η̂2

�

sinh η̂3 + 1
�

cosh η̂3

�

,

[ ŷ1, ŷ3] =
1
κ

�

ŷ3 sinh η̂1 −
ŷ1
�

sinh η̂3 − 1
�

cosh η̂3

�

,

[ ŷ2, ŷ3] =
1
κ

�

ŷ3 cosh η̂1 sinh η̂2 −
ŷ2(sinh η̂3 − 1)

cosh η̂3

�

,

[ ŷ1, η̂1] =
1
κ

�

cosh η̂1 cosh η̂2 cosh η̂3 − sinh η̂3 − 1
cosh η̂2 cosh η̂3

�

,

[ ŷ2, η̂2] =
1
κ

�

cosh η̂1 cosh η̂2 cosh η̂3 − sinh η̂3 − 1
cosh η̂3

�

,

[ ŷ3, η̂3] =
1
κ

�

cosh η̂1 cosh η̂2 cosh η̂3 − sinh η̂3 − 1
�

.

(45)

We remark that quantum Darboux operators (q̂a, p̂a) satisfying (41) can also be defined for
these latter noncommutative spaces [12].
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6 Concluding remarks and open problems

In this "twofold" contribution we have, firstly, presented in Section 2 a general approach to con-
struct noncommutative spaces from coisotropic PHS spaces determined by a coboundary Lie
bialgebra structure and, secondly, we have applied it to the physically relevant (3+1)D (A)dS
and Poincaré Lie groups. Besides the well-known (3+1)D κ-spacetimes shown in Section 3,
we have also presented quite different (i.e. non-equivalent) (3+1)D noncommutative (A)dS
and Minkowski spacetimes by requiring to preserve a quantum Lorentz subgroup invariant in
Section 4. In addition, we have also considered noncommutative spaces beyond the (3+1)D
noncommutative spacetimes, which are the usual models considered in quantum gravity. In
this respect, we have presented the only three possible 6D noncommutative spaces of time-
like geodesics provided the three types of κ-Poincaré quantum deformations in Section 5. We
stress that a classification of all 6D noncommutative spaces of κ-Poincaré geodesics, covering
the usual time-like worldlines, already here described, along with the space-like and light-like
geodesics can be found in [12].

To conclude, we would like to comment on some open problems. Obviously, the procedure
considered here can be applied to any coisotropic PHS space providing new noncommutative
spaces. As far as (3+1)D (A)dS and Minkowski noncommutative spacetimes are concerned, we
have presented their well-known κ-deformation together with all possible quantum spacetimes
preserving a non-trivial quantum Lorentz subgroup. These results constitute the cornerstone
of a large number of possibilities for a further development. Nevertheless, we remark that
quantum spaces of geodesics have not been considered and studied so deeply. In fact, to
the best of our knowledge, only κ-deformations for quantum Poincaré geodesics have been
achieved. This fact not only suggests the consideration of other types of quantum Poincaré
geodesics but, in our opinion, the relevant open problem is to construct quantum (A)dS spaces
of geodescics; there are no results on this problem from a quantum group setting. In fact,
for the κ-Poincaré space of time-like worldlines (from the usual κ-Poincaré algebra) its fuzzy
properties have been studied in [30] and by following [30, 34] a similar analysis could be
faced with the other types of κ-Poincaré geodesics. Consequently, the construction of (A)dS
noncommutative spaces of geodesics (covariant under their corresponding (A)dS quantum
groups) could be achieved following the same approach here presented, and thus the role of
a nonvanishing cosmological constant (or curvature) in this novel noncommutative geometric
setting could be further analysed. Work on all these lines is in progress.
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