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1 Introduction

In recent years, we have seen remarkable progress in our understanding of the role that

non-perturbative effects play in black hole physics [1–3]. Most prominently, new saddles to

the Euclidean gravitational path integral have been found that contribute to the entropy of

Hawking radiation [4, 5]. When included, these saddles cap off the growth of the entropy

of Hawking radiation, thereby showing behavior consistent with unitarity.1 These results

highlight the importance of non-perturbative effects in gravitational backgrounds. In addition,

similar corrections to the entropy of Hawking radiation in de Sitter space have also been

investigated, indicating that these effects are a universal property of event horizons [7–13].

Understanding the role that non-perturbative effects play in asymptotically de Sitter

space is an especially pressing question, given its direct relevance to our own universe. Al-

though some progress in this direction has been made by studying the behavior of entropy

in simplified two-dimensional models of cosmology, ideally one would like to consider more

relevant objects, like correlators, in realistic higher-dimensional cosmological spacetimes.

In this paper, we take a modest step in this direction by considering the late-time behavior

of certain correlation functions, which is expected to be in conflict with the finite entropy

of de Sitter space. In Ref. [14] Maldacena argued in the context of AdS/CFT that two-

point correlation functions in the thermofield double state of two maximally entangled CFTs

1See [6] for an accessible review of these developments.
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show quasi-periodic behavior as a direct consequence of the discrete spectrum of energy

eigenstates. Instead, when computing the same correlator in the dual eternal black hole

geometry one finds that it exponentially decays. Maldacena suggested that this tension can

be resolved by realizing that the duality between the CFT thermofield double state and the

bulk geometry prepared by a Euclidean path integral involves a sum over bulk geometries.

Typically, the eternal black hole is the dominant saddle point of this path integral, giving rise

to exponentially decaying correlation functions, but at late times other saddles, for instance

thermal AdS, might become relevant. Although later work [15] showed that thermal AdS

cannot completely resolve this tension, it does emphasize the importance of non-perturbative

effects, and more recent developments have suggested that (replica) wormholes could resolve

this tension.

The motivation for this work is that an analogous tension, between exponentially decaying

bulk correlation functions and finite entropy, arises in de Sitter space. The static patch of

de Sitter space has a cosmological horizon with an associated entropy proportional to the

horizon area in Planck units, A/4 [16]. Moreover, it also appears that vacuum de Sitter space

corresponds to the maximum entropy state, i.e. any additional energy lowers the entropy.

Although the microscopic nature of the de Sitter entropy is still very much mysterious, this

does suggest that the Hilbert space of quantum gravity in de Sitter space, and consequently

its holographically dual description, is finite-dimensional [17–21]. Of course, the absence of

a well-understood holographic dual to de Sitter space obstructs a direct comparison between

correlation functions in the bulk and its dual. Still, assuming the underlying microscopic

theory has a discrete energy spectrum, correlation functions in de Sitter space are expected

to display quasi-periodic behavior. In lowest order, however, we find that correlation functions

with operators in conjugate static patches of de Sitter space decay exponentially at late times.

Specifically, in this paper we consider bulk two-point correlation functions of massive

scalar fields, and we compute them by making use of heat-kernel methods. By exploiting an

expansion of the heat kernel valid for heavy fields, we derive an expression for the correlator

on a generic curved background that involves a sum over geodesics between the two operators.

Specifying to de Sitter space and focusing on correlation functions with operators in conjugate

static patches, we show that even in the absence of real geodesics connecting these operators,

a sum over complex geodesics correctly reproduces the late-time, large mass behavior of

the correlator in general dimensions. This is the main result of our paper. We then verify

that the sum of the two complex conjugate geodesics indeed shows exponential decay at

late times, governed by the real (timelike) part of the complex geodesic. Finally, we discuss

the important difference with respect to the AdS eternal black hole and speculate how non-

perturbative corrections due to other saddle geometries might modify this result in a manner

consistent with finite entropy.

The rest of this article is organized as follows. In Section 2 we set up notation and discuss

geodesics in de Sitter space. We use the Schwinger-deWitt formalism to derive a geodesic ap-

proximation for the Feynman propagator in a general background. In Section 3 we restrict to

propagators in de Sitter space and show how they can be reproduced by employing a geodesic
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approximation that sums over geodesics. We conclude in Section 4 with a discussion of our

results and their relevance for the information paradox in de Sitter space.

Note added: We coordinated submission on arXiv with the work [22], which also uses

complex geodesics in de Sitter space to compute correlation functions. Our methods are

complimentary, since they use a saddle point approximation of a path integral, whereas we

employ heat kernel expansion methods.

2 Geodesic Approximation to Correlators in De Sitter Space

We start with a review of geodesics in de Sitter space, after which we introduce the Schwinger-

deWitt formalism to compute Feynman propagators.

2.1 Preliminaries on Geodesics in de Sitter Space

It is convenient to study geodesics in de Sitter space using the embedding formalism. De

Sitter space can be described by the embedding equation (see e.g. [23])

ηABX
AXB = ℓ2 , (2.1)

where XA with A = 0, . . . , d+1 are the embedding coordinates, ηAB is the (d+2)-dimensional

Minkowski metric with signature (−+ · · ·+) and ℓ is a length scale called the de Sitter radius.

Given two points (x, y) the (square of the) de Sitter invariant distance measured in de Sitter

units is given by

Z(x, y) =
1

ℓ2
ηABX

A(x)XB(y) . (2.2)

Let x̄ denote the antipodal point of x. The invariant distance Z(x, y) changes sign under an

antipodal transformation

Z(x, ȳ) = −Z(x, y) . (2.3)

From the definition (2.2) it is also clear that Z(x, y) = Z(y, x). The value of the invariant

distance depends on the nature of the two points in the Z ≥ 0 region, i.e.

• Z(x, y) = 0 when x is halfway between y and ȳ,

• Z(x, y) > 1 when x and y are timelike separated,

• Z(x, y) = 1 when x and y are null separated,

• Z(x, y) < 1 when x and y are spacelike separated.

By applying the antipodal transformation on y the value of Z changes to

• Z(x, y) > −1 when x and ȳ are spacelike separated,

• Z(x, y) = −1 when x and ȳ are null separated,
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Figure 1: Penrose diagram of de Sitter space with the value of the (dimensionless) de Sitter

invariant distance Z(x, y) depicted, where the point x is located in the lower left corner of

the Penrose diagram. Further, x̄ denotes the antipodal point. For instance, Z(x, y) > 1 if the

point y lies in the Northern static patch.

• Z(x, y) < −1 when x and ȳ are timelike separated.

In Figure 1 we denote the value of Z(x, y) in the Penrose diagram of de Sitter space when

one of the points lies at the lower left corner. Z is positive in the lower half and negative in

the upper half of the Penrose diagram, where we define upper and lower by the horizon at

Z = 0 that runs from the left upper corner to the right lower corner. The geodesic distance

D(x, y) between two points is related to Z(x, y) by

cos (D(x, y)/ℓ) = Z(x, y) . (2.4)

This equation shows that the geodesic distance is only real when |Z(x, y)| ≤ 1 and, in gen-

eral, complex. We use the convention that D(x, y) can refer to both spacelike and timelike

separated points. The former corresponds to real and the latter to imaginary distance. Later

on, we will separately discuss spacelike and timelike trajectories, for which we use a different

symbol. The fact that D(x, y) can be imaginary has important consequences when we want

to connect a pair of points (x, y) by a geodesic. By taking the point x to lie at the intersection

of the Northern pole and the (past) cosmological horizon, as indicated in Figure 1, we see

that for any point y in the South Pole static patch there is no real geodesic connecting the

two points except at Z(x, y) = −1. This corresponds to antipodal points.

From the embedding metric ds2 = ηABdX
AdXB one can derive the following global de

Sitter metric in d+ 1 spacetime dimensions

ds2 = −dτ2 + ℓ2 cosh2(τ/ℓ)dΩ2
d . (2.5)

The topology of Lorentzian de Sitter spacetime is R × Sd. Another useful solution to the

embedding equation is de Sitter space in static coordinates, for which the metric reads

ds2 = −f(r)dt2 + f(r)−1dr2 + r2dΩ2
d−1 , (2.6)
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where

f(r) = 1− r2/ℓ2 . (2.7)

Finally, let us consider the explicit expression in Kruskal coordinates, which also give a global

cover of de Sitter space. These are related to the static coordinates (in a particular static

patch) by

x± = ±ℓe±t/ℓ

√
ℓ− r

ℓ+ r
. (2.8)

Taking this patch to be centered at the South Pole (right quarter of the Penrose diagram),

where time flows upwards, we can define static coordinates in the other quarters of the

diagram (Milne patches and Northern static patch) by sending t → t + iϵ, where ϵ = −πℓ
covers the Northern static patch and ϵ = ±π

2 ℓ covers the bottom and top Milne patch,

respectively [24]. For (d+1)-dimensional de Sitter space these coordinates are related to the

embedding coordinates as follows

X0 = ℓ2
(
x+ + x−

ℓ2 − x+x−

)
,

Xd = ℓ2
(
x+ − x−

ℓ2 − x+x−

)
,

Xi = ℓ

(
ℓ2 + x+x−

ℓ2 − x+x−

)
ωi .

(2.9)

Here, ωi with i = (1, . . . , d) are the coordinates for a unit (d− 1)-sphere. Let us now assume

that two points x and y are each in a conjugate static patch at their respective poles, i.e.

x+x− = y+y− = −ℓ2. We then find

Z(x, y) =
x2+ + y2+
2x+y+

. (2.10)

For x at the origin of the Northern static patch and y at the origin of the Southern static

patch we have

x+ = −ℓetx/ℓ , y+ = ℓety/ℓ , (2.11)

such that

Z(x, y) = − cosh

(
tx − ty
ℓ

)
. (2.12)

Thus, for the endpoints located at the origin of conjugate static patches, which we refer to as

podal points, we find that Z(x, y) ≤ −1 and the only real geodesic connecting the two points

satisfies tx = ty, for which the geodesic distance takes the value

D(tx − ty = 0) = πℓ . (2.13)

This answer was to be expected since it is just half the circumference of a sphere. The fact

that all endpoints with tx − ty = 0 have the same geodesic distance reflects the invariance of
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Figure 2: We can use the de Sitter time-translation invariance to map two points on the

poles of the spatial sphere to a global equal time slice with tx = −t and ty = t. There are no

real geodesics between these two points unless t = 0.

global de Sitter space under a simultaneous time translation in both static patches (upwards

in the Southern patch and downwards in the Northern patch).

For more general podal points, we note that without loss of generality we can always

define one of the points to lie at t = 0. We then find it convenient to use the time-translation

invariance to map the points to the symmetric situation where they are located at the same

global time slice, see Figure 2. We conclude this section by noting that in general, unless the

two points are antipodal, i.e. t = 0, no (real) geodesic exists.2

2.2 Schwinger-deWitt Formalism

Now that we have reviewed some essentials of geodesics in de Sitter space, we are ready to

compute two-point correlation functions of a massive scalar field using a geodesic approxi-

mation scheme. Employing the Schwinger-deWitt proper time formalism, we will obtain an

expression valid for massive fields in general dimensions that involves a geodesic between the

location of the field operators. A similar derivation can be found in [26, 27].

The starting point is the action for a minimally-coupled real scalar field in d+1 dimensions

I = −1

2

∫
dd+1x

√
−g
(
(∂ϕ)2 +m2ϕ2

)
. (2.14)

The equation of motion for the scalar field is the Klein-Gordon equation(
□−m2

)
ϕ = 0 . (2.15)

By supplying the appropriate boundary conditions we can construct the different correlation

functions or propagators. The time-ordered Green’s function, or Feynman propagator, G(x, y)

of the Klein-Gordon operator satisfies(
□−m2

)
G(x, y) = −δ

d+1(x− y)√
−g(x)

. (2.16)

2The same result was found in [25], with the difference that they took the static time to flow upwards in

both North and South pole, which flips the sign of one of the time coordinates.
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To write down a useful expression for G(x, y), we view it as the expectation value of an

operator Ĝ in some Hilbert space

G(x, y) := ⟨x| Ĝ |y⟩ . (2.17)

This Hilbert space obeys a completeness relation∫
dd+1x

√
−g(x) |x⟩ ⟨x| = 1 , (2.18)

and orthonormality

⟨x|y⟩ = δd+1(x− y)√
−g(x)

. (2.19)

Writing the Klein-Gordon operator as

Ĥ = −□+m2 , (2.20)

it obeys

ĤĜ = 1 , (2.21)

from which (2.16) can be derived by taking an expectation value. In the proper time formal-

ism, we can now write a formal expression for this propagator as

G(x, y) = i

∫ ∞

0
ds ⟨x| e−isĤ |y⟩ . (2.22)

Convergence of this integral requires the imaginary part of Ĥ to be negative, so we should

deform Ĥ → Ĥ − iϵ and take ϵ → 0+ after evaluating. With this choice the Green’s func-

tion represents the Feynman propagator [26]. From this expression, one can view Ĥ as a

Hamiltonian that generates time evolution with s. Thus, writing

|x, s⟩ = eisĤ |x⟩ , (2.23)

we see that a general state |ψ⟩ can be expressed in terms of a wave function

ψ(x, s) = ⟨x, s|ψ⟩ = e−isH ⟨x|ψ⟩ , (2.24)

which therefore obeys the time-dependent Schrödinger equation

i∂sψ(x, s) = Hψ(x, s) . (2.25)

We thus reformulated solving (2.16) as the problem of solving for the motion of a non-

relativistic quantum particle on a curved background. In particular, we are interested in

computing

K(x, y; s) := ⟨x| e−isĤ |y⟩ , (2.26)
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which obeys the Schrödinger equation, subject to the boundary condition

lim
s→0

K(x, y; s) =
δd+1(x− y)√

−g(x)
, (2.27)

and yields G(x, y) via (2.22)

G(x, y) = i

∫ ∞

0
dsK(x, y; s) . (2.28)

The quantityK(x, y; s) is known as the heat kernel and its evaluation on a generic background

is typically complicated. One can use several techniques to evaluate the kernel.

One approach is to write K(x, y; s) as a path integral describing the different paths

connecting the endpoints of (x, y) [26]. The path integral can then be evaluated using a

saddle point approximation along geodesic paths. This approach was used in [22] to compute

correlation functions in de Sitter space. Another approach is to expand for small s in a so-

called heat kernel expansion. The coefficients at different orders in this expansion are known

as Seeley-deWitt coefficients, which have been computed up to high order and for a variety

of fields (see [28] for a detailed review). Exact results for the heat kernel are known for

backgrounds with a large degree of symmetry. We follow the second approach and determine

the heat kernel to leading order in the s-expansion, which will turn out to be sufficient.

2.3 Heat Kernel Expansion

Let us introduce the heat kernel expansion by first studying K(x, y; s) in flat space and

subsequently generalizing it to an arbitrary curved spacetime. It is well known that in flat

space, the solution to the differential equation

i∂sKflat(x, y; s) = HKflat(x, y; s) , (2.29)

subject to the boundary condition (2.27) is

Kflat(x, y; s) = −i
(

1

4πis

) d+1
2

e−im2s+ i
2s

σ(x,y) , (2.30)

as can be checked by direct substitution. Here σ(x, y) is one half times the geodesic distance

squared, which is related to the action S for a geodesic segment by

S =
1

2

∫ s

0
ds′
(
gab

dxa

ds′
dxb

ds′

)
=

1

s
σ(x, y). (2.31)

From this definition we note that positive σ(x, y) corresponds to spacelike separated points

and negative σ(x, y) to timelike separated points. When we are considering purely spacelike

or timelike trajectories we will denote

Spacelike: σ = +
1

2
D2 ,

Timelike: σ = −1

2
T 2 .

(2.32)
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These quantities are related to Z(x, y) as

Spacelike: Z = cos(D/ℓ) ,
Timelike: Z = cosh(T /ℓ) .

(2.33)

Here D and T correspond to the real proper distance and proper time, respectively, for points

that are connected by a real geodesic. Later on, when we consider complex geodesics with,

for example, complex proper time we will indicate this with a subscript as Tc.
In a general curved background, the heat kernel is modified even at lowest order in the

s-expansion [28]. In this case, we can write the following ansatz

K(x, y; s) = −i
(

1

4πis

) d+1
2

e−im2s+ i
2s

σ(x,y)∆(x, y)1/2F (x, y; s) . (2.34)

Here, ∆(x, y) is the s-independent Van Vleck-Morette determinant, defined as

∆(x, y) :=
Det

(
−∂2σ(x,y)

∂xa∂yb

)
√
g(x)g(y)

, (2.35)

where g(x) is the determinant of the metric at the point x. Sometimes the quantity ∆ is called

the Van Vleck-Morette biscalar, see e.g. [26], but for simplicity we will refer to it as the Van

Vleck-Morette determinant. Now F (x, y; s) can be solved for using an iterative procedure,

in an expansion in small s, by plugging the ansatz for the heat kernel into the Schrödinger

equation. The interpretation of the Van Vleck-Morette determinant can be understood as

follows. We can also represent the heat kernel as a path integral describing the propagation of

a massive (quantum-mechanical) point particle on a curved background. To solve this path

integral we can use a saddle-point approximation and the one-loop quantum determinant,

understood as the path integral over the Gaussian fluctuations around the saddle, is in fact

directly related to ∆(x, y). So the Van Vleck-Morette determinant effectively captures the

leading corrections in the quantum mechanical point particle description.

We can think of the s-expansion as describing corrections to the flat space propagator

due to the curvature of the background, see for example Section VIII in [29]. Corrections are

proportional to powers of curvature invariants and therefore suppressed when the background

curvature is small. Because the Van Vleck determinant is equal to one in flat space, we now

know that the leading term in the s-expansion should reduce to the flat space result.3 We

can therefore write [28]

K(x, y; s) = −i
(

1

4πis

) d+1
2

e−im2s+ i
2s

σ(x,y)∆(x, y)1/2 (1 + . . . ) , (2.36)

where the dots describe higher-curvature terms that are suppressed by powers of s.

3By matching onto the flat space result, we are imposing that the heat kernel has the same short-distance

singularity as for the flat space vacuum. In de Sitter space, this selects the Bunch-Davies vacuum.
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The above expression implicitly assumes that there is only a single geodesic that connects

the two points, as is the case in Minkowksi space. However, for a general curved spacetime

there can be multiple geodesics. In particular, because the spatial slices of de Sitter space

are compact, the assumption of just one geodesic saddle contributing to the path integral is

almost certainly incorrect. For instance, if we consider two antipodal points at t = 0 there are

multiple ways of “going around the sphere” to connect the two points. Nonetheless, for points

that are sufficiently close to each other, the path with shorter geodesic length is expected to

dominate. As we will see, there is a case of specific interest where multiple geodesics become

important.

3 Late-Time Correlators in de Sitter and Complex Geodesics

We now use the derived heat kernel expansion of the Feynman propagator and specify to

de Sitter space to obtain a simple expression for the de Sitter propagator that depends on

the geodesic distance. For points that are either timelike separated or connected by a short

spacelike geodesic we show that gives a good approximation to the exact result. We then

propose a generalization of this result for points that lie in conjugate static patches. Although

there are no real geodesics connecting these points, we show that a complex geodesic correctly

reproduces the propagator in this case.

3.1 Single Geodesic

Using the expression for the heat kernel at leading order in s, we perform the integral of

(2.28) to obtain the propagator

GS(x, y) ≃ Ndm
d−1
2

√
∆(σ)σ

d−1
4 K d−1

2
(m

√
2σ) , (3.1)

where

Nd = −2−
1+3d

4 π−
d+1
2 i . (3.2)

Here Ka(z) denotes the modified Bessel function of the second kind and we explicitly intro-

duced the subscript S on the propagator to indicate that we are considering a single geodesic.

We stress that this expression is general and the dependence on the background only appears

through the determinant ∆(σ) and the precise expression for the geodesic distance. However,

to obtain (3.1) we neglected higher-order terms in s in the heat kernel, which give extra

contributions on the right-hand side proportional to the associated heat kernel coefficients at

that order. As mentioned, these higher-order terms parameterize corrections to the flat space

propagator due to the curvature of the background. Thus, for small geodesic distance σ they

should be subdominant.

Specifying now to de Sitter space, the Van Vleck-Morette determinant takes the form4

∆(σ) =

[√
2σ

ℓ2
csc

(√
2σ

ℓ2

)]d
. (3.3)

4Obtained from analytic continuation on an AdS background [30].
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We note that (3.3) contains singularities at

σ =

(
πkℓ√
2

)2

(k ∈ N) . (3.4)

Clearly, the approximations used to derive (3.1) must break down at these points and in terms

of the de Sitter invariant distance, we find that they correspond to

Z(x, y) = cos(πk) . (3.5)

The first singularity at k = 1 yields Z(x, y) = −1, which corresponds to a geodesic distance

of D = πℓ. This is precisely the location where the two geodesics around the de Sitter sphere

give an equal contribution to the propagator such that the single geodesic assumption is

no longer valid. We come back to this point later and for now explore the validity of the

single-geodesic approximation away from the singular points.

Let us now distinguish points that are either spacelike or timelike separated. As dis-

cussed, for large mass equation (3.1) should give a good approximation to the exact Green’s

function as long as a single geodesic gives the dominant contribution. We now confirm this

by comparing the approximated result with the known exact propagator. To do so, we first

consider the Wightman function defined as

W (x, y) := ⟨ϕ(x)ϕ(y)⟩ . (3.6)

In the Bunch-Davies vacuum it is given by (see e.g. [31, 32])

W (x, y) =
Γ (∆+) Γ (∆−)

ℓd−1(4π)
d+1
2 Γ

(
d+1
2

) 2F1

(
∆+,∆−,

d+ 1

2
;
1 + Z(x, y)

2

)
, (3.7)

where 2F1(a, b, c; z) is the Gaussian hypergeometric function with

∆± =
d

2
± iν , and ν =

√
m2ℓ2 − d2

4
. (3.8)

We can introduce the scaling dimension ∆ via (see e.g. [33])

m2ℓ2 = ∆(d−∆) , (3.9)

which is solved by ∆±. There are two distinct representations:

1. Complementary series: 0 < ∆ < d
2 (0 < mℓ < d

2),

2. Principal series: ∆ = d
2 + iν (mℓ ≥ d

2).

We are mostly interested in heavy scalars and therefore focus on the principal series. The

Wightman function is analytic except along the branch cuts at |Z| ≥ 1. We need to specify
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Figure 3: Comparison of the exact (3.7) and approximated (3.1) expression for the Green

function for points that are timelike separated. We took mℓ = 10, ℓ = 1 and d = 3.
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Figure 4: Comparison of the exact (3.7) and approximated (3.1) expression for the Green

function for points that are spacelike separated. We took mℓ = 10, ℓ = 1 and d = 3.

The approximated Green function has a singularity at D = πℓ, where the single geodesic

approximation breaks down.

how to approach the branch cut. The Feynman propagator is given by taking Z → Z + iϵ

with ϵ > 0 such that we have the relation

iG(x, y) =W (x, y) , (3.10)

with the prescription Z → Z + iϵ understood in the Wightman function [34].

We can compare this exact result with the approximation (3.1). In Figure 3 and 4 we

compare the two expressions for both timelike and spacelike separation respectively, finding

excellent agreement away from the singularity at D = πℓ.

Next, we also consider the behavior of correlators that receive contributions from multiple

geodesics. For this purpose, it is convenient to consider the limit of large proper time:

T /ℓ≫ 1. By expanding GS(x, y) for large proper time we obtain

Timelike: GS(x, y) ≃ −i
√
md−2

4πdℓd
e−iπ d

4
− d

2
T
ℓ e−imT (T /ℓ≫ 1). (3.11)
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3.2 Multiple Geodesics

Let us now discuss the case where multiple geodesics can give a contribution to the propagator.

It is natural to expect that the approximation (3.11) should involve a sum over geodesics in

that case. This is relatively easy to see when we want to connect two antipodal points, for

example located at t = 0 in static coordinates. In this case, there are two real geodesics of

equal length corresponding to going clockwise or counter clockwise around the sphere.5

When there are multiple geodesics connecting two points, it makes sense to consider

additional solutions to the Schrödinger equation governing the heat kernel. Because the

Schrödinger equation is linear, a linear combination of solutions is also a solution. As we will

see, it is necessary to include a sum over solutions to reproduce the propagator. This picture

aligns well with a saddle-point approximation in a path integral representation of the heat

kernel. If there are multiple geodesics with a large separation of lengths one will give the

dominant contribution. Instead, when multiple geodesics have similar lengths they should be

summed over.

It is however less clear how we should interpret the geodesic approximation when we

consider the propagator between points in conjugate static patches away from t = 0. As

discussed, in that case there are no real geodesics connecting these two points. Still, we will

show that it is possible to reproduce the heavy-mass and late-time limit of the propagator by

summing over complex geodesics that are each others complex conjugate.

To do so, we will employ an expansion of the exact propagator in the limit of large de

Sitter invariant distance. Using the asymptotic expression for the hypergeometric function

given in the Appendix, we find that the Wightman function naturally splits into two parts

in the limit |z| → ∞, where we defined z := (1 + Z)/2. Due to the relation Z = cos(D/ℓ),

we note that this limit can only be satisfied when D has a non-zero imaginary piece. In that

case, we can write

lim
|z|→∞

W (x, y) = W(∆+,∆−; z(x, y)) +W(∆−,∆+; z(x, y)) , (3.12)

where

W(∆+,∆−; z(x, y)) =
Γ(∆+)Γ(∆− −∆+)

(4π)
d+1
2 ℓd+1Γ

(
d+1
2 −∆+

)(−z)∆+ . (3.13)

This asymptotic form has an interesting interpretation in the dS/CFT correspondence. This

is most transparent in planar coordinates, in terms of which the de Sitter metric takes the

form

ds2 =
ℓ2

η2
(
−dη2 + dx⃗2d

)
. (3.14)

For operators at the origin of their respective static patches we have z = η/ℓ at late times.

We then see that the Wightman function schematically splits up as follows.

lim
η→0

W (x, y) = (. . . )
(
−η
ℓ

)∆+

+ (. . . )
(
−η
ℓ

)∆−
. (3.15)

5Strictly speaking there are more geodesics, but those can be related by an isometry.
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Figure 5: Comparison of the exact (3.7) and approximated (3.19) expression for the Wight-

man function. We took mℓ = 20, ℓ = 1 and d = 3. The agreement becomes excellent for

large T /ℓ.

Interpreted in terms of a CFT living at I+, this two-point function receives a contribution

from two CFT operators with conformal dimensions ∆± [35].

Next, we note that for scalars in the principal series representation (∆+)
∗ = ∆−, where

the star denotes complex conjugation. This implies that when arg(z) = π the two terms are

each others complex conjugate. Using the relation between z and Z we notice from Figure 1

that this occurs when two points are located in conjugate static patches in such a way that

(x, ȳ) are timelike separated. Thus, for these correlators we can write

W (x, y) = W(∆+,∆−; z(x, y)) + (W(∆+,∆−; z(x, y)))
∗ (ν ∈ R, arg(z) = π) . (3.16)

As we will see, these two terms should be interpreted as two complex geodesics that are each

others complex conjugate. To compare this with our expression for the single geodesic, given

by (3.11), we expand for mℓ≫ 1. It will then be useful to express z(x, y) in terms of proper

time. To do so, let us first consider two timelike separated points in the same static patch.

At late times, this corresponds to z = +eT /ℓ. From the antipodal map Z(x, y) = −Z(x, ȳ),
we then see that for two points in conjugate static patches this leads to z = −eT /ℓ, which has

arg(z) = π. This effectively corresponds to evaluating at complex proper time Tc = −iπℓ+T .

We therefore find

W(∆+,∆−; Tc) =
√
md−2

4πdℓd
eiπ

d
4
−mℓπe−

d
2

T
ℓ e−imT . (3.17)

The similarity of W(∆+,∆−; Tc) to the expression for a single geodesic given by (3.11) is

striking. The two expressions differ only by a constant and a factor of exp(−mℓπ). Con-

structing the total Wightman function by adding the complex conjugate we find

W (x, y) = W(∆+,∆−; Tc) + (W(∆+,∆−; Tc))∗ =
√
md−2

πdℓd
e−mℓπe−

d
2

T
ℓ cos

(
dπ

4
−mT

)
.

(3.18)
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Figure 6: The two complex conjugate paths that connect the points at x and y. The solid

arc corresponds to Im(Tc) = +πℓ and the dashed arc to Im(T ∗
c ) = −πℓ. Moving along the

arc corresponds to evolution along the Euclidean angle by either tE = ±πℓ.

Similar expressions for the two-point function have been considered in [36–38], but instead

by considering a large-mass expansion. Remarkably, using the relation W (x, y) = iG(x, y)

between the Wightman function and the propagator, we see that we can reproduce the late-

time and heavy-mass limit of the Wightman function by taking the expression for a single

complex geodesic evaluated at proper time Tc = −iπℓ + T and adding to it its complex

conjugate. Concretely, we find

W (x, y) = iGS(Tc)− i (GS(Tc))∗ , (3.19)

The expression for a single geodesic was given in (3.11). Importantly, this results holds for all

dimensions and for two scalar fields located at arbitrary points in conjugate causal patches,

so when z ≪ −1.6 We also observe that, previously, in the single geodesic approximation the

Van Vleck-Morette determinant contained singularities, signaling a breakdown of the single-

geodesic approximation. The divergences can be removed by adding the second geodesic,

hence the expression (3.19) does not contain singularities. We compare the exact Wightman

function and the approximate result (3.19) in Figure 5.

Finally, let us comment on the interpretation of this relation in terms of complex geodesics.

For ease of presentation, we find it useful to consider points at the poles of the conjugate static

patches (podal points), although we stress that (3.11) holds more generally. In static coor-

dinates, this corresponds to r = 0. As before, without loss of generality we can use the de

Sitter isometries to move the operators to a global equal time slice, corresponding to −1
2 t at

the North pole and +1
2 t at the South pole, see Figure 6. Remember that the time coordinate

flows in opposite directions at the two poles. For these points, the de Sitter invariant distance

is given by Z = − cosh(t/ℓ), which for large t/ℓ translates to a complex geodesic invariant

length (proper time) of

Tc = −iπℓ+ t . (3.20)

6Note that any two points taken to the future spacelike infinity boundary of de Sitter space will be causally

disconnected and should therefore fall into this category, as clearly reflected by the identified behavior of the

Wightman function in the limit of vanishing conformal time, cf. (3.15).
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Figure 7: Two points on the Euclidean de Sitter sphere, which are connected by two geodesics

indicated by the solid and dashed red lines. The direction along the red circle is the Euclidean

angle tE .

Evolving in both real (Lorentzian) and imaginary (Euclidean) time, this can be interpreted

as a trajectory where we start out at the North pole, flow downwards to t = 0, move halfway

along the Euclidean circle (with angle tE = πℓ) to the South pole and finally evolve forwards

again in Lorentzian time. The full correlator now involves the sum of this geodesic and its

complex conjugate, see Figure 6.

3.3 Euclidean Interpretation

The above result can also be derived from a fully Euclidean perspective. Euclidean de Sitter

space can be obtained from an analytic continuation of Lorentzian global de Sitter space by

sending τ → iτE , where the Euclidean time is taken to be periodic τE ∼ τE + 2πℓ. The

Euclidean de Sitter metric is hence

ds2 = dτ2E + ℓ2 cos2(τE/ℓ)dΩ
2
d , (3.21)

which turns into the standard metric on a round sphere Sd+1 by sending τE/ℓ→ θ−π/2. The
same geometry follows from performing an analytic continuation of the static metric. The

advantage of working with Euclidean de Sitter space is that there now exist real geodesics

between any two points on the sphere. We can then use the geodesic approximation for real

geodesics and sum over the different contributions.

For example, consider two points on the sphere that are separated by some angle given

by the Euclidean static time tE = −it, as indicated in Figure 7. The complete circle has

length DE = 2πℓ, so the solid and dashed geodesics have geodesic distance

DE = πℓ± tE , (3.22)

respectively. If we now continue this back to Lorentzian signature we obtain two complex

geodesics with proper time

Tc = −iπℓ+ t and T ∗
c = +iπℓ+ t , (3.23)
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corresponding to the two conjugate geodesics that we summed over in the Lorentzian analysis.

When one geodesic is much longer than the other in the Euclidean geometry it is suppressed,

but both geodesics need to be taken into account in Lorentzian signature since they have the

same real part. This shows that the same result can be derived by starting from Euclidean

de Sitter and defining the two-point correlator there [22]. After an appropriate continuation

to Lorentzian signature this then produces the correct expression for the correlator.

4 Discussion: Correlators and the Information Paradox in de Sitter Space

The main result of this work was to show that a two-point correlation function of massive

scalar fields in de Sitter space can be computed using a geodesic approximation. This gen-

eralizes similar approximation schemes studied in AdS/CFT [39–41] to the cosmological, de

Sitter, context. The main novelty of our work is that we demonstrated that the geodesic ap-

proximation in de Sitter space, for large masses and late times, involves complex geodesics.7

Looking at the final result for the correlator (3.18) we note that it is exponentially decaying

in time, corresponding to the timelike part of the complex geodesic.

Having established this result, let us briefly discuss its potential relevance in the context

of a version of the information paradox in de Sitter space, which was the main motivation for

this work. But first let us comment on the subtle role of observables in de Sitter. In contrast

to anti-de Sitter space, where the boundary CFT correlation functions are well-defined ob-

jects in quantum gravity, the absence of asymptotic regions (where gravity decouples) in de

Sitter space implies that a correlation function is not a gauge-invariant observable, since it

transforms non-trivially under diffeomorphisms. That means that, strictly speaking, correla-

tion functions in de Sitter space are only sensible quantities in the limit ℓp/ℓ≪ 1. Assuming

we are working in this limit, we then only need to impose invariance under the isometries

preserved by the background, which act as gauge constraints in gravity. As recently pointed

out by [43] however, to define a sensible algebra of observables in a de Sitter static patch,

one needs to take into account the role of an observer minimally equipped with a clock, effec-

tively breaking the time-translation invariance of the de Sitter background. In this regard we

believe the correlators considered in this work can be viewed as sensible physical observables.

Indeed, assuming a limit of weak gravity, these correlators evaluate heavy field operators at

late (global) times inserted at (the center of) conjugate static patches, which break the time

translation symmetry because we evolve both operators forward, i.e. towards future infinity.

Assuming the finite entropy of de Sitter space implies that the microscopic quantum

gravity description involves a discrete spetrum of energy eigenstates, that are presumably

most effectively captured by a holographic theory8, on general grounds one expects that

the late-time behavior of correlation functions should be quasi-periodic. This is obviously

7Complex (null) geodesics also play a role in AdS/CFT where they capture the quasi-normal mode spectrum

of black holes [42].
8Recently, some properties of such a holographically dual description have been investigated by considering

a de Sitter version of the Ryu-Takayanagi formula [44, 45].
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x y

Figure 8: Penrose diagram of Schwarzschild-de Sitter spacetime. The left and right vertical

lines are identified. Two points located in conjugate static patches can be connected by a

real geodesic through the black hole horizon (solid line) or by a complex geodesic across the

cosmological horizon (dashed line).

analogous to Maldacena’s original observation in the context of the AdS eternal black hole [14],

and also closely related to the incompatibility between the absence of a finite-dimensional

representation of the de Sitter isometry group and the finite de Sitter entropy [19]. Using a

geodesic approximation we have seen that the two-point function (3.18), besides an oscillating

part, is exponentially suppressed at late times, related to the timelike part of the complex

geodesic. We note that this is strikingly different from what happens in the AdS eternal black

hole. In that case the exponentially decaying behavior is related to the exponential growth

of the spacelike geodesic probing the interior of the black hole [14]. For de Sitter space

the exponential decay is instead generated by the timelike part, which does not probe the

region beyond the de Sitter horizon. We believe this difference is important when considering

non-perturbative corrections that could halt the exponential decay.

In particular, for the AdS eternal black hole, one expects that additional wormhole sad-

dles in the Euclidean path integral of Einstein gravity can provide geodesic shortcuts, cir-

cumventing the black hole interior, that stop the exponential decay of the correlator at late

times. Comparing to the de Sitter case, the different origin of the exponential decay seems

to point towards a different type of resolution. Speculating, one particular contribution is

the (one-parameter family of) Schwarzschild-de Sitter black hole geometry, which appears as

a constrained instanton in the path integral [46, 47]. In terms of a geodesic approximation,

one would then expect that the two-point function can receive contributions from multiple

geodesics connecting points in the different causal patches: either by moving across the cosmo-

logical horizon using a complex geodesic or through the black hole horizon, where we expect

the presence of spacelike geodesics, see Figure 8. Although the new geodesic connections

through the black hole are still expected to grow exponentially with time, perhaps additional

(higher-order) corrections can circumvent the black hole interior, instead of the de Sitter ex-

terior, and prevent the further exponential decay of the correlator. We hope the geodesic

approximation studied in this work is a first step to put these ideas on a firmer footing.
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A Expansion of Hypergeometric Function

Here we consider a useful expansion for the Gaussian hypergeometric function. First we use

an identify that transforms the argument from z → 1/z, see e.g. [48]

2F1(a, b, c; z) =
Γ(c)Γ(b− a)

Γ(b)Γ(c− a)
(−z)−a

2F1

(
a, a− c+ 1, a− b+ 1,

1

z

)
+

Γ(c)Γ(a− b)

Γ(a)Γ(c− b)
(−z)−b

2F1

(
b, b− c+ 1, b− a+ 1,

1

z

) (A.1)

We now note the following limit

lim
|z|→∞

2F1(a, b, c; 1/z) = 1 , (A.2)

such that for |z| → ∞ we obtain the expansion

2F1(a, b, c, z) ≃
Γ(c)Γ(b− a)

Γ(b)Γ(c− a)
(−z)−a +

Γ(c)Γ(a− b)

Γ(a)Γ(c− b)
(−z)−b . (A.3)
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