
1 INTRODUCTION

Air showers and hadronic interactions with CORSIKA 8

Maximilian Reininghaus1 for the CORSIKA 8 Collaborationa

1 Karlsruher Institut für Technologie, Institut für Astroteilchenphysik,
Postfach 3640, 76021 Karlsruhe, Germany

reininghaus@kit.edu

December 23, 2022

51st International Symposium on Multiparticle Dynamics (ISMD2022)
Pitlochry, Scottish Highlands, 1-5 August 2022

doi:10.21468/SciPostPhysProc.?

Abstract

The CORSIKA 8 project is a collaborative effort aiming to develop a versatile C++ frame-
work for the simulation of extensive air showers, intended to eventually succeed the
long-standing FORTRAN version. I present an overview of its current capabilities, focus-
ing on aspects concerning the hadronic and muonic shower components. In particular, I
demonstrate the “cascade lineage” feature and its application to quantify the importance
of certain phase-space regions in hadronic interactions for muon production. Addition-
ally, I show first results using Pythia 8.3, which as of late is usable as interaction model
in cosmic-ray applications and is currently being integrated into CORSIKA 8.

1 Introduction

A large part of the astroparticle physics community deals with the measurement of extensive
air showers (EAS), particle cascades developing on macrosopically large scales of up to sev-
eral 10 km. Making use of measurements of EAS observables in order to infer properties of the
primary particle (high-energy cosmic rays, gamma rays, neutrinos) requires accurate predic-
tions of these. Only Monte Caro simulations are able to provide these at the necessary level of
detail, relying on numerical methods and reliable models of the physical processes involved.
The phase space covered in EAS is vast: Electromagnetic (EM), weak, and strong interactions
play a role; dozens of particle species are involved; energy scales range from ∼ keV up to
ZeV. Software tools that can keep up with these requirements are a must-have and serve as
a cornerstone of the field. For more than 30 years the FORTRAN code CORSIKA (Cosmic Ray
Simulations for KASCADE) [1, 2] played that role and has become a de facto standard [3].
In recent years, however, it has become unfeasible to accomodate for the increasing needs of
upcoming experiments by continuing to extend the existing "dinosource".

Instead, efforts have been taken to develop a new C++ code from scratch, eventually
termed CORSIKA 8 [4], with the goal to provide a modern, modular and flexible framework
for simulations of particle showers. Since its inception in 2018 [5], CORSIKA 8 is developed
as open-source project by an international collaboration. The code is publicly available at
the gitlab repository and usable by early adopters. At the time of writing, a large fraction of
features available in the legacy version are implemented in CORSIKA 8. Moreover, CORSIKA 8
has a number of unique features that are not available in other codes.

afull author list available at https://tinyurl.com/corsika8-202210

1

reininghaus@kit.edu
https://doi.org/10.21468/SciPostPhysProc.?
https://gitlab.iap.kit.edu/AirShowerPhysics/corsika/
https://tinyurl.com/corsika8-202210


2 AIR SHOWER GENEALOGY
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Figure 1: Left: Distributions of the number of muon ancestor generations for primary
energies of E0 = 1017, 1018, 1019 eV. Vertical dashed lines indicate the mean value
of the distribution of the same colour. Taken from ref. [10]. Right: Mean number of
muon ancestor generations as function of primary energy. Taken from ref. [11].

In this article I focus on the capabilities in the hadronic and muonic sectors of EAS, which
to date remain not fully understood, as a number of discrepancies between experimental data
and simulations suggest [6]. More general overviews of the current state of the project can
be found in refs. [7, 8]. The structure of this article is as follows: In section 2 I present a
study of the phase space of hadronic interactions relevant for muon production. Additionally,
I show first results using Pythia 8 as hadronic interaction model in the context of air shower
simulations in section 3, followed by concluding remarks.

2 Air shower genealogy

The muon component of EAS is a tracer of the hadronic interactions happening during the
shower development. The bulk of muons observed at ground, having energies mostly in the
100 MeV to GeV range, stem from the decay of low-energy pions and kaons that form the last
generation of the hadronic cascade. Measurements of the muon content of EAS induced by
ultra-high energy cosmic rays (i.e., having energies≥ 1EeV) performed in several experiments
show that there is a significant excess of muons in data compared to simulations using up-to-
date versions of hadronic interaction models [9]. It is widely believed that this discrepancy,
coined muon puzzle [6], is the result of a lack of understanding and mismodelling of hadronic
interactions.

CORSIKA 8 is particularly well suited to shed more light onto the muon puzzle: It enables
keeping the complete lineage of particles in memory so that particles can be related to any
of their predecessor generations up to the primary particle. Details on the technical imple-
mentation are given in refs. [11, 12]. The first study to exploit this information is presented
in ref. [10], whose results I summarize here. Figure 1 shows results regarding the number
of generations Ngen, i.e. the number of hadronic interactions happening between the primary
particle and the final muon that reaches ground. It is an important quantity because the
number of muons grows exponentially with Ngen and small errors in the modelling of these
interactions get amplified Ngen times, leading to a potentially large impact on the muon num-
ber [13]. The left plot shows the Ngen distributions of proton-induced EAS with energies of
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Figure 2: Pseudorapidity distributions of π± + air→ charged hadrons. The dashed
line indicates generator-level distributions while the coloured and dotted lines show
muon-weighted distributions of vertical, proton-induced showers of 1019 eV (in arbi-
trary units). Taken from ref. [10].

E0 = 1017, 1018, 1019 eV, simulated using the interaction model SIBYLL 2.3d [14] at high en-
ergies (> 63.1GeV) together with the Hillas Splitting algorithm (HSA) [15] for low energies.
With increasing primary energy, the distributions shift towards higher values of Ngen. The
right plot shows the dependence of the mean 〈Ngen〉 on the primary energy. The logarith-
mic behaviour follows what is expected from the Heitler–Matthews toy model [16]. A more
detailed analysis is given in ref. [11].

A second study deals with the importance of different phase-space regions in hadronic
interactions with respect to muon production. Figure 2 shows pseudorapidity (η) distributions
of charged hadrons in π±-air collisions in four energy bins. Besides the pure generator-level
spectra (dashed lines), which are in principle measurable in accelerator experiments, the muon
weighted distributions are superimposed (coloured lines). This muon weight is given by the
number of muons stemming directly or indirectly from the secondaries emitted at a given η,
potentially after applying some selection criterion. The plot shows that at sufficiently high
interaction energies (

p
s ≳ 100 GeV) essentially only particle production in the forward region

plays a role, irrespective of the lateral distance of the muons. In this regime the muon weight
can also be estimated well from the Heitler–Matthews model [6], indicated by the dotted
line. At low interaction energies (

p
s ≲ 50GeV), however, the central region gains relevance
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4 CONCLUSIONS AND OUTLOOK

580 600 620 640 660 680 700 720

〈Xmax〉/gcm−2

7.0

7.5

8.0

8.5

9.0

N
µ

×105

p

He

N

Fe

1017.5 eV, 60°

pr
el

im
in

ar
y

SIBYLL 2.3d
QGSJetII-04
Pythia 8.307

Figure 3: Mean shower maximum 〈Xmax〉 vs. number of muons Nµ for showers at
1017.5 eV and 60◦ inclination

especially for muons at distances larger than a few 100 m.

3 Towards Pythia 8 as interaction model in EAS simulations

A currently ongoing development is the inclusion of Pythia 8.3 [17] into CORSIKA 8 as hadronic
interaction model. Until recently, this was technically unfeasible, but since the latest release
(Pythia 8.307) a number of new features allow for an easy use in EAS simulations [18]:
a) the ability to generate single events at arbitrary energies without a time-consuming re-
initialization of the model, b) a much wider range of possible projectile species, c) an extended
range of interaction energies down to 200 MeV (lab-frame), d) a simplified model of nuclear
matter, allowing hadron-air collisions.

For a first comparison we have simulated showers with an energy of 1017.5 eV and an incli-
nation of 60◦. Hadrons and muons are fully propagated with CORSIKA 8, while EM particles
are redirected into the CONEX code [19], which simulates the EM component of the shower
using a numerical solution of the cascade equations describing the longitudinal development.
We use QGSJet-II.04 [20], SIBYLL 2.3d and Pythia 8.307 as high-energy interaction models. In
each case Pythia is used as low-energy interaction model. Figure 3 shows the results regarding
the mean shower maximum 〈Xmax〉 and Nµ. While Nµ obtained with Pythia is in the same ball-
park as the other models, a deviation of 〈Xmax〉 as large as the difference between proton and
helium is apparent. Further studies to explain these differences, stemming from differences
in hadron-air cross-sections, are ongoing and will be presented elsewhere [21]. Note that in
our setup Pythia 8.307 cannot be used for nucleus-nucleus collisions at the moment so that
we consider only proton-induced showers in that case.

4 Conclusions and outlook

CORSIKA 8 is a modern framework for the simulation of particle showers in air and other
media. Over the past few years, a lot of progress has been made to make it a reliable, versa-
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tile and future-proof tool. Although not yet feature-complete, in some aspects it can be used
for studies that have previously been impossible. The availability of the complete particle
lineage allows detailed studies of hadronic interactions and their relevance for muon produc-
tion, which helps to shed light on the muon puzzle. It emphasizes the importance of dedicated
accelerator measurements at both high and low energies that cover the relevant phase-space.

The ongoing integration of Pythia 8 as new hadronic interaction model in CORSIKA 8 of-
fers a number of new perspectives for EAS simulations. On the one hand, the reduced energy
threshold of only 200 MeV renders it suitable for both low and high energies. On the other
hand, Pythia 8 can be tuned by the users, allowing to study the impact of internal model
parameters on EAS observables, or possibly even to conduct combined fits to accelerator mea-
surements and EAS data at the same time.

A first public release is anticipated for 2023 mid-year. Until then, the development focusses
mainly on reaching a level of maturity sufficient to cover at least most mainstream applications
with an accuracy on par with the legacy version CORSIKA 7. Issues currently being addressed
include the integration of FLUKA [22, 23] as low-energy interaction model, proper handling
of the LPM effect (see e.g. ref. [24]), photo-hadronic interactions with SOPHIA [25], and the
introduction of thinning to speed up simulations at the highest energies (see e.g. ref. [26]).
Furthermore, validation and further improvements of the already existing modules for sim-
ulating radio signals and Cherenkov light are work in progress. Besides these physics-driven
aspects, efforts are made to provide a default application with an easy-to-use user interface for
non-expert end users suitable for standard scenarios (in contrast to offering just the framework
in which users need to create simulation setups on their own).
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