’t Hooft lines of ADE-type and Topological
Quivers

Y. Boujakhrout, E.H Saidi, R. Ahl Laamara, L.B Drissi
1. LPHE-MS, Science Faculty, Mohammed V University in Rabat, Morocco
2. Centre of Physics and Mathematics, CPM- Morocco, Rabat

December 30, 2022

Abstract

We investigate 4D Chern-Simons theory with ADE gauge symmetries in the presence
of interacting Wilson and ’t Hooft line defects. We analyse the intrinsic properties of
these lines’ coupling and explicate the building of oscillator-type Lax matrices verifying
the RLL integrability equation. We propose gauge quiver diagrams Q‘é encoding the
topological data carried by the Lax operators and give several examples where Darboux
coordinates are interpreted in terms of topological bi-fundamental matter. We exploit
this graphical description (i) to give new results regarding solutions in representations
beyond the fundamentals of sly, soan and eg 7, and (i) to classify the Lax operators
for simply laced symmetries in a unified E; CS theory. For quick access, a summary
list of the leading topological quivers Q' is given in the conclusion section [Figures
29.(a-e), 30.(a-d) and 31.(a-d)].

Keywords: 4D Chern-Simons theory, Wilson /’t Hooft lines, Lax operators, Oscil-
lator realisation, Gauge quiver diagrams, Topological matter, E; Unified Theory.

1 Introduction

Integrable two-dimensional field theories and spin models represent a significant area in
classical and quantum physics that still bear several open questions intending to explicitly
describe the interactions between fundamental particles [1]- [9]. The investigation of special
features of these low dimensional theories has aroused much interest since the integrable spin
chains advent [10] and the factorisation of many body scattering amplitudes of relativistic
QFT [11,12]. In these regards, tremendous efforts have been deployed to deal with the
basic equations underlying these systems by following various approaches such as the Bethe
Ansatz [13]- [15], quantum groups [16] and algebraic methods involving Yangian and graded-
Yangian representations [17]- [20].



Recently, these efforts gained a big impulse after the setup by Costello, Witten and
Yamazaki of a Chern-Simons -like theory living on four-dimensional M, with the typical
(rational) fibration R? x C, and having a complexified gauge symmetry G [21]- [23]. This
topological gauge theory represents a higher dimensional field framework to approach quan-
tum integrability and offers a new form of the gauge/Integrability correspondence [24]- [31].
On another side, it bridges to N = (1, 1) supersymmetric Yang Mills theory in six and lower
dimensions [32]- [35] and to supersymmetric quiver gauge theories [36]- [39]. It also allows
for an interesting realisation of solvable systems in terms of intersecting M-branes of the 11d
M-theory and, via dualities, in terms of intersecting branes in type II strings with NS5- and
D-branes as the main background [40]- [43].

The main ingredients of the 4D Chern-Simons theory are line and surface defects [44]-
[49]; these topological quantities play a fundamental role in the study of this theory and
the realisation of lower dimensional solvable systems. In particular, we distinguish two basic
line operators: (i) Electrically charged Wilson lines which, roughly speaking, are asimilated
to worldlines of particles in 2D space-time with a spectral parameter z related to rapidity;
they are characterised by highest weights A of representations R of the gauge symmetry G.
(71) Magnetically charged 't Hooft lines characterised by coweights p of G and acting like
Dirac monopoles. The coupling of these lines in the 4D gauge theory is behind important
results of quantum integrability. In these regards, recall that inersecting Wilson lines yield
a nice realisation of the famous R-matrix and the Yang-Baxter equation of integrable two-
dimenional QFTs [31].

Regarding the magnetically charged line defects to be further explored in this paper,
they have recently been subject to particular interest where they were interpreted in terms
of the monodromy matrix for non compact spin chains, the transfer matrix for compact
spin chains [50, 51] and more specifically as the Baxter Q-operator [52]. They have also
been implemented in various contexts as boundaries of surface defects [53], or as type II
branes intersecting along distinguished directions [54]. Moreover, these brane realisations
open windows to links between integrable spin and superspin chains and supersymmetric
gauge quiver theories via correspondences like the so-called Bethe/gauge correspondence [55]-
[58].

In what concerns us here, a quantum integrable XXX spin chain with N nodes can be
generated in the framework of the 4D CS by taking N parallel Wilson lines perpendicularly
crossed by a 't Hooft line standing for the magnetic field created by the system of the spin
chain particles [52]. In this spirit, one can calculate the Lax operator for each node of
the chain as a coupling of Wilson and 't Hooft lines in the gauge theory. The power of this
construction with interacting lines in 4D comes from: (i) the topological invariance on the real
plane R? that translates into the RLL integrability equation, (i) the Dirac -like singularity
of the topological gauge configuration in the presence of 't Hooft line yielding the oscillator
realisation of the Lax operator, (ii7) the holomorphy of observables on the Rieman surface
C where the complex parameter z allows for realisations in the Yangian representation.
These features constitute the common thread of the fascinating results derived from this
Gauge/Integrability correspondence. In particular, it was shown in [52] that for the special
case where the magnetic charge of the 't Hooft line is given by a minuscule coweight p of the



gauge group G, the oscillator realisation of the Lax operator for a spin chain with internal
symmetry given by g, the lie algebra of G, is easily constructed in 4D CS as the parallel
transport of the topological field connexion through the singular 't Hooft line. This yields a
general formula permitting to explicitly realise the Lax or the L-operator in the fundamental
representation of any lie algebra g having at least one minuscule representation, in terms of
harmonic oscillators.

The main goal of this paper is to deeply analyse the data carried by the Lax operator
and encode it into a simple gauge quiver description unveiling interesting common features
of this quantity. These properties are relevant for both the study of integrable spin chains
and of the gauge fields behavior in the presence of disorder operators. To this end, we
investigate 4D Chern-Simons theories on R? x CP' with complex gauge symmetries G =A,,,
D,,, E¢ 7 by implementing Wilson and 't Hooft line defects and studying intrinsic topological
features of their coupling. In these regards, notice that the oscillator realisation of Lax
matrices for minuscule nodes of sl and sosn was firstly recovered from 4D CS in [52]; the
exceptional Eg and E; minuscule Lax operators were constructed in details in [59], while a
full list of ABCDE minuscule Lax matrices is collected in [60] where the absence of a Lax
matrix for the Eg symmetry is because this group has no minuscule coweight. Here, in order
to graphically visualise the effect of the Dirac-like singularity induced by a 't Hooft line
on a deep level of the gauge configuration, we treat each case separately by demystifying
the Lie algebra components appearing in the construction of the L-operator and derive its
action on the internal quantum states by using a projector basis in the electric representation.
Eventually, we can build the corresponding topological quivers Qf, where we translate the
topological data of the lines’ coupling into quiver-like diagrams with nodes and edges as
inspired from supersymmetric quiver gauge theories (see subsection 3.1 for motivation). This
graphical representation allows to (i) interprete sub-blocks of the L-matrices in terms of
topological adjoint and bi-fundamental matter, (i) forecast the form of cumbersome Lax
matrices without explicit calculation, (i77) link Levi decompositions of ADE Lie algebras to
exceptional symmetry breaking chains of a unified E; Chern-Simons theory. These results
are summarized in the conclusion section, see Figures 29.(a-e), 30.(a-d), and 31.(a-d).

The presentation is as follows: In section 2, we begin by considering the 4D CS theory with
SLy gauge symmetry as a reference model where we describe in details the implementation
of the electrically and magnetically charged line defects and the calculation of their coupling
in the topological theory. We revisit the oscillator realisation of the A-type minuscule Lax
operators in the fundamental representation and then extend the construction by discussing
other cases where electric charges of the Wilson lines correspond to representations of sly
beyond the fundamental. In section 3, we derive the topological gauge quiver diagrams
corresponding to the A-type L-operators calculated in section 2, and give an interpretation
of their nodes and links in terms of topological matter. Moreover, we yield quiver diagrams
describing the form of L-operators for the symmetric NV IN VN and adjoint representations
of sly. In section 4, we study the minuscule D-type line defects in 4D CS theory with SOsn
gauge invariance. Here, we distinguish two sub-families given by the vector-like minuscule
coweight, and the two spinorial ones. Focussing on the vector-like family, we calculate the
corresponding L-operator and construct the associated topological gauge quiver. In section



5, we move on to the minuscule spinor-like D-type L-operators where we also build the
associated topological quiver. Other aspects concerning fermionic lines and the link with the
sly family are also discussed. In section 6 and 7, we similarly treat the 4D CS theories with
exceptional Eg and E; gauge symmetries in order, we focus on the minuscule topological lines
and their associated topological quivers. The conclusion section is devoted to a summary of
the results.

2 Wilson and ’t Hooft lines of A- type

In this section, we begin by focusing on the 4D Chern-Simons theory of [23] with sly gauge
symmetry where we introduce the basics of this theory and the implementation of topological
line defects. We consider the various types of minuscule 't Hooft lines for the siy- family
with N > 2 and investigate their interaction with electric Wilson lines. We show how the
symplectic oscillators of the phase space of 't Hooft lines allow for an explicit realisation of
the Lax operators. We moreover extend the results by considering Wilson lines for different
representations of sly and investigating their properties according to the nature of their
electric charges.

2.1 Electric/Magnetic lines in sly Chern-Simons theory

In order to study the A- type electric Wilson lines and magnetic 't Hooft line defects as well as
their interpretation in quantum integrable systems, we begin by briefly recalling some useful
aspects of the 4D Chern-Simons theory with S Ly gauge symmetry. This is an unconventional
topological field theory living on a 4D space M, that we take as R? x CP' parameterised by
(z,y; 2) with real (x,y) for R? and local complex z = Z,/Z, for C = CP'. The field action
of the topological theory was first constructed in [26] and reads as follows

Siics = / dz NtrQls, (2.1)
R2xCP!

where 23 is the CS 3-form )
ngA/\dA—i—gA/\A/\A, (2.2)

with 1-form gauge potential A = ¢, A* where ¢, stand for the generators of sly and A® is a
partial gauge connection as follows [26]

A = dr A + dy A% + dz AL (2.3)

The contribution of the missing component dzA? is killed by the the factor dzA in the
measure of the field action Syycs; and can be treated in terms of an extra symmetry in the
QFT formulation. The equation of motion of the potential field A is given by the vanishing
gauge curvature

Fo=dA+ANA=0 (2.4)



This flat curvature property agrees with the topological nature of the CS theory indicating
that the system is in the ground state with zero energy. To deform this state, we consider
observables given by line or surface defects such as the Wilson Wg} and 't Hooft ¢HY lines
that we are interested in here. These are represented by curves in the topological plane R?
and located at positions z in CP'; they can be represented as in the Figure 1.

|B)

Figure 1: Line defects in the real plane R%. On the left, a horizontal 't Hooft line with
magnetic charge p expanding along the x-axis (y = 0) at z = 0. On the right, a vertical
Wilson line expanding along the y-axis (x = 0) at z # 0 with electric charge in some
representation R. Notice that the 't Hooft line is in fact paired to a similar one located at
z = oo with magnetic charge —p [52].

Regarding the Wilson lines expanding along &, C R? with z € CP!, they are electrically
charged and can be naively thought of as

W =Trg lP exp (/ﬁ A)] (2.5)

This shows that they are functions of £, and R which is here a representation of sl charac-
terised by a highest weight state |wg) with wr = Zf\:ll nBw;. To perform explicit calcula-
tions, R is often taken as the (anti-) fundamental N representation of sly with fundamental
weight wy; however this construction can be extended to the other sly representations nZRwi
such as the family of completely antisymmetric representations N* ~ wy, the family of
completely symmetric NY" ~ nw; and the adjoint representation N x IN. As examples,
Wilson lines with electric weight charges in the representations N AN and IN VN as well as
in the adjoint are depicted in the Figure 2. The interest into Wilson lines ng with generic
R can be motivated by the two following:

(1) The special sly representation theory where from fundamental objects like R = IN and/or
N with weight wy_1, one can construct many composites carrying higher weight charges and
describing higher conserved quantities. For example, the particles’ current running along
Wg} is given by quadratic composites transforming like N @ N = 1 4 adj. In this regard,

notice that for the fundamental W=, we have N quantum states |A) traveling along the
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vertical blue line of the Figure 1. They couple to the CS gauge field like 7, A* with 7, ~
(Alt.|B).

(2) Knowing the action of the minuscule coweight x on the fundamental representation of
sly, we can deduce its action on higher dimensional representations by help of the tensor
product properties. To fix ideas, see eq(2.26).

NAN NVN N x N
(4 (AjnAg| (A As)| (AA]
o X X X
1B) |BuBa) |BuBy) |BB)

Figure 2: Four examples of Wilson lines in different representations of sly occupying vertical
lines in R? (x=cte); they carry different electric charges. The representation R and the type
of incoming quantum states are indicated above each line, while the outgoing states are given
at the bottom of the line. The red cross indicates a local interaction point.

Concerning the 't Hooft lines that we denote like tHY , they are magnetically charged line
defects with magnetic charge given by a minuscule coweight p of the complex Lie algebra
sly. The curve vy belongs to R? and sits at a point z, in the holomorphic plane that we take
at the origin. It is imagined in the 4D CS theory as the intersection U; NUsy of two patches U,
and U, of the topological plane R?. Following [52], the topological field A" sourced by the
magnetic 't Hooft line defect v is generated by a singular gauge transformation g = g (2)
from the patch U to the patch Us. By thinking of vy as coinciding with the x-axis in the
topological plane, meaning that

the gauge configuration A" in the presence of singularity p is generated by a parallel trans-
port of the gauge field bundles from R?;go towards Rszo- In this case, the transport path is
then given by the y-axis and the topological gauge configuration is given by

AV = g, 21, (2.7)

with gauge transformations g, (z) and g, (z) singular near z = 0 but regular in the neigh-
bourhood of z = oo with the limit g, (c0) = g, (c0) = I[;g. Notice that z* is the op-
erator exp(log(z)p) with p refering to the adjoint action of the coweight operating as in
eqs(2.10,2.14). Using this configuration, one can associate to the tHY the following gauge



invariant observable measuring the parallel transport from y < 0 to y > 0 as follows

LW (z) = Pexp < /y dyAgM) (2.8)

This L™ is a holomorphic function of z valued in the SLy gauge group; it may have poles
and zeros at z= 0 and z=oo arising from the ¢H} at z = 0 and the mirror tH * line at

z = 0o [52]. The gauge singularity is implemented in this construction by thinking of AL“ I as
valued in the Levi decomposition of sly with respect to the minuscule coweight i, namely [61]

sly — n_®l,dny

AV Ay Ayt A, (2:9)

Notice that this decomposition is due to the fact that the minuscule coweight ;o acts on the Lie
algebra elements with only three eigenvalues 0; +1. Therefore, a Lie algebra is decomposed
to three subspaces; the [, is a Levi subalgebra, and ny are nilpotent subalgebras constrained
as follows, with Levi charge ¢ = +1:

[k, 1] =0 ; [k, mg] = qn ; [ng, g =0 (2.10)

In these regards, notice that for the case of the topological sly gauge theory, we can define
N — 1 minuscule 't Hooft lines carrying different magnetic charges :

3 O (2.11)

They are in 1:1 correspondence with the N — 1 minuscule coweights 1, ..., uy_1 of the sly
Lie algebra of the gauge symmetry (as listed in (2.16)); and eventually with the NV — 1 simple
roots ay, ..., any_1 of the Dynkin diagram of sly as depicted in the Figure 3.

o oz o3 aN-—2 aN-1

Figure 3: The Dynkin diagram for the sl family, it has N —1 simple roots, all corresponding
to minuscule coweights

In what follows, we focus our attention on the XXX spin chain construction in the framework
of the 4D CS theory. As described in the figure 4, we need to take N vertical (parallel) Wilson
lines WR in the topological plane R? travesrsed by a horizontal 't Hooft line tHY (i red
color). The WRS sit at the position z # 0 in the holomorphic plane while the tH: is in 2z = 0.
From the mtegrable spin chain point of view, every Wilson line presents a node of the chain
and the 't Hooft line is interpreted as the Baxter Q-operator [52]. This way, we have a 't
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Figure 4: The spin chain configuration in the Chern-Simons theory: N Wilson lines repre-
sented by the blue vertical lines crossed by a 'tHY represented by the red horizontal line.

Hooft-Wilson coupling in the topological plane at every node as depicted by the Figure. The
interaction by line-crossing is interesting as it allows to define the Lax operator in every node
of the spin chain which plays an important role in the study of integrable systems. Because
Wg} is characterised by (§.; R) and tHE by (70; 1), the coupling between them should carry
all this data and can be defined as follows

L (00, &) = (tHY, W) (2.12)

Following [52], this L-operator, denoted from now on like L%, is precisely given by (2.8) such
that the transport path is identified with the Wilson line. Moreover, it can be put into a
simpler form using the Levi-like factorisation

L (2) = eXrotrelR (2.13)

where Xg is a nilpotent matrix valued in the nilpotent algebra n,, and Yg is also a nilpotent
matrix but valued in the nilpotent algebra n_. These matrices are constrained by the Levi
decomposition requiring

[ZNR,XR] = —I—XR s [ZMR7 YR] = —YR (214)

2.2 Interacting tH%—ng lines in CS theory

For the next step in the study of minuscule tH/! lines interacting with Wg in 4D CS theory,
it is interesting to explore the algebraic structure of the magnetic charges y; of the tH !’s.
As these charges are given by the minuscule coweights of the sly Lie algebra, we give below
some useful tools regarding their properties and then turn to study their coupling with ng.

2.2.1 Minuscule coweights of sy

First, we recall that there are N — 1 fundamental coweights w; for the sly Lie algebra, they
are defined as the algebraic dual of the N — 1 simple roots «;; which means that w;.a; = ;.
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These simple roots of sl are realised in terms of a weight basis vectors (e;) like o; = €; —€;41.
So, the fundamental coweights solving w;.a;; = 0;; read in terms of the e;’s as follows

N —1

1
N (€1+...+€i) — _(€i+1+--~+€N) (215)

N

W; =

It turns out that in the case of the sly Lie algebra, all the fundamental coweights are
minuscule [61]. So, the magnetic charges of the (N — 1) lines tH4 of the Ay_;- CS theory
are given by

M1 = %61—%(624—...4—61\7)
1 = e +..+e)— L (a1 +.. ten) (2.16)
pn-1 = (et Fena) - Fyten

with 2 < [ < N — 2. Obviously one can treat all these coweights collectively; but it is
interesting to cast them as we have done.

As illustrating examples, we have for the sl; model, one minuscule charge . = 3 (e; — e3) . For
the sl3 theory, we have two minuscule coweights p1; = %el — % (e2 + e3) and py = % (e1 4+ e2) —

%63; and for the sly CS theory, we have three minuscule charges given by

1

[\

p = 3e1—1(ea+es+e)
/’1’2 = % (61 —|— 62) - % (63 + 64) (217>
Mm3 = le (61 + e2 + 63) - %64

As far as the sl; example is concerned, notice that using the isomorphism sly ~ sog, these
fundamental weights can be also viewed as the fundamental of sog. Here, the ps corresponds
to the vector of sog while the py and pg correspond to the two Weyl spinors of orthogonal
groups in even dimensions, they will be encountered later when we study the L-operators of
D-type.

Notice also that given a minuscule coweight i of sly, one defines its adjoint form by help
of the €}’s obeying € (e;) = 7. We denote the adjoint form of the coweight 44 by the bold
symbol u; and express it as follows

N —1 l

= I, — —II 2.18
i N l Nl ( )

with projector II; and co-projector II; = I,y — II; as follows

l N
I, = Z eie; : I, = Z eie; (2.19)
i=1 i=l+1

The use of this projector in the above decomposition is crucial in our modeling; it is at
the basis of our way to approach the coupling between the ¢H/ and Wg} as well as in the
construction of the topological gauge quivers Q' describing the A-type L-operators.



2.2.2 the tHY; - Wg coupling

To properly define the coupling between Wé‘ and a given minuscule 't Hooft line tHY* with
a magnetic charge ju, in the 4D Chern-Simons theory living in R? x CP', we follow [52] and
proceed as summarised below:
(i) tHEx as a horizontal magnetic defect in R?
We think of the 't Hooft tH.k as the curve 7y extending in the topological plane R? of the 4D
space. The defect v, is located at a given point z in CP' that we take as z = 0; say the south
pole of S* ~ CP'. For convenience, we think of 7, as the horizontal line given by the x-axis of
the plane R? with (z,y) coordinates; see the red line in the Figure 4. Topologically speaking,
this 7 can be also imagined as the intersection of two patches like vy = Rzgo N ]Rzzo. Along
with this tHEk, we also have a tH_#* sitting at z = oo corresponding to the north pole of S2.
(ii) tHAx crosses a vertical Wilson line
The horizontal tH4! crosses a vertical Wilson line Wg with &, located at a generic point z of
CP'. We imagine ¢, as coinciding with the y-axis in R?, i.e. &, = {(z,y)| =2 =0,y € R}.
Recall that the quantum states |A) propagating in the electrically charged line ng are in
the fundamental N representation of sly. The incoming particle states are denoted by the
bra (A| and the outgoing states by the ket |B) with

(A|B) = 0% (2.20)

in the case of free propagation. In the presence of interaction, the above 0§ is replaced by a
multi-label vertex object.

(iii) L-operator and phase space
The crossing of the horizontal tHY* and the vertical ng lines is thought of in terms of lines’
coupling described by the L-operator (2.12) represented by the typical matrix operator

<A|£§g>|3> - (2.21)

This operator is equivalent to the usual Lax operator of integrable spin chain systems [18,66].
It is a holomorphic function of z and its representative matrix L%E); is valued in the algebra

2l of functions on the phase space of tHY . Formally, we have
L e A® End(N) (2.22)

with 2 generated by Darboux coordinates (b, ¢) to be commented later on; see eq(2.32). The
phase space of the L; (z) operator is obtained by considering two coupled vertical Wilson
lines Wg} and WgR; crossed by a horizontal tH.* as depicted by the Figure 5.

This topological invariant crossing describes integrability as encoded in the following RLL
relations . .

Ly (2) R (= = 2) L (2) = Ly (2) Rjj (= = ') L{ () (2.23)
In this equation, R¥* (z — 2') is the well known R-operator appearing in the Yang- Baxter
equation, it is proportional to the second Casimir C* of sl having the value 6:6%. For the

trigonometric case corresponding to the holomorphic line CP!, the structure of this R-matrix
as a series of h has leading terms like R (2) = 6.6% 4+ 2C* + O (1?).
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Figure 5: (a) The operator £ (z) encoding the coupling between a 't Hooft line at z=0 (in
red) and a Wilson line at z (in blue) with incoming (i| and out going |j) states. (b) RLL
relations encoding the commutation relations between two L-operators at z and z’.

2.2.3 Levi decomposition of siy

The RLL relations of eq(2.23) can be shown to be equivalent to the usual Poisson bracket

{b%, cs}pp = o5 of symplectic geometry with b and cs as phase space coordinates (Darboux

coordinates). This equivalence between the L% bracket (eq(2.23)) and the {b%,cs} 5 follows

from the Levi decompositions of sly that we describe here for different coweights of eq(2.17).
1) Minuscule coweight iy

The Levi decomposition of sly and its fundamental representation IN with respect to the

minuscule coweight 11 reads as follows

w1 ;o sl — sli®sly_1dn; dn_
N = 1x.6(N-1) ., (2.24)
N N
with ny = (N — 1), . Because of this decomposition of sly, one can imagine the Levi sub-
algebra as the manifest invariance in dealing with the study of the tH.! lines in the CS
gauge theory with sly gauge symmetry. In this view, we use the projectors oy and on_1 of
the irreducible parts of the decomposition N' = 1x_1 & (N-1)_ 1 as well as the identity
01 + on—1 = I;q to think of the adjoint form p; of the minuscule coweight as the sum of two
contributions, one coming from 1;_;,y and the other from (IN—-1)_, /v like

M1 = p101 + H1O0N-1 (2.25)

The projectors pr appearing in the above relation are as in eqs(2.18-2.19). In this picture
the 't Hooft line of the sly gauge symmetry gets splited into two parallel ”sub-lines” as
represented in the Figure 6. This is our first result regarding the using the projector basis
to understand the intrinsic properties of the L-operator in the A-series. Clearly, the two 't
Hooft "sub-lines” in the Figure 6-(b) are coincident in the external space R? x CP! of the CS
theory, but are lifted in the sl internal space where the transitions between the two sublines

11



are generated by operators belonging to the nilpotent subalgebras n..

l-l[-?l_ - i 1/N
H :
v A
sl ' E .,
MR
= sl, xsly,
(a) (b)

Figure 6: (a) Magnetic "tHooft with charge ;1 from the point of view of global sl symmetry.
(b) The same line from the point of view of internal sl; @ sly_;. here, the line u splits into
two sublines po, and poy_; as described in eq(2.25).

Moreover, the decomposition N — 1;_y/n ® (N—-1)_, /N can be extended to higher di-
mensional representations R of the sly gauge symmetry. This extension follows with the
previous discussion concerning Wg} beyond the fundamental weight IN. For example, the
antisymmetric IN A IN ;| the symmetric N V IN and the adj representations of sly decompose
with respect to the minuscule coweight i, as follows

H sy H sly @ sly_q H
NAN [F,_;8(FAF) ;
NVN [1,:0F _:&(FVF) (2.26)
N x N ll_iii_1+11_1F1 —I—F_Lii_l—i—F_;F;
- N N .N N N N N
adj (sly) | F-1 @ [1o® adj (sly-1),] B F 41

where we have set ' = IN — 1. Notice also that compared to N — 1;_1/5 ® (IN — 1)_1/1\,7
the symmetric IN V N reduces to three sl; @ sly_; representations namely 1, 2 and F',_ 2
as well as (F'V F)_ 2; the same holds for adj (sly). This feature is interesting as it indicates
that the corresponding Lax operators Lnvn and Lgj(s,) have a richer intrinsic structure
compared to Ly, see subsection 2.3.

2) Minuscule coweights py for 2 <k < N — 2.
Levi decompositions of sly and its fundamental representation with respect to u read as

follows
ME SZN — Slk@SZN_k@Sll@kf(N—]{?)+@/{5(N—k)_

N = kxs®(N—k) & (2.27)
N N

where the Levi subalgebra is sl @ sly_; @ sly and the nilpotent subalgebras are k (N — k) _.
For the example of sl; with k = 2, we have

o : Sly — slo@®slodslidd, d4d_

4 — 2+% @2_% (2'28>
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Notice that for this case as well, we have a splitting picture as in the Figure 6-(b) where
eq(2.25) should be replaced by
Mk = [0k T HEON-Kk (2.29)
3) Minuscule coweight piy_q
The Levi- decomposition of sl with respect to puy_1 reads as follows

pn—1 : sy — Sly-1 D sl ®FL D F-

N — 1Inv_1 &P (N — 1)_i (230)
N N

It has a similar structure to eq(2.24), so we can omit the details regarding this py_1 case; it
can also be recovered from the generic p with k = N — 1.

2.3 the L-operators in siy theory

The expression of the LM+ -operator in terms of the adjoint form of the minuscule coweight
i, and the Darboux coordinates 0® and ¢, is given by

LF(2) = eX gtreY (2.31)
with
k(N—k) k(N—k)
X= > VX, , Y= cY* (2.32)
a=1 a=1
In eq(2.31), the minuscule coweight acts like
[,ulmXa] = +Xq ) [:uk‘a Ya] =Y (233>
with the adjoint action py = pto; where o; = |i) (i| and where the u}’s are fractions of

the unity given by (2.16). See also the Figure 7-(a,b) representing our vision regarding the
topology of the L-operators of A-type series. For the expressions of the generators X, and
Y solving the constraints of eq(2.33), they are constructed below depending on the value of
the level k.

2.3.1 ’t Hooft line with magnetic charge ;i

In the case of a 't Hooft line with a magnetic charge u; crossing a Wilson line ng:N of sy,
we have N — 1 generators X, and N — 1 generators Y* in the fundamental representation.
These are N x N triangular matrices solving eq(2.33) and given by

X, = [D{a+1|
Y* = |a+1) (1] (2.34)
1o = %91—%<Q2+-~+QN>

where we have set g; = |i) (i| with Zz]\il 0; = Inxn. Moreover, by taking o7 = 02 + ... + on
with g1 + o1 = I, the adjoint form gy, can be written in the following form

N -1 1

H1 = N Ql—NQi

(2.35)
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Figure 7: (a) A horizontal minuscule 't Hooft line with magnetic charge uy, crossing a vertical
Wilson line with electric charge R = N. The green dot describes the coupling given by the
Lax operator (A|L%|B). (b) Intrinsic structure of the Lax operator taking into account the
Levi decomposition of sly with respect to pu.

These projectors play an important role in the study of the L-operator of the 4D CS theory
with SLy gauge invariance: (1) They single out the Levi charges of the two internal subspaces
in the Levi decomposition N = 1;_;/y ®(IN — 1)71/]\,. For example, by multiplying eq(2.35)
first by 01 and then by pi, we obtain

N -1 1

= — o 2.
o : 101 i (2.36)

which describe the two horizontal sublines in the Figure 6-(b). (2) They allow to write
interesting properties verified by the realisation (2.34) such as

XG,Q]. = O 9 QlYa - O
01Xe = 0 ; Y% ; = 0

H101 =

(2.37)

indicating that Lz can be presented as a matrix with sub-blocks given in terms of the
projectors p; and pjg.
We can check the relations (2.33) by computing the quantities p1X, and X,u; using the
above realisation, we have

N—1

1
,Uar = TXCL y Xa,ul == —NXUL (238)

thus giving [u1, X,] = X,; the same can be done for the generators Y.
Now, in order to explicitly calculate the L-operator L5 (2) = eX2#1e¥, we need to evaluate
the exponentials eX and e¥ such that X and Y are given by

N-1

X=) wr)a+1 Y:Z_ca]a+1><1\ (2.39)

a=1
These matrices obey the property X2 = Y2 = 0. Because of this nilpotency, we can write
eX =1+ X and ¥ = I +Y, and consequently

Lgr(z) = I+X)M(I+Y)

= 2] X2M MY 4 XY (240)
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Using py = %Ql — %gi with o1 = I — 0 and 2" = M 0;, we can express the L-operator in
terms of projectors as follows

N—-1

Ly (z) = 2z (Ql—i—z_%XgiY—i—

2.41
2V (Xo1 + o1Y) + 2 ¥ o (2:41)

This form of the Lax operator is a result of the projectors basis that we choose above, this
unique writing is particularly significant for the quiver description of the L-operator as well
as for the straightforward extension to other electric charges of the 4D CS gauge theory with
sly gauge symmetry.

2.3.2 Magnetic charge pyp with 2 < k< N —2

In this generic case, we have k (N — k) generators X, and k (N — k) generators Y generating
the nilpotent subalgebras k (IN — k), and k (IN — k)_ of the Levi decomposition of siy with
respect to the minuscule coweight puy. In fact, the X;, and the Y'* of ny. are N x N triangular
matrices realised as follows

Xio = |y(k+a| , 1<i<k

Yie — |k+a)li| , 1<a<N—k (2.42)
and the py is given by
N —k k
Hok N kT N R ( )
with
k N
Iy, = Z a I = Z 0 (2.44)
1=1 I=k+1
The generators (2.42) satisfy the Levi decomposition conditions that read as
[k Xia) = (B + %) X = X
; s , 2.45
[Mk7yza] — (_% - %) yie — _Yyia ( )
This interesting realisation also obeys
Xl =0 : ILY*=0 (2.46)

which indicates the sub-blocks of the matrix L% . The commutators [X;,, Y] give the
Cartan generators reading as H,, = 9; — 0, while the nilpotency X;, X5 = Y *YJ# = 0 leads
to eX =1+ X and e¥ =1+ Y. Using these features, we obtain

Ly = [[+X)2"(I+Y) (2.47)
= M 4 XzHk 4 MY 4 X 2HeY '
Moreover, using
N —k k
= Iy — —II; 2.48
Kk N k Nk ( )
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with Il = I — II; and 2" = 2RI, + Z”EHE, we can express the operator £) in terms of
the projectors as follows.

Ly (z) = 2N I 4 2 NI+

_k _k _k (2.49)
2N X1 + 27 VY + 27 v XIIY

This is the generic form of the L-operator in the 4D Chern-Simons gauge theory with sly
gauge invariance.

2.3.3 Magnetic charge uy_1

In this case, the N — 1 generators X; and N — 1 generators Y are given by

X, =114 a) (N]| , Y*=|N)(1+al (2.50)
with1 <a < N —1 and
1 N-1 (251)
HUN-1 = NQN N ON .
The Lax operator reads as
L (z) = Z%QN—FZ%QN‘f‘Z%XQN—‘r‘Z%QNY-f—Z%XQNY (2.52)

which corresponds to setting k = N — 1 in eq(2.49).

3 Topological gauge quivers: A- family

In this section, we introduce our quiver gauge representation for topological Lax operators
in the 4D Chern-Simons theory. This graphical description was first proposed in [59] for
the case of exceptional gauge symmetries Eg 7, it will be extended here for the ADE Lie
algebras. We begin by giving a definition of these graphs, then we construct the topological
quivers Q' corresponding to the L-operators L of sly -type with puy, 1 < k < N and
R = N. We exploit this leading model to graphically describe the structure of Lax operators
corresponding to representations of sl beyond the fundamental IN. These sly quivers are
collectively listed in the Figure 29 in the conclusion section.

3.1 Motivating the topological quivers Q'

The quiver diagrams Q' we want to construct in this section give a unified graphical repre-
sentation of the L-operators of A-type. We refer to these graphs as topological gauge quivers;
first because they concern a topological gauge theory (Chern-Simons), and second because
they have a formal similarity with quiver diagrams Qgg:¥. in supersymmetric quiver gauge
theories that we briefly recall here below.
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e Gauge quivers in supersymmetric theory
In a supersymmetric quiver gauge theory with unitary gauge symmetry G factorised as

G= H U (M) (3.53)

and Lie algebra like g = @!°,u (M;), where the gauge symmetry factors are imagined in
type 1I strings as stacks of M; coincident D branes wrapping cycles in Calabi-Yau compact-
ifications, we have a gauge quiver that denoted like Qfu=? . It has: (i) ng nodes N, ..., Ny,
corresponding to the gauge group factors G, ..., G, describing ”adjoint matter” in the gauge

theory transforming in the adjoint representations

(ii) a number ny;,, of links L;; between the nodes (NV;, N;) describing bi-fundamental matter
transforming in the representations

e Topological gauge quivers in 4D CS

Based on the general aspects of supersymmetric quivers, we introduce our topological gauge
quiver diagrams Qf describing the L-operator in the topological 4D Chern Simons theory
with A-type symmetry. These have similar features with Qggi¥ . that allow to interpret the
phase space coordinates b* and ¢, in terms of topological variables and bi-fundamental matter.
The topological property is inherited from the topological nature of line defects in 4D CS
following from eqs.(2.31,2.32). In fact, By using the killing form of the sly Lie algebra, we
can write b = tr (XY); and then by substituting X = log (£**¢™Y27#*), we end up with
the following relation between b* and the topological line defect

b = tr (log (E“’“e_yz_“’“) Y“)
Similar calculations for ¢, lead to
Cq = tr (log (z‘“ke_XE“k) Xa)

Concerning the interpretation of b* and ¢, as bi-fundamental matter, it follows from the
decomposition of the gauge potential A" in the Lie algebra (AM ~ adjy, ). From eq.(2.27),
we have

sy — sl @& sy B sk @ ng ©  no
adjSlN — adjslk D adjSlN_k D adjsll D (k’, N — k‘) D (k}, N — k)) (356)
A[M] — Aslk S AslN_k ) Asll S {ba} S {Ca}

where we learn that b* and ¢, sit in the bi-fundamental of the gauge symmetry SLy X SLy_.
We can therefore associate to this symmetry a quiver diagram having (i) two nodes NV} and N
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respectively given by the adjoint k x k and (N — k) x (N — k) and (i) Two links L5 and Ly,
corresponding to the bifundamentals (k, N — k) and (l%, N — k) This quiver is constructed
below (see the Figure 9). For the leading value k = 1 corresponding to SL; x SLy_; , the
topological quiver Qy with electric Wilson line in the representation R = N would have
two nodes

N = (1 x 1), ,  MNy=(FxF), (3.57)
where F' = IN — 1, and two links

Lo =11_1n @ Fiyn ; Ly =F_ 1y ®1_ 141N (3.58)

The group representation structure of the nodes and the links follows from the reduction of
N x N of the electric Wilson line into irreducible representations of sl; @ sly as

NxN — (11—1/N X i_—1+1/N) + (F—l/N X_F‘H/N) +

(]—171/N X F+1/N) + (Ffl/N X 1*1+1/N) (359)

To demonstrate the explicit construction of the quivers Q‘S‘l’jv associated to L-operators of the
SLy CS theory, we begin by treating the particular case £ = 1 to present the key idea, then
we consider the generic k € [2, N — 2] case.

3.2 Topological quiver of L7

Thanks to the algebraic properties of the L-operator L (2.41), in particular the special
features induced from relations of the type Xo; = 0 and 01Y = 0, and from identities like
X01 =X and 9,Y =Y, the expression (2.41) of the operator L5 reduces to the simple form

L8 =2 VI+X+Y+XY)pi+2 7 p (3.60)

In matrix language, it reads simply as

L a(Ina+ XY X
Lh =z N( N Y Z) (3.61)

To derive this expression, we have also used X p,Y = XY . The above matrix relation is the
well known form of £ in literature [17].

3.2.1 The L-operator in the projector basis

Here, we develop a method to cast the L-operator L5 into pieces characterised by represen-
tations of the Levi subalgebra [,,,. The expression (3.60) involves the projectors g, and g; on
the representations of the Levi subalgebra sl; @ sly_1. The presence of these projectors in the
explicit construction of L5 is interesting in the sense that it can be remarkably presented
into a four sub-block matrix as follows

N-1 _ L _ 1
£;1L{1 _ ( [Z N —ti NXY}QI Z Nl)(gi > (3.62)



Moreover, due to the properties of the realisation of the nilpotent generators X, and Y¢
(2.34), the above expression reads also as

o Ql[z% + Z_%XY}QI 2 V01 X 01
c = I o (3.63)
27N 1Y 0 27N 101

thus opening a window on a formal similarity between the structure of L5 and known graphs
in supersymmetric gauge theory, especially in supersymmetric quiver gauge theories embed-
ded in type II strings [62]. There, properties of quiver gauge theories are encoded in a graph
Qgange With nodes N; and links L;; having interpretations in terms of BPS particles, brane
wrapping cycles and singularity [63]. In our situation concerning 4D CS theory, the proposed
quiver Q'y shares general aspects with Qgauye> and is termed as a topological quiver because
the underlying 4D CS theory is a topological theory and also due to other related features in-
cluding gauge symmetry and gapless massless particle states [64,65]. The topological quiver

Qp for the A- family with R = N has two nodes N; and two links L;; thought of as

M = (alo) ; Lii = (aiLo1)
Nt = {o1Lor) : L = (eilor)
By exhibiting the dependence into the Darboux coordinates b® and c,, we can put the
L% into an interesting form where b® and ¢, can be interpreted in terms of topological bi-

fundamental matter of SL; x SLy_;. Using the Killing form, we can define these topological
bi-matter in terms of the links L;; and Li; as

b = 28Tr (LigY®) , co=25Tr (Li1Xa) (3.65)

(3.64)

This QFT interpretation of b#* and ¢, is borrowed from the above mentioned supersymmetric
quiver gauge theories. This aspect regarding b* and ¢, can be explicitly exhibited by replacing
X =0"X, and Y = ¢, Y* as well as XY = (b%,)p1, we end up with the known L [17]
expressed here in a condensed form using projectors as

N-1 _ iy _Ll. 7
oo = ( "% + 2" wblcloy 2 Nllo 01 ) (3.66)

1
zZ Noic Z N7

In this oscillator realisation, the b* and ¢, appear indeed as fundamental quantities stretching

between the two nodes and b? ¢ as topological adjoint matter of the Levi subsymmetry group
S L1 x SL N—1-

3.2.2 Formal expression of £} and the quiver Q.

The above derivation of L5 (3.63) can be stated in a formal way for any representation R.

In this case, one may think of L like L4} with sy refering to any representation R of the

gauge symmetry. But here let us sill keep R = IN and use the property o0 + 01 = ;4 to cast

EZ;N in different but equivalent ways: First as I;;£* and £ [;; reading explicitly like
£M1 — Ql‘C'ul + Qiﬁﬂl

sl

3.67
= Lo+ LMo (367)
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Second, we can also use the form I;3L" I;; and the resolution of the identity ;4 in terms of
the projectors to express the Lax operator as (01 + 01) £ (01 + 01) ; thus leading to
L

sl

= 01L" 01 + 01 LM o1 + 01 LM 01 + 01 LM 01 (3.68)

By help of ¢? = ¢; and g% = o7 as well as p;07 = 0, we can present E’:;N in the operator basis
(01, 01) like a 2x2 matrix blocks as follows

238 M1 A
— ( Qlﬁ 01 QI'C Ql) (369)

Eﬂl
o1LM o1 01LM o1

sy

This structure given here forsly was behind the topological gauge quiver used in [62] to
study the exceptional 't Hooft lines Eg and E;. In this investigation, we further develop

this approach to 4D CS gauge theory withsly gauge symmetry and beyond. For the case of
11
SlN

minuscule coweight u, of sly, the topological gauge quiver is depicted in the Figure 8.

Figure 8: The topological quiver nglN representing ﬁ;le of sly. It has 2 nodes and 2 links.
The nodes describe self-dual topological matter and the links describe topological bi-matter.

Its two nodes N; and Nj are given by N7 = o1 LM p; and N7 = p1LM o7 respectively in-
terpreted as topological adjoint matter of SL; and SLy_;. Below, we refer to this adjoint
matter as topological self dual matter; it is uncharged under the minuscule coweight opera-
tor. The links L;; between the nodes are given by L1 = 91 £/ o1 and L1, = 01£" 01. They
carry charges under SL; x SLy_1; and are interpreted in terms of topological bi-fundamental
matter.

3.3 Topololgical quivers: case 2 <k < N — 2

Here, we generalise the construction of subsection 3.2 regarding the minuscule coweight
to the generic minuscule coweight p; with 2 <k < N — 2.
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3.3.1 Generic projectors II; and IIj

In the generic case, the expression (2.49) involves the projectors II; and II; on the represen-
tations of the Levi subalgebra sl & sly_i @ sly. Using the properties

X1l =0 , ;Y =0 (3.70)
and the identities
XIl; =X , ;Y =Y (3.71)
leading to XII;Y = XY, the expression of the L- operator L takes the simple form
L — ¥ (I + X +Y + XY) 4 2°~ I, (3.72)
In the projector basis (I, IIj), this L% can be presented in block matrices like
o < (LR XY)IL, R XTI ) (3.73)
R _k _k .
2 NILY 2 NIl

By exhibiting the dependence into the Darboux coordinates while substituting X = b**X;,
and Y = ¢;3Y77 as well as XY = b*cy,, we obtain

—k i, —kia . _
o — z N_(i—i-b C“"A)ﬁnk 2 NZZAXWHIC (3.74)
z NCjﬁHEY] zZ NHE

3.3.2 Constructing the topological quivers Q%
By using the property Il + II;; = I, we can cast L as follows

Ly = (1T, + IIj) £+ (I + 1) (3.75)
Using IIIT; = 0, we can put this £**) into the following matrix form

( L0 00, T1,Cm I )

[ —
R H;;E“’“Hk H;;E“’“H;;

(3.76)

The topological gauge quiver Q associated with this L-operator has two nodes Ny, Ny and

two links Lz, Lz,. It is depicted by the Figure 9.

The two nodes are given by
Nj = I LM, , N; = I LMD, (3.77)

they describe topological adjoint matter of SL; and SLy_j; and interpreted as topological
self dual matter. The two links relating the two nodes. They are given by

oI, ICeI, (3.78)

they describe bi-fundamental matter of SL; x SLy_; and are interpreted as topological bi-
matter. These bi-fundamental matters are precisely given by the Darboux variables b and
Cia-

To end this section, notice the three following features:
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Figure 9: The topological quiver representing £+ of sly. It has 2 nodes and 2 links. The
nodes describe self-dual topological matter and the links describe bi-matter.

(1) the topological quiver Qs of the operator L5 appears just as the leading quiver of the
k-family Qb associated with the family L. So, the topological quiver Q5 ' of the

LZ" turns out be just the last member of the k-family. We omit its description.

(2) the quiver Qg given in this section concern Wilson lines with quantum states in the
fundamental R = IN. For Wilson lines in other representations ofsly like the com-
pletely antisymmetric N”* and the completely symmetric NV", we can construct the
associated the L-operators and the corresponding quivers Q4. Examples of the topo-

o) R
logical quivers Qv .. and Q. are given in Figure 29. Their Levi charges reported on
the nodes can be read from the decomposition (2.26). As an illustration, the quiver
p q
’;\}vg corresponding to the representation the symmetric N V N V NN is depicted by
the Figure 10.

(3) An interesting topological quiver diagram QZZj(slN) given by the Figure 11. It is the
one associated with the adjoint representation; that is R = adj (sly). From the de-
composition given by eq(2.26), we see that adj (sly) splits as n_ @ I, & n, with
l,, = adj (sly), + adj (sln_i), + sl and ny = k(N — k). The second concerns sy
with the representation 1o = 1;_y/n X i_1+1/N.

4 Vector 't Hooft lines of Dy- type

In this section, we study the class of vector-like L-operators £ in the 4D Chern-Simons
theory with SOyn gauge symmetry. This is a sub-family of the family of D- type Lax
operators which contains moreover the Lax operators Eﬁg;’; of the spinorial class to be studied
in the next section. Because SO, = SU; x SUy and SOg ~ D3 is isomorphic to SL,, we
assume that N > 4 so that the first element of the Dy series is given by SOs.

Notice that the general aspects of the present construction are similar to those introduced in
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Figure 10: The topological quiver Q% for the representation R = N V N V N. This quiver
has four nodes and 12 links.

the previous sections. The 't Hooft line tH is taken as the horizontal x-axis of R? and the
Wg} is chosen as the vertical y-axis; the z is a generic position in the holomorphic line CP*,
and R is a given representation of sosy. Moreover, most of the features associated to the
derivation of Lax operators from 4D CS with SOy gauge symmetry have been considered
in [52,60]. Therefore, we focus here on analysing the internal algebraic structure of this
theory allowing to illustrate the key elements of the quiver gauge gg;fv associated to ng;fv.
This quiver constitutes a necessary part in the unified theory chain in the sense that it links
the A-type symmetries to the exceptional ones, and allows to indirectly include the B-type

symmetries thanks to its similarity with the minuscule coweight of the sosy 1 Lie algebra.

4.1 Vector lines tH/! and their L-operators

We begin by recalling that minuscule 't Hooft lines within the Dy family of 4D CS theory
are magnetically charged with magnetic charge given by the minuscule coweights p of Dy.
Because there are three minuscule coweights in the Dy Lie algebras given by gy, pun_1, n
(see the Figures 13 and 17), we distinguish three types of 't Hooft lines tHY in the 4D
Chern-Simons theory with orthogonal gauge symmetry SO,y that we can refer to as

_ vect _ spin UN—-1 __ cospin
EHA =tHYeel | (HAY =tHP | gHAN T —tHeow (4.79)

The coweights 1, iv—1, pty are respectively dual to the vector representation 2N, the spinor
representation 2]LV ~! and the cospinor representation 2],}[ ~1. Here, we first focus on the vector-
like tH4! and move in the next section to the study of tHAY ! and tHEN . To fix the ideas, we
illustrate in the Figure 12 the Levi splitting characterising tHggCt. This intrinsic structure
will be derived and commented later on.
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Figure 11: The topological quiver Q& ’jij (slw) for the adjoint representation of sly. It has three
nodes Ny =1, andny =k (N — k).

(A (+ (el (|
e
K © po
n-
(a) |B) (b) +) 1) =)

Figure 12: (a) A horizontal vector-like 't Hooft line with magnetic charge u; crossing an
electrically charged vertical Wilson line. The green dot refers to the coupling between the
two lines; it is given by the Lax operator L% . (b) Intrinsic structure of the Lax operator
interpreted in terms of a topological gauge quiver with three nodes and 6 links.

4.1.1 Vectorial tHgﬁCt line: magnetic charge

The fundamental coweight p is the dual to the simple root a; of the soon Lie algebra. By
taking the N simple roots of SOqy as a; = ¢; — €;11 for i € [1, N — 1] and ay = eny_1 + €n;
it follows that the value of the minuscule coweight constrained as ujc; = d;; can be solved
like ¢1 = e1. In terms of the simple roots, we have

1
M1 :Oé1+...+CYN,Q—|—§(OéN,1+OéN) (480)
Notice that by setting N=3 in this relation, the resulting pu, takes the value oy + % (g + aig)
which can be compared with the fundamental weight iy = a9 + %(641 + @) of the sly Lie
algebra which is isomorphic to sog. Here, the &;’s stand for the simple roots of sly.
From the Dynkin diagram of the Dy Lie algebras given in Figure 13, we can see that the
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Levi decomposition I,,, @ ny @ n_ of sopn with respect to the vectorial coweight p; is given
by 1, = 502 @ soon_o and ny = (2N — 2), with the charge symmetry so, ~ sly. As such,
the dimensions of the adj [sooy] and the vector 2N representations split as follows

N@N—-1) = 1o+ (N—-1)(2N =3),+ (2N —2), + (2N —2)_

2N = 20+ (2N —2), (4.81)

where we have also exhibited the charge of sos. To construct the L-operator of the tHi;gCt line
represented graphically by the Figure 12-(a), we need the adjoint action of the coweight s,
and the explicit expressions of the generators of the nilpotent subalgebras n.. .

Figure 13: Dynkin diagram of Dy Lie algebras where the N simple roots «; are exhibited.
The Levi decomposition of soay — s05 @ soan_o using the vector coweight is given by cutting
the simple root a;.

The 2N — 2 generators of n, are denoted by X; and their homologues generating n_ are
denoted like Y, their realisation should solve the Levi decomposition constraint [py,ny] =
+ny and [ng,n,] = 0 with ¢ = £.

To get this solution, we consider (i) an electric vertical Wilson line as in the Figure 12-(a)

W =2N , & ={(zx,y)|r =0;—0c0 < y < 00} (4.82)

with incoming vector-like states (A| (A=1,..., 2N) and outgoing | B) ones propagating along
the line &,. (ii) a horizontal 't Hooft line defect tHggCt with the magnetic charge p;

In this case, we can split the vector representation |B) of SOyy as a direct sum |3) & |J)
where |f) is a vector of soy and |j) a vector of sosn_o. Moreover, we use the isomorphism
soy ~ sly to split |B) as |+) and |—) . Eventually, the 2N states split as

0) ) |
1B) = | 1J) 7y |, 1<j<M (4.84)
0) =)
where we have set M = 2N — 2 and considered the splitting of the 2N vector as 1, @

(2N — 2)0 @ 1_ such that the Levi subalgebra is sl; @ soon_o. In this vector states basis
(4.84), the operators X; and Y generating the nilpotent subalgebras are given by

Xy = |H) (=12 (-
Yoo = )+ =1=)

(4.85)
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The action of these operators X; and Y* on the vector representation of sosn can be visualized
in the the Figure 14 describing the splitting of the 2NN vector. As for the adjoint action of
the minuscule coweight, it is given by a particular linear combination of projectors or on the
irreducible representations 14 and (2N — 2), of the s0y @ soany_2 Levi subalgebra as follows

=04 — 0- (4.86)

with o1 = [+) (+] and o = [=) (-]

T (2N-2), 1

Figure 14: A graphic representation of the splitting of the vector 2N representation under
the vectorial Levi decomposition. The projectors on these three blocks are o, = |+) (+],

2o 0 =221 (i] and o_ = [=) (=]

Because of the vanishing so, charge of (2N — 2),, the minuscule coweight has no dependence
on the projector

Ih=> o (4.87)

with ¢; = |i) (i|. Notice that X; and Y7 satisfy some characteristic relations like for example
X;Y7 = 670, + i) (j] indicating that

Tr(X;Y") = 267 (4.88)

From the realisation of eqs(4.85-4.86) we can deduce that [u1, X;] = +X;, [u1, Y] = =Y and
[X:, Y] = py. Other useful and simplifying relations are listed below

YV = —§9|=) (4| , YiYiyt = 0 '
and
o-X; = 0 ; Xioy = 0
oY = 0 ’ Yip. = 0 (4.90)
as well as i D
Xio— = =)~ 0+ X; = |+)(
; . ’ : . 4.91
oY = 6 . Yo = [ (4] 9
By considering the linear combinations
X=vX;en, , Y=¢Y'en_ (4.92)
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where b* and ¢; are the phase space coordinates, we can calculate their powers X” and Y™;
and then eX and e¥. We find that X? = —b?E, Y? = —c?F and X?® = Y3 = 0 where we
have set b? = b',;0/ and ¢* = ¢;0Y¢; as well as E = |+) (—| and F = |—) (+] satisfying
[E,F] = and Tr (EF) = 1. We also have

b= %T?” (XY") ’ b> = -Tr(X?F) (4.93)
¢ = 3Tr(X;Y) : ¢ = -Tr(Y%E) '
Moreover, we have
0 X = 0 | orX = VIl Xoo = ) (-] (4.94)
oY = 0 oY = —q¢l|=) 0l , oY = —c¢l|-)(]

4.1.2 Vector- like tHgf)Ct line: building the L-operator

Using the properties X* = Y3 = 0 indicating that eX = I + X + 3 X? and equivalently for
e¥: then putting back into the expression of the L-operator namely £ = eXz*1eY | we obtain

£ — Z’“ + Xzﬂl + ZM1Y+
1Y 4 1X22M 4 XY (4.95)
+%Xz’“Y2 + %XQZ/“Y + %LXZZMYQ

with higher monomial given by X?2#1Y2. Replacing z*' = zp, + 2 1p_ and using eq(4.90)
indicating that

XM =2"1Xp_, MY =27l Y (4.96)
the above L-operator reads as follows
L = zo +z2z 0 +27'Xo +2710 Y+
270 Y24+ 227 X% + 271 X Y (4.97)

+227 X0 Y24+ 227 X%0 YV 4 1271 X% Y2

This operator has a remarkable dependence on the projector o_. Using the non vanishing

0+ X Xj0. = —6;;F and 9_Y'Y7p, = —6YF as well as 0, X; X;0_ Y Y0, = 6;;0"0,, we
have .
o+Loy = zop+ 32 0y X% Y0,
o LIy, = %z‘ngrXQQ,YHO (4.98)
o:Lo. = 327'0 X0
and
MoLoy = 1z 'MIgXo-Y?, ,
Hocno = Z_lnng_YH() = Z_lbiEng (499)
[MyLo. = 2z 'MjXo_
with E/ = |i) (j], and
o-Loy = 3270 Y0,
o LIy = z7'o Y (4.100)
o-Lo- = =z 'o_
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Substituting Xo_ = —biz; and oY = —c;* as well as X?p_ = —b?F and p_Y? = —c?F by
help of eqs(4.91,4.93,4.94), we obtain

£yt = (24 327'b%c?) oy + 27 1o — zv‘lbixi - 2 e+
—327 ' PF = 327D E A+ 27 (V) iy’ (4.101)
+32 1 (Ve?) x F + 527 b Byt

4.2 Topological quiver QU : case of the vector ’t Hooft line

From the realisation eqs(4.85-4.86) and the diagram of the Figure 12, we learn that the
Lax operator ﬁgg’gjv has an intrinsic structure that can be represented by a topological gauge

quiver gggjv To draw this topological quiver diagram, we use the projectors o,,p_ and

Iy = > 0, singling out the representations of the Levi subgroup SOs x SOsn_o of the
orthogonal symmetry SOqy, to cast eq(4.97) as follows

o+Lo+ 0+Llly o1 Lo-
ﬁgzgf\r = H0£Q+ H0£H0 H()EQ_ (4102)
o-Loy o0-Lly o Lo-

In this decomposition, we have used the relation o, + Ily + 0 = I;; and o+l = 0,0 = 0.
Finally, we recover the matrix representation in agreement with [67]

22 +1b%c? lp2¢; —1b?
o4 27 2
Lot =271 el Ve, —b (4.103)
—%CQ —C; 1
bz(;Z)
N+ > & N_
+1 C (+2 -1
(+1) . 4D ey (-1

bey

Nan-2 Pen

(0)

Figure 15: The topological quiver representing £ . It has three nodes and 6 links. The

SO2N *
nodes describe self-dual topological matter and the links describe topological bi-matter.

The topological gauge quiver gggfv representing the above vector like L’gggjv is given by the

Figure 15. The Q%! has three nodes N, Noy_o and N_ given by

SO2 N

N, = (0, Loy) : Non_o = ([T, L11,) : N_={o Lo) (4.104)
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It has 343 links L;; with ¢, j = 0, & interpreted as topological bi-fundamental matter SOy X
SOy reading as

Lyo=(0:LIly) , Loy = (loLoy) , Ly ={(o Loy)

4.105
Ly =(osLo-) , Lo—=(oLo-) , L_o= (0o_LI) ( )

Notice that The Darboux coordinates can be expressed in terms of the operator L and
the generators X;, Y and the minuscule coweight 1, as follows :

V= 2Tr (Y £ ), ¢ = 2T (L2 X)) (4.106)

SOo N SO2N

While b and ¢; sit respectively in the vector representation of SOsn_s and its transpose, they

carry opposite unit charges under the minuscule coweight 1.

As for the Darboux, we also have their composites that appear in the expression of the

L-operator, they are scalars of SOy _o and carry non trivial SOy charges. They are given by
b* = —22Tr (FLXY ), c? = —=2Tr (ELYS) (4.107)

SOa N SO2N
where E and F are related to the minuscule coweight operator as [E, F| = ;. Interesting
composites of the Darboux coordinates that transform non trivially under SO, are given by

b’c; = 22Tr (1 FLYES X;), b'e? = 22Tr (Y 'Ly E) (4.108)

SO2 N

5 Spinorial ’t Hooft lines of Dy- type

This section is a continuation to the previous one, it concerns the operators Ejgéz. Here,
we introduce the two spinorial like 't Hooft lines of Dy type denoted as tH4Y ' and tHEN
and construct the associated Lax operators L. We cast their special properties in the
associated topological quivers Q" . We also treat exotic cases where the electric charges

are given by representations beyond the (anti)fundamental of the so,y Lie algebra.

5.1 ’t Hooft line with magnetic charges uy_1 and uy

Besides the vectorial p11 = e; given by eq(4.80), the SOyy has moreover two other minuscule
coweights py_1 and py. These coweights yield the magnetic charges of the two spinorial-like
't Hooft lines :
tHyY ™, tHAN

These line defects are represented similarly to the vector-like line tHA! of previous section as
depicted in Figure 16 where the tH/Y couples to a vertical Wilson line ng carrying internal
states | A) belonging to some representation R of sopy. Interesting candidates for R are given
by the vectorial and the spinorials, namely

R=2N , R=2Y' | R=2%' | R=2V (5.109)
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M~

magnetic charged

. 't Hooft line

electric charged Wilson line

Figure 16: A horizontal 't Hooft line of D- type with spinor-like magnetic charge given by
the minuscule coweight py of SOsy couples to a vertical Wilson line characterized by a
representation R of sogy.

So depending on the electric charge of the Wilson line ng, one distinguishes various kinds
of L-operators that, generally speaking, can be labeled as follows

Lhs = eXBokoelR (5.110)

with a spinor-like minuscule coweight g of SOsy. For an electric representation R with
dimension dg, we have a Lax operator L', described by a dgxdg matrix whose entries are
functions of the Darboux coordinates. These phase space coordinates labeled as (b[ij], c[ij])
appear in the expression of the Xi and Yg as follows

Xp=bIXE | Ye=cyVs (5.111)

Where in these expansions, the X [ﬁ'] and ng I are generators of the nilpotent subalgebras nf
issued from the Levi decomposition of sooy. In fact, for the spinor-like coweights ps = pn—1

or iy, we have the following Levi decomposition of sogy

SOoN — lus b n Sn_ (5112)

where [,, = gly. This can be directly read from the Figure 17 where we see that the
fundamental coweight py_1 is the dual of the simple root ay_1 = ex_1 — ey, while py is the
dual of any = en_1 + en.

Notice that by cutting the root ay_; from 17-a, we end up with the Dynkin diagram of an
sly Lie algebra with the following simple roots :

A1y, ON_2; AN (5.113)

And if instead, we cut the root ay as in 17-b, we also end up with the Dynkin diagram of
an sly Lie algebra having the simple roots :

A1, ..., N_2; XN_1 (5114)
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ay

oy (09 as Qan-3 aN-1
O O O----- O----- O
aN-2
an
oy (L) a3 an-3 QN-1
M)

aN-—2

Figure 17: Dynkin diagram of Dy Lie algebras where the two Levi decompositions with
respect to the spinorial coweights are illustrated by : (a) removing the simple root ay for
the minuscule coweight py. (b) removing the simple root ay_; for the minuscule coweight

HN—1-

The two sly and sl are isomorphic, they are related by the exchange ay <> ay_;. We
can therefore focus our analysis on the minuscule tHEY since the calculations are similar for
tHAY~'. Notice however that the expressions of the coweights in terms of the e; weight vector
basis are given by
pN-1 = % (e1+4 ... +en_1 —en) (5.115)
uy = §(el+-~-+€N71+€N)

5.2 Magnetic charge uy and the link between SO,y and SLy

Here, we study the Levi decomposition of sooy with respect to puy in order to explore intrinsic
aspects of the coupling between the minuscule tHAY and the Wilson line in a representation
R of soon that is usually taken as the vectorial 2 N. Particularly, we extend the results here
for Wilson lines in the spinorial representation 2% where we build the graphic representation
of their remarkable coupling with 't Hooft lines; see Figure 18-(a).

5.2.1 Spinorial 't Hooft line tH:Y

As shown by the Figure 17-a without ay, there is a close relationship between SO,y and
SLy. It is given by the Levi decomposition soony — 1, @ 14 @ n_ with respect to the
coweight py of the SOyn gauge symmetry of the CS theory. In this decomposition, we have
the following dimension splitting

N (2N —1) :N2+%N(N—1)+%N(N—1) (5.116)
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and the subalgebra structures

lHN = Sll () SlN
n, = N,AN,, (5.117)
n_ = N_% A N_%
with sl; @ sly ~ gly and [sl;, ni] = ny indicating that
1
[sll,Ni%} —+5N., (5.118)
We also have the R,,,, representations’ splitting
’ repres R, \ repres Ry, ‘
2N N+l D N_l
2 2
2NA2N [ adjpe (Noy AN,y )@ (N AN (5.119)
2N @{ﬂV:ONé\kk

where 2N describes vector- like states, 2IN A 2N the antisymmetric (adjoint) and 2IN V2N
the symmetric. The 2V states describe a Dirac-type spinor reducible into left handed and
right handed Weyl spinors as follows

2N = 2lV-1 g 21 (5.120)

Notice that the wedge product A¥N is the k-th anti-symmetrisation order (for short N"*) of
the tensor product of k representation IN. Its dimension is equal to ﬁ As illustrating
examples of the degrees of freedom described by such wedge products, we give below the

reductions associated with the leading gauge symmetry groups
| sooy | 2N [ 2V [ 2771 [ 2771 |
sog | 6 8 |4, 4p
508 8 16 | 8, 8r
soip |10 | 32 |16, | 163
S012 12 64 32L 32R

(5.121)

where we have also given the sog which is isomorphic to sly with no Levi charge operator
sl;. The Levi decompositions with respect to py of the above spinorial representations 2V
are given by the sum of two bloks: (i) the first block involving the even powers IN Nt

corresponds to Weyl spinor; say 25 ~1. (4) the second block having the odd powers IN N2
and corresponding to 2% ~1. So, we have:
’ SOoN ‘ 2g_1 ‘ 2g_1
SO0g 4L = 1—{—3/\2 4R:3A1+3/\3
S0 8L = 1 + 4/\2 —f- 4/\4 8R = 4/\1 + 4/\3 (5122)
S010 16L =1 + 5/\2 + 5/\4 16R == 5/\1 + 5/\3 + 5/\5
5013 | 832, =1+6"+ 6 +6"° | 325 = 6" +6"° +6"°
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By assuming the 2§ ~! and the 2%‘1 as traceless, we can exhibit the Levi charges in the
above relations leading to

’ SOoN | 22\]_1 2g_1 ‘
sog | 4r | =1ligu+3 -1 4r | =31+l g
S0g SL = 1+1—|—60—|—1_1 SR = 4+1/2—|—4,1/2 (5123)
soyg | 167 | = 15/4+101/4+5 34 16p | =5,3/4+10_1/4+1 5,4
S019 32L = 1+3/2—|—15+1/2+15_1/2+1_3/2 32R = 6+1—|—200+6_1

Thanks to the reduction of soqn representations in terms of gly ones like in eqs(5.119),
one can construct various kinds of spinorial-like Lax couplings depending on the electric
representation R hosted by the Wilson line Wf crossing the tHAYN line. Two of such couplings
are studied here below:

e Case of electric Ry = 2V

/ N-1 / N-1
) | 2N (el 2 (Vr| 1 28

Hy

D) He £

£ 0]
(a) (b) 191) e
Figure 18: On the left, a horizontal spinorial like 't Hooft line crossing a vertical Wilson
line carrying internal fermionic states ¥ = (¢1,%r). On the right, the structure of the
coupling under the Levi decomposition showing chiral and antichiral Weyl states traveling
along vertical lines.

In this case, the coupling is given by the interaction between the spinorial tHf and a Wilson
Wf line with electric representation R, = 2% as illustrated by the Figure 18-(a). The
quantum states propagating along the vertical Wilson line form a Dirac spinor ¥ = U G Ug.
By using the projector II;, on the left handed spinor and the projector 11z on the right handed
one, we can use the properties Il + I1g = I;4 and I 11z = 0 to decompose the action of the
minuscule coweight on 2% like

pw=T1rp+gu — = fr + [R (5.124)

This splitting is illustrated by the Figure 18-(b) where the states propagating in the two
vertical Wilson lines are given by the left handed W and the right handed g Weyl spinors.
In this case, the L-operator decomposes into four blocks as follows

I, CI0;, 1I.CI0R
B
ERS N < HREHL HR,CHR ) (5125)
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Notice that in this expression of L"I‘{S, we have not yet implemented the the Levi decompo-
sition; we have only exhibited the chiral and anti-chiral structure of the Dirac spinor. To
implement the effect of the Levi decomposition, we introduce other types of projectors

Py = [NAF) (NP (5.126)

that give the reduction 2% = @, N"* and eqs(5.119-5.123). This leads to a more complicated
structure of this specific type of coupling; we will come back to this case later for further
development.

e Case of electric R, = 2N

A u; v;

Jg u, L]

Figure 19: On the left, a horizontal spinorial like 't Hooft line crossing a vertical Wilson line
carrying a bosonic current J4 = U4V, On the right, The splitting of the current into two
currents u; = ¥Y;® and v = UY'® traveling along the vertical lines.

In this case, the spinorial tHAN crosses a Wilson ng line with electric representation R = 2N
as shown by the Figure 19-(a). This representation R can be related to the previous R, = 2
because it can also be viewed as an sogy electric current J4 given by the Dirac bi-linear like

Jag = (V|4 |D) (5.127)
where the 2N Gammas I'4 are 2V x 2V Dirac matrices. To deal with this so,y Wilson lines,
it is interesting to use the new basis

1

1 _
T, = — ([ + , T =— (T, - 5.128
l \/§(l ’LN+1) \/§<l ZN+1) ( )

Then by putting back into (5.127), we find that the so,y electric current J4 decomposes as
two (covariant and contravariant) gly currents given by

w = UY,;® , 7 =UY'® (5.129)

The u; transforms in the fundamental N of the Levi subalgebra gly; and the o transforms in
the anti- fundamental N_. Using the projector g, on the representation N, and the projector
o— on the representation N_, we can express the L-operator as follows, see also Figure 19-(b).

uo_ 0+Loy oiLo-
ERU = < o Lo. o Lo ) (5.130)
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5.2.2 Levi and nilpotent subalgebras within soyy

To model properties of the spinorial 't Hooft lines in 4D Chern-Simons theory with SOqn
symmetry characterized by the following Levi decomposition with respect to .,

sooy > (N_AN_)®gly & (N ANY) (5.131)

where IN 4 stand for N1 /5, it is interesting to recall some useful tools concerning the euclidian
Dirac spinors in higher dimensions and the algebra of Gamma matrices.

In even 2N dimensions, the Dirac spinor [pjrq.) has 2NV components and decomposes as a
sum of two Weyl spinors like |¢,) + [1)g) where

|¢L> = HL ’¢Di7"ac>

5.132
|wR> = HR |¢Dirac> ( )
and - LT )
L = U +Tlanvt 5133
0, = L(7-Tuyu) (5.133)

The v, and ¥ are Weyl spinors transforming in QJLV ~!and 2%‘1 while the I, and the Il
are the spin projectors encountered earlier reading as follows

rL—(ég), FR—(S?) (5.134)

The identity and the zeros appearing in these matrices live in 2V~! dimensions. The T'yn;
is the chiral operator given by

Dl Tayy = ()Y ea, aynDonet (5.135)

,,,,, A,y 18 the completely antisymmetric tensor with €; oy = 1 and I'4 obeying the
Clifford algebra of a 2N dimension euclidian space.

s’ +T'gl'a = 2045 (5136)

The relations (5.131) and (5.135) allow to split the 2N Gamma matrices I'4 into two subsets
that will be used later to construct a new basis for the Gammas that is compatible with gly,

L

o i=1,..N (5.137)
Ui

Recall also that the generators Jj4p) of the sooy spinor representation are defined by the

commutators 1

Lap = % 4, T'5] (5.138)
As for sly @ sly, the soon algebra also has N commuting diagonal generators H; realised in
terms of the Gamma matrices as

1

T2

H, I, Py ) = =il v g ; l=1,.,N (5.139)
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To exhibit the realisation of the sl;®sly representations within the sosy orthogonal symmetry
group, we substitute the spliting 'y = (I';, 'y4;) into the N (2N — 1) generators I"'4p of soan
and we obtain the following antisymmetric 2x2 block matrix

_( Ty T
Tup = ( i (5.140)

This decomposition contains:

(a) the N? operators f‘f generating N, ® N_ of the Levi subalgebra sl; @ sly.

(b) the 3N (N — 1) operators I'};; generating the N, A N, nilpotent subalgebras.

(c) the N (N — 1) operators I'/ generating the N_ A N_ dual nilpotent subalgebra.

5.3 Nilpotent subalgebras and L-operator

In order to explicitly realise the generators I';;, L) and ff appearing in the decomposition
(5.140) and consequently the generators Xp; and Y of the nilpotent subalgebras ny, we
first think of the set of the 2N Dirac matrices I'y = (I';, ['y41) as follows,

1 _ 1

T, = —= ([ + , T =— ([T, - 5.141
l \/5( ! N+1) \/§< l N+1) ( )

This new Gamma matrix basis satisfy the Clifford algebra

T+ = 20
T+ 71T = 0 (5.142)
TR TP = 0

Then, we consider the two gly vector currents u; = (¢|1;|¢)) and o° = (¢|T?|¢) of eq(5.129)
constructed out of bilinears of the Dirac fermions and use them to construct I';;, T and
I, These two currents transform in the Ny and N_ representation of sl; @ sly.

5.3.1 Realising the nilpotent generators of n.

First, using the N+N complex variables u; and ©°, we build the translation operators 0" =
0/0u; and 9; = 9/0v" as well as the rotations

X = wdj—wd; , Zj = wd v
vl — i -9 | H = LlTr(Z)) (5.143)
In these relations, the operator
1 N i
H =3 Z (w:0' — 0'9;) (5.144)
is the charge generator of sl;. It acts on the complex variables like
1 1
Hui = +§U1, Hv' = —ivz (5145)
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We also have X' = dbu; — dlu; and Ylily, = §15° — §iv7 as well as ZJuj, = w;0] and

ZJ)5! = —78l. The above operators (5.143-5.144) obey interesting commutation relations
such as (k1] kol _ skl Lok _ slok
X, Y| = (072) = 07 Z)) — (92F — 0:Z5)
[X[z:j]aX[klﬂ = 0 (5.146)
[Y[w]7y[kl]] = 0
For particular values of the labels, we obtain
(X, YV = (N —2)Z} +26{H
2], Xu] = + (5. Xu — 6 X)) (5.147)
[Zg,y[kl]} = _ (52163/[3‘1] — 5z%y[jk])
and [ }
H, X = +Xpy
YR =yl (5.148)

In order to introduce similar notations to the ones used in the previous sections, we associate
to the variables u; and 7" the kets

1 , 1

and to the translation operators 0" = 9/du; and 9; = 9/9v" the following bras

. 1 1
0" — <—§,i , 0; — <+§,z'
We use moreover the following notation
<_7j|+’i> = 53 ) <+7j|+7i>

<+7.]|_7Z> = 5zj ) <_7]|_JZ> =

to realise the operators Xy, Y and Z! as

Xy =
vkl —
/4 -

We also have X [ij]Y[kl] = U[%] with

Ul = 6% |40) (=, 1] = 0F [+,5) (=, 1] = 0% [+,4) (— K] + 0} |+, 5) (— k|

as well as

[+, ) (5] = [+,9) (+ 4]
|_7k> <_7l| - |_7l> <_7k|
|+7i> <_’ l| - |_’ l> <+7i|
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where . St N i) (i
I = >0 of = i) (i
_ L ’ L T " 5.155
o= Yo . o = |iini (5:155)
with the properties IT* X[;;; = Xj;;) and YIHIT+ = Y¥I, Notice also that using (5.151), we
have
XijXu=0 , YhlyWF =g (5.156)

and |
X VI = |44y (=, 1] + o1+ (5.157)
5.3.2 Building the Lax operator L%’

Now, we are finally able to explicitly calculate the expression of the spinorial Lax operator
of the 4D CS theory with SO,y gauge symmetry. This operator L' describing the coupling
of Figure 19-(b) is generally given by

LI = eXRo N VR (5.158)
where the Xgp, and Yg, are 2N x 2N matrices given by the following linear combinations

Xg, = bHIX

o Yro=cyYe) (5.159)

such that the antisymmetric 5% and cii;) are Darboux coordinates satisfying the Poisson
Braket

{690, ey } o = 6167 — 6167, (5.160)
The adjoint form py of the minuscule coweight in (5.158) is given by
1 1
= _IIt — =1 161
HUN 5 5 (5.161)
where the projectors II¥ are as given in (5.155) with the properties IIT + II- = [;; and
ITTII~ = 0. This allows us to write
2N = o3I 4 27300 (5.162)

Moreover, because of the properties (5.156), the matrices X and Y (5.159) are nilpotent with
degree 2, that is X? = Y2 = 0. Therefore, the L-operator expands as

Lo 4 X 4 Y Xy (5.163)

By substituting z#¥ by its expression (5.162) and using the properties XII* = 0 and IITY =
0, we end up with

LY = 2310 4 27300 4 2 2 XTI 4 2 210Y 42 2 XITY (5.164)
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And by putting X = bl¥lX i) and Y = c[kl]Y[kl], the Lax operator E’ﬁz can be also expressed
like

Ly = It + 270l SZ—%(b[ikllEg’cM) (5.165)
+(22_5b[”])X[mH_ + (22_50%”)1_[_}/“3”
where EF = |+,14) (—, k| . Moreover, using
Tr (XpgY®) = 2(6l6% — oLof)
Tr(XYyW) = —2p] (5.166)
Tr(XgY) = —2
we have . )
plil = —Zz%Tr (YElgm) ey = —ZZ%TT (X L) (5.167)

The expression of the L-operator in the basis |+, ) , |—, j) defined in eq(5.140) reads as follows

2cp;) 205 + 8bHleyy ) (5.168)

M _ _l
Lp, =27 < 5 oplis]

5.4 Topological quiver Qf' of L}’

In order to construct the topological gauge quiver Q" associated to the spinor coweight and
the fundamental representation of the D-type symmetry, we begin by rewriting the E‘jﬁ in
the projector basis (IIT,I17) of the representation 2N = N, & N_.
Using the properties of the gly projectors on Ny @N_, in particular (ITT)* = I+, (I1")* = T~
and
I 4+ 117 = Iy , I =0 (5.169)
as well as [Tt X = X and YIIT =Y, we can rewrite the Lax operator (5.164) as follows
1 1 1
un [zt 4 2 I XTI YT 272 XTI
Lr, = ( MY - (5.170)

Moreover, by using the remarkable properties XII™ = X and II"Y =Y that can be checked
with the explicit realisations X = |+,4) (+, | — |+, ) (+,i] and Y = |— k) (—,1] —
|—, 1) (—, k|, the term XTI"YTI" reduces to XYTI" and the eq(5.170) becomes

2+ IH(XY)ITT XH) (5.171)

BN _ —%
Lr, == 2(H—Y -

The nodes N; and N5 of the topological gauge quiver Q" representing L7 as depicted in
Figure 20 are given by the diagonal entries of the matrix (5.171)
Nl = H+£H+ y NQ =1I_LII_ (5172)

They are interpreted in terms of topological self-dual matter in the sense that they have no
sly Levi charge. This feature is manifestly exhibited by their dependence into the monomials
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Figure 20: The topological quiver Qg representing the operator L. It has 2 nodes N1, Na;
and 2 links L9, Lo;. The nodes describe self-dual topological matter and the links describe
topological bi-matter.

b[ik]c[kj] that are neutral under sl; because the Darboux coordinates b*! and C[kj) have opposite
charges. On the other hand, the two links are given by
Li =11, LI , Loy, =11_LIT, (5.173)

They are remarkably equivalent to the Darboux coordinates b%! and ciij) and are interpreted
in terms of topological bi-fundamental matter of sly @ sly. The sl; charges data for the Q’;{Z
is collected in the following table

Quiver Nl NQ Liso | Loy
sl |43 ] —35]-1 |+1

(5.174)

where we remark that the transition from the topological quiver node N; to the N is given
by the link L;_.5 carrying a Levi charge —1; while the reverse transition is given by the link
L5,y with Levi charge +1.

6 Exceptional Es 't Hooft lines

This section is dedicated to the 4D Chern-Simons having as gauge symmetry the Eg group.
This case is characterized by two minuscule 't Hooft lines tHA! and tH.?, and therefore two
types of minuscule Lax operators £ and L7 that we need to study in order to build the

associated topological gauge quivers Q¥ .

6.1 Minuscule coweights and Levi subalgebras of Eg

We begin by describing the interesting properties of the finite dimensional exceptional Lie
algebra eg that are useful for our construction. This is a simply laced Lie algebra with
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dimension 78 and rank 6; its algebraic properties are described by the root system &,
generated by six simple roots «;. The intersection between these simple roots is represented
in the Dynkin diagram D, depicted in the Figure 21 and having the symmetric Cartan
matrix K., = o;.a; given by :

2 -1 0 0O 0 O
-1 2 -1 0 0 0
O -1 2 -1 0 -1
K, = 0 0 -1 2 -1 0 (6.175)
O 0 0 -1 2 0
o 0 -1 0 0 2
(o433
a @3 (4 7] as
O % O O
a3

Figure 21: The Dynkin Diagram of e having six nodes labeled by the simple roots «;. The
cross (x) indicates the cutted node in the Levi decomposition with respect to pg, the Levi
subalgebra in this case is given by so(10) & so(2).

The root system @, contains 72 roots generated by the simple root basis {c; }, <i<g 1t has 36
positive roots o € ®/ and 36 negative ones —a € ®_ . All of these roots have length a? =2
and are realised in the Euclidean R® generated by the unit vector basis {€;},;.4 as follows

E¢ : oy = %(61_62_63_54_65_56_€7+€8)
o = € — €1 s 1= 1,2,3,4,5 (6176)
Qg = €1+ €

From the Figure 21, we learn that the Dynkin diagram D, is invariant under a manifest
Z5" outer- automorphism symmetry exchanging four simple roots and leaving invariant as
and ag. It acts like a; — ag_; with ¢ = 1, ..., 5, by exchanging as with a4 and oy with as. In
permutation symmetry language, the Z3* is generated by the double transposition (15) (24),
ie:

25" = {Ly, (15) (24)} (6.177)
The 36436 roots « of the eg Lie algebra can be organised as follows
root realisation labels number
G| et 1<j<i<5]20
Vi | 43 (g6 — e —ert+es) [T 1qi =1 16
Y& —5 (e — e —er+es) | IID_1q =1 16
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where the five ¢; can take the values +1 with the constraint Ilg; = 1.

Regarding the fundamental coweights w; of the six fundamental representations of the Lie
algebra of Eg, they are given by the duality relation w’.a; = 0%; this equation can either be
solved in terms of roots, or by using the weight unit vectors ¢;. The w; read in terms of the
simple roots as follows

fund- w; in terms of roots height | Repres

w1 %al + gag + 23 + §a4 + %045 + o 8 27,4

Wa gal + 1—3?a2 + 4o + §a4 + §a5 + 204 | 15 3014

W3 20./1 —f- 40[2 + 60[3 —I— 4054 —I— 20(5 —f- 30./6 21 29250 (6179)
Wy %al + %@2 + 4o + %044 + §a5 + 204 | 15 351_

Ws %Oél + %OCQ + 20(3 + gOé4 + %Oé5 + a5 8 27_

We o1 + 20(2 + 3063 + 20&4 + a5 + 20&6 11 780

From these expressions, we see that the outer-automorphism symmetry Z5* discussed above
can be manifestly exhibited as follows,

witws = 2(a;+as) +3(ag + ay) + das + 2a4

Wy +wy = 3(041+a5)+6(a2+a4)+8a3—|—4a6 (6 180)
w3 = 2 (Ozl + Oé5) +4 (042 + 044) + 60(3 + 30&6 '

we = (o1 +as)+2(ae+ aq) + 33 + 204

Moreover, by using (6.176) and «; — ag_; with g = ag, one can write down the action of
the outer-automorphism symmetry Z5* on the weight vector basis ¢;. In what follows, we
will be particularly interested into: (1) the representation 78, associated with the simple
root ag, and (2) the 274 associated with «; and as.

The two minuscule coweights p; and p5 that are dual to the oy and a5 of the eg are respectively
associated with the fundamentals 27, and 27_ as shown in table (6.179). Being related by
75", we focus below on one of the two minuscule coweights, say p = wq; Similar results can
be derived for us.

6.1.1 The e4 algebra and the representation 78

There are different ways to decompose the root system of the eg Lie algebra. The interesting
Levi decomposition with respect to charges of the minuscule coweight ;o = 11 considered here
reads as follows

€6 — S0 D s010 D 16, S 16_ (6.181)

From this splitting, we learn that the Levi subalgebra I, = so0, @ sojp and the nilpotent
subalgebras ny = 16.. The root system ®., containing the 72 roots of es is therefore
decomposed in terms of two subsets: a subset ®,,,,, and a subset given by the complement
O, \Pso,,; they are described here below as they play an important role in the construction
of the Lax operator L.
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e Roots within ®,,,
The subset ®,,,, contains 40 roots fs,,,, 20 positive and 20 negative; they define the step
operators Zig,, ~generating sojp within eg. It is generated by the simple roots

Qg, (3, 04, «O5, Og (6182)

and has the usual symmetry properties of the root system of so;g. The root subsystem
b0, C P, can be defined as containing the roots Sq,,, with no dependence into «, formally

05010

5@1

=0 (6.183)

This can be noticed by cutting the node aq in the Dynkin diagram of the Figure 21, where
we recover the Dynkin diagram of so;y and a free node a; associated with the soiy spinor
representations 16, charged under so,.

e Roots outside Py,
This is the complementary subset of ®,,, within ®.; it is given by &, \P,,,, and reads
directly from the root system of eg by considering only the roots ., with a dependence into
Qg

8Bsoys /001 # 0 (6.184)

This subset contains 32 roots of spinorial type as they linearly depend on the simple root oy
which is spinorial-like. The importance of these roots is that they define the 16 step operators
X5 generating the nilpotent subalgebra 16, and 16 step operators X 5 = Y? generating
16_.

6.1.2 Decomposing the representation 27

As for the adjoint representation of eg, the fundamental representation also decomposes in
terms of representations of so, @ soyg. This representation is interesting in our study as
it will be taking as the electric charge of the Wilson line Wg} where R = 27.. Generally
speaking, given a representation R., of the algebra eg, it can be decomposed into a direct
sum of representations of so, @ s01g. such as

R., =) nm (R R) (6.185)
l

where n; are some positive integers. In the case of the representation R., = 27, we have the
following reduction [68]

4 2 1
27=(1,—-)+(10,+=) + (16, —=) (6.186)

3 3 3
that we can simply write as 27 = 1_4/3 + 105/3 + 16_; /3. Notice that by cutting the simple
root «y in the Dynkin diagram, the SOy representations get charged under SOs; these
charges play the role of a "glue” between these representations within the 27. This property
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is manifested by the constraint that the sum (or the trace) of the charges of the 27 states
with respect to SOy ~ Eg/SOq9 must vanish. Notice moreover that these charges can be
also observed in the following relation
2 1 1 2

Wi w5 = g0 + 302~ 30~ 3% (6.187)
where «s stands for the spinorial of SO and as for the vectorial.
In order to understand the structure of the 27 states in the fundamental representation of eg,
we refer to the weight diagram of the Figure 22 where we have a top state |{;) with weight
&1 = wy and a bottom state €37 = —ws. The other 25 states in between can be generated either
by starting from the |£;) and successively acting on it by the step operators (Eg)T = FE_g
where § a positive root of eg, or by acting on the bottom state |&57) with (E_z)" = Ej.
The subspaces of the 27 representation correspond in the figure 22 to :

1) |fl>f4/3 = |wr)

!
116)  [§a) 113 (6.188)
!

110)  [&) o3

such that the top state |£;) is an SOqq singlet, the 16 states |&s) , ..., |&17) constitute a chiral
spinor of SOyg, and the ten states [£1s) , ..., [€27) form a vector of SOy.

6.2 Minuscule Eg 't Hooft operator

We can now use the collected mathematical tools concerning the exceptional Lie algebra eg to

calculate the Lax operator L describing the coupling of an exceptional minuscule 't Hooft

lli%ne tH,’:y;) with magnetic charge p = p; interacting with a Wilson line Wg} with electric charge
= 27.

6.2.1 Realizing the generators of the nilpotent subalgebras

To construct the 't Hoof line operator L% of the exceptional Eg Chern-Simons theory in 4D,
we begin by building the generators of the nilpotent subalgebras that appear in the Levi
factorisation -based formula [52]

Lh =e*zte” (6.189)

where p = w; and the nilpotent matrix operators are given by
16 16
X=Y0t'Xs ., V=) ¢ (6.190)
p=1 p=1

In these expansions, the sixteen b and the sixteen cg are the 16+16 Darboux coordinates of
the phase space of the exceptional Eg 't Hooft line tHf . They satisty the Poisson bracket
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Figure 22: The weight diagram of the representation 27 of the exceptional Lie algebra eg
where every state |{4) is simply represented by the node carrying its number. The states
1+16410 of the SO sub-representations of eg are represented by different colors.

{07, c3} = 5g that must be promoted to a commutator in the study of interacting quantum
lines. X5 and Y* are the generators of the nilpotent subalgebras 16, and 16_. The charge
operator u of the Levi subalgebra associated with the minuscule coweight can be presented

as
4 2 1

__Z 2o — = 6.191
I 501+ 3010 ~ 5016 ( )

where 01, 010 and p16 are projectors on the so, @ soyo representation subspaces making the 27
fundamental of Eg as given by eq(6.186). By denoting the 27 states |£4) of this representation
as

Groups | Eg SO1p X SO,

States | [€4) | o) | 1sa) | 1) (6.192)
Repres 27() 10+2/3 16,1/3 1,4/3

following the splitting formally represented in the picture 23,

Figure 23: A graphical illustration of the Levi decomposition of the representation 27 of eg
in terms of representations of soqg.
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we can write the projectors og on the fundamental representation of eg as

10 16
o= lu) (|, aws=D lss)(s°],  er=lp) (vl (6.193)
I=1 B=1
Using the state basis kets |v;), |sg) and |p) satisfying the orthogonality properties (p|v;) =
(¢|sg) = (ui|ss) = 0, we realise the generators Xz and Y*? of the nilpotent subalgebras like

Xs = ) (M), (7] + Is) (ol
Y2 = ) (%] + Is,) ()77 (o

where the I';’s are Gamma matrices satisfying the usual Clifford algebra in ten dimensional
space, namely I';I'; + I';I'; = 26;;. Moreover, if we adobt the short notations |1), |10) and
|16) to refer to the singlet state |p), the vector |u;) and the spinor |sz), we can express the
projectors more simply like p; = |1) (1], and p10 = |10) (10| as well as p16 = [16) (16|.
Then, we also end up with the following expressions for the nilpotent generators (6.194) :

(6.194)

Xs = [10)(16] + [16) (1]
Y% = |1)(16|+ [16) (10| (6.195)
pooo= 3[10)(10] - 5[16) (16] — 5 [1) (1]

We can check that this realisation solves the Levi decomposition constraints, namely
[0, Xp] = X5, [wYP] ==Y’ (6.196)

We have for example pXs = 2[10) (16| — 3 [16) (1| and Xzu = —1 [10) (16| — 5 |16) (1],

thus leading to [u, Xg] = Xj. Notice that this realisation leads to

XoXp = |vi) (T), (el
ab AT 6.197
vey? = o) (0) (o (0197
and
X XsX, =0 | YYPYyr =0 (6.198)
We also have as interesting properties Xg010 = 0 and 010Y” = 0, as well as
Xgor = Xz , Qlyﬂ = Y*
1 1 6.199
Xpo1e = Xp oY’ = YP ( )

From these relations and the linear combinations X = b” X and Y = ¢3Y* given by (6.190),
we learn that X2 = Y? = 0 while

X2 =2V ;) (0] , Y2 =2W50) (V| (6.200)
where we have set

1 . 1
Vlzéba(rl)aﬁbﬂ : m:?a(ri)aﬂcﬁ (6.201)

In terms of the short notations, we have X,Xz ~ [10) (1] and Y°Y? ~ |1) (10| as well
as X2 = 2V |10) (1] and Y? = 2W [1) (10| where V and W are the vectors appearing in
(6.200).
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6.2.2 Constructing the operator L/

For the final step, we use the nilpotency feature of X and Y yielding the finite expansions
X =T+X+3iX?and e =T+Y + 1Y? as well as z#e¥ = 2 4 2'Y + 2#Y?. Moreover,
by replacing with \ , )

2= 27301 + 23010+ 2 3016 (6.202)

and p10Y = 0, we obtain

ey = 2B 4+ 2716 + 223040

—0—2_4/3@;}/ 4 Z_l/ngY +§2_4/3QLY2 (6.203)

Substituting this into eX 2#e¥ and using the property X g1 = 0, we finally find the expression
of the L-operator we are looking for :

w o _
Ly =

L+ 2 Y30y + 223010 + 230, Y + 2 V06V +
01+ 23X 016+ 23 X 0 Y +

01Y? 4+ 273X 1Y + %z_nglYQjL

X201 + %z*%)@le + %z*%X2QlY2

PIENENTS
)

>

(6.204)

N

[T O R S SR M
ol

.

Notice that each one of the z#, eX and ¥ has 3 monomials leading in general to 81 monomialss
for the L£ . However, The above expression was simplified thanks to useful properties such
as X010 = 0 and p10Y = 0 and the other ones mentioned above. It can be further expressed
in terms of Darboux ccordinates by substituting the following relations

Xop = 0 X% = VILY
oY = o XoV? = besle (6.205)
XoY = be, | X20,Y? = VT biesl) e,
and .
Xow = U5,
Q16Y = I Cy
1 . 6.206
XowgY = b7T¢T7%, (6.206)
0Y? = ¢l
and
XogY*=0 X%016Y? =0 (6.207)

6.3 Topological gauge quiver Q.

In this subsection, we construct the topological gauge quiver Qf  associated with the operator
L:(6.204). First, we give the matrix form of the L-operator in terms of the phase variables
b and cg to underline their field theory interpretation in terms of topological bi-matter.
Then, we derive the quiver representation Q¥ using the projectors g1, 010 and g1 on the
sub-representations of soy within the 27 of Eg.
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By ordering the above mentioned projectors like (010, 016, 01) and thinking of them as rep-
resenting the sub-blocks of the matrix; the operator L is put as follows

zggm + z_%XQEY + iz_%XQQLYQ z_%Xgm + %Z_%X2QLY %z‘%XQQl
Loy = | 2 S0y +3275X00Y? Zio6+ 2 X o1V .
lz_% Y2 —% Y _4
2 01 Z 301 z 301
(6.208)

Substituting eqs(6.194) and (6.200) into the expansions X = 0" X3 and Y = ¢3Y* as well as
into their squares X? and Y?, we obtain

234 275 + L2 SVIW, 20T 4 LamiViey LSy
Les = Z‘%gﬁFf” + 32750, z—f + 2750 z‘%bﬁ (6.209)
%Z_gwi 27 s¢cp 273

where V* = bI'b and W; = icl';c. This is the most convenient expression of the coupling
between "tH4:® and Wg in the Eg CS theory allowing to derive the associated topological

quiver Q£ . In fact, by writing the L-operator like <Qﬂi|£“|gﬂj>, which is
L}; = or,L"0R, (6.210)
We have in terms of the projectors :

010£"010 010L%016 010L%01
Lh = | o016L'010 016L"016 016L" 01 (6.211)
01Lto10  01LM016  01LM01

This directly indicates that the topological gauge quiver Q¥ has three nodes N, N3, N3 and
six links, three L;; and three Lj;; with ¢ > j = 1,2, 3, as depicted by the Figure 24.
The N; nodes are associated with the diagonal enties of (6.211), namely

M = 010£" 010 ) N,y = 016L" 016 ) Nz = 01L" 01 (6.212)
We will refer to them in terms of the SOy x SO, representations as follows
M 10+2/3
./\/’2 : 16,1/3 (6213)
Ny o 1y

The L;; links of the quiver Qf are given by the off diagonal terms QEZL“QE]_ with ¢ # j.
These links transform in the fundamental representations of SO, x SOyy knowing that 10
and 16 and their duals are fundamental representations of SO1q. The explicit expressions of
these links are given in the following table

link Repres bi-matter || link Repres bi-matter
L1_>2 16_; X 1__2 b, bZC L2_>1 102 X E; C, bC2
3 —3 3 3 (6.214)
L2_>3 1_% X 16+% b L2_>1 16_% X % C
L1~>3 17& X ]__72 b2 L3~>1 ]_Og X T+é C2
3 3 3 3
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b._
N1 5 Na

€
C+1) =
c? (+2) C(+1)

bz(_z) j\[é b(—l)
13

Figure 24: Lg, as a topological quiver with 3 nodes and 6 links. The nodes are given by the
self-dual R; ® R; and the links by bi-matter R; ® Rj. In addition to SOy representations, the
Darboux coordinates b, ¢, carry SOs charges given by ¢ = +1. The fundamental vector-like
matter V¢ and W; carry —2 and +2.

7 Minuscule line defects in E; CS theory

In this section, we complete the study undertaken in this paper regarding the minuscule
L-operators of ADE type by investigating the case of 4D Chern Simons theory with excep-
tional E; gage symmetry. Just as before, we treat this theory by studying the properties of
interacting minuscule 't Hooft and Wilson lines, and construct the Lax operators LL and
the associated topological gauge quivers Q¥ .

7.1 Levi subalgebra of E; and weights of the 56,

First, we begin by recalling the useful aspects of the e; Lie algebra that will play an important
role in our construction. In particular, the root system ®.. containing 126 roots is generated
by seven simple roots «; realised as follows

E7 o = %(61—62—63—64—65—66—€7+68)
o; = € — €1 5 1= 2, 37 4, 6 (7215)
Q7 = €1 1€

The Dynkin diagram underlying the gauge symmetry of the 4D CS theory with E; symmetry
is given by the Figure 25 where the seven simple roots «; are exhibited.
The associated Cartan matrix K., reads as

2 -1 0 0 0 0 0
-1 2 -1.0 0 0 0
0 -1 2 —-1 0 0 —1
Ke=] 0 0 -1 2 —-10 0 (7.216)
0 0 0 -1 2 0 0
0 0 0 0 0 2 0
0 0 -1 0 0 0 2
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Figure 25: Dynkin Diagram of E; having seven nodes labeled by the simple roots «;. The cross
(x) indicates the root cut by the Levi decomposition where the Levi subgroup is SO, x Eg.

It describes the intersection matrix o;.c; while its inverse gives the fundamental coweights
of E7. One of these coweights is particularly interesting for our present study; the p dual to
o is the only minuscule coweight of e;.

7.1.1 Minuscule coweight of E;

From the Cartan matrix K.,, we can learn useful informations regarding the Lie algebra e;
and its representations, in particular the expressions of fundamental weights w; in terms of
simple roots :

fund- w; in terms of roots

w1 2001 + 3o + dag 4+ 3ay + 205 + ag + 207

Wo 31 + 6ag + 8y + 6 + das + 20 + 4oy

W3 4(1/1 + 8&2 + 12&3 + 9(1/4 + 6&5 + 30&6 + 60(7 (7 217)
W4 3o + 6y + 9z + %044 + bas + gaﬁ + %on '

Ws 201 + 4o + 6ag 4+ bay + 4as + 206 + 3ay

We oy + 20(2 + 30&3 + 3064 + 2065 + %Oéﬁ + gOé'y

Wt 20&1 + 40[2 + 6043 + 3&4 + 30&5 + %@6 + %()67

The exceptional Lie algebra e; has one minuscule coweight p given by wg, thus the corre-
sponding Levi decomposition n_ @ 1, © n, for this algebra is given by

l, = 50, @ eg : ny =274 (7.218)

The dimensions of ny can be calculated by dispatching the algebraic dimensions of e; with
respect to sos @ eg, in fact we have 133 = 1 4+ 78 4 27 + 27. This Levi decomposition with
respect to the minuscule coweight p requires the following adjoint actions

,ny] =+ny , ny,n_]=0 (7.219)

These constraints show that the 27 generators Xz of the nilpotent algebra n, and the 27
generators Y? of the algebra n_ have opposite so, charges 1, which is important to consider
when realising the action of X5 and Y? on the electrically charged quantum states |A) that
we take in the fundamental representation of E-.
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7.1.2 Representation 56 of the e; Lie algebra

The fundamental representation of the e; algebra has 56 dimensions, it is self dual and
pseudo-real [69]. Tts weight diagram is given by the Figure 26 where the weight &, of the top
state |{y) corresponds to the minuscule coweight wg while the weight &55 of the bottom state
|€55) is precisely —wg, meaning that we have & + &5 = 0.

Under the Levi decomposition associated to the minuscule p, the fundamental representation
56 decomposes as a reducible sum of so, & eg representations as follows

56 = 28, @28

7.220
28, ©28_ = 13D 27 12D 27_1/2D 1_3)9 ( )

where we have four eq representations, two singlets 1.3/ and two fundamentals 274, 5.

In the diagram of Figure 27, the 28 weights of 28 are labeled by the subset W, = {|&)}g<;<or
and the 28 weights of the 28_ by W_ = {|&;) }oec;css- Weights & in the set W, U W_ obey
some special features that characterize this exceptional algebra and that will be helpful for
the construction of the operator £f , they are listed below

o1 = S Bumax » Srt&s = S+
S8 = &5+ Pumax , &Git&s—i = o+ (7.221)
S = S — v ;o Es5i = &5+

for a generic root ~; in the nilpotent 27, and where £, is given by
6max = 20[1 + 30[2 + 4043 + 30(4 + 2(1/5 —f- (673 —f- 2(1/7 (7222)

We also have
§o—&s = 2ws , & —&soi = 2we— 2y (7.223)

The list of the ten weights &4, A = 1, ..., 10 represented by blue dots in the Figure 26 is given
in the following table in terms of the seven w;’s,

§1 = ws—ws v &6 = wr—wy

& = wi—ws , & = witwy—wr—wy

53 = W3 — Wy s gg = W1 + Wyq — W3 (7224)
§4 = wrtwr—ws , § = witws—wy

& = witwr—wr , {0 = wit+ws— ws

while the next sixteen states (8+8) represented in the Figure 26 by yellow and magenta
colored dots (from &9 to &) are listed here

i1 = wr—w , €15 = wstwy—wy—wy
= —wr—w = W5+ wsg—ws—w
12 7 1 ST 5 3 4 2 (7.225)
§13 = wrtwi—wiz—w , {7 = wrtws—ws
§la = wi—wo , §18 = ws—wr
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Figure 26: The decomposition of the 56 representation of e; in terms of representations of
eg. We have 56 = 28, @ 28_ where 28.. are reducible like 1.3/5 ® 2741 5.



and

19 = wrtws—wi—ws , a3 = wrtwe —wy

S0 = W3t ws—ws—wo , o4 = w3t we—ws— wy (7.226)
§a1 = wrtwitws—ws—w3 , 5 = wotws— w3 '

§2 = Wit we—wWs—wy ;o S = w1t ws — wo

The last 27-th weight is equal to &7 = wg — wy.

1, 27, 27 1.
._+ @ vrrnenns P +_+ @ iiiinnn & +——.
W, W, Wy Wog Wsq W

Figure 27: The decomposition of the 56 representation of E; in terms of representations of
Es. We have 56 = 28, @ 28_ with 28 reducible like 13/0 ® 27 /5.

7.2 Constructing the £/

Now, we consider the minuscule 't Hooft line embedded in the E; CS theory crossing a Wilson
line Welf with electric weight given by the representation 56. To construct the L-operator
L., describing these topological lines’ coupling, we follow the same approach adopted before
for the study A-, D- and Eg type theories.

7.2.1 Realising the generators of the n.y; subalgebras

We begin by recalling that in the L-operator formula for the E; symmetry, namely L., =
eXz#eY | the p is the minuscule coweight given in (25) and X and Y are nilpotent matrices
expanding as

27 27
X=Y0Xs , Y= ¢V (7.227)
=1 B=1

Here, the twenty seven b° and twenty seven cg are the Darboux coordinates of the phase
space of the Es-type 't Hooft line. The realisation of the nilpotent generators Xg and Yy#
can be first written using simple representation language like

Xp
Y8

L) (27| +[274) (27| + [27-) (1|
1) (27 + [27-) (27| +[274) (1]

(7.228)

where we dropped the charges from 1.3/, and 27,5 for simplicity. The explicit form of
these generators in terms of the weight states |€4) and their duals (£4] is given by

Xo = [&0.) (€| + 6 )T5™ (6| +165) (60| 7
V= e e e e+ ) o =
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where Fg”’ and Fi 5, are couplings between states in the 27 representations of Eg; these
tensors are allowed by the tensor product of Eg representations [70]. The adjoint form of the
minuscule coweight used is given by

1 1 3

3
_° - _ _ = 7.230
B=50n, + 5027 T 5021 — 501 ( )

where the four pg,’s are projectors on the eg representations R; within the 56 of e, they
read as follows

01, = ’50q> <50q‘ ; 027, = ’527q> <527q| (7.231)
with ¢ = + and (&, |, ) = (&o7,/&27,) = 1. They can also be written in formal notations as
91, = 14) (14| ) 027, = 127,) (27,] (7.232)

Now, we need to compute the powers of the generators X and Y”? that will appear in
the expansion of the L-operator. We find using the realisation (7.228-7.229) that the non
vanishing monomials are

XX
yey#s

1) (27 [ +[274) (1|, XaXpX,

1) (1|
1) (27, +[27) (1, , YoyPy? ’ (7.233)

1) (14]

while the fourth order powers vanish identically. For the powers of the linear combinations
X =0"Xgand Y = VP, we find

X? = 258 &,) (& | + 255 |, ) (&o_]
Y2 = 2Ra+ ‘§0_> <£a+| + 2R, |£a7> <£0+| (7.234)
and
X3 = 6|&,) (& ] (7.235)

Yio= 67 %) (G|

and of course, X* = Y* = (. The realisation (7.228-7.229) does also obey the commutation
relations [p,Xg] = X and [;1,Y?] = =Y” from which we deduce that

X=X ., [wY]=-Y (7.236)

as required by the Levi decomposition with respect to p.

7.2.2 The L-operator L/

Finally, to obtain the expression of ££ in terms of the 27427 Darboux coordinates b? and
cg, we use the nilpotency properties mentioned above to write

1 1 1 1
Ll = (I+X+§X2+ 6X3> 2 (1+Y+§Y2+6Y3) (7.237)
and substitute with , X ) ,
M =2201 + 22007, +2 2027 +2 201 (7.238)
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We moreover need to take into account the special properties of the X and Y matrices, like
for example Xo;, = 0 and ¢, Y = 0, to reduce the monomials of this L-operator down to
30 as given below

£e = Z%QLr + Z%an{ + 272 007 —?|)— 2301
22X 097, + 272 X027 +272X01_+
Z%Q27+Y+Z_%Q27 Y—l—z‘ggl Y—|—
+3 X2z 2 097 z “3X2%0, + z “3X30, +
%z 2 097 Y2—|— 32~ 291 Y241 5% 291 Y3+
z2X927+Y+z 2ng7 Y+z 2Xgl Y
=z 2Xg27 Y241 52 2Xgl Y24
—3 X2 027 Y + 3 52 2X291 Y—I——I— z 2Xgl Y34
2X3Q1 Y+—Z 2Xle y3_|_Lz 2X391 Y2+
2X2Q277Y2—|— =27 2X291 Y2+—z 2X3QLY3

(7.239)

—_

4>|>—lcnl>—ll\3h—‘l\3

The explicit form of Lp, given in [59] is obtained by replacing X = b°Xs, Y = ¢5Y# and
@ by their explicit realisations (7.229,7.230,7.234). This is clearly a cumbersome expression,
that’s why we use the quiver gauge description to exhibit the interesting information encoded
in £F and help visualize the key role of the Darboux coordinates.

7.3 Topological gauge quiver Qf

The shape of the gauge quiver Qf associated to the L operator can be directly deduced
from properties of the e; algebra by comparison with the previously built quivers Q’;ZN, -
and QY . Firstly, we can say that the Q¥ has four nodes A in 1:1 correspondence with the
four projectors g1, and ga7,, and 12 links L;; connecting the pairs (N;, N;). Therefore, we
can begin by visualizing this Qf as given in the Figure 28 , and then move on to explicitly
derive it and extract its features.

We represent the L£ in the projector basis using the gr, ordered like (gl s 027, , 027_, Ql_)

01.Lo1, 01,Lo2r. 01,Lo27. 01, Lo1_
rh — Q27+£01+ Q27+£Q27+ Q27+£Q27_ 027+£Q1_ (7 240)
“ 027 Lo1, 027 Loar, 027 Lozr_ 027 _Lo1_ '
01_501+ Q1_£Q27+ 01_Lozr. 01 Lo1_

The diagonal terms or, Log, are depicted by the four nodes N, of Q*
terms gr, Logr, With i#] are associated to the twelve links L;.

while the off diagonal

er’

Nr, = 0r,Lor, ; Lij = or,LoR, (7.241)

As the explicit calculation of these quantities is cumbersome, we decompose the matrix £
(7.240) into four blocks A% BE | C¥ and D as follows

er? er)
AL B
= (o o) (7:242)
7 cr Dt
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Figure 28: The topological quiver Qp, representing Lg,. It has 4 nodes and 12 links. The
nodes describe self-dual topological matter. The links describe bi-matter in (Ri, Rj) of Eg
charged under SO (2) with charges +1, £2, £3.

e the block A : concerns the sector 28, of 56 :

AF — < Ql+£91+ Q1+£QZ7+ ) — ( A§ AF) (7243)

67 027, Lo1, 027, Lo27, Al Al
with
3 1 1 3
Al = Zf01++25X9271+Y+iz_iXQQWEYQ"‘%Z_QXgQLYS
Al = 22X 1,727 Y +L272X3p, YV?
§ Zi Q27++122,;2 Q27_2+11227§2 291_ ; (7.244)
A = 2202, Y4322 X0gr Yo+ 5272 X701 Y
AL = 23057, 427 X0y Y + 127X 20, V2

The A} and Af} are associated to the nodes N, ,, and Nz, ,, while the sub-blocks Aff
and Al; describe links between these nodes.

e the block D : concerns the sector 28_ of the representation 56 :

1 3 3

2 2Xp, YV z72X

Dy = ( e ) (7.245)
27201 Y 27201

Where Dj and Djj are associated to Naz_, , and Ny _, , and D} and Df; are associated
to links between them.

e the blocks B and C: Describe couplings between sectors 28, and 28_ :

3
;91 ) (7.246)

N [= O =
wlw  lw

-
272X 0y +1272X2%0, Y 2z

1 3
e (B o
er
01_
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(Jg:(

Entries of these matrices give 4+4 links between the nodes’ pairs (/\/13 /2,/\/'271 /2> and
(N2771/27N173/2> .

And so indeed, the topological gauge quiver Q£ associated with ££ has four nodes N;
corresponding to the eg representations

N 1+3/2 )

EX N3 2_771/2
N

7.247

2—5—1/2 )

and describing self-dual topological gauge matter. It also has 12 links L;; describing topo-
logical bi-fundamental gauge matter <RZ-RJ-> as collected in the following tables

link Repres bi-matter || link Repres bi-matter
Lo | (143227 1)2) b Lys | (2741227 4172) b (7.248)
Lios | (143/22741)2) B Ly | (2741/2143)2) B '
Lyy <1+3/2T+3/2> B b" L3 .4 <27—1/2T+3/2> be
and
link Repres bi-matter || link Repres bi-matter
Ly <173/227+1/2> Ca Ly 3 <2_771/22771/2> c*
- — (7.249)
Ly 3 <1+3/227+1/2> Ca Lo 4 <2771/2L3/2> ce
Liy | (1i3014372) caC® || Lyc—a | (271121 _372) Ca

In these tables, BY stands for bafgﬂbﬁ having charge —2, and C, refers to cafg‘ﬁcg having
charge +2. The composites B,b* and c,C* have charges -3 and +3 respectively.

8 Conclusion and comments

The results presented in this paper are based on the correspondence between two di-
mensional integrable models and four dimensional Chern-Simons gauge theory as formulated
in [23]. In the M, = R? x CP' of the gauge theory, one can build an integrable lattice model
by implementing a set of line defects looking like curves on R? and points on CP'. In such
construction, the integrability of the corresponding low-dimensional system constrained by
the Yang Baxter or RLL equation is a direct result of the mixed topological-holomorphic
nature of the line defects and the diffeomorphism invariance in four dimensions. The RLL
equation for example, corresponds to the graphical equivalence of the intersections in differ-
ent orders of two electric Wilson lines with one magnetic 't Hooft line, see Figure 5. In this
image, the explicit Feynman diagrams calculation for the intersection of two Wilson lines in
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4D CS yields the first order expansion of the R-matrix acting on the two quantum spaces
carried by the electrically charged lines [21]- [23]. The L-operator is realised as the intersec-
tion of an electric Wilson line with a magnetic 't Hooft line whose oscillator phase space acts
as an auxiliary space [52].

This Wilson/’t Hooft coupling in the 4D CS theory is the particularly interesting ingre-
dient of our current investigation, it allows to realise the Lax matrix as a building block
of the transfer matrix generating conserved commuting quantities of the spin chain. This
important quantity is calculated in the integrability literature using Yangian representations
based techniques that can be cumbersome and inefficient in cases with complicated symme-
tries. Surprisingly, it was shown in [52] that the oscillator realisation of these L-operators
for an XXX spin chain having the internal symmetry g can be recovered from the analy-
sis of solutions to the equations of motion of the 4D CS theory with gauge symmetry G,
in the presence of interacting Wilson and 't Hooft lines. A general formula describing the
coupling of a Wilson line with electric charge in a representation R of G and a 't Hooft line
with magnetic charge given by a minuscule coweight u of G reads as L5, = eXRz#e¥®. This
yields a matrix representation in terms of harmonic oscillators in Xg and Yg with sub-blocks
following from the Levi decomposition of R with respect to p.

The first part of our contribution concerned the exploitation of this formula to explicitly
calculate this coupling for different types of 't Hooft and Wilson line defects in 4D Chern
Simons theories with SLy, SOan, Eg and E7 gauge symmetries. In particular, we investigated
the splitting of various representations under the action of minuscule coweights as a first step
towards the construction of L-operators in representations beyond the fundamental for ADE
Lie algebras. Therefore, a better understanding of the effect of the Dirac-like singularity on
the gauge field bundles behavior and the internal quantum states of a spin chain.

We remarked that the L-operators have unified intrinsic features that can be represented
by topological quiver diagrams Q' having a formal similarity with the well known graphs

oY of supersymmetric quiver gauge theories embedded in type II strings. This formal link
gives an interesting interpretation of the Darboux coordinates (b%, cz) of the phase space of
the L-operators in terms of topological bi-fundamental matter. In this regard, we gave several
examples to (i) explain the strong aspects of this diagrammatic approach, and (iz) to show
how it can be used to forecast the general form of the matrix representation of L-operators by
indicating the action of its sub-blocks and their charges in terms of combinations of Darboux
coordinates.

In particular, For the A-type Chern Simons theory, all fundamental coweights are minus-
cule, and therefore we give in Figure 29, for a generic magnetic charge uy of sly, four quiver
diagrams describing L-operators classified by representations R of the Wilson line.

In the case of D-type symetry, we have two types of minuscule 't Hooft lines associated
to the vectorial and spinorial coweights of the SO,y gauge symmetry. In the figure 30, we
give quiver diagrams describing four possibilities of Wilson/’t Hooft couplings: a magnetic
charge p; with electric R = 2N and with R = adjso,,, and magnetic puy ~ py—1 with
electric R = 2V ~! and with R = adjso,y.

The Figure 31 represents quiver gauge diagrams of exceptional type where we gave for
each one of the Eg and E; 4D CS theories the graphical descriptions for the coupling of the
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(b)

(c)

(d)

(e)

Figure 29: Leading elements of topological quiver digrams for the L-operators of A- type.
These quivers are classified by the magnetic charge p;, of the 't Hooft line and the representa-
tion R. (a) Wilson line with charge R = N. (b) Wilson line with R = N"*. (c) Wilson line
with R = NY2. (d) Wilson line with R = N"3. (e) Wilson line with charge R = adjsly.
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Figure 30: Leading elements of topological quiver digrams for the L-operators of D- type. The
first two quivers correspond to the Levi decomposition with respect to the (vectorial) minus-
cule coweight p;: (a) Wilson line with charge R = 2N. (b) Wilson line with R = adjso, .
The other two quivers correspond to the Levi decomposition with respect to the (spinorial)
minuscule coweight zix: (c) Wilson line with R = 2V~ (d) Wilson line with R = adjso,y.
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(a)

(b)

Figure 31: Leading elements of topological quiver digrams for the L-operators of E- type.
The first two quivers for the Eg gauge theory. (a) for the fundamental 27 of Eg; and (b) for
the adjoint representation. The last two quivers regard the E; Chern-Simons theory. (c) for
the fundamental 56 of E; and (d) for the adjoint representation.
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minuscule 't Hooft line with Wilson lines in the fundamental and in the adjoint representa-
tions.

Notice however that this construction can be extended for the investigation of other L-
operators that are still missing in the spin chain literature; and the interpretations associated
to the components of the L-operator can also be used to link the diagrammatic description
presented here to quiver diagrams associated to the realisation of 't Hooft line defects in
supersymmetric quiver gauge theories.

Another exquisite property of this graphical quiver description in the 4D Chern-Simons
topological theory is the natural appearance of a unified theory structure where the minuscule
L-operators can be connected and classified in a larger E; 4D CS theory. In fact, the Lie
algebras’ decompositions with respect to minuscule coweights link the E; symmetry to the
Eg¢ and then to the family of Dy symmetries with N < 5 and/or the Ay with N < 4. These
chains of Levi decompositions lead to different possible paths for the E; symmetry breaking
as described in Figure 32 [71]. To visualize this from the quiver descriptions of L-operators,
we can focus on those corresponding to the fundamental representations and notice that the

’qu(jzc)l has a node corresponding to the 27 of Eg; this node can be therefore imagined as

including the Q%c;ffc)l which in turn includes the Q’;Z‘;le(sow) and so on. Finally, notice that the

calculation of minuscule L-operators in 4D CS theories with SOsn 1 and S P,y symmetries
having each only one minuscule coweight, shows that the L,,,, , matrix is very similar to

L while the Ly, is similar to £ [60]. This means that the corresponding quivers

look like Qf3 =~ and QLY which allows to include the B and C -type symmetries into this

unified classification.

Figure 32: Breaking chains of E; symmetry as given by Levi decompositions with respect
to minuscule coweights. The bold arrows describe the exceptional sequence leading to the
Standard model-like group. The minuscule coweights p correspond to the Lie algebra at
which the arrow starts
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