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Abstract

We study the symmetry resolution of the entanglement entropy of an interval in
two-dimensional conformal field theories (CFTs), by relating the bipartition to the ge-
ometry of an annulus with conformal boundary conditions. In the presence of extended
symmetries such as Kac-Moody type current algebrae, symmetry resolution is possible
only if the boundary conditions on the annulus preserve part of the symmetry group,
i.e. if the factorization map associated with the spatial bipartition is compatible with
the symmetry in question. The partition function of the boundary CFT (BCFT) is
then decomposed in terms of the characters of the irreducible representations of the
symmetry group preserved by the boundary conditions. We demonstrate that this de-
composition already provides the symmetry resolution of the entanglement spectrum
of the corresponding bipartition. Considering the various terms of the partition func-
tion associated with the same representation, or charge sector, the symmetry-resolved
Rényi entropies can be derived to all orders in the UV cutoff expansion without the
need to compute the charged moments. We apply this idea to the theory of a free
massless boson with U(1), R and Z2 symmetry.

Contents

1 Introduction 2

2 Symmetry-Resolved Entanglement 4

3 Entanglement Entropy and BCFT 6
3.1 Free Boson BCFT 7
3.2 Entanglement in Free Boson Theory 10

4 A New Take on Symmetry Resolution 11
4.1 U(1) Resolution for NN and DD Boundaries Revisited 12

4.1.1 Cross-check: Compact Boson 15
4.1.2 Cross-check: Non-compact Boson 16

4.2 Z2 Symmetry Resolution 18
4.2.1 Z2 Symmetry Resolution for DD and NN 18
4.2.2 Z2 Symmetry Resolution for DN 19

5 Conclusions 20
5.1 Discussion 20
5.2 Summary of Results 21

1



SciPost Physics Submission

5.3 Outlook 22

A U(1) symmetry breaking by ND and DN boundaries 23

B Modular Forms 25

References 26

1 Introduction

Since the early days of quantum mechanics entanglement has been considered one
of the crucial and most interesting properties of quantum systems [1]. In the last
two decades, a renewed interest in this subject has lead to many insights into various
branches of physics, ranging from quantum gravity and holography to critical and
topological many-body systems [2–6]. Quantifying the entanglement between a spatial
region A in a given system and its complement B is particularly important. We assume
that the Hilbert space H of the entire system factorizes as H = HA ⊗HB , where HA

encodes the degrees of freedom in the region A and HB the ones in B. Given a pure
state |ψ⟩ ∈ H, the reduced density matrix of A is then given by ρA ≡ trB |ψ⟩⟨ψ|, where
trB is the trace over the Hilbert space HB . The Rényi entropies, defined as

Sn =
1

1− n
ln trρnA, (1)

quantify the bipartite entanglement, where n is integer. Upon analytic continuation
to complex values of n, the limit n→ 1 of the Rényi entropies yields the entanglement
entropy

S1 = −tr (ρA ln ρA) . (2)

For convenience, in this text we refer to both entanglement entropy (2) and Rényi
entropies (1) simply as entanglement entropies. Entanglement and its measures proved
to be extremely useful in the study of critical systems, which in the continuum limit
can be described by conformal field theories (CFT). In a 1+1-dimensional CFT with
central charge c, when the entire system on an infinite line is in the ground state and
A is an interval of length ℓ, the entanglement entropies obey the following behaviour
[7–10]

S1 =
c

3
log

ℓ

ϵ
, Sn =

c

6

n+ 1

n
log

ℓ

ϵ
, (3)

at leading order in the UV cutoff ϵ ≪ ℓ. This result and the others corresponding
to different states where A is still a single interval can be retrieved by mapping the
geometry of interest to an annulus and exploiting boundary conformal field theory
(BCFT) techniques [11–13]. An important feature of this approach is the possibility
to access the entanglement spectrum of the theory upon determining the conformal
dimensions of the operators in the BCFT. This is usually not achieved through other
methods, as for instance the twist fields method, which only provide the moments of
the reduced density matrix.

Recently, sparked by experimental results [14–17] and the developments of new
theoretical tools [18–20], a growing interest in the interplay between entanglement and
symmetries emerged. Given a system with a global symmetry and a spatial bipartition
as described above, the amount of entanglement in the different charge sectors can be
quantified by the symmetry-resolved entanglement entropies. The symmetry-resolved
entanglement entropies have been computed in 2D CFTs [19–28], integrable and free
quantum field theories [29–36], as well as lattice models [23, 26, 37–52]. Moreover,
the symmetry resolution of other entanglement quantifiers, such as negativity [53–57],
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relative entropies and distances [58, 59] and operator entanglement [60, 61] has been
studied in the CFT setup as well. The symmetry-resolved entanglement entropies have
been also considered in the context of the AdS/CFT correspondence and computed
in some examples [62–66], finding the expected matching between bulk and boundary
results.

Despite the number of results, a better understanding of the symmetry resolution
of entanglement is still desirable. It will be interesting to understand better the
conditions necessary for the equipartition of entanglement namely the fact that, at
leading order in the cutoff expansion, the symmetry-resolved entanglement entropies
are independent of the charge sector. Computing the symmetry-resolved entanglement
entropies requires in principle the knowledge of the entanglement spectrum resolved
in the various charge sectors, which is a formidable task from the analytic point of
view. This problem is bypassed by first computing partition functions on Riemann
surfaces with flux, known as charged moments, which then lead to the symmetry-
resolved entropies through a Fourier transform. Studying theories where the exact
resolution of the entanglement spectrum is known can help in obtaining new insights
into the relation between entanglement and symmetries. Moreover, this would allow
accessing the symmetry-resolved entanglement entropies without first computing the
charged moments, c.f. the examples in [40, 41], where the analytic knowledge of the
resolution of the entanglement spectrum in XXZ spin chains was used to achieve this.

The goal of this paper is to advance the understanding of symmetry-resolved en-
tanglement entropy in the BCFT setup. The BCFT description is useful, since it
provides access to the full spectrum of the subregion density matrix [20]. This not
only allows for the computation of the charged moments but also the direct computa-
tion of the charged partition function, and therefore, as we show below, for an easier,
more efficient computation of the symmetry-resolved entanglement entropy. Indeed, in
presence of a symmetry, the BCFT partition function decomposes into contributions
from the various charge sectors. The symmetry-resolved entanglement entropy in a
given charge sector can be directly computed from the terms in the BCFT partition
function associated with that charge. This was first noted in the appendix of [22]. Fur-
thermore, the BCFT picture allows for a regularization more in the spirit of quantum
field theory [12]. Instead of putting the theory on the lattice, the BCFT prescription
maps the entangling interval to an annulus with boundary conditions on both ends
(see figure 1). Indeed, since fields are distribution valued, spacetime boundaries need
the specification of boundary conditions.

We apply the general BCFT formalism to the compact and non-compact free boson
CFTs. Calculations of the total entanglement of the compact boson from this perspec-
tive are found in [67–69]. We resolve entanglement with respect to the symmetry
groups U(1), R and Z2. Particular attention is directed to the fact that the boundary
conditions need to not only preserve Virasoro symmetry but also the additional sym-
metry with respect to which we wish to resolve. In the case of the free compact boson,
this additional symmetry group is U(1), in the case of the non-compact free boson R.
Since Z2 is a subgroup of both U(1) and R, it is also a symmetry of the free boson
CFT. For the CFTs we consider, certain boundary conditions indeed break the U(1)
or R symmetry, respectively, and therefore resolution with respect to these groups is
no longer possible. In these cases we show, using the BCFT approach outlined above,
that symmetry resolution with respect to a remnant Z2 is still possible. In general,
this new approach provides access to all higher order terms in the UV cutoff expan-
sion of symmetry-resolved Rényi entropies. We expand on the analysis of [20] by the
consideration of the non-compact case, the Z2 symmetry and the incorporation of the
higher order terms in the symmetry-resolved entanglement entropy. The results for
U(1) and R resolutions we report here are obtained in two ways. The main results
are calculated directly from the BCFT partition functions. They are cross-checked by
computing the charged moments and their Fourier transform.

The paper is structured as follows. In section 2 we give a general introduction to
symmetry-resolved entanglement entropy and define the charged moments and charged
partition functions. In section 3 we review the BCFT setup for entanglement entropy
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and review the factorization mapping given in [12]. We introduce the boundary states
of the compact free boson CFT and give the partition functions for different boundary
conditions. We discuss the decompactification limit to obtain the partition func-
tions for the non-compact free boson. From the partition functions we calculate the
entanglement entropies and show that this approach recovers the universal term in
the lowest order of the system size. In section 4, we present our calculation of the
symmetry-resolved entanglement entropy directly from the BCFT spectrum. We re-
port the symmetry-resolved entanglement entropy for the compact and non-compact
free boson. We check these calculations with a more conservative approach, where
we calculate the charged moments and their Fourier transform using the BCFT ap-
proach. We also provide a resolution with respect to Z2 from the exact knowledge of
the spectrum. This resolution is also possible for boundary conditions which break
the U(1) and R symmetries. We provide a summary of our results and further direc-
tions for research in section 5. Furthermore, we provide two appendices, appendix A
and appendix B, in which we clarify and extend certain aspects of the analysis in the
paper.

2 Symmetry-Resolved Entanglement

Consider a quantum system endowed with a global abelian symmetry group G, gener-
ated by the charge operator Q. Under the assumption that the charge is local, we can
decompose it into the contribution in the subsystem A and the one in its complement,
namely Q = QA ⊗ 1B + 1A ⊗ QB , where 1i is the identity in the Hilbert space Hi,
i = A,B. We are interested in the cases where the system is in a pure state |ψ⟩, which
is an eigenstate of Q. When this happens, we have [|ψ⟩⟨ψ|,Q] = 0 and, tracing this
commutator over HB , it follows that [ρA,QA] = 0, where ρA is the reduced density
matrix of A. The last identity implies that ρA has a block-diagonal structure, where
each block corresponds to an eigenvalue Q of the charge operator QA. It reads

ρA =
⊕
Q

ΠQρA =
⊕
Q

PA(Q)ρA(Q), (4)

where ΠQ is the projector onto the eigenspace associated to Q and PA(Q) ≡ tr(ΠQρA)
is the probability of having Q as outcome of a measurement of QA. Notice that, since
G is an abelian group, the eigenvalues Q label the irreducible representations of the
group itself.

The decomposition (4) ensures the normalization trρA(Q) = 1 for any value of Q
and therefore one can quantify the amount of entanglement in the sector with charge
Q via the symmetry-resolved Rényi entropies

Sn(Q) =
1

1− n
ln trρA(Q)n, (5)

and the symmetry-resolved entanglement entropy

S1(Q) = −tr [ρA(Q) ln ρA(Q)] . (6)

The block-diagonal structure in (4) allows to decompose the total entanglement en-
tropy as

S1 =
∑
Q

PA(Q)S1(Q)−
∑
Q

PA(Q) lnPA(Q) ≡ S1,c + S1,f. (7)

The first summand in (7) is known as configurational entanglement entropy [14, 70–
72], while the second one as fluctuation (or number) entanglement entropy [14, 73–
75]. They encode information about the entanglement within each charge sector and
the fluctuations between different sectors, respectively. Notice that a decomposition
similar to (7) does not hold in general for the Rényi entropies. However, we observe
that, under certain assumptions, it is still possible to identify a configurational and
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a fluctuational contribution to Sn. In order to do so, let us plug (4) into (1) and,
exploiting the fact that the trace of a block diagonal matrix is the sum of the traces
of the individual blocks, we obtain

Sn =
1

1− n
ln

∑
Q

[PA(Q)]
n
trρA(Q)n

 . (8)

In the most general case, the logarithm in (8) does not split into the sum of logarithms
and therefore configurational and a fluctuational contributions cannot be identified.
However, we can assume equipartition, i.e. that trρA(Q)n does not depend on the
charge Q. Then, after defining Rn ≡ trρA(Q)n, we can rewrite (8) as

Sn =
1

1− n
lnRn +

1

1− n
log

∑
Q

[PA(Q)]
n

 ≡ Sn,c + Sn,f. (9)

By taking the limit n→ 1 of Sn,c and Sn,f we obtain, within the restricted case we are
considering, S1,c and S1,f respectively. For this reason, one can interpret Sn,c and Sn,f
as configurational and fluctuation Rényi entropies, but only when trρA(Q)n does not
depend on Q. Notice that, when this happens, the system is characterised by an exact
equipartition of the entanglement, namely (5) and (6) do not depend on Q at any
order. In section 4, we discuss an instance where trρA(Q)n is actually independent of
the charge sector and therefore the decomposition (9) is valid.

The key object to compute is the replica partition function Zn(Q) at fixed charge
Q,

Zn(Q) = tr(ΠQρ
n
A), (10)

which allows to write the symmetry-resolved entanglement entropies as

Sn(Q) =
1

1− n
log

Zn(Q)

Z1(Q)n
, S1(Q) = lim

n→1
Sn(Q). (11)

The computation of Zn(Q) requires the knowledge of the entanglement spectrum and
its symmetry resolution. This information is often difficult to access, in particular
through analytic techniques. A possible way to overcome this problem relies on suit-
ably re-expressing the projector ΠQ. More explicitly, let us consider two particular
cases, namely G = U(1), G = R and G = ZN . When G = U(1) or G = R, we
can exploit a Fourier representation of the projector ΠQ and Zn(Q) can be written
as [19,20]

Zn(Q) =
1

2π

∫ λ

−λ

dµ e−iµQtr
(
eiµQAρnA

)
. (12)

When the charges Q are discrete (U(1) group), the integration bound is λ = π, whereas
for continuous charges Q (R group), the integration bound tends to infinity, λ → ∞.
We observe that Zn(Q) is the Fourier transform of the charged moments

Zn(µ) = tr
(
eiµQAρnA

)
. (13)

When G = ZN , the restricted charge operator has N eigenvalues. The projector ΠQ

can be expanded over the N elements of the group and Zn(Q) reads [19]

Zn(Q) =
1

N

N−1∑
j=0

e−
2πijQ

N tr
(
e

2πijQA
N ρnA

)
, (14)

which leads to the definition of the corresponding charged moments

Zn(j) = tr
(
e

2πijQA
N ρnA

)
, Zn(Q) =

1

N

N−1∑
j=0

e−
2πijQ

N Zn(j). (15)
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Figure 1: The BCFT setup of the entanglement entropy. Small disks of raidus ϵ are excised
around the entangling point (left panel). The resulting manifold is mapped into an annulus
(right panel) by a conformal transformation in such a way that the small disks encircling
the entangling points become the boundaries of the annulus (blue circles).

In section 4.2, we work out the case of Z2 as explicit example.
By first computing the charged moments and then Zn(Q) using (12) and (14),

the symmetry-resolved entanglement entropies have been successfully computed in
various theories and for different entangling regions [19, 20, 29, 37, 63–65]. This is
usually done exploiting the fact that the charged moments can be seen as partition
functions of QFTs defined on an n-sheeted Riemann surface pierced by an Aharanov-
Bohm flux [19]. As we will explain in detail in section 3, the BCFT approach for
the computation of the entanglement entropies is particularly useful for the purpose
of the symmetry resolution, as it gives directly access to how the elements of the
entanglement spectrum are distributed in the various symmetry sectors. Thus, one can
compute Zn(Q) and the symmetry-resolved entanglement entropies without resorting
to the charged moments and, moreover, to all orders in the UV cutoff. In section 3,
we expand on this idea and we provide various examples involving free CFTs.

3 Entanglement Entropy and BCFT

It has been observed in [12] that the standard procedure of decomposing Hilbert space
H = HA ⊗ HB where A,B are spatial regions is a priori incomplete when working
with quantum fields. Quantum fields are distributions and need to be smeared over
regions of space, and thus a spatial domain cannot simply be cut sharply into separate
spatial regions A,B without indicating how the fields should behave at the boundaries
between A and B. In short boundary conditions need to be specified at ∂A and ∂B.

When A is a single entangling interval this is achieved as pictorially represented
in figure 1. First, small disks1 of radius ϵ, which takes on the role of UV cutoff, are
excised around the two endpoints of A. Second, boundary conditions α and β are
imposed on these cutoff disks. Since A and B share their boundaries, the Hilbert
space for B is also characterized by the boundary conditions α and β. This procedure
is encoded in a factorization map [12]

ι : H → HA,αβ ⊗HB,αβ , ι : |ψ⟩ 7→ ι |ψ⟩ , (16)

for |ψ⟩ ∈ H. The boundary conditions thus depend on the particular choice of fac-
torization ι. The reduced Hilbert space HA,αβ and its reduced density matrices are
obtained by tracing over HB,αβ ,

ρA = TrHB,αβ

[
ι |ψ⟩ ⟨ψ| ι†

]
. (17)

Our interest lies on CFT and we choose boundary conditions α, β which preserve
conformal symmetry, i.e. T = T̄ |boundary [76,77]. The new manifold with excised disks
is mapped [12] into an annulus by a conformal transformation, see the right panel
in figure 1. In this coordinate frame, traces of ρnA are readily evaluated as BCFT

1A priori one might choose any shape. However, any shape, topologically equivalent to a disk, can be
mapped into a disk by a conformal transformation. Disks respect the local rotation invariance and thus
they represent an optimal choice for our purposes.
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partition functions. When n ̸= 1, n annuli are glued along A to construct a replica
annulus [12,13] of width W and circumference 2πn. In the ground state of an infinite
system, such as the one leading to (3), the width is W = 2 log

[
ℓ
ϵ − 1

]
≈ 2 log ℓ

ϵ +O(ϵ),
where ℓ is the length of the interval A; the width W is discussed in [13] for various
other states.

In terms of the modular nome,

q = e2πiτ = e−2π2/W , q̃ = e−2πi/τ = e−2W , τ = iπ/W , (18)

the reduced density matrix is [13]

ρA =
qL0−c/24

Zαβ
. (19)

Thus, one arrives at a relation between the traces of the density matrix and BCFT
partition functions

Zn = Trαβ [ρ
n
A] =

Zαβ(q
n)

(Zαβ(q))n
, (20)

where we abbreviated the symbol for the trace TrHA,αβ
→ Trαβ and used the standard

expression for a BCFT partition function, Zαβ(q) = Trαβ
[
qL0− c

24

]
with the Virasoro

zero mode L0 and the central charge c. The denominator ensures Trαβ [ρA]=1.
In this work, we consider CFTs with extended symmetries, namely with a symme-

try algebra larger than the Virasoro algebra. A BCFT has in general less symmetry
than the original CFT since the introduction of a boundary breaks some symmetries
and so the mapping (16) breaks these as well. The remaining symmetry algebra, after
imposing ι, is called A in the following. In these cases, the Hilbert space decomposes,

HA,αβ ≡ Hαβ =
⊕
i

H⊕ni
αβ

i , (21)

where i runs over the allowed representations of the extended symmetry algebra A.
Since we require the boundary conditions to preserve conformal symmetry, the ex-
tended algebra contains the Virasoro algebra, Vir ⊂ A. The multiplicities niαβ are
determined by the imposed boundary conditions α and β. The BCFT partition func-
tion decomposes then into characters χi(q) = TrHi

[
qL0− c

24

]
for representations i,

Zαβ(q
n) =

∑
i

niαβ χi(q
n) = ⟨⟨α∥q̃ 1

n (L0− c
24 )∥β⟩⟩ . (22)

In the last equality, the BCFT partition functions are computed in the S-dual channel
via boundary states

∥α⟩⟩ =
∑
j

Bj
α|j⟩⟩, (23)

where |j⟩⟩, satisfying (Ln−L̄−n)|j⟩⟩ = 0, is an Ishibashi state for the jth representation
of A. An example is given below for the free boson. They satisfy an “orthogonality
relation” ⟨⟨j|q̃L0− c

24 |i⟩⟩ = χi(q̃)δij . The coefficients Bj
α stand in relation with the niαβ

via the Cardy constraint and the reader is referred to [13,78] for details.

3.1 Free Boson BCFT

The ideas of the previous subsection are now exemplified in the free boson CFT. This
section recapitulates results which already exist in the literature, see for instance [67].

The free boson CFT on the plane is governed by the action

S =
g

2

∫
Σ

dτdσ(∂µφ) (∂
µφ) = g

∫
Σ

d2z(∂φ)(∂̄φ). (24)

This action is invariant under conformal transformations and also under U(1) trans-
formations implemented by φ+ const. In fact, the symmetry algebra of the massless

7
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free boson is given by a û(1)× û(1) Kac-Moody algebra and two copies of the Virasoro
algebra, generated by the currents

J =
∑
n∈Z

anz
−n−1, T =

∑
n∈Z

Lnz
−n−2, J̄ =

∑
n∈Z

ānz̄
−n−1, T̄ =

∑
n∈Z

L̄nz̄
−n−2.

(25)
The U(1) symmetry responsible for the shift φ + const. is generated by the U(1)

charge a0. Additionally, there are the spectrum generating modes an with n ̸= 0.
Together they form the û(1) algebra. The modes satisfy the algebra

[an, am] = nδn+m,0, (26a)
[Ln, am] = −nan+m, (26b)

[Ln, Lm] = (n−m)Ln+m +
c

12
n(n2 − 1)δn+m,0, (26c)

and similarly for ān and L̄n. The spectrum of the compact boson with periodicity
φ ≃ φ+ 2πR is given by primary states |(m,w)⟩ and their descendants, where m ∈ Z
is a momentum quantum number and w ∈ Z is one for the winding sectors. The
primaries have conformal weights and û(1) charges

hm,w =
Q2

m,w

8πg
, Qm,w =

m

R
− 4πg wR

2
, (27a)

h̄m,w =
Q

2

m,w

8πg
, Qm,w =

m

R
+

4πg wR

2
. (27b)

BCFTs are defined on Riemann surfaces with a boundary, usually taken to be the
upper half plane or an annulus. Two types of boundary conditions may be imposed on
these boundaries, which preserve a single copy of û(1), defined by the gluing conditions
J = ±J̄ |bdy. Hence, in the notation of the previous section, A = û(1).

For J = J̄ |bdy the gluing conditions result in Neumann (N) boundary conditions

∂σφ|bdy = 0, (28)

and for J = −J̄ |bdy they result in Dirichlet (D) boundary conditions

∂τφ|bdy = 0. (29)

In the D case, the value of the bosonic field may take different values, φ0 and φ′
0, at

the two boundaries of the annulus, see figure 1. In the case of N boundary conditions,
the structure is identical when describing the model in terms of the dual bosonic field
θ [78]. If the boson φ is decomposed into left- and right-movers, φ = ϕ+ ϕ̄, then the
dual field is decomposed as θ = ϕ − ϕ̄. In the case of N boundaries, the dual field θ
assumes fixed values θ0 and θ′0 to either end of the annulus.

Each boundary condition is encoded in a boundary state

∥N(θ0)⟩⟩ =
√√

πgR
∑
w∈Z

e2πig Rw θ0 |(0, w)⟩⟩N , (30a)

∥D(φ0)⟩⟩ =
1√√
4πgR

∑
m∈Z

ei
m
R φ0 |(m, 0)⟩⟩D, (30b)

with Ishibashi states built on top of the bulk primaries (27),

N : |(0, w)⟩⟩N = exp

(
−

∞∑
n=1

1

n
a−nā−n

)
|(0, w)⟩ , (31a)

D : |(m, 0)⟩⟩D = exp

( ∞∑
n=1

1

n
a−nā−n

)
|(m, 0)⟩ . (31b)

8
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The entropy of the boundary fields is given by Affleck-Ludwig g-factors [79], which in
the model at hand are given by

gN = ⟨0∥N(θ0)⟩⟩ =
√
R
√
πg, (32a)

gD = ⟨0∥D(ϕ0)⟩⟩ =
1√

R
√
4πg

. (32b)

Note that the g-factors are independent of the parameters φ0, θ0.
It is important to stress that the modes which appear in the boundary states are

not the eigenstates of the entanglement hamiltonian. They are degrees of freedom
present in the theory before imposing boundaries. Thus they are called bulk modes
and in fact they transform under two copies of the Virasoro algebra. The eigenstates
of the entanglement hamiltonian on the other hand, which we refer to as boundary
fields, transform only under a single copy of the Virasoro algebra. They are the fields
living at the boundary, i.e. the excised disks, and the protagonists of the BCFT. The
boundary fields and bulk fields are related to each other via an S-dual transformation.
Hence the bulk modes provide a useful means of computing the spectrum of boundary
fields.

In the following we state the partition functions and spectra of all combinations of
N and D conditions on the boundaries, expressed once via the boundary modes and
thereafter via the bulk modes. Derivations would lead us too far afield and thus are
not provided here. The reader can find a good introduction in [78].

The partition functions are computed from (22). For the case of Neumann bound-
aries to either end with θ0 and θ′0 it is

ZNN (q) =
∑
m∈Z

χ(∆θ0)
m (q) = g2N

∑
w∈Z

e2πigwR∆θ0χ(0,w)(q̃), (33)

where ∆θ0 = θ0−θ′0. The second and third expressions here correspond to the second
and third expressions in (22)2. We have introduced û(1) characters and the Dedekind
η function

χ(∆θ0)
m (q) =

qh
(∆θ0)
m

η(q)
, χ(m,w)(q) =

qhm,w

η(q)
, η(q) = q

1
24

∞∏
n=1

(1− qn). (34)

The boundary fields have conformal dimensions h(∆θ0)
m =

(Q(∆θ0)
m )2

8πg , where the û(1)
charges lie in the NN spectrum σNN given by

Q(∆θ0)
m = 4πg

(
m

2πgR
+

∆θ0
2π

)
, m ∈ Z. (35)

Comparing with (22), the first equality of (33) shows that all û(1) families with confor-
mal weight h(∆θ0)

m appear for m ∈ Z with multiplicity nmθ′
0,θ0

= 1. The second equality
phrases the partition function in the S-dual channel, revealing which bulk modes run
through the annulus: as can be read off from (22) and (30), these are the ones with
û(1) charges Q0,w, c.f. (27).

Similarly, for the case of DD boundary conditions with φ0 and φ′
0 to each end of

the annulus

ZDD(q) =
∑
w∈Z

χ(∆φ0)
w (q) = g2D

∑
m∈Z

ei
m
R ∆φ0χ(m,0)(q̃), (36)

where ∆φ = φ0 − φ′
0. The boundary fields have conformal dimensions h(∆φ0)

w =
(Q(∆φ0)

w )2

8πg , where the û(1) charges lie in the DD spectrum σDD given by

Q(∆φ0)
w = 4πg

(
wR+

∆φ0

2π

)
, w ∈ Z. (37)

2The way to derive (33) is to take the ∥N(θ0)⟩⟩ and compute their overlap ⟨⟨N(θ′0)∥q̃L0−1/24∥N(θ0)⟩⟩
exploiting that ⟨⟨(0, w′)|q̃L0−1/24|(0, w)⟩⟩ = δw′,wχ(0,w)(q̃). This provides the third expression in (33). A
subsequent Poisson resummation yields the second expression.
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The first equality of (36) shows that all û(1) families with conformal weight h(∆φ0)
w

appear for w ∈ Z with multiplicity nwφ′
0,φ0

= 1. The second equality in (36) phrases
the partition function in the S-dual channel, revealing which bulk modes run through
the annulus, namely the ones with charge Qm,0 in (27).

The partition function for mixed boundary conditions, DN and ND, is

ZDN (q) = ZND(q) = q
1
48

∞∏
n=1

(1− qn−
1
2 )−1 = gNgD

(
q̃

1
24

∞∏
k=1

(1 + q̃k)

)−1

. (38)

Note that this partition function does not have U(1) symmetry [78, 80], indicated by
the fact that ZND does not decompose into û(1) characters χQ built from an modes
for n ∈ Z. Instead, the spectrum is given by a twisted û(1) representation built on
a primary twist field σ of dimension hσ = 1/16. This Fock space is constructed by
modes ar with half-integral index, r ∈ Z+ 1

2 ,

HND = {a−r1a−r2 . . . a−rk |σ⟩}. (39)

Importantly, this implies the absence of the U(1) charge operator a0. This breaking
of the U(1) symmetry by mixed boundary conditions is demonstrated with standard
field theoretic methods in appendix A.

Before concluding our review of the free boson BCFT, we consider the decompact-
ification limit R → ∞, so that the target space of the boson becomes R. In the NN
case the partition function becomes

Z
(∞)
NN =

1

η(q)

∫
R
dα q

α2

8πg = g2N,∞
1

η(q̃)
, (40)

where the g-factor is now g2N,∞ =
√
4πg. This means that all û(1) families occur in

this BCFT with multiplicity one and conformal dimension hα = α2

8πg . This is in line
with setting α = 2m/R in (35). The parameter θ0 must vanish in the R → ∞ limit
since the phases in (30a) would be ill-defined otherwise; θ0 is thus dropped henceforth
from all N labels in the decompactification limit. Only a single û(1) family of bulk
modes is required to describe this BCFT, namely that of the unit field with h = 0, as
is indicated by the absence of any summation or integration in q̃ expression of (40).

In the DD case

Z
(∞)
DD =

q
g
2π (∆φ0)

2

η(q)
= g2D,∞

∫
R
dβ eiβ∆φ0

q̃hβ

η(q̃)
, (41)

with g-factor g2D,∞ = 1√
4πg

. Observe that there is only one û(1) family amongst the

boundary spectrum, that of conformal dimension h
(∆φ0)
0 , c.f. (37). This is the well

known observation that winding modes, w ̸= 0, are too heavy to be present in the
decompactification limit. Note that the parameter φ0 is still non-vanishing. It is now
the bulk channel in which all û(1) families appear in the annulus partition function.
They have dimension hβ = β2

8πg .

3.2 Entanglement in Free Boson Theory

Using the expressions for the partition functions in the free boson theory for NN, DD
and DN boundary conditions, we now evaluate the Rényi and entanglement entropies
in all cases.

We begin with the case of DD boundaries in the compact boson. Given the last
expression of the spectrum in (36), and using (20), the Rényi entropies are

SDD
n = log g2D +

1

1− n

log( η(q̃)n
η(q̃

1
n )

)
+ log

 ∑
m ei

m
R ∆φ0 q̃

hm,0
n(∑

k e
i k
R∆φ0 q̃hk,0

)n
 . (42)
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The first term is the standard g-factor contribution independent of n [12]. The third
term accounts for the bulk CFT primaries propagating in the BCFT. The second
term, accounting for all descendants in the theory, is responsible for the standard
Rényi entropy. Indeed,

1

1− n
log

(
η(q̃)n

η(q̃
1
n )

)
=
W

12

n+ 1

n
+

1

1− n

∞∑
k=1

log

[
(1− e−2Wk)n

1− e−2Wk/n

]
, (43)

where q̃ = e−2W has been used. It is straightforward to take the n→ 1 limit,

SDD
1 =

W

6
+ log g2D −

∞∑
k=1

[
log
(
1− e−2Wk

)
+

2Wk

1− e2Wk

]
+ g2D

∑
m∈Z

ei
m
R ∆φ0

χm,0(q̃)

ZD(φ′
0),D(φ0)(q)

log

[
−
2Whm,0 η(q̃)ZD(φ′

0),D(φ0)(q)

g2D

]
. (44)

In later sections we illuminate the physics of SDD
1 more clearly by rewriting it in

terms of probability distributions. This analysis is repeated identically for the NN case
using the last expression for the partition function (33). Thus we omit the discussion
of the NN case here.

Simplifications occur for the non-compact boson. We begin with the DD case,
where it is actually convenient not to use the last expression of (41) but the one in
terms of q, which provides

SDD,(∞)
n =

1

1− n
log

[
ηn(q̃)

η(q̃
1
n )

√
−inτ

(
√
−iτ)n

]
=
W

12

n+ 1

n
+

1

1− n

∞∑
k=1

log

[
(1− e−2Wk)n

1− e−2Wk/n

]
− 1

2
log

[
W

π

]
+

1

2

log n

1− n
. (45)

The modular transformation η(q̃) =
√
−iτη(q) has been used in going to the second

line. Observe that a logW term arises. This might surprise readers familiar with
symmetry-resolution in the free boson as this here is the regular entanglement entropy.
As will be explained in detail in section 4, the logW term has to appear here. The
limit n→ 1 is easily taken in this representation.

The NN case for the non-compact boson is in fact very simple, given the last
expression in (40)

SNN,(∞)
n =

W

12

n+ 1

n
+

1

1− n

∞∑
k=1

log

[
(1− e−2Wk)n

1− e−2Wk/n

]
+ log g2N,(∞). (46)

Observe the appearance of the g-factor and that it is not accompanied by an n-
dependence.

The final case is that of mixed boundaries, ND. Regardless of a compact or non-
compact target space, the partition function takes the form (38)

SDN
n =

W

12

n+ 1

n
+

1

1− n

∞∑
k=1

log

[
(1 + e−2Wk)n

1 + e−2Wk/n

]
+ log(gDgN ). (47)

This concludes our review of entanglement in the free boson CFT. These expres-
sions are used in the following section to discuss the symmetry resolution in this theory
in full generality.

4 A New Take on Symmetry Resolution

In this section we present a shift of perspective on the subject of symmetry resolu-
tion, which is possible whenever the spectrum of the entanglement BCFT is accessi-
ble. The focus is shifted away from charged moments toward the actual structure of
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the entanglement spectrum (21). As will become clear, this new approach simplifies
the computations of symmetry-resolved entanglement significantly and provides new
structural insights into the entanglement of the free boson theory.

In order for the setup and the cutting operation described in section 3 to work
for SREE, additional constraints need to be imposed. As noted in [12], the cutting
operation ι does not necessarily preserve all symmetries of the system. Since the
cutting operation ι is not unique, one chooses one that preserves half of the Virasoro
symmetry to utilize BCFT methods. This corresponds to placing conformal boundary
conditions at the entangling points.

In order to calculate the SREE for a system with some additional symmetry group,
the cutting operation must also preserve said additional symmetry. This is vital, as the
reduced density matrix after the cutting (16) needs to decompose as in (4). This fact
can formally be expressed as follows: The condition that implies the reduced density
matrix to be block-decomposed into the various charge sectors is [ρA,QA] = 0, where
both operators in the commutator are restricted to the subsystem of interest. In the
language of [12], this condition can be expressed as

TrHB,αβ

(
ι[|ψ⟩ ⟨ψ| ,Q]ι†

)
= 0. (48)

To check its validity, one should access the explicit form of the mapping ι defined in
(16), which in general is not known. However, one can say that any ι which maps
the initial CFT to a given BCFT which breaks the symmetry generated by Q cannot
satisfy (48). In the following we mention a case where the U(1) symmetry of a compact
boson CFT (as well as the R symmetry of a non-compact boson) is broken once the
theory is considered on the annulus with DN or ND boundary conditions and we argue
that for this choice (48) cannot hold.

In the following we calculate the charged partition functions (10) for the compact
and the non-compact free boson on the annulus with NN or DD boundaries. We
consider the symmetry resolution of entanglement with respect to various symmetry
groups. The results obtained are cross-checked by computing the charged moments
and, in doing this, we expand on the calculation of [20] by explicitly investigating
different boundary conditions. Fourier transforming the charged moments yields the
Zn(Q), which match the results obtained with the previous approach.

4.1 U(1) Resolution for NN and DD Boundaries Revisited

In order to calculate the symmetry-resolved entanglement entropy, the starting point
is the decomposition of the Hilbert space (21) into charge sectors in the presence of an
additional symmetry G. The crucial observation is that the projector in the definition
of the charged partition function (10) simply selects precisely one representation Hi.
The action of the free boson, eq. (24), is invariant under a translation of the angular
variable, φ → φ + a. This leads to the conservation of a U(1) charge Q given by
the zero mode of the current J(z). Without boundaries, the symmetry is in fact
U(1)×U(1). Upon implementing DD or NN boundaries, this is broken to a single U(1),
c.f. appendix A for a derivation. The Hilbert space of the corresponding quantum
theory therefore decomposes into û(1) representations HQ,

Hαα =
⊕

Q∈σαα

HQ. (49)

The charge eigenvalues Q lie in the sets σαα provided in (35) for NN boundaries and
in (37) for DD boundaries. To improve readability, we drop the indices of the charges
provided there, e.g. Q(∆θ0)

m → Q. The decomposition (49) is the free boson analog of
(21). As explained above, ND and DN boundaries break U(1) symmetry and hence
do not decompose as (49). This case is discussed later.

Each representation HQ consists of a U(1) primary state |Q⟩ with charge eigen-
value Q and its descendants constructed via the modes a−n. These representations

12
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are irreducible3. The states of charge Q are also Virasoro primaries with conformal
dimension hQ = Q2

8πg [82], where g is the coupling introduced in the free boson action
(24).

Compact Free Boson: DD and NN boundary conditions: To calculate
the charged partition functions (10) for the free boson, note that the spectra (33)
and (36) decompose into û(1) representations. This means that the projector ΠQ in
(10) simply selects a particular û(1) character if the charge Q is in the spectrum, and
otherwise this expression vanishes. The probability distribution reads

PA(Q) = Trαα [ΠQρA] =

{
χQ(q)
Zαα

, Q ∈ σαα

0, otherwise,
(50)

where the normalization Zαα is given in (22). By construction,
∑

Q∈σαα
PA(Q) = 1.

For general n, this becomes

Zn(Q) = Trαα [ΠQρ
n
A] =

{
χQ(qn)
Zn

αα
, Q ∈ σαα

0, otherwise.
(51)

The characters are χQ(q) =
qhQ

η(q) , where hQ are the conformal weights corresponding
to the U(1) charges in σαα, c.f. (35) and (37). Similar observations have been also
made in [22], without providing explicit formulas and examples.

The fact that the form of the Zn(Q) in all the considered U(1) cases are the same
can be understood as follows: They contain information about the partition function
in a particular U(1) sector and therefore are fully determined by the symmetry. The
role of the boundary conditions is to determine which charges enter in the spectrum
to begin with.

The entanglement entropy, given by (7), depends on the spectrum and therefore
on the boundary conditions, c.f. section 3.2. In contrast, the form of the symmetry-
resolved entanglement entropies only depend on the form of the characters χQ and
therefore they have the same form independent of the boundary conditions, although
the individual charges in the spectrum differ. Remember that here we focus on the
same boundary conditions on both ends of the cylinder.

This new perspective also makes equipartition evident to all orders in the cutoff,
independent of the boundary conditions. It follows directly from (51) for charges
Q ∈ σαα that

Sαα
n (Q) =

1

1− n
log

[
Zn(Q)(
Z1(Q)

)n
]
=

1

1− n
log

[
ηn(q)

η(qn)

]

=
W

12

n+ 1

n
+

1

1− n

∞∑
k=1

log

[
(1− e−2Wk)n

1− e−2Wk/n

]
− 1

2
log

[
W

π

]
+

1

2

log n

1− n
, (52)

In going to the second line, the conformal weights carrying the charge dependence have
simply cancelled due to the explicit form of the characters, leading to equipartition of
entanglement. Furthermore η(q̃) =

√
−iτ η(q) was used. The terms of order W and

logW in (52) have been first found in [20]. In this manuscript, we extend the analysis
to all orders in the UV cutoff expansion, discussing the consequences of choosing
different boundary conditions.

Note that the result in (52) does not explicitly depend on the compactification
radius R, apart from the fact that Q ∈ σαα, where σαα is dependent on R. Therefore,
this result also holds for the non-compact free boson theory. A very important lesson
from this section is that symmetry-resolved entanglement in the case of the free boson
simply computes the entanglement of a single U(1) character. It is hence no surprise

3There are no null vectors built purely from an modes, which is a direct consequence of the algebra
(26a). In contrast, representations built with Virasoro modes at c = 1 may indeed have null vectors [81,82].
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that (52) coincides with the Rényi entropies of the non-compact free boson with DD
boundaries, eq. (45), since that partition function consists only of a single character,
which explains the occurence of the logW term.

Equipartiton of entanglement is also reflected in the Rényi entropies

Sαα
n =

1

1− n
log

[
ηn(q)

η(qn)

]
+

1

1− n
log

[ ∑
Q∈σαα

qnhQ(∑
Q∈σαα

qhQ
)n
]

=
1

1− n
log

[
ηn(q)

η(qn)

]
+

1

1− n
log

 ∑
Q∈σαα

(
PA(Q)

)n
 = Sαα

n,c + Sαα
n,f , (53)

where the expressions in terms of q of (33) and (36) were used. The second summand
stems from the û(1) primaries in the theory and, as explained in (7), it is the fluctuation
Rényi entropy Sαα

n,f , accounting for fluctuations between charge sectors. Again, this
result is exact to all orders in the cutoff and holds for all Rényi parameters n. The first
term must thus be the configurational Rényi entropy Sαα

n,c, describing the entanglement
in one charge sector. It accounts for the Fock space structure of the û(1) towers built
on each primary state and is responsible for the well-known leading term of the Rényi
entropy,

Sαα
n,c =

1

1− n
log

[
ηn(q)

η(qn)

]
=

1

1− n
log

[
ηn(q̃)

η(q̃
1
n )

√
−inτ

(
√
−iτ)n

]
=
W

12

n+ 1

n
+

1

1− n

∞∑
k=1

log

[
(1− e−2Wk)n

1− e−2Wk/n

]
− 1

2
log

[
W

π

]
+

1

2

log n

1− n
, (54)

where η(q̃) =
√
−iτ η(q) has been used in the first and τ = iπ/W and q̃ = e−2W in the

second line. Note that this expression is exact, and it is clear that performing ϵ→ 0,
i.e. W → ∞, suppresses the infinite series, which stems from the û(1) descendants
in the q̃ channel. Observe that Sαα

n,c = Sαα
n (Q), i.e. the symmetry-resolved Rényi

entropies account for the configurational Rényi entropies. As stressed in Sec. 2, the
decomposition in the last step of (53) holds only in case of exact equipartition of
entanglement entropies, which is what we find here for the compact massless free
boson.

The n → 1 limit of the configurational entropy SDD
n,c is straightforwardly taken in

the expression (54). The full expression for the entanglement entropy is

S1 = lim
n→1

(Sαα
n,c + Sαα

n,f ) = lim
n→1

1

1− n
log

[
ηn(q)

η(qn)

]
−
∑

Q∈σαα

PA(Q) log [PA(Q)] . (55)

Note that the last two terms in (54) cancel out with terms of fluctuation entropy, once
it is expressed in terms of q̃, at least for finite compactification radius. In the rest of
this subsection we encounter an example where the fluctuation entropy is identically
zero, and the final two terms indeed appear in the full entanglement entropy, perhaps
contrary to expectations.

Non-compact Free Boson: DD and NN boundary conditions: It is
illuminating to consider the decompactification limit R→ ∞. We begin with the DD
case, for which the entire spectrum consists only of the w = 0 û(1) family, see (41).
Thus PA(Q) = 1 if Q = Q

(∆φ0)
0 and zero otherwise, see (37). The Rényi entropies

become

SDD,(∞)
n =

1

1− n
log

 Z
(∞)
D(φ′

0),D(φ0)
(qn)(

Z
(∞)
D(φ′

0),D(φ0)
(q)
)n
 =

1

1− n
log

[
ηn(q)

η(qn)

]
= SDD

n,c . (56)

There is no fluctuation entropy, SDD
n,f = 0, as expected, since a second charge sector

would be required for fluctuations to occur. Put another way, there is no uncertainty
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in the charge measurement. No g-factor appears in the final result. It would, if one
were to neglect the higher orders and approximate to keep only the leading terms in
q̃, since it cancels out in the transformation from q̃ to q.

The result (56) has interesting consequences for the entanglement entropy,

S
DD,(∞)
1 =

W

6
− 1

2
log

[
W

π

]
− 1

2
−
∑
k=1

[
log
(
1− e−2Wk

)
− 2Wk

e2Wk − 1

]
. (57)

The second and third term is usually associated with the SREE for a charge sector
Q. Here, however, it already appears in the regular entanglement entropy, since there
are no contributions from the fluctuation entropy to cancel these terms.

The NN partition function of the non-compact boson includes, in contrast to the
DD case, all û(1) families, c.f. (40). The configurational entropy remains as it is,
and may be directly read off from (54). It remains to calculate the fluctuation Rényi
entropy, which in this case is

S
NN,(∞)
n,f =

1

1− n
log

[ ∫
R q

nα2/(8πg)dα(∫
R q

β2/(8πg)dβ
)n
]
= log g2N,(∞)+

1

2
log

[
W

π

]
− 1

2

log n

1− n
, (58)

where gN,∞ = (4πg)
1
4 . The second and third terms cancel in the Rényi entropy

with terms of the configurational Rényi entropy (54) and in the limit n → 1 the
entanglement entropy reads,

S
NN,(∞)
1 =

W

6
+ log g2N,(∞) −

∑
k=1

[
log
(
1− e−2Wk

)
− 2Wk

e2Wk − 1

]
. (59)

Observe that, in contrast to the DD case, the g-factor now appears and the logW
term is absent.

Before moving on to check these results using the charged moments, we comment
on the case of mixed boundary conditions, i.e. DN and ND. While it is possible to
calculate the entanglement entropy in these cases, it is not possible to resolve with
respect to U(1), because the mixed boundary conditions break this symmetry. This
can be seen either from the boundary term required in the conservation equations
of the U(1) charges, as reviewed in appendix A, or from the modes ar. Indeed, the
modes acquire half-integer indices, r ∈ Z+ 1

2 , for mixed boundaries and therefore the
conserved U(1) charge a0 is not defined. Therefore, resolution with respect to U(1) is
not possible in these cases, which can be rephrased by saying that (48) does not hold
when αβ = ND/DN, and Q given by the U(1) generator. However, the ND and DN
spectra still contain Z2 representations, with respect to which we resolve in section 4.2.

4.1.1 Cross-check: Compact Boson

In this section we confirm our previous results by employing the standard method in
symmetry resolution, namely the U(1) charged moments of the compact boson CFT.
In order to calculate the charged moments to all orders, we employ the boundary state
approach. We advocate for this approach as it allows to calculate to arbitrary orders
in the UV cutoff. Therefore it is a vital addition to the usual symmetry resolution
toolkit, which is based mainly on charged twist fields, which only allow to extract the
leading terms. We note that this formalism has already been employed in [20], but
has garnered little attention since.

The charged moments (13) for a U(1) theory read

Zαα
n (µ) =

1

Zn
αα

trHαα

(
(qn)

L0− c
24 eiµQ

)
, (60)

where α still labels boundary conditions, Hαα is the corresponding Hilbert space. In
the case of the free boson, (49) leads to the decomposition of the charged moments
into charged U(1) characters,

Zαα
n (µ) =

1

Zn
αα

∑
Q∈σαα

χQ(q
n, µ, 0), (61)
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where σαα is the spectrum of charges in the Hilbert space with boundary condition
α, given by (35) in the case of NN boundaries and (37) for DD boundaries. For a
continuous spectrum, such as that of the non-compact boson, the sum becomes an
integral. The charged characters are defined as

χQ(q, µ, u) = ei8π
2gutrHû(1)

Q

(
qL0− c

24 eiµQ
)
= ei8π

2gueiµQ
qhQ

η(q)
. (62)

The necessity of the phase parameter u will become evident below.
This expression is unfortunately not useful in the W → ∞ limit, in which q → 1−.

In the S-dual frame on the other hand, the expansion variable q̃ tends to zero for
W → ∞. Charged moments can readily be computed in this frame by virtue of
boundary states ⟨⟨α∥. For N boundaries these are (30a) and for D boundaries (30b).
These allow for a straightforward expansion in orders of q̃. For U(1) characters the
S-modular transformation is represented by a Fourier transformation, and thus the
charged characters transform as∫

dQ′SQ,Q′χQ′(q, µ, u) = χQ

(
q̃,−µ

τ
, u− 1

2τ

( µ
2π

)2)
. (63)

Here SQ,Q′ = 1√
4πg

ei
QQ′
2g are the matrix elements of the S transformation [83].

Looking at the definition (13) of the charged moments, we observe that they are
essentially partition functions with an inserted exponential. Therefore, using the trans-
formation law of the charged characters and (22), the charged moments can be ex-
pressed in terms of the boundary states, in this case given by (30). The charged
moments read

Zαα
n (µ) =

1

Zn
αα

q̃
1
n 2πg( µ

2π )
2

⟨⟨α∥
(
q̃

1
n

)L0− c
24

e−i µ
nτ Q∥α⟩⟩. (64)

Calculating the charged moments using (64) yields

ZDD
n (µ) =

1

Zn
DD

∑
Q∈σDD

1

η(qn)
q

n
8πgQ

2

eiµQ, (65a)

ZNN
n (µ) =

1

Zn
NN

∑
Q∈σNN

1

η(qn)
q

n
8πgQ

2

eiµQ. (65b)

We note that similar expressions were already presented in [20], albeit restricted to
only two values of ∆φ0 and ∆θ0. Here, we generalize to all possible values of ∆φ0

and ∆θ0.
To calculate the Zn(Q), the charged moments have to be Fourier transformed.

In the compact case a subtlety arises, since the values of Q are neither integer nor
continuous for finite, non-zero compactification radius. By standard Fourier theory
this leads to all functions of µ being periodic with period 2πR and 4π

R , respectively.
By rescaling the integration variable and substitution in the Fourier transformation,
the new function can be made to be 2π periodic. For both boundary conditions,

Zαα
n (Q) =

1

Zn
αα

qn
Q2

8πg

η(qn)
, Q ∈ σαα. (66)

This result agrees with our previous result in (51).
The difference between DD and NN boundary conditions again is that the charges

in the spectrum take different values depending on the compactification radius R.

4.1.2 Cross-check: Non-compact Boson

A cross-check similar to the one discussed in the previous subsection can be done for
the non-compact boson theory. In this case the boundary states (30) are replaced by

∥N⟩⟩∞ = gN,∞|0⟩⟩, (67a)
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∥D(φ0)⟩⟩∞ = gD,∞

∫
R
dQe−iQφ0 |Q⟩⟩. (67b)

Here |Q⟩⟩ are the Ishibashi states, c.f. (31), and φ0 remains the boundary value of
the field φ. Note that only a single Ishibashi state contributes in the NN case, c.f.
section 3.1. The g-factors are now

gD,∞ = ⟨0∥D(φ0)⟩⟩∞ = (4πg)−
1
4 , (68)

gN,∞ = ⟨0∥N⟩⟩∞ = (4πg)
1
4 . (69)

In the case of NN boundary conditions,

ZNN
n (µ) = g2N,∞

q̃
1
n 2πg( µ

2π )
2

Zn
NNη(q̃

1
n )

=
g2N,∞

Zn
NN

χ0

(
q̃

1
n ,− µ

nτ
,−1

2

( µ
2π

)2)
. (70)

This result is exact to all orders of ϵ. In the S-dual picture, i.e. in the q̃ expression,
only one of the bulk modes is allowed to propagate for NN boundary conditions. Since
the S transformation acts as a Fourier transform, we expect that all BCFT modes
are allowed to propagate, which can be seen from the fact that the matrix elements
S0,Q′ = 1√

4πg
are independent of Q′. Therefore all U(1) representations contribute

equally in the partition function and the charged moments and the expression in terms
of q reads

ZNN
n (µ) =

1

Zn
NN

∫
dQχQ (qn, µ, 0), (71)

where χQ (qn, µ, 0) is defined in (62). Furthermore we see from (70) that the leading
order in q̃ produces the charged moments computed in the twist field picture and the
holographic calculation [63],

ZNN
n (µ) ∼

g2N,∞

Zn
NN

(
q̃

1
n

)2πg( µ
2π )

2− c
24

. (72)

Fourier transforming the exact result (70), we obtain for Q ∈ R

ZNN
n (Q) =

1

Zn
NN

qn
Q2

8πg

η(qn)
=

1

Zn
NN

χQ(q
n, 0, 0). (73)

This result is consistent with (51). Observe that the boundary states automatically
contain the information about which charges enter the spectrum, c.f. the discussion
in section 3.1. In the case of DD boundary conditions the analysis of the boundary
states yields the charged moments

ZDD
n (µ) =

g2D,∞

Zn
DD

q̃
1
n 2πg( µ

2π )
2
∫

dQe−iQ∆φ0e−i µ
nτ Q q̃

1
n

Q2

8πg

η(q̃
1
n )
. (74)

In contrast to the NN case all bulk modes propagate in the q̃ expression. In the BCFT
picture, the charged moments read

ZDD
n (µ) =

1

Zn
DD

1

η(qn)
eiµ2g∆φ0qn2πg(

∆φ0
2π )

2

=
1

Zn
DD

χ2g∆φ0
(qn, µ, 0). (75)

Instead of consisting of a single bulk mode in q̃ expression, the charged moments
consist of a single mode in the q expression, again c.f. section 3.1.

Fourier transforming the charged moments gives

ZDD
n (Q) =

1

Zn
DD

qn
Q2

8πg

η(qn)
δ (Q− 2g∆φ0) . (76)

This is again consistent with (51). The Dirac distribution appearing in this result
corroborates that the spectrum of the free boson with DD boundary conditions consists
of only one û(1) representation.
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We find it worth stressing again that (76), (73) and (66) confirm the discussion
reported in section 4.1, where we pointed out that the charged partition functions
Z(Q) have the same expression in all the U(1) and R cases. Different boundary
conditions and considering the compact or the non-compact abelian symmetry group
only determine which charges enter in the spectrum.

4.2 Z2 Symmetry Resolution

We now turn our attention to resolution with respect to the simplest finite discrete
group, namely Z2. The DD, NN and ND partition functions carry Z2 representations
so that their entanglement structure can be unveiled. The reader will not be surprised
to find that there is a close relationship with the conventional Z2 orbifold of the bosonic
theory [81]. For all the boundary conditions considered here we compute the charged
partition function (10) directly from the knowledge of the projectors in the two charge
sectors. This is in the spirit of section 4.1. As a consequence, we do not compute and
exploit the charged moments as in (14) and (15) with N = 2.

4.2.1 Z2 Symmetry Resolution for DD and NN

While treating the DD and NN cases, we restrict to the simple cases ∆φ0 = 0 =
∆θ0. It is then also useful to introduce a common notation for the primaries in both
boundary theories, we call them |s⟩, s ∈ Z with a0 |s⟩ = Qs |s⟩, where Qs stands for
either Q(0)

w from (37) or Q(0)
m from (35).

Denoting Z2 = {e, g}, where e is the unit element, the non-trivial element g acts
on the Fock modes via g−1akg = −ak. For k = 0 this implies the Z2 action flips the
sign of the U(1) charge, Qs → −Qs, and so we can identify g |s⟩ = |−s⟩.

A projector onto g = ±1 eigenspaces, required for (10), is Π± = e±g
2 . We are

thus led to evaluate traces of the type TrHαα
[gqL0 ], where Hαα is the Hilbert space

of either the DD or NN theory. For their evaluation it is convenient to reorganize the
spectrum in states of the form

ak1
ak2

. . . akl
(|s⟩ ± |−s⟩) , (77)

which are eigenstates of g. For a fixed configuration of modes aj , these pairs of states
contribute with opposite sign to TrHαα

[gqL0 ] and thus cancel away, as long as s ̸= 0.
This rearrangement of the Hilbert space has the following physical meaning. Each
of the U(1) sectors of the theory discussed in section 4.1 contains a Z2-even and a
Z2-odd part. Thus, in order to access the two Z2 sectors it is necessary to decompose
the U(1) sectors and reorganize them, as done by the change of basis (77).

What remains is to evaluate the trace in the s = 0 sector, which is done by
elementary methods [81],

TrHαα

[
gqL0− 1

24

]
= Trs=0

[
gqL0− 1

24

]
= q−

1
24

∏
k=1

1

1 + qk
=

√
2
η(q)

θ2(q)
=

√
2
η(q̃)

θ4(q̃)
,

(78)
where θi are modular Jacobi theta functions. A summary of their properties can be
found in appendix B.

The trace (10) for the two possible Z2 representations, labelled ±, can thus be
evaluated

Zαα
n (±) = TrHαα

[Π±ρ
n
A]

=
1

(Zαα(q))n
TrHαα

[
e± g

2
qn(L0− 1

24 )

]
=

1

2(Zαα(q))n

(
Zαα(q

n)±
√

2
η(q̃1/n)

θ4(q̃1/n)

)
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=
1

2(Zαα(q))n

(
g2α

e2W/(24n)∏∞
k=1(1− e−2Wk/n)

∑
s∈Z

e−2Whs/n

±
√
2

e−W/(24n)∏∞
k=1(1− e−W (2k−1)/n)

)
, (79)

with hs = Q2
s/(8πg). When W → ∞, the first summand goes with e

W
12n , while the

second term decays rapidly with e−
W
24n . Without computing the symmetry-resolved

entanglement form these replica partition functions, we can thus already infer that
equipartition holds at leading order, thereby confirming the results of [32]. When
including all orders, however, it is clear that equipartition cannot hold, since (79)
depends on the chosen sign. Observe that Z1(+) is proportional to the holomorphic
part of the projected untwisted sector of the conventional Z2 orbifold [81].

Finally, the symmetry-resolved Rényi entropies are

Sαα
n (±) =

1

1− n
log

[ Zαα
n (±)

(Zαα
1 (±))

n

]
. (80)

When either ∆φ0 = 0 or ∆θ0 = 0, we can expand (80) as

Sαα
n (±) =

1 + n

12n
W − ln 2 + ln g2α + . . . , (81)

where the dots denote the subleading corrections which vanish exponentially in W as
the UV cutoff goes to zero, and are responsible for the breaking of the entanglement
equipartition. The term ln 2 is nothing but the logarithm of the number of Z2 sectors,
and is the leading contribution to the fluctuation entropy. In other words, no double
logarithmic corrections arise in the Z2 symmetry-resolution of the entanglement [32].

4.2.2 Z2 Symmetry Resolution for DN

It is convenient rewrite the ND BCFT partition function (38) as

ZND(q) =

√
η(q)

θ4(q)
, (82)

which makes evident that this spectrum is equivalent to the holomorphic part of the
unprojected twisted sector of the bosonic Z2 orbifold found in [81]. It carries Z2

representations with respect to which we wish to resolve. To that end, it is convenient
to split (39) into g = ±1 eigenspaces,

H(+)
DN = {a−r1 . . . a−r2k |σ⟩}, (83)

H(−)
DN = {a−r1 . . . a−r2k+1

|σ⟩}, (84)

with ri ∈ Z+ 1
2 .

The projector onto these eigenspaces is still Π± = e+g
2 , and we consider

TrHDN
[gqL0− 1

24 ] =

√
η(q̃)

θ3(q̃)
, (85)

whose derivation can be found in [81]. The replica partition function (10) is thus

ZDN
n (±) =

1

2(ZDN (q))n

(√
η(qn)

θ4(qn)
±
√

η(qn)

θ3(qn)

)

=
1

2(ZDN (q))n

(√
η(q̃1/n)

θ2(q1/n)
±
√

η(q̃1/n)

θ3(q̃1/n)

)
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=
1

2(ZDN (q))n

(
gNgD e

W/(12n)
∞∏
k=1

(1− e−2Wk/n)−1

±
∞∏
k=1

(1 + e−W (2k−1)/n)−1

)
. (86)

where we used gDgN = 1/
√
2, see (32). Again it is clear that for W → ∞, the

first term dominates and hence equipartition is guaranteed at leading order. Simi-
lar to before, equipartition breaks down once all orders are included. Observe that
Z1(+) is proportional to the holomorphic part of the projected twisted sector of the
conventional Z2 orbifold [81].

Finally, the symmetry-resolved Rényi entropies are

SND
n (±) =

1

1− n
log

[
ZDN

n (±)(
ZDN

1 (±)
)n
]
. (87)

For the leading orders one finds

SND
n (±) =

1 + n

12n
W − ln 2 + ln(gDgN ) + . . . , (88)

where the dots have the same meaning, and the ln 2 the same interpretation discussed
below (81).

5 Conclusions

5.1 Discussion

In this article we investigated the symmetry resolution of entanglement in 2D CFTs
by employing the BCFT approach for the computation of the entanglement entropies
[12, 13]. More concretely, any factorization of Hilbert space associated with spatial
domains requires the imposition of boundary conditions at the entangling surface
in a QFT, see (16). These boundary conditions determine the field content in the
entanglement spectrum. If, furthermore, the systems is governed by a symmetry group
G, said entanglement spectrum decomposes into charge sectors labelled by irreducible
representations ofG. In this paper we showed that symmetry resolution with respect to
G = U(1),R,Z2 is achieved in the free boson CFT by extracting the characters of said
irreducible representations, c.f. (10) and (51), and by computing their entanglement
entropy (11). We found that this approach has a number of advantages:

• It bypasses the potentially laborious computation of charged moments (13).

• In contrast to the charged twist field approach [19], which only provides the lead-
ing contributions in a UV cutoff expansion, the setup here provides symmetry-
resolved entanglement entropies to all orders in the UV cutoff. This is similar
to the situation with regular twist fields, which provide the cW/6 term in the
entanglement entropy, but not the higher lying terms described in [12].

• It provides conceptual insight. For instance, it explains the origin of equipartition
of entanglement, if present. This is a simple consequence of the structure of the
characters of the symmetry group. Equipartition has been studied in the case
of U(1) before in [20] and for Z2 in [32]. In both cases equipartition had been
established to leading orders in the UV cutoff. Our setup allows us to extend
their analysis to all orders and confirm U(1) equipartition (52), while we find
breaking of Z2 equipartition, c.f. (79) and (86).

Another aspect we find worth stressing is the role of boundary conditions imposed
on the annulus geometry. Typically, the boundary conditions considered in BCFT
are conformal boundary conditions, which deny energy-momentum flow across the
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boundary. From the point of view of symmetries, this means that the holomorphic
and the anti-holomorphic Virasoro algebrae reduce to a single Virasoro algebra. If the
theory has an additional global symmetry, the boundary conditions may break this
symmetry. If we want to compute the symmetry-resolved entanglement with respect to
a given group G, we must choose boundary conditions that preserve such a group. In
the cases considered in this article, we observed that NN and DD boundary conditions
preserve one of the two U(1) (or R) symmetries of the theory without boundaries. The
U(1) preserved in the NN case is different from the one preserved in the DD case, c.f.
appendix A for more details. In both cases, a symmetry resolution of the entanglement
entropies can be achieved in the BCFT setup. On the other hand, when we impose
ND or DN boundary conditions, the only residual symmetry is Z2 and therefore it is
not possible to resolve the spectrum of the BCFT, i.e. the entanglement spectrum,
with respect to U(1) (or R). In this latter case, the partition function of the BCFT
is expanded in terms of the characters of twisted U(1) representations [78, 80]. Thus,
even if there is no U(1) charge present for ND or DN boundary conditions, the theory
bears remnants of the U(1)× U(1) symmetry present without boundaries, i.e. before
the mapping the theory to the annulus.

5.2 Summary of Results

We have focused on the cases where the target space of the bosonic field is a cir-
cle (symmetry group U(1)) or non-compact (symmetry group R). In both cases, we
computed the charged partition function Zn(Q) from the characters contained in the
BCFT partition function, c.f. (51) for generic n and in (50) for n = 1. The corre-
sponding symmetry-resolved Rényi entropies are given in (52). We applied the same
procedure for the resolution with respect to the Z2 symmetry. For this case, the
charged partition functions are given in (79) for NN or DD boundary conditions, and
in (86) for ND boundaries. The corresponding symmetry-resolved Rényi entropies are
straightforwardly computed using these results. We now provide a detailed discussion
of each of these results.

Our first example is the compact boson resolved with respect to the global U(1)
symmetry. The symmetry-resolved entropies for this theory have been first consid-
ered in [20], where the leading order contributions in the UV cutoff expansion were
computed and found to be independent of the choice of boundary conditions on the
annulus. We extend the analysis of [20] by calculating all the possible higher-order
terms for all allowed combinations of boundary conditions. We in particular consid-
ered two choices of boundary conditions, DD and NN, both of which allowing for a
residual U(1) symmetry. Our results (52) exhibit some very interesting features: First,
the equipartition of entanglement holds to all orders in the cutoff expansion. This is
an extension of the results in [20], which reported equipartition to leading order. Our
result originates from the explicit form of the U(1) characters χQ(q) = qhQ/η(q). This
particular form implies that hQ cancels out in the ratio Zn(Q)/(Z1(Q))n, so that no
charge dependence remains, as is seen in (50) and (51). This is the first main result of
the paper. Moreover, the explicit expressions of the symmetry-resolved entanglement
entropies are the same for both the NN and DD case. The only difference lies in the
allowed values of the charges Q, which are determined by the choice of the boundary
conditions.

As a further example, we considered the decompactification regime of the compact
free boson theory, namely the limit R → ∞. The resulting theory has a symmetry
given by the group R. Thus, its symmetry resolution can be regarded as a first simple
example of symmetry-resolved entanglement in presence of a non-compact symme-
try group. Also in this case the expression for the symmetry-resolved entropies (52)
only depends on the charge allowed by the boundary conditions. We find it worth-
while to stress an interesting feature of the non-compact boson with DD boundary
conditions: its spectrum consists only of a single charge sector and therefore the
only non-vanishing symmetry-resolved entanglement entropies coincide with the total
entanglement entropies. This is somewhat surprising, since it shows that the double
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logarithmic correction in the symmetry-resolved entanglement entropies is also present
in the full entanglement entropies, which, to our knowledge, has not been reported so
far.

The BCFT approach also allowed us to compute the entanglement entropies re-
solved with respect to a Z2 symmetry. These results are reported in (80) for NN and
DD boundary conditions. Interestingly, in presence of DN and ND boundary condi-
tions the Z2 symmetry is still present and therefore the symmetry-resolved entropies
can be computed. They are given in (87). Again, these results are exact in the cutoff
expansion, and reduce to the findings of [32] to leading order in the cutoff expansion.
Our results for U(1) and R have been cross-checked in sections 4.1.1 and 4.1.2 by
computing first the charged moments and then performing the Fourier transform.

5.3 Outlook

Based on the findings of our work, there are many future directions to pursue: First,
we have come across twisted U(1) representations in the case of mixed boundary
conditions. These arise from a twisted U(1) and retain some of the features of the
untwisted case. For instance, the structure of the û(1) Kac-Moody algebra persists,
in that the modes still satisfy [ar, as] = −rδr+s,0 where the indices are half-integral.
In the picture put forward in section 4, symmetry-resolution is achieved by isolating a
character. We can therefore resolve with respect to these characters, i.e. with respect
to the twisted U(1) symmetry. Nevertheless it is not clear what the physical charge
operator is for this representation. In particular, as shown in appendix A, Noether’s
procedure does not provide a conserved charge operator in this case. The identification
of such charges is therefore an interesting route to take. This question is by no means
of pure mathematical nature, as physical systems have already been identified which
feature ND boundaries at their entangling points, see [84]. We point out that for
ND/DN boundaries, the entanglement spectrum consistst of only a single twisted
character. In this regard, the ND case is very similar to the case of DD boundaries
for the non-compact boson.

Second, the free boson is in many regards a very simple theory, and therefore ideal
as a toy model. In order to test the utility of our approach, it is thus necessary to find
other, more involved theories with global symmetries, potentially non-abelian, in which
our approach of section 4 can be applied. One obvious candidate are Wess-Zumino-
Witten models with global symmetry G. Results already exist for these models [22],
in which the entanglement spectrum was resolved up to O(ϵ) in the UV cutoff ϵ with
respect to representations of G. Our approach makes evident how to resolve with
respect even to subgroups of H ⊂ G. What is required is to decompose representations
of G into those of H. Going one step further using character decompositions, it
will even be possible to resolve coset models, for which no results exist at present.
Such coset models appear in higher spin holography [65, 85, 86], as well as in exactly
solvable top-down models of AdS3/CFT2 [87]. Therefore our approach applies to a
large number of CFTs, and does so to all orders in the UV cutoff.

Third, One of the abelian symmetry groups considered in this work is the group
R, which is non-compact. The results discussed in Sec. 4 provide a first entanglement
resolution with respect to a non-compact, albeit simple, symmetry. Along this line,
it would be interesting to consider the resolution of entanglement in presence of non-
abelian, non-compact groups. A promising candidate for this purpose is SL(2,R),
whose irreducible representations, crucial for applying the BCFT approach, are known
[88].

Fourth, the free fermion CFT is a natural candidate for the application of our
approach. The additional lessons to be learned here come from the spin structure,
i.e. anti-periodic and periodic boundary conditions which are to be imposed on top of
Neumann and Dirichlet conditions. In [36] it has been observed that the symmetry-
resolved entanglement entropies depend on the chosen spin sector. Moreover, this
dependence induces subleading corrections breaking the equipartition. It would be
then interesting to understand more about the interplay between the spin sectors
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and the boundary conditions to be imposed on the annulus geometry in the BCFT
approach. Moving further this may allow to resolve supersymmetric models.

Fifth, entanglement is of major importance, via the AdS/CFT correspondence, for
the understanding of space-time itself [89,90]. First results on the symmetry resolution
of entanglement in holography already exist [62–66,91]. All these works are based on
the bottom-up approach to holography. In contrast, given a top-down model for which
the D brane states are known, it will be possible by using our method to resolve these
theories with respect to their symmetry algebra, to all orders in the UV cutoff, and
also in the bulk Newton constant. Importantly, such studies might provide a geometric
interpretation of the non-leading order terms in the UV cutoff and the bulk Newton
constant. The leading order of the entanglement entropy “builds spacetime” [90], and
the higher orders add quantum effects to the classical spacetime geometry [92,93]. A
possible starting point would be to compare our results for the free boson with the
bulk entanglement calculation of [94].

Finally, analyses relating the entanglement properties of quantum chains in the
continuum limit to boundary conditions of BCFT models have been performed for
the harmonic chain [84], for the Ising chain, and also out-of-equilibrium [11, 95]. It
is interesting to apply our method in these cases since they allow direct comparison
with simulations. Such an investigation can potentially allow to separate all lattice
contributions from those of the CFT, providing an estimate for how many orders in
UV cutoff of the CFT result should be trusted in practical applications.
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A U(1) symmetry breaking by ND and DN bound-
aries

In this appendix we explain how boundaries affect the U(1) × U(1) symmetry of the
bosonic CFT. We show how NN and DD boundaries select a particular embedding
of a conserved U(1) generator into the original symmetry and move on to show how
mixed boundaries deny the presence of such an operator.

A free massless bosonic field on a two-dimensional Euclidean manifold possesses
two conserved currents and their respective charges. The first is the Noether current
and the second a topological current

jµ = ∂µφ, jµtop = ϵµνjν . (89)

The Noether current is divergence free, ∂µjµ = 0 by virtue of the equations of motion
while the topological current is divergence free by construction, ∂µj

µ
top = 0. Further-

more, they induce two natural charge operators

Q =

∫
jτdσ, Qtop =

∫
jτtopdσ. (90)

where the spatial coordinate σ is integrated over its full domain. Equations (89) are
local conservation relations. Global properties are investigated by integrating their
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respective divergences on a spatial domain. For the Noether current this results in

0 =

∫
∂µj

µdσ = ∂τQ+ jσ
∣∣
bdy

= ∂τQ+ ∂σφ
∣∣
bdy
. (91)

On a manifold without boundary, the second term on the right hand side can be
neglected and as a result Q is conserved. On a manifold with boundary, however, Q is
only conserved in presence of Neumann boundary conditions (28). Taking the solution
of the equations of motion for the bosonic angular variable on a strip geometry4 with
τ ∈ R and σ ∈ [0, π] and Neumann boundaries at σ = 0, π,

φNN (τ, σ) = φ0 − i
τ√
πg
a0 +

i√
πg

∑
k ̸=0

1

k
ake

−kτ cos(kσ), ∂σφNN

∣∣
σ=0,π

= 0, (92)

it may easily be verified from (90) that Q ∝ a0.
Similarly, noting that ∂µj

µ
top = 0 implies ∂τ jσ = ∂σjτ , the temporal derivate of the

topological charge can be evaluated,

∂τQtop =

∫
∂τ j

τ
topdσ =

∫
∂τ j

σdσ = jτ
∣∣
bdy

= ∂τφ
∣∣
bdy
. (93)

On a manifold without boundary, the right hand side can be neglected and as a result
Qtop is conserved. On a manifold with boundary, however, Qtop is only conserved in
presence of Dirichlet boundary conditions (29). Taking the solution of the equations of
motion for the bosonic angular variable on a strip geometry with Dirichlet boundaries
at σ = 0, π,

φDD(τ, σ) = φ0 +
σ√
πg
a0 +

1√
πg

∑
k ̸=0

1

k
ake

−kτ sin(kσ), (94)

it may easily be verified from (90) that Qtop ∝ a0.
On a manifold without boundary the charges Q and Qtop generate the U(1)×U(1)

symmetry of the free boson theory. When imposing a boundary, the symmetry is
broken down. In principle, all symmetry can be broken by a boundary. Special
classes of U(1) symmetry-preserving boundaries can be chosen, such as Neumann and
Dirichlet boundary conditions. These boundaries embed a new U(1) symmetry into
U(1)×U(1). The generator of the embedded U(1) is a superposition of the U(1)×U(1)
charges,

Qbdy = aQ+ bQtop, (95)

where a, b ∈ R and never vanish simultaneously. Taking a temporal derivative,

∂τQbdy = −a ∂σφ
∣∣
bdy

+b ∂τφ
∣∣
bdy

= −a ∂σφ
∣∣σ=π

σ=0
+b ∂τφ

∣∣σ=π

σ=0
, (96)

reveals how distinct boundary conditions embed a U(1) symmetry into U(1) × U(1).
This used (91) and (93) and in going to the last expression we have chosen the manifold
to be a strip. Clearly, for (a = 1, b = 0) conservation of Qbdy requires Neumann
boundaries, while (a = 0, b = 1) selects Dirichlet conditions.

Turning to mixed boundaries, we choose to have a Neumann condition at σ = π
and a Dirichlet condition at σ = 0. This yields

∂τQbdy = a ∂σφ(σ = 0) + b ∂τφ(σ = π). (97)

No parameters a, b can be chosen to have this expression vanish. Hence no conserved
U(1) charge can be embedded into the original U(1)× U(1) symmetry. This may be
checked explicitely using the solution for the free boson,

φDN (τ, σ) = φ0 −
1√
πg

∑
r∈Z+ 1

2

1

r
are

−rτ sin(rσ). (98)

4Note that the arguments presented in this appendix are independent of the choice of manifold and
demonstrate how boundaries affect the U(1) symmetry of a theory. In particular, our discussion also
applies to the annulus, which is used throughout the main text. Here we choose the strip since it allows
for simple illustration of the charges via the bosonic solutions (92), (94), (98) and (99).
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The same conclusion is obtained for the reversed case of a Neumann condition at
σ = 0 and a Dirichlet condition at σ = π. Here the bosonic solution is

φND(τ, σ) = φ0 +
1√
πg

∑
r∈Z+ 1

2

1

r
are

−rτ cos(rσ). (99)

Observe that the mode a0 does not even act on HND/DN . It has been twisted,
a0 → a 1

2
. Furthermore, [L0, a 1

2
] = − 1

2a 1
2
̸= 0, and thus this mode is no symmetry

generator!
An algebraic, fully general, complementary argument for the breaking of the U(1)

symmetry uses the fact that the gluing automorphisms for Neumann, J = J̄ |bdy,
and Dirichlet, J = −J̄ |bdy, are not compatible. By themselves, they each preserve a
U(1) symmetry, which we have already seen to be distinct. Hence, presence of mixed
boundaries breaks the U(1) symmetry, irrespective of the manifold in use.

B Modular Forms

Given the modular nome q = e2πiτ , the Dedekind eta function is

η(q) = q
1
24

∞∏
n=1

(1− qn). (100)

The Jacobi theta functions are

ϑ3(q) =
∑
n∈Z

q
n2

2 = q−
1
24 η(q)

∞∏
n=1

(
1 + qn−

1
2

)2
, (101a)

ϑ2(q) =
∑
n∈Z

q
1
2 (n−

1
2 )

2

= 2q
1
12 η(q)

∞∏
n=1

(1 + qn)
2
, (101b)

ϑ4(q) =
∑
n∈Z

(−1)n q
n2

2 = q−
1
24 η(q)

∞∏
n=1

(
1− qn−

1
2

)2
, (101c)

ϑ1(q) = i
∑
n∈Z

(−1)n q
1
2 (n−

1
2 )

2

=
1

2
q

1
12 η(q)

∞∏
n=1

(1− qn)
2
= 0. (101d)

The second equality in all these expressions follows from the Jacobi triple product
identity

∞∏
n=1

(1− qn)(1 + qn−
1
2w)(1 + qn−

1
2w−1) =

∑
m∈Z

q
1
2m

2

wm. (102)

Modular transformations act on the modular parameter as follows

T : τ → τ + 1, S : τ → −1

τ
. (103)

The modular properties of the above modular functions are

η(τ + 1) = e
iπ
12 η(τ), η

(
−1

τ

)
=

√
−iτ η(τ), (104)

and

ϑ3(τ + 1) = ϑ4(τ), ϑ3

(
−1

τ

)
=

√
−iτϑ3(τ), (105a)

ϑ2(τ + 1) = e
iπ
12 ϑ2(τ), ϑ2

(
−1

τ

)
=

√
−iτϑ4(τ), (105b)

ϑ4(τ + 1) = ϑ3(τ), ϑ4

(
−1

τ

)
=

√
−iτϑ2(τ). (105c)
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