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Abstract

A simplicial framework for the gerbe-theoretic modelling of supercharged-loop dynam-
ics in the presence of arbitrary worldsheet defects is discussed whose equivariantisation
with respect to global supersymmetries of the bulk theory and subsequent orbit decom-
position lead to a natural stratification of and cohomological superselection rules for
target-space supergeometry. Physically relevant examples are provided.

1 Introduction

The hierarchical higher-geometric structures associated with background p-form gauge fields
in simple (σ-)models of geometrodynamics of extended distributions of (super)charge, cou-
pling to the worldvolume (super)charge current through distinguished Cheeger–Simons dif-
ferential characters (as derived in all generality for p = 3 in [1]), have long been known
not only to give rise to a canonical prequantisation of the models, as in [2, 3], and to give a
natural cohomological classification of the models themselves, their boundary conditions and
generic defects (as well as quantifying obstructions against their existence), but also – to lead
to a categorification of their prequantisable group-theoretic symmetries, including the gauged
ones, and more general dualities implemented by certain defects, cp. [1,3–5]. This note gives
a concise account of a proposal, advanced in [6] on the basis of the earlier studies [1, 3–5],
for an effective structurisation of the stratified target spaces and the higher-geometric ob-
jects over them defining the 2d σ-model in the presence of defects compatible with configu-
rational symmetries of the bulk field theory. The proposal is formulated in the most general
(target-space) Z/2Z-graded setting of the Green–Schwarz-type super-σ-model and uses mixed
group-theoretic, simplicial and cohomological tools. It is seen to pave the way to a systematic
construction of maximally supersymmetric defects in the flat Z/2Z-graded target geometry,
and to lead to interesting novel predictions for a higher-geometric target-space realisation of
non-perturbative data of the bulk theory in the highly (super)symmetric setting of the Wess–
Zumino–Witten(-type) models with Lie-supergroup targets.

2 A bicategory for the super-σ-model with defects

The 2d super-σ-model is a superfield theory with a spacetime given by a closed oriented
(Graßmann-)even manifold Σ ∼=d Σ2 tΣ1 tΣ0 partitioned into a disjoint union Σ2 of open
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2. A BICATEGORY FOR THE SUPER-σ-MODEL WITH DEFECTS

2d domains by an embedded defect quiver Γ = Σ1 tΣ0 which consists of oriented open de-
fect lines composing a codimension-1 submanifold Σ1 and intersecting at 0d defect junctions
from the set Σ0 =

⊔

v≥3Σ
(v)
0 graded by the valence v of the junctions. The target space of the

theory is a stratified supermanifold M = M0tM1t
⊔

n≥2 Mn (with the Mk potentially further
stratified) endowed with an even symmetric supertensor g ∈ Γ (T ∗M0⊗T ∗M0)0 and even 2π-
integral forms: a de Rham 3-cocycle H ∈ Z3

dR(M0)0 and a 2-form ω ∈ Ω2(M1)0, subject to coho-
mological constraints indicated below. Superfields ξ of the theory, coming from the mapping
supermanifold [Σ, M] = HomsMan(Σ, M), to be evaluated on the family {R0|N}N∈N of odd hy-

perplanes, restrict as ξ�Σ2
∈ [Σ2, M0], ξ�Σ1

∈ [Σ1, M1] and ξ�
Σ
(v)
0
∈ [Σ(v)0 , Mv−1], and are re-

lated at Γ by a collection of maps ιA : M1 −→ M0, A∈ {1, 2} and π(v)k,k+1,π(v)v,1 : Mv−1 −→ M1,

k ∈ 1, v − 1 in a natural manner: Given a decomposition U = U1 ∪ UΓ ∪ U2
∼= R×2 of a (suffi-

ciently small) neighbourhood U of p ∈ Σ1 in Σ into the 1d defect component UΓ = U ∩Σ1
and a pair of disjoint path-connected 2d subdomains U1∪U2 = U ∩Σ2 separated by the latter
and mapped diffeomorphically to the upper (U1) and lower (U2) half-planes, respectively, in
the model R×2 of U in which UΓ is embedded, with its orientation preserved, as R×{0}, the
respective extensions ξA to [UA∪UΓ , M0] of the restrictions ξ�UA

obey ξA�UΓ = ιA◦ξ�UΓ . Simi-

larly, given a neighbourhood V of υ ∈ Σ(v)0 with v connected components Ik,k+1, k ∈ 1, v − 1
and Iv,1 of V ∩ Σ1 intersecting at υ, the respective extensions ξk,k+1 to [Ik,k+1 ∪ {υ}, M1]
of the restrictions ξ�Ik,k+1

and the extension ξv,1 to [Iv,1 ∪ {υ}, M1] of the restriction ξ�Iv,1

satisfy ξk,k+1�{υ} = π
(v)
k,k+1 ◦ ξ�{υ} and ξv,1�{υ} = π

(v)
v,1 ◦ ξ�{υ}. Once the extensions of the v

domain configurations composing ξ�V∩Σ2
are taken into account, consistency of the limiting

relations is ensured by constraints imposed on the target structure maps. These depend on
the orientation of the intersecting defect lines. Specifically, in the distinguished case of v − 1
incoming (at υ) lines Ik,k+1 and a single outgoing one Iv,1 ≡ I1,v , which we restrict to in

what follows for the sake of simplicity (denoting π(v)1,v ≡ π
(v)
v,1 in this case, in keeping with the

standard conventions), the constraints read

ι2 ◦π
(v)
k−1,k = ι1 ◦π

(v)
k,k+1, k ∈ 2, v − 1 , ι1 ◦π

(v)
1,v = ι1 ◦π

(v)
1,2 , ι2 ◦π

(v)
1,v = ι2 ◦π

(v)
v−1,v . (1)

The structure maps give rise to a family of pullback operators: ∆1 = ι∗2 − ι
∗
1 and ∆v−1 =

∑v−1
k=1 π

(v)∗
k,k+1 −π

(v)∗
v,1 which enter relative-cohomological constraints:

∆1H= −dω , ∆v−1ω= 0 . (2)

The latter are to be understood as consistency conditions for the geometrisation of the data in
the form of the superstring background B= (M,B,J ) composed of

• the target M = (M0, g,G) in which (M0, g) is a quasi-metric1 supermanifold with a
gerbe G of curvature H over it;

• the G-bi-brane B = (M1, ι·,ω,Φ) with the (ι∗1G, ι∗2G)-bimodule Φ : ι∗1G
∼=−→ ι∗2G ⊗ Iω,

written in terms of the trivial gerbe Iω;

• the (G,B)-inter-bi-brane J =
⊔

n≥2 (Mn,π(n+1)
·,· ,ϕn+1) with the fusion 2-isomorphisms

ϕn+1 :
�

Φ∨n+1,1 ⊗ idI∆Tn,1ω

�

◦ · · · ◦
�

Φ3,4 ⊗ idIω1,2+ω2,3

�

◦
�

Φ2,3 ⊗ idIω1,2

�

◦Φ1,2

∼=
=⇒ id(ι1◦π(n+1)

1,2 )∗G ,

written in terms of the dual Φ∨ of the 1-isomorphism Φ, and of pullbacks O·,· ≡ π(n+1)∗
·,· O

of differential objects O from M1.

1The tensor g is typically degenerate in the odd coordinate directions.
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3. THE TRINITY: SIMPLICIALITY, SYMMETRY AND SEMISIMPLICITY

The superfield theory is determined by the principle of least action for the Dirac–Feynman am-
plitude ADF[(ξ|Γ )] = exp(iSσ[(ξ|Γ )]) in which the action ‘functional’ Sσ[(ξ|Γ )] = Smetr[(ξ)]
+SWZ[(ξ|Γ )] splits into the ‘metric’ term Smetr[(ξ)] =

∫

Σ

p

|det (ξ∗g)| (written in the Nambu–
Goto form here) and the ‘topological’ Wess–Zumino term SWZ[(ξ|Γ )] = −i log Hol(G,Φ,(ϕ·))(ξ|Γ )
given by the decorated-surface holonomy Hol(G,Φ,(ϕ·))(ξ|Γ ) of [1].

The higher supergeometric objects G,Φ and ϕn+1 of B are distinguished 0-, 1- and 2-
cells, respectively, of the monoidal bicategory of (abelian) gerbes with connective structure
over M , cp. [7–9]. The fundamental property of and the main rationale for physical interest
in these objects, discussed at length in, i.a., [2,3,10], is that they canonically determine – via
cohomological transgression – a prequantisation of the above superfield theory and encode a
lot of non-trivial information on its (nonperturbative) structure, cp. [11] for a recent review.

3 The Trinity: Simpliciality, Symmetry and Semisimplicity

Studies of topological defects implementing symmetries of the 2d σ-model in the setting with-
out Z/2Z-gradation, and in particular evidence of the attendant induction of higher-geometric
fusion data for defect junctions of valence v > 3 from the elementary 2-isomorphism ϕ3, re-
ported in [1,3,4], as well as elementary considerations of the identity defect indicate the possi-
bility of further structurisation of the background through adjunction of intermediate maps be-
tween Mn+1 and Mn. This leads to the definition of a simplicial superstring background whose
supertarget M forms (a submanifold in) a simplicial (stratified) supermanifold (M•, d(•)· , s(•)· )

with face maps d(n+1)
i : Mn+1 −→ Mn and degeneracy maps s(n)i : Mn −→ Mn+1 defined

for i ∈ 0, n+ 1 and for all n ∈ N, and subject to the standard simplicial identities. The former
maps reproduce the previously introduced structure maps uniquely as (ι1, ι2) = (d

(1)
1 , d(1)0 )

and (π(3)1,2,π(3)2,3,π(3)1,3) = (d
(2)
2 , d(2)0 , d(2)1 ), and – for v > 3 – also π(v)1,v = d(2)1 ◦ d(3)1 ◦ · · · ◦ d(v−1)

1

and π(v)k,k+1 = d(2)2 ◦ d(3)2 ◦ · · · ◦ d(v−k)
2 ◦ d(v−k+1)

0 ◦ d(v−k+2)
0 ◦ d(v−1)

0 for k ∈ 1, v − 1, consistently
with identities (1). The latter ones neatly account for the existence of the flat identity (sub-)bi-
brane s(0)∗0 Φ ≡ idG : s(0)∗0 d(1)∗1 G = G −→ G = s(0)∗0 d(1)∗0 G ⊗ Is(0)∗0 ω

and allow to write down

fusion 2-isomorphisms for defect junctions with (at least) one identity defect line attached.
Amongst such backgrounds, we distinguish those, termed descent-complete in [6], for

which every component inter-bi-brane worldvolume Mv−1≥3 contains, as a submanifold, the
common intersection of the preimages of M2 under all the maps Mv−1 −→ M2 of the simplicial
descent pattern of every full binary tree which can be associated with the defect junction (of
valence v) through the recursive binary resolution worked out in [6, Sec. 1.4] – the condition
ensures that the elementary fusion 2-isomorphism ϕ3 can be pulled back to Mv−1 for every
v − 1≥ 3, whereupon it induces the corresponding composite fusion 2-isomorphism ϕv .

Simplicial (super)manifolds come with their simplicial deRham cohomology, i.e., the to-
tal cohomology of the bicomplex Ω•1(M•2) ≡ {Ω

p(Mn)}
p∈N
n∈N with coboundaries d ≡ ddR and

∆
(p)
n ≡

∑n+1
i=0 (−1)i d(n+1)∗

i , and the quadruple (H,ω, 0, 0) acquires the interpretation of a sim-
plicial de Rham 3-cocycle, with, now, the second of the two constraints (2) for v > 3 implied
by the same identity for v = 3. Hence, we may think of the higher-geometric component of a
simplicial superstring background as a simplicial gerbe over the supertarget M•.

Simpliciality can be combined with symmetry to constrain rather effectively the geom-
etry of the supertarget and the simplicial gerbe over it. Indeed, consider a Lie supergroup
Gσ = (|Gσ|,gσ ≡ g(0)σ ⊕ g(1)σ ) coming with an action M0λ : Gσ × M0 −→ M0 on the
bulk target supermanifold M0 = (|M0|,OM0

), and so also with the induced action |M0λ|g ≡
M0λ ◦ (bg × idM0

) : M0 �, g ∈ |Gσ| of the body Lie group |Gσ|, the latter being com-
prised of the topological points bg : R0|0 −→ Gσ, and with the fundamental vector fields
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4. THE MAXIMALLY SUPERSYMMETRIC SIMPLICIAL LIE SUPERBACKGROUNDS

K0
X = −(X ⊗ idOM0

) ◦ M0λ
∗ over M0, labelled2 by elements of the tangent Lie superalgebra

gσ 3 X of Gσ. We say that Gσ is a Lie supergroup of prequantisable rigid (configurational)
symmetries of the bulk super-σ-model if (i) the bulk tensors are Gσ-invariant, i.e., they satisfy
|M0λ|∗g(g, H) = (g,H) and −LKX

(g,H) = 0 for arbitrary (g, X ) ∈ |Gσ| × gσ; (ii) the action

admits generalised (co)momenta κX ∈ Ω1(M0) such that dκX = −ıKX
H; and (iii) it lifts to

the bulk gerbe as a |Gσ| × gσ-indexed family of 1-isomorphisms Λg : |M0λ|∗gG
∼=−→ G and

KX : −LKX
G

∼=−→ I0. Here, −LK0
X
G is the gerbe represented by an even Beilinson–Deligne

2-cocycle (for some choice of an open cover of M0) obtained from that of G by Lie deriva-
tion along K0

X . The assumption of simpliciality of the supertarget may now be used to define
a maximally symmetric background by declaring the structure maps of (M•, d(•)· , s(•)· ) Gσ-
equivariant and – based on this assumption – propagating M0λ all over M• to engender a
simplicial Gσ-space with an action M•λ : Gσ×M• −→ M• and fundamental vector fields K•X .
Once this is done, we demand Gσ-invariance of ω and consistency of the higher-geometric
lifts of M•λ, as expressed by the existence of a |Gσ| × gσ-indexed family of 2-isomorphisms

λg : (ι∗2Λg⊗ idIω)◦|M1λ|∗gΦ
∼=
=⇒ Φ◦ι∗1Λg and kX : ι∗2KX ◦ −LK1

X
Φ
∼=
=⇒ ι∗1KX , and the identities

id ◦ |Mnλ|∗gϕn+1 = (ϕn+1 ◦ id) • (id ◦λg 1,2) • (id ◦λg 2,3 ◦ id) • · · · • (id ◦λg n,n+1 ◦ id) • (eλg 1,n+1 ◦ id) and
id◦ −LKn

X
ϕn+1 = (id◦ kX 1,2)• (id◦ kX 2,3 ◦ id)• · · · • (id◦ kX n,n+1 ◦ id)• (ekX 1,n+1 ◦ id) (written for n≥ 2),

in which eλg and ekX are certain ‘duals’ of their un-tilded counterparts, given in [6, Sec. 2].
The final stage of the rather natural structurisation of a generic super-σ-model with max-

imally (super)symmetric defects consists in requiring semisimplicity of the supertarget, by
which we mean a (disjoint-sum) decomposition of the simplicial Gσ-space (M•, d(•)· , s(•)· , M•λ)
into orbits of the simplicial Gσ-action. The demand that these support a simplicial gerbe de-
scribed previously is then anticipated to give rise to cohomological superselection rules for the
admissible orbits in the decomposition, which are the only ones that are kept. For Gσ compact,
this is bound to result in a rationalisation of the superbackground.

4 The maximally supersymmetric simplicial Lie superbackgrounds

Prime examples of super-σ-models to which the above principles may be applied construc-
tively, and in which their consequences may be explored, are those of the Wess–Zumino–Witten
(WZW) type, with bulk supertargets given by Lie supergroups3 G = (|G|,g ≡ g(0) ⊕ g(1)), to
be seen as orbits of an action G0λ of a subgroup of the Lie supergroup G×G of left (`) and
right (℘) regular translations on G. The corresponding maximally supersymmetric defects im-
plement the right regular action ℘ of the target Lie supergroup on itself, cp. [1, 4, 14], and
so the supertarget embeds in the nerve N(G o℘ G) of the action groupoid Go℘ G, with the
structure (Ob(Go℘ G),Mor(Go℘ G), s, t, Id·)≡ (G,G×G, pr1,℘, idG×be) and morphism com-
position encoding supergroup multiplication mG : G× G −→ G. The building blocks of the
higher-geometric structure of these superfield theories are:

• a (super)gerbe GC over G geometrising the Cartan 3-form HC;

• a supersymmetric trivialisation T : ι∗DGC

∼=−→ IωD
of GC over a (stratified) sub-super-

2For the sake of notational consistency, we should think of the K0
X as global sections of T (gσ × M0) valued

in the distribution T M0 and linear in the global generators X A of the structure sheaf Ogσ
of gσ (coordinates)

present in the decomposition X = X A tA of the vector in a homogeneous basis {tA}A∈1,dimR gσ
, and subsequently

regard formulæ involving the K0
X as constraints on the said distrubution T M0, cp. [6, Sec. 2].

3The more general homogeneous spaces G/H can then be reached through application of the universal gauge
principle of [12,13].
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4. THE MAXIMALLY SUPERSYMMETRIC SIMPLICIAL LIE SUPERBACKGROUNDS

manifold ιD : D ,→ G with ωD ∈ Ω2(D)0, giving rise to a boundary (GC t 0)-bi-brane
(D, ιD,∗,ωD,T ) (or GC-brane) for the target GtR0|0 and ∗ : D // R0|0 � � // GtR0|0 ;

• a supersymmetric generalised multiplicative structure on GC, extending the latter to
a simplicial gerbe over Segal’s model of the classifying space BG of G (containing
N(Go℘ G) as a simplicial sub-manifold), and thus categorifying mG in a manner com-
patible with the simplicial lift G•λ of G0λ. The structure geometrises an extension of
HC to a simplicial 4-cocycle ZG ≡ (0, HC,%,ϑ,ϕ) over BG, and as such comprises a

distinguished 1-isomorphism M : pr∗1GC ⊗ pr∗2GC

∼=−→ m∗GGC ⊗ I% over G×2 and a
coherent (quasi-)associator 2-isomorphism α over G×3, described in detail in [6, 15].
Over the sub-supermanifold eιD : G× D ,→ G×2, the 1-isomorphism induces the max-
imally supersymmetric GC-bi-brane (G× D, pr1,℘,eι∗D% − pr∗2ωD,Φ) with the bi-module
Φ= (eι∗DM⊗idI−pr∗2ωD

)◦(idpr∗1GC
⊗pr∗2T

−1
D ⊗idI−pr∗2ωD

). The existence of α turns the problem

of constructing ϕn+1 into a search – over (the second factor in) a disjoint union of Gnλ-
orbits within G×eDn ≡ G×(D×n∩m−1

1_n(D)) with m1_n ≡mG◦(mG×idG)◦· · ·◦(mG×idG×n−2)

– for ‘boundary’ fusion 2-isomorphisms ϕ(∂ )n : ⊗n
i=1 pr∗i TD

∼=
=⇒ (m∗1_nTD⊗id)◦M1_n−1,n�eDn

,
defined in terms of the 1-isomorphism M1_n−1,n =M12···n−1,n◦· · ·◦(M12,3⊗ id)◦(M1,2⊗ id)
in which we use the shorthand notation M12···k−1,k = ((m1_k−1 × idG) ◦ pr1,2,...,k)

∗M
with pr1,2,...,k = (pr1, pr2, . . . , prk).

The existence of all these structures is contingent upon the vanishing of topological ob-
structions4 quantified by a suitable cohomology, the latter also capturing (in lower degree)
a classification of inequivalent such structures. Basing on hitherto results of the geometric
canonical analysis of [3, 5] and various approaches to quantisation of the WZW σ-models in
the presence of defects, and in particular those of the functorial approach of [1,18] (especially
effective for compact bulk targets, i.e., in the un-graded setting), one may expect to arrive,
through coherent imposition of the organising principles listed above, at a purely supergeo-
metric realisation of the ring of sectors of the (chiral bulk) super-σ-model in the form of the
stratified supertarget (or, more accurately, its cohomology), in which fusion is represented by
the inter-bi-brane sector with induction mediated by the face maps d(n)· , n ≥ 3. Below, we
recapitulate the main findings in connection with and state key conjectures based upon this
expectation, which follow from the extensive recent study [6].

The un-graded WZW defect & yet another link to the CS theory. The WZW σ-model for
the compact 1-connected Lie group G is defined5 in the bulk by its tensorial data: the Cartan–
Killing metric gCK = −

k
4π trg(θL⊗θL) and the (scaled) Cartan 3-form HC =

k
24π trg(θL∧[θL

∧,θL]),
written in terms of the left-invariant g-valued Maurer–Cartan 1-form θL and co-normalised in
a manner which ensures non-anomalous conformality of the (quantised) field theory, with the
level k ∈ N×, cp. [19]. Integrality of the level implies the existence of a unique (isoclass of)
gerbe geometrising HC – the k-th tensor power of the Gawȩdzki–Hitchin–Meinrenken basic
gerbe over G.

The rigid symmetries of the bulk theory compose the Lie group Gσ = G × G and lift to
N•(GoG) = G×•+1 as Gnλ≡ `℘(n) : (G×G)×G×n+1 −→ G×n+1 : ((x , y), g, h1, h2, . . . , hn) 7−→
(x · g · y−1, Ady(h1), Ady(h2), . . . , Ady(hn)). Consequently, one is led to look for GC-modules

over conjugacy classes Cλ = AdG(e2πi λk ) (for λ from the Cartan algebra t ⊂ g), and finds them
over a discretuum thereof labelled by the fundamental affine Weyl alcove Pk

+ at level k. The
brane curvature ωD�Cλ =

k
8π trg(θL∧ (idg+TeAd·)(idg−TeAd·)−1 ◦θL) is fixed uniquely by the

requirement that the bi-chiral loop-group extension of the equivariant lift of the rigid symmetry

4In the Z/2Z-graded setting, cp. the Rabin–Crane argument in [11,16,17].
5In the ungraded WZW setting, one customarily works with the Polyakov (energy) functional as Smetr.
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4. THE MAXIMALLY SUPERSYMMETRIC SIMPLICIAL LIE SUPERBACKGROUNDS

Gσ to N(GoG) preserve the Defect Gluing Condition6 imposed at the maximally symmetric
boundary defect. The existence of the symmetric multiplicative structure (a standard one as
in [15], with (ϑ,ϕ) = (0,0)) is unobstructed in the 1-connected un-graded setting, and so
the boundary data from over D =

⊔

λ∈Pk
+
Cλ automatically induce those of the non-boundary

maximally symmetric bi-brane with the worldvolume G1 = G×D, its curvature ω= %−pr∗2ωD

also being fixed uniquely, in terms of the Polyakov–Wiegmann 2-form % = k
4π trg(pr∗1θL∧pr∗2θR)

(written with the right-invariant Maurer–Cartan 1-form θR), by an argument analogous to the
one invoked for ωD. Thus, the connected components G×Cλ of the bi-brane worldvolume are
in a one-to-one correspondence with the highest weights of g (integrable at level k) labelling
the irreducible representations Vλ,k of the Kac–Moody algebra bgk of the chiral currents of the

centrally extended bi-chiral loop-group symmetry ÓLG×ÓLG of the bulk theory which enter the
decomposition Hσ =

⊕

λ∈Pk
+
Vλ,k ⊗Vλ,k of the bulk Hilbert space.

The ‘triple-S’ argument of Sec. 3 localises the construction of the maximally symmetric
inter-bi-brane over a disjoint union of `℘(n)-orbits within the eGn for n ≥ 2. This purely
geometric/group-theoretic localisation receives a rather remarkable confirmation from an el-
ementary analysis of the necessary conditions of existence of the component boundary fusion
2-isomorphism ϕ(∂ )n captured by the second one of the contraints (2): Its left-hand side co-
incides with the partially symplectically reduced presymplectic form on the state space of the
3d Chern–Simons (CS) theory on the time cylinder R×Σ over the Riemann surface Σ of the
WZW σ-model, coupled to n+1 vertical Wilson lines R×{σi}i∈1,n+1 with holonomies along
the respective non-contractible loops encircling simply the punctures σi constrained to lie in
the conjugacy classes Cλi

of the weights λi labelling the in-coming (i ≤ n) and the out-going
(i = n+1) defect lines of the WZW σ-model. The pre-symplectic form arises, in the first-order
formalism of Tulczyjew et al. (cp., e.g., [20]), as a restriction of the Atiyah–Bott form on the
moduli space of flat principal G-connections over Σ \ {σi}i∈1,n+1, augmented with a sum of
Kirillov–Kostant–Souriau contributions from the coadjoint orbits attached to the Wilson lines,
to the preimage of the zero vector under the moment map of the CS theory, the latter being
given by the curvature of the connection with Dirac-δ-sources at the Wilson-line punctures. Its
partial reduction, due to Alekseev and Malkin [21], is carried out with respect to the ‘pointed’
gauge group of the CS theory associated with a homological decomposition of Σ\ {σi}i∈1,n+1
relative to a point σ∗ ∈ Σ \ {σi}i∈1,n+1, and so leaves us with the tangent of the residual
gauge group [σ∗, G] ≡ G as the characteristic distribution of the partially reduced presym-
plectic form – this is just the symmetry group G of the Ad-orbits in eGn whose disjoint union
composes the classical state space of the CS theory in the Alekseev–Malkin parametrisation.

Ultimately, the structure of (the inter-bi-brane component of) the simplicial target space is
determined by the requirement of existence of the relevant gerbe 2-isomorphisms ϕ(∂ )n , which
is expected to distinguish a subfamily within the disjoint union of Ad-orbits in eGn. Taking
into account the identification of the Hilbert space of the (holomorphically) quantised CS the-
ory as the space C (⊗n

i=1 Vλi ,k,Vλn+1,k) of conformal blocks of the (chiral) bulk WZW theory,
cp. [22], with their known relation to intertwiners Hom

bgk
(⊗n

i=1 Vλi ,k,Vλn+1,k) between sec-
tors of the chiral bulk theory, in conjunction with the identification of the transgressed fusion
2-isomorphisms transmissive to rigid bulk symmetries as intertwiners of the symmetry repre-
sentations on the state spaces of the phases converging at the defect junction (resp. those of the
corresponding defect-twisted sectors), cp. [3,5], we are thus led to the following conjectures:

1. The boundary fusion 2-isomorphisms ϕ(∂ )n exist only over manifolds ×n
i=1 Cλi

∩m−1
1_n(Cλn+1

)

6Recall that the Condition constrains the admissible discontinuities of the kinetic momentum at a (spacelike)
worldsheet defect line in terms of the curvature ω of the bi-brane attached to it, and determines a local sym-
plectomorphism between the phases of the bulk field theory separated by the defect in the first-order canonical
description, cp. [1,3].
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with non-vanishing Verlinde numbers N λn+1
λ1,λ2,...,λn

= dimC (⊗n
i=1 Vλi ,k,Vλn+1,k).

2. Given such a manifold, the number of Ad-orbits in its decomposition which support ϕ(∂ )n
is given by the corresponding Verlinde number.

One may also anticipate that the maximally symmetric simplicial WZW background is descent-
complete, and the inter-bi-brane fusing matrices defined, as described in detail in [6], by the
associator move relating inequivalent resolutions of 4-valent fusion 2-isomorphisms in terms
of the elementary (3-valent) ones are intimately related to the standard fusing matrices of the
bulk WZWσ-model. The first conjecture was corroborated for the special case of G= SU(2) in
[4], and the last expectation hinges on the highly nontrivial cohomological evidence from the
simple-current sector gathered in [1] as well as on simple considerations of the topologicality
of the maximally symmetric defect. Various geometric, algebraic and field-theoretic arguments
in favour of the second conjecture were given in [6].

Candidate flat maximally supersymmetric Green–Schwarz bi-branes. The Green–Schwarz
(GS) super-σ-model of the superstring in the Lie supergroup T ≡ Rd,1|Dd,1 , associated with a
Dd,1-dimensional Majorana-spinor representation of the Clifford algebra Cliff(Rd,1) = 〈Γa〉a∈0,d

subject to the Fierz constraints ηab (Γ a)α(β (Γ b)γδ) = 0 (using the Minkowski metric η and a
skew charge-conjugation matrix C which gives the symmetric Γ a ≡ CΓa), is defined by its ten-
sorial data: the ‘metric’ g= ηab ea

L ⊗ eb
L and the GS Cartan 3-form HGS = σαL ∧ (Γ a)αβ σ

β
L ∧ ea

L ,
both constructed from the left-invariant 1-forms ea

L and σαL dual to the generators Pa and

Qα, respectively, of the Lie superalgebra t =
⊕d

a=0 〈Pa〉 ⊕
⊕Dd,1

α=1 〈Qα〉 with the structure re-
lations [Pa, Pb] = 0 = [Pa,Qα] and {Qα,Qβ} = ηab (Γ a)αβ Pb, cp. [23]. Co-normalisation of
the data ensures equibalance of fermionic and bosonic degrees of freedom in the superstring
vacuum, mediated by the de Azcárraga–Lukierski–Siegel gauged right tangential supersym-
metry known as κ-symmetry (cp. [17,24] for a geometric elucidation in the higher-geometric
framework). The Cartan 3-form defines a nontrivial class in the Cartan–Eilenberg cohomology
group CaE3(t) and geometrises as the GS super-1-gerbe GGS (i.e., essentially a gerbe object
in the category of Lie supergroups) in a manner proposed by the Author in [16] (cp. also the
review [11] of the geometrisation programme).

The rigid supersymmetry of the bulk theory is modelled on the left regular action of T
on itself, and so it extends to T×•+1 trivially as Tnλ ≡ `× idT×n . This extension opens an es-
sentially boundless field of constructions of (rigidly) maximally supersymmetric GS bi-branes
according to the scheme delineated at the beginning of the present section. Its point of de-
parture is the identification of a T1λ-invariant properly generalised (with ϑ 6= 0 = ϕ) multi-
plicative structure on the GS super-1-gerbe, which was accomplished in [6]. The two distinct
species of GGS-brane found to date (for d = 9, with D9,1 = 32) are: (i) the instantonic 0-brane
embedded as an odd hyperplane R0|N ⊂ R9,1|32 in the ambient target superspace (includ-
ing as a sub-species the purely even 0-brane at an arbitrary topological point in R9,1|32); (ii)
the 1

2 -BPS superstring-like 1-brane embedded as a hyperbolic superplane R1,1|16 ⊂ R9,1|32.
These induce the corresponding two species of GGS-bi-brane, whose fusion was analysed at
great length ibidem. Verification of their status as data of maximally supersymmetric defects
in the GS super-σ-model calls for a coherent extension of the gerbe-theoretic realisation of
κ-symmetry to the full-fledged bicategory of Sec. 2, which is currently under investigation.
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