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Abstract

A simplicial framework for the gerbe-theoretic modelling of supercharged-loop dynamics
in the presence of worldsheet defects is discussed whose equivariantisation with respect
to global supersymmetries of the bulk theory and subsequent orbit decomposition lead
to a natural stratification of and cohomological superselection rules for target-space su-
pergeometry, expected to encode essential information on the quantised 2d field theory.
A physically relevant example is analysed in considerable detail.

1 Introduction

Models of geometrodynamics of extended distributions of (super)charge, known as nonlinear
σ-models with topological Wess–Zumino terms, remain an active field of physical and math-
ematical research, not least because of their applicability in the description of a wide range
of dynamical systems, from the critical field theory of collective excitations of quantum spin
chains all the way to classical superstring theory, and because of the great wealth of the un-
derlying mathematics. The hierarchical higher-geometric structures – a.k.a. p-gerbes and their
morphisms – associated with background (p + 2)-form fields in these models, which couple
to the worldvolume (super)charge current through distinguished Cheeger–Simons differential
characters generalising the standard line holonomy (as derived for p = 1 in [1–4]), have long
been known not only to give rise to a canonical prequantisation of the models, as in [1, 5],
and to provide a natural cohomological classification of the models themselves, their boundary
conditions and generic defects, but also – to lead to a categorification of their prequantisable
group-theoretic symmetries, including the gauged ones, and more general dualities (e.g., T -
duality). These correspondences can oftentimes be implemented by certain defect networks
embedded in the σ-model spacetime, to which sheaf-theoretic data of k > 0-cells of the weak
(p+ 1)-categories with p-gerbes as 0-cells are pulled back along the σ-model field in order to
render the Dirac–Feynman amplitude of the σ-model with defects well-defined, cp. [4–7]. In
particular, the distinguished topological defects, studied at some length in [3–6, 8], enter the
generalised world-sheet orbifold construction of [4, 8] of the σ-model on the space M/Gσ
of orbits of an action of a rigid-symmetry group Gσ on the target space M of the original
σ-model, in which they serve to model the so-called Gσ-twisted sector of the orbifold theory,
instrumental in the gauging of Gσ. Finally, in some highly symmetric settings, such as, e.g.,
that of the Wess–Zumino–Witten (WZW) σ-model, there are defects realising the generating
symmetries of the σ-model [3,4,6,9] which encode highly nontrivial information on the ensu-
ing quantum field theory, such as, e.g., its fusion rules and Moore–Seiberg data. Therefore, it is
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clear that understanding the structure of the fully fledged higher categories behind the topo-
logical couplings of poly-phase σ-models, and constructing concrete examples of their k-cells,
is a goal of fundamental relevance to the study of these important field theories.

This note gives a concise account of a proposal, advanced in [9] on the basis of the earlier
studies [4–7], for an effective structurisation of the stratified target spaces and the higher-
geometric objects over them defining the 2d σ-model in the presence of defects compatible
with configurational symmetries of the bulk field theory. The proposal is formulated in the
most general (target-space) Z/2Z-graded setting of the Green–Schwarz-type super-σ-model
and uses mixed group-theoretic, simplicial and cohomological tools. It paves the way to a
systematic construction of maximally supersymmetric defects in the flat Z/2Z-graded target
geometry, and leads to interesting novel predictions for a higher-geometric target-space reali-
sation of the non-perturbative data of the bulk theory in the highly (super)symmetric setting
of the WZW(-type) models with Lie-(super)group targets.

2 A bicategory for the super-σ-model with defects

The 2d super-σ-model is a lagrangean theory of (super)fields from the mapping supermanifold
[Σ, M] = HomsMan(Σ, M) defined for a closed oriented (Graßmann-)even manifold Σ (the
‘spacetime’ of the model) and a supermanifold M . For M even, [Σ, M] is represented by
C∞(Σ, M) and we obtain a theory of embeddings shaped by an interplay between forces
sourced by two tensor fields on the target space M : a metric tensor g and a closed 3-form
Kalb–Ramond field χ with periods from 2πZ. For M properly graded, the inner-Hom functor
[Σ, M] is to be evaluated on the nested family of superpoints R0|N , N ∈ N×, both tensors
are even, and the ‘metric’ g typically degenerates in the Graßmann-odd directions. In either
setting, the 3-form geometrises, in the sense of [10], as a gerbe G with connective structure
of curvature χ. The gerbe trivialises upon pullback to the 2d worldsheet Σ, thereby defining
– for ∂Σ= ; – the topological Wess–Zumino (WZ) coupling of χ to the charged-loop current
in M , given by the surface holonomy [1] of G along the image of Σ in M .

In the boundary σ-model, with ∂Σ 6= ;, specifying the gerbe G alone is not sufficient
to obtain a consistent field theory as the topological term becomes ill-defined. Instead, a dis-
tinguished 1-cell from the bicategory BGrb∇(M) of (1-)gerbes over M is required to exist
over a submanifold ιD : D ,→ M into which ∂Σ is constrained to map, to wit, a trivialisa-
tion TD : ι∗DG ∼= Iω in terms of a trivial gerbe Iω associated with a global de Rham primitive
ω ∈ Ω2(D) of χ, cp. [2]. The trivialisation is to be pulled back to ∂Σ by the σ-model field.

The boundary σ-model can be viewed as a two-phase field theory in which the bulk phase,
defined by the triple (M , g,G) abuts onto the empty phase (R0|0, 0,I0) across the boundary
domain wall (or boundary defect) ∂Σ. In this picture, the target space is the stratified super-
manifold eM ≡ M tR0|0, and the two limiting field configurations at the defect are modelled
by the two mappings ι1 ≡ ιD : D −→ M ⊂ eM and ι2 : D ¹¹Ë R0|0 ⊂ eM . This is the point of de-
parture for a far-reaching generalisation, contemplated in [3,4], in which an arbitrary number
of phases coexist over 2d patches within Σ, separated by defect lines which, in turn, intersect
at a discretuum of defect junctions, graded by their valence. The physical prototype of this sit-
uation is the decomposition of a demagnetised ferromagnetic medium into Weiss domains of
uniform magnetisation which jumps across domain walls between them, and the most natural
application of defects in the field-theoretic setting under consideration is the modelling of the
twisted sector in the theory with the target space given by the orbispace of an action (not neces-
sarily free or proper) of a symmetry group Gσ ⊂ Isom(M , g) of the σ-model for [Σ, M] – this
orbifold σ-model can be defined in terms of (Gσ-classes of) patchwise continuous field con-
figurations in M with Gσ-jump discontinuities localised at an arbitrarily fine mesh of defect
lines carrying data of a Gσ-equivariant structure on G [4,7,11,12].

The above considerations set the stage for a precise definition of the poly-phase super-
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σ-model: It starts with a splitting of Σ ∈ ∂ −1; by an embedded defect graph Γ ⊂ Σ into a
family {Di}i∈I of (topologically) closed 2d domains Di which compose the extended world-
sheet bΣ = ti∈I Di and intersect at a family {L(i, j)}(i, j)∈IΓ⊂I×2 of closed oriented defect lines
L(i, j). The latter form the extended defect graph bΓ = t(i, j)∈IΓ Li, j ⊂ bΣ ×Σ bΣ ≡ bΣ[2] and
join transversally at defect junctions whose ensemble V = tν≥3 Vν decomposes into subsets
Vν ⊂ bΣ[ν] of junctions of a fixed valence ν, further split as Vν = tεν∈(Z/2Z)×ν Vεν , εν = (ε

(ν)
k,k+1),

k ∈ 1, n into subcomponents Vεν with distinct cyclic ((ν,ν + 1) ≡ (ν, 1)) sequences of in-

coming (ε(ν)k,k+1 = +1) and out-going (ε(ν)k,k+1 = −1) defect lines, cp. [4]. There are canonical

projections p1, p2 : bΓ −→ bΣ (assigning to a given defect line the corresponding components
of the boundaries of the two domains separated by it) and pενk,k+1 : Vεν −→ bΓ (assigning to
a given defect junction the endpoints of the defect lines converging at it, in anti-clockwise
cyclic order), satisfying the obvious identities of order 2, e.g., p2 ◦ p(+++)1,2 = p1 ◦ p(+++)2,3 for
two defect lines L1,2 and L2,3 in-coming at υ ∈ V(+++). To the manifolds (with boundary)
bΣ,bΓ and Vν, we associate the respective strata M0, M1 and Mν−1 = tεν∈(Z/2Z)×ν Tεν of the
target supermanifold (possibly further stratified, as in the boundary example above), which
determine a natural decomposition Fσ ≡ [bΣ, M0] t [bΓ , M1] t tν≥3 tεν∈(Z/2Z)×ν [Vεν , Tεν] of
the space of σ-model fields. These target strata are endowed with smooth structure maps
ι1, ι2 : M1 −→ M0 and πενk,k+1 : Tεν −→ M1 subject to relations of order 2 mirroring those
satisfied by their worldsheet counterparts, requisite for the consistency of the field-theoretic
framework. The structure maps give rise to a family of pullback operators: ∆ = ι∗2 − ι

∗
1

and ∆εν =
∑ν

k=1 ε
(ν)
k,k+1π

εv ∗
k,k+1 which obey the identities ∆εν ◦ ∆ = 0 and thus establish

a relative-cohomological structure on M ≡ M0 t M1 t tν≥3 tεν∈(Z/2Z)×ν Tεν in which the
form Ω ≡ (χ,ω, 0) ∈ Ω3(M0) ⊕ Ω2(M1) ⊕ Ω1(Mν≥3) acquires the status of a relative de
Rham 3-cocycle, cp. [7, Sec. 7.2], and the defect strata M1 and Tεν play the rôle of corre-
spondence spaces: The former supports a trivialisation of the ∆-image of the ‘bulk’ gerbe G
on M0, whereas the latter carries a secondary trivialisation of the ∆εν-image of that primary
trivialisation. In order to motivate this result of the in-depth analysis reported in [4], let us
consider the special case in which ιD× : D× ≡ (ι1, ι2)(M1) ,→ M×2

0 is an embedding, and
the connected component S1 ⊂ Γ mapped to M1 separates diffeomorphic domains D1 and
D2. Invoking the Wong–Affleck ‘folding trick’ [13], we may then regard the defect line as a
boundary defect in the σ-model on D1 (onto which D2 has been ‘folded’) with the target
supermanifold M×2

0 and the gerbe pr∗1G ⊗ pr∗2G
∗ (the dualisation of pr∗2G reflects the flip of

the orientation accompanying the ‘folding’, cp. [14]), and with the boundary S1 sent to D×.
The reasoning of [2], referred to previously, now calls for a trivialisation pr∗1G ⊗ pr∗2G

∗ ∼= Iω,
or, equivalently, a so-called gerbe bi-module Φ : ι∗1G ∼= ι

∗
2G ⊗ Iω over M1. This turns out to

be the right structure for an arbitrary choice of the correspondence space (M1, ι·), cp. [4].
Note in the passing that there is always the distinguished identity defect, mapping to the com-
ponent M0 ⊂ M1 with ιA�M0

≡ idM0
and Φ�M0

≡ idG . There is no equally straightforward
and general argument elucidating the gerbe-theoretic structure to be pulled back to the Vεν ,
but we may give a heuristic reasoning which emphasises the main idea behind the rigorous
construction while circumnavigating its technicalities, given ibidem. In it, we assume all lines
to be in-coming at v for the sake of simplicity and drop the sign labels. Thus, whenever
I(ν) ≡ (π1,2,π2,3, . . . ,πν−1,ν,πν,1)(T(++···+)) ⊂ M×ν1 is a submanifold, and the value of the
action functional of the σ-model is invariant under homotopy moves of the defect within Σ,
i.e., when we are dealing with a topological defect in a conformally invariant σ-model, we
may – upon cutting out a disc centred on a given υ ∈ V(++···+) whose boundary intersects
each line emanating from υ once, and subsequently cutting out from it another disc of ra-
dius r ≈ 0 with the same properties – deform the defect lines Lk,k+1 on the ensuing annulus
in such a way that the angular distance between the nearest neighbours (Lk,k+1, Lk+1,k+2) is
ε ≈ 0(≈ νε). Now we should be able to read off the sought-after vertex structure from the
limit ε↘ 0 succeeded by r ↘ 0. The former leaves us with a single defect line mapped into
M (ν)1 = {(q1, q2, . . . , qν) ∈ M×ν1 | ι2(qk) = ι1(qk+1), k ∈ 1,ν− 1} and carrying the data of
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the composite 1-isomorphism (Φν ⊗ idIω1+ω2+···+ων−1
) ◦ · · · ◦ (Φ3 ⊗ idIω1+ω2

) ◦ (Φ2 ⊗ idIω1
) ◦ Φ1

with (Φk,ωk) = pr∗k(Φ,ω), representing the fusion of the ν gerbe bi-modules. The latter re-
produces the endpoint eυ of the fused defect, or, equivalently, a junction between it and the
identity defect stretching from eυ to the boundary of the big disc (and mapping to M0 ⊂ M (ν)1
in a natural manner). In order to understand what ought to be put at the junction, we fold
the disc along the fused defect and its identity extension, whereupon we obtain a half-disc
worldsheet with a piecewise boundary condition at the fold (the other part of its boundary has
a different status, and so we do not consider it here). At this stage, we may apply a dimen-
sionally reduced variant of the folding trick to the boundary (Chan–Paton) degrees of freedom
at the defect junction eυ mapped to T(++···+), whereby it transpires that eυ should carry a
trivialisation of (Φν,1 ⊗ idω1,2+ω2,3+···+ων−1,ν

) ◦ · · · ◦ (Φ3,4 ⊗ idIω1,2+ω2,3
) ◦ (Φ2,3 ⊗ idIω1,2

) ◦ Φ1,2

for (Φk,k+1,ωk,k+1) = π∗k,k+1(Φ,ω) (this makes sense as Φ is represented by a principal C×-
bundle). The heuristic argument does not fix the (global) connection of the trivialisation, it is
only the detailed computation of [4] which shows that it should be null. Altogether, we end up
with the superstring background B= (M,B,J ) composed of: the bulk target M= (M0, g,G)
in which (M0, g) is a quasi-metric supermanifold with a gerbe G of curvature χ over it; the G-
bi-brane B = (M1, ι·,ω,Φ) with the bimodule Φ : ι∗1G ∼= ι

∗
2G⊗Iω; and the (G,B)-inter-bi-brane

J = tν≥3 tεν∈(Z/2Z)×ν (Tεν ,π
εν
·,· ,ϕεν) with the component fusion 2-isomorphisms

ϕεν :
�

Φ
(ν)
ν,1 ⊗ idI

∆εν ω−ω
(ν)
ν,1

�

◦ · · · ◦
�

Φ
(ν)
3,4 ⊗ idI

ω
(ν)
1,2+ω

(ν)
2,3

�

◦
�

Φ
(ν)
2,3 ⊗ idI

ω
(ν)
1,2

�

◦Φ(ν)1,2
∼= id

π
(ν)∗
1 G ,

where (Φ(ν)k,k+1,ω(ν)k,k+1)≡ π
(εν)∗
k,k+1(Φ

ε
(ν)
k,k+1 ,ε(ν)k,k+1ω), and where π(εν)1 = ι1◦π

(εν)
1,2 if ε(ν)1,2 = +1, and

= ι2 ◦π
(εν)
1,2 if ε(ν)1,2 = −1. The superfield theory is determined by the Dirac–Feynman amplitude

ADF[ξ] = exp(iSσ[ξ]) on Fσ in which the action ‘functional’ splits Sσ[ξ] = Smetr[ξ]+SWZ[ξ]
into the ‘metric’ term Smetr[ξ] =

∫

Σ
Vol(Σ,ξ∗g) and the ‘topological’ WZ term given by the

decorated-surface holonomy exp(iSWZ[ξ]) = Hol(G,Φ,(ϕ·))(ξ|Γ ) of [4].
The higher-supergeometric elements G,Φ and ϕεν of B are distinguished 0-, 1- and 2-

cells, respectively, of BGrb∇(M), cp. [15, 16]. The fundamental property of and the main
rationale for physical interest in these objects, discussed at length in, i.a., [1, 2, 5], is that
they canonically determine – via cohomological transgression, originally proposed in [1] – a
prequantisation of the above superfield theory and encode a lot of non-trivial information on
its (nonperturbative) structure, cp. [17] for a recent review.

3 The Trinity: Simpliciality, Symmetry and Semisimplicity

The construction of the poly-phase super-σ-model from the previous section features subman-
ifolds of Segal’s nerve of the Σ-fibred pair groupoid PairΣ(bΣ) of the extended worldsheet.
The nerve is a canonical example of a simplicial manifold, and the identities of order 2 sat-
isfied by the structure maps pενk,k+1 and pA are readily seen to follow from the elementary

simplicial identities obeyed by the face maps of PairΣ(bΣ). The order-2 relations between the
structure maps πενk,k+1 and ιA of the background B are a target-space realisation of their
worldsheet counterparts. They give rise to subsets in another simplicial supermanifold, to wit,
the nerve of the pair groupoid Pair(M0) of the bulk target space (cp., D× and I(ν)). While
there is no a priori reason to expect that components of the stratified target M form a simpli-
cial supermanifold, there are important circumstances in which they do: This happens, e.g., in
σ-models with topological defects with induction, studied in [4] in the context of orbifolding,
in which defect junctions of valence ν > 3 can be obtained from binary trees of defect junc-
tions of valence 3 in a limiting procedure in which the lengths of all internal edges are sent
to 0, at no cost in the value of the action functional (owing to the topological nature of the
defects). As a result, fusion 2-isomorphisms for the junctions of higher valence are induced,
through (vertical) composition, from the elementary ones for trivalent junctions which define
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the binary-tree resolutions, cp. [4] and our heuresis in the previous section. Such an intrinsi-
cally semi-simplicial structure is promoted to a fully fledged simplicial one through adjunction
of the identity defect, encountered previously, whose gerbe-theoretic data idG are provided by
the bulk gerbe itself [16]. This defect can be drawn anywhere in the worldsheet (in particular,
it can be attached to any defect junction, whereby the valence of the junction is increased by
1). Its existence suggests the incorporation of the degeneracy maps of a simplicial target.

Our hitherto considerations lead us to the definition of a simplicial superstring background
with the target given by (a submanifold in) a stratified simplicial supermanifold (M•, d(•)· , s(•)· )

with face maps d(n+1)
i : Mn+1 −→ Mn and degeneracy maps s(n)i : Mn −→ Mn+1 defined for

i ∈ 0, n+ 1 and for all n ∈ N, and subject to the standard simplicial identities. The d(n+1)
i

reproduce the previously considered structure maps uniquely as (ι1, ι2) = (d
(1)
1 , d(1)0 ) and

(π(3)1,2,π(3)2,3,π(3)1,3) = (d
(2)
2 , d(2)0 , d(2)1 ), and – for v > 3 – also π(v)1,v = d(2)1 ◦ d(3)1 ◦ · · · ◦ d(v−1)

1

and π(v)k,k+1 = d(2)2 ◦ d(3)2 ◦ · · · ◦ d(v−k)
2 ◦ d(v−k+1)

0 ◦ d(v−k+2)
0 ◦ d(v−1)

0 for k ∈ 1, v − 1, consistently

with the identities of order 2 mentioned earlier. The s(n)i account for the existence of the flat

identity (sub-)bi-brane s(0)∗0 Φ ≡ idG : s(0)∗0 d(1)∗1 G = G ∼= G = s(0)∗0 d(1)∗0 G ⊗ Is(0)∗0 ω
and allow to

write down fusion 2-isomorphisms for defect junctions with identity defect lines attached.
As simpliciality seems to be favoured by topological defects, which are transmissive to

the Virasoro currents of a conformal σ-model, the Segal–Sugawara realisation of the Vira-
soro algebra within the universal enveloping algebra of a Kač–Moody algebra of a simple Lie
algebra, known, e.g., from the study of the WZW σ-model, suggests a natural direction of en-
hancement of our construction: Focusing on σ-models with a rich configurational symmetry
(e.g., those with targets given by homogeneous spaces of Lie supergroups), we may combine
simpliciality with symmetry to further constrain the geometry of the supertarget and the sim-
plicial gerbe over it. The point of departure is the identification of the bicategorial realisa-
tion of rigid symmetries of the σ-model, which is readily achieved for symmetries induced by
isometries of the metric bulk target (M0, g). Thus, we consider a Lie supergroup Gσ together
with actions Mnλ : Gσ × Mn −→ Mn, n ∈ N, and so also with the fundamental vector fields
Kn

X = −(X ⊗ idOMn
)◦Mnλ

∗ over the Mn ≡ (|Mn|,OMn
), labelled by elements of the tangent Lie

superalgebra gσ 3 X of Gσ. The structure maps πενk,k+1 and ιA are assumed Gσ-equivariant
to ensure a natural alignment of the bulk and defect-quiver variations of the action functional
engendered by the Kn

X , cp. [4, 18]. We then say that Gσ is a Lie supergroup of prequanti-
sable rigid (configurational) symmetries of the super-σ-model if (i) Ω is Gσ-invariant; (ii)
the action admits a generalised relative (co)momentum κ· : gσ −→ Ω1(M0) ⊕ Ω0(M1) such
that DM·κX = −ıKX

Ω, where DM· is the relative de Rham differential [18, Prop. 2.8]; and (iii)
it lifts to the higher-geometric components of B as a Gσ-indexed1 family of 1-isomorphisms
Λg : M0λ

∗
gG ∼= G and 2-isomorphisms λg : (ι∗2Λg ⊗ idIω)◦M1λ

∗
gΦ
∼= Φ◦ ι∗1Λg satisfying the co-

herence identities Mν−1λ
∗
gϕεν = (ϕεν◦id)•(id◦λ

(ν)
g 1,2)•(id◦λ

(ν)
g 2,3◦id)•· · ·•(id◦λ

(ν)
g ν−1,ν◦id)•(λ

(ν)
g ν,1◦id)

(in which some canonical 2-isomorphisms have been dropped for brevity). The existence of
such a coherent lift is a necessary and sufficient condition for the invariance of the decorated-
surface holonomy under the symmetry transformations ξ 7→ M·λg ◦ ξ, and can be read off
from [18, Thm. 4.4]. The marriage between simpliciality and symmetry thus defined can be
neatly established by declaring the structure maps of (M•, d(•)· , s(•)· ) Gσ-equivariant and, ac-
cordingly, by propagating a given bulk symmetry M0λ over M• to engender a simplicial Gσ-
space with an action M•λ : Gσ ×M• −→ M•. This yields maximally (super)symmetric defects.

Drawing further motivation from the WZW σ-model, with its generating bi-chiral loop-
group symmetries and the corresponding maximally symmetric bi-branes of [3, 4, 6] which
are supported over orbits of the bulk-group action, we come to the final stage of the rather

1We put our discussion in the so-called S-point picture for the sake of simplicity.
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natural structurisation of the super-σ-model. It boils down to imposing the requirement of
semisimplicity upon the simplicial target Gσ-supermanifold, by which we mean a (disjoint-sum)
decomposition of (M•, d(•)· , s(•)· , M•λ) into orbits of the simplicial Gσ-action. The demand that
these support – as a token of quantum-mechanical consistency of the construction – a simplicial
gerbe described previously is then anticipated to give rise to cohomological superselection rules
for the admissible orbits in the decomposition, which are the only ones that we choose to keep.
For M• topologically nontrivial, this is bound to yield powerful constraints on the ensuing
target geometry, coming from the standard Dirac-quantisation argument. Compactness of the
target geometry should then result in a rationalisation of the (super)background.

4 The maximally supersymmetric simplicial Lie superbackgrounds

A prime example of a super-σ-model to which the above principles may be applied construc-
tively, and in which their consequences may be explored, is the WZW(-type) σ-model, with
the bulk target given by a (Kostant–)Lie supergroup G. The latter is endowed with a canon-
ical bi-invariant Cartan 3-cocycle χq

C = q trg(θL ∧ [θL
∧,θL]), g ≡ sLieG which geometrises,

in physically interesting cases (e.g., for G even compact and connected, and on the super-
Minkowski group) and for a suitable choice of the loop charge q ∈ R, as a supersymmetric
gerbe GC. The target is to be seen as an orbit of an action G0λ of a subgroup of the group
G× G of left and right translations on G. The corresponding maximally supersymmetric de-
fects implement the right regular action ℘ of G on itself, cp. [3,4,6], and so here the stratified
target M• embeds in the nerve N(Go℘G) of the right action groupoid Go℘G. The morphism
composition of the latter groupoid represents supergroup multiplication mG : G×G −→ G,
which admits a gerbe-theoretic realisation in the form of a (generalised) supersymmetric mul-
tiplicative structure, instrumental in the construction of the bi-brane for the said multiplica-
tive defect. The structure is a simplicial gerbe over Segal’s model of the classifying space BG
of G (containing N(G o℘ G) as a simplicial sub-manifold), and as such comprises a distin-
guished 1-isomorphism M : pr∗1GC ⊗ pr∗2GC

∼= m∗GGC ⊗ I%PW
over G×2, written in terms of a

Polyakov–Wiegmann 2-form %PW, and a coherent (quasi-)associator 2-isomorphism α over
G×3, cp. [9, 19] for details. As the defect of interest maps to G×2 and has structure maps
(ι1, ι2) = (pr1,℘ ≡ mG), we may invoke the existence of M in the Wong–Affleck argument
of Sec. 2 to conclude that GC must trivialise over the second cartesian factor ιD : D ,→ G in
the relevant bi-brane geometry eιD : G × D ,→ G×2. This, however, implies that the bi-brane
arises as a product Bmaxym ≡ (G × D, pr1,℘,eι∗D%PW − pr∗2ωD,Φ) of another kind of fusion:
Φ= (eι∗DM⊗idI−pr∗2ωD

)◦(idpr∗1GC
⊗pr∗2T

−1
D ⊗idI−pr∗2ωD

) between eι∗DM and the boundary bi-brane

B∂ ≡ (D, ιD,∗,ωD,TD) introduced before. By a similar argument [9], the existence of α turns
the problem of constructing ϕεν+1

into a search – over (the second factor in) a disjoint union of
Gνλ-orbits within G×eDν ≡ G×(D×ν∩m−1

1_ν(D)) with m1_ν ≡mG◦(mG×idG)◦· · ·◦(mG×idG×ν−2)

– for boundary fusion 2-isomorphisms ϕ(∂ )ν+1 : ⊗νi=1 pr∗i TD
∼= (m∗1_νTD ⊗ id) ◦M1_ν−1,ν�eDν , de-

fined in terms of the 1-isomorphism M1_ν−1,ν =M12···ν−1,ν◦· · ·◦(M12,3⊗id)◦(M1,2⊗id) in which
M12···k−1,k = ((m1_k−1× idG)◦(pr1, pr2, . . . , prk))

∗M. (Incidentally, this gives a physical mean-
ing to the seemingly meaningless concept of ‘fusion of branes’ discussed in the literature [20].)

In the quantisation of the σ-model determined by the gerbe, states are represented by
disc Dirac–Feynman amplitudes [21, Sec. 4.1], and so it stands to reason that the boundary bi-
brane B∂ provides a geometric realisation of the spectrum of the quantum theory. Accordingly,
we may anticipate that fusion 2-isomorphisms carry information on its Verlinde fusion ring.
We conclude this note with a review of evidence which corroborates these expectations and a
recapitulation of conjectures based firmly thereon in the setting of the bosonic WZW σ-model.
For further details, as well as novel bicategorial constructions for the Green–Schwarz super-
σ-model with the super-Minkowskian target, we refer the Reader to the extensive study [9].
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4. THE MAXIMALLY SUPERSYMMETRIC SIMPLICIAL LIE SUPERBACKGROUNDS

The bosonic WZW defect & another link to the CS theory. The bulk WZW σ-model for the
compact 1-connected Lie group G is defined by the Cartan–Killing metric g= −6q trg(θL⊗θL)
and the Cartan 3-form χ

q
C with 24πq ≡ k ∈ N×, co-normalised in a manner which ensures

non-anomalous conformality of the (quantised) field theory. Integrality of the level k implies
the existence of a unique (isoclass of) gerbe geometrising χq

C – the k-th tensor power of the
Gawȩdzki–Hitchin–Meinrenken basic gerbe GC over G. The rigid symmetries of the bulk theory
make up Gσ = G×G and lift to N•(Go℘G) as Gnλ : Gσ×G×n+1 3 ((x , y), g, hi) 7−→ (x ·g · y−1,
Ady(hi)) ∈ G×n+1. Cohomological arguments localise B∂ over the disjoint union D = tλ∈Pk

+
Cλ

of the conjugacy classes Cλ = AdG(e2πiλ/k) labelled by weights λ from the fundamental affine
Weyl alcove Pk

+ at level k, with ω∂ �Cλ fixed uniquely by the bi-chiral loop-group extension of
G1λ, cp. [2,9]. The existence of (M,α) is unobstructed, and so B∂ induces the non-boundary
maximally symmetric bi-brane as discussed above. Thus, the connected components G×Cλ of
the defect-line target are in a 1-1 correspondence with chiral sectors of the bulk Hilbert space,
furnishing integrable highest-weight representations Vλ,k of the Kač–Moody algebra bgk.

The localisation of Bmaxym conforms with the ‘triple-S’ argument of Sec. 3, and the last
remark strengthens the expectation that the associated inter-bi-brane carries geometric infor-
mation on the Verlinde fusion ring of the WZW σ-model. Recall that the ring structure is
encoded by the multiplicity spaces in the decomposition, into the Vλ3,k, of the Hilbert space
of the boundary WZW σ-model on a strip with boundaries carrying the data of B∂ , or, equiv-
alently, by the spaces C (Vλ1,k ⊗ Vλ2,k,Vλ3,k) of rank-3 conformal blocks of the (chiral) bulk
WZW theory, cp. [22]. Each such space is the Hilbert space of the 3d Chern–Simons (CS) theory
on the time cylinder R×CP1 over CP1, coupled to vertical Wilson lines R×{σi}, i ∈ {1, 2,3}
with holonomies along the respective non-contractible loops, encircling simply the punctures
σi , valued in the Cλi

, cp. [21]. We may now look for imprints of these structures in the bound-
ary component T ∂++− of the elementary inter-bi-brane geometry T++− = G × T ∂++− (e.g.),
which the ‘triple-S’ argument predicts to be (a subset in) the disjoint union of AdG-orbits in
Tλ3
λ1,λ2

≡ (Cλ1
×Cλ2

)∩m−1
G (Cλ3

) for any λ1,λ2 and λ3. And, remarkably, we find them! Indeed,

the necessary condition for the existence of ϕ(∂ )3 on Tλ3
λ1,λ2

is the vanishing of ∆++−ω (which
restricts to T∂ ), and the latter 2-form turns out to be. . . the partially symplectically reduced
presymplectic form on the state space of the CS theory described above. Its partial reduction,
due to Alekseev and Malkin [23], with respect to the ‘pointed’ gauge group associated with a
homological decomposition of CP(3) ≡ CP\{σ1,σ2,σ3} relative to a point σ∗ ∈ CP(3), leaves
us with the tangent of the residual gauge group [σ∗, G]≡ G as the characteristic distribution
of ∆++−ω, which is just the symmetry group G of the AdG-orbits in T ∂++−, whose disjoint
union composes the classical state space of the CS theory in the parametrisation of [23]. In the
light of the interpretation of the conformal blocks as intertwiners Hom

bgk
(Vλ1,k ⊗Vλ2,k,Vλ3,k)

between current-symmetry sectors of the chiral bulk theory2, this result is also in keeping with
the identification of the transgressed fusion 2-isomorphisms transmissive to rigid bulk symme-
tries (which the WZW ones are, cp. [18]) as intertwiners of the symmetry representations on
the (twisted) state spaces fusing at the defect junction, cp. [5,7].

The structure of the simplicial WZW target is ultimately determined by the requirement of
existence of the 2-isomorphisms ϕ(∂ )ν , expected to distinguish a subfamily within the disjoint
union of AdG-orbits in the boundary factors T ∂εν of the Tεν . Taking into account the above
highly nontrivial result (which generalises to arbitrary ν), we are led to the following conjec-
tures:

1. The fusion 2-isomorphisms ϕ(∂ )ν exist only over manifolds ×ν−1
i=1 Cλi

∩m−1
1_ν−1(Cλν) with

non-vanishing Verlinde numbers dimC (⊗ν−1
i=1 Vλi ,k,Vλν,k) (for conformal blocks of arbi-

trary rank).
2More accurately, we should speak of quantum intertwiners between Uq(k)(g)-modules, cp. [22].
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2. Given such a manifold, the number of those AdG-orbits in its decomposition which sup-
port ϕ(∂ )ν is given by the corresponding Verlinde number.

One may also anticipate that the fusion 2-isomorphisms of valence ν > 3 are induced from
the elementary ones with ν = 3 due to simpliciality of the WZW background, and that the
inter-bi-brane fusing matrices defined, as described in detail in [9], by the associator move
of [4] relating inequivalent such induction schemes for ϕ(∂ )4 , are intimately related to the
standard fusing matrices of the bulk WZW σ-model. The first conjecture was corroborated for
the special case of G = SU(2) in [6], and the last expectation hinges on the highly nontrivial
cohomological evidence from the simple-current sector gathered in [4] as well as on simple
considerations of the topologicality of the maximally symmetric defect. Various geometric,
algebraic and field-theoretic arguments in favour of the second conjecture were given in [9].
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[2] K. Gawȩdzki and N. Reis, “WZW branes and gerbes”, Rev. Math. Phys. 14, 1281 (2002),
doi:10.1142/S0129055X02001557.

[3] J. Fuchs, C. Schweigert and K. Waldorf, “Bi-branes: Target space geometry for world sheet topological defects”,
J. Geom. Phys. 58, 576 (2008), doi:10.1016/j.geomphys.2007.12.009.

[4] I. Runkel and R. R. Suszek, “Gerbe-holonomy for surfaces with defect networks”, Adv. Theor. Math. Phys. 13,
1137 (2009), doi:10.4310/ATMP.2009.v13.n4.a5.

[5] R. R. Suszek, “Defects, dualities and the geometry of strings via gerbes I”, 1101.1126[hep-th].
[6] I. Runkel and R. R. Suszek, “Affine su(2) fusion rules from gerbe 2-isomorphisms”, J. Geom. Phys. 61, 1527

(2011), doi:10.1016/j.geomphys.2011.03.008

[7] R. R. Suszek, “Defects, dualities and the geometry of strings via gerbes II”, 1209.2334[hep-th].
[8] J. Fröhlich, J. Fuchs, I. Runkel and C. Schweigert, “Duality and defects in rational conformal field theory”,

Nucl. Phys. B763, 354 (2007), doi:10.1016/j.nuclphysb.2006.11.017.

[9] R. R. Suszek, “On symmetric simplicial (super)string backgrounds, (super-)WZW defect fusion and the Chern–
Simons theory" , 2208.05312[hep-th].

[10] M. Murray, “Bundle gerbes”, J. Lond. Math. Soc. 54, 403 (1996).

[11] J.-H. Jureit and T. Krajewski, “Quasi-quantum groups from strings”, J. Phys.: Conf. Ser. 103, 012005 (2008),
doi:10.1088/1742-6596/103/1/012005.

[12] J. Fröhlich, J. Fuchs, I. Runkel and C. Schweigert, “Defect lines, dualities, and generalised orbifolds”, In
Proceedings of the XVIth International Congress on Mathematical Physics, pp. 608–613. World Scientific (2009).

[13] E. Wong and I. Affleck, “Tunneling in quantum wires: A boundary conformal field theory approach”, Nucl.
Phys. B417, 403 (1994).
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