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Abstract

There is a lack of knowledge about the topological invariants of non-linear
d-dimensional systems with a periodic potential. We study these systems
through a classification of the linearized NLS/GP equation around their soliton
solutions. Stability conditions under linearized (mode) adiabatic evolution can
be interpreted topologically and we can use equivariant cohomology for their
classification. We further construct purely non-linear global invariants using
the space of symmetry-breaking soliton solutions M, given by K−1(M). We
conjecture that these new phases signal a global bifurcation for the non-linear
system and discuss their physical interpretation.
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1 Introduction

The field of topological systems in photonics [1], exciton-polaritons [2] and Bose-Einstein
Condensates (BEC) [3] has brought to the fore the interplay between non-linear effects
such as solitons [4] and linear topological phases of matter [5], [6], [7]. An interesting ques-
tion arises when we couple a non-linear medium to a periodic potential [8], particularly
when the linear system is topologically non-trivial, e.g. quantum Hall effect (QHE), SQHE
and topological insulators (TI) [1]. Are systems which combine both still topological? And
if so, which topological invariants classify these new non-linear systems? Though there are
already many theoretical and experimental results on the stability of solitons, non-linear
Bloch waves and their interactions, as well as resulting macroscopic properties of materi-
als [2], [9], [10], there are not many proposals for topological invariants classifying these
systems (see [11], [12] for some results in this direction). For weakly non-linear systems,
the Non-linear Schrödinger/Gross-Pitaevskii equation (NLS/GP) [4], [9], [13] and varia-
tions of these are good approximations to low-energy behaviour. Here we shall consider
weakly non-linear d-dimensional systems with a periodic potential [8] and magnetic field
described by

i∂zΨ(x⃗, z) = [(−i∇− A⃗(x⃗))2 + V (x⃗)− f(x⃗, |Ψ|2)]Ψ(x⃗, z), (1)

where z can be either time (BEC) or the distance along the direction of propagation
(Optics, here z ≥ 0). We also assume that A⃗(x⃗ + a⃗) = A⃗(x⃗); V (x⃗ + a⃗) = V (x⃗) for all
a⃗ ∈ Λ, where Λ is a d-dimensional lattice. Note that in general the assumption is not true
for the magnetic potential A⃗ and we should include disorder [14]. We denote the linear
part by Hl = (−i∇− A⃗)2 + V . We can simultaneously include systems with a boundary
in our discussion by splitting x⃗ = (x⊥, x⃗||) and making V (x⃗) = A(x⃗) = 0 for x⊥ ≤ 0 and
periodic only in the x⃗||-direction with respect to Λ||, a d − 1-dimensional lattice, parallel
to the boundary. We would like Hl to correspond to a linear topological system (phase)
with a gap [7] or gapped bulk condition (systems with boundary) [15] under adiabatic
evolution [16] at a fixed energy scale ∆gap centered around the level Egap, as there is
no analogue of the Fermi energy EF for our non-linear systems, since they are generally
bosonic [1], [17].

For fully periodic systems with a gap, there is a coarse classification 1 where a linear
topological phase is an element [Hl − EgapI] ∈ K̃ 0(Td), the K -theory group constructed
out of vector bundles over the Brillouin torus Td arising from the Bloch bands below the
Fermi energy [18], [19]. Meanwhile, for systems with a boundary, K -theory arises naturally
and [Hl − EgapI] ∈ K−1(Td−1), where Td−1 is the surface Brillouin torus [15]. Ideally we
would imitate the linear classification for systems with f(x⃗, |Ψ|2) by defining a non-linear
gap condition and a notion of non-linear adiabatic evolution [20]. The problem is that so
far there is no analogue of a gap condition for non-linear systems [9]. We will consider the
simplified problem of classifying the topological behaviour of modes (linear perturbations)
around soliton solutions, stationary solutions of the form Ψ(x⃗, z) = e−iλzΦλ(x⃗) to eq. (1),
which decay exponentially as we go to spatial infinity. Have we lost all the interesting
non-linear properties by linearizing a non-linear problem around a particular solution?
Not at all! In fact, it is the main tool we have to study non-linear stability and existence
properties of solitons [8], [13], [21].

But, can all solitons have topological modes? And even if some do, could these be
destroyed by the non-linearity? If a soliton is unstable it will eventually disappear and its
modes together with it. Positive (ground state) solitons have two types of instabilities, one

1Coarse means we do not care about adding trivial valence bands to our systems.
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is a focusing instability [8], where without increasing, its energy focuses towards a single
point, yielding an arbitrary high density which blows up. The other is a drift instability,
where, via asymmetric distortions, infinitesimal displacements of its original position make
it drift towards infinity [8]; therefore, we shall further impose some stability conditions [8].
However, how compatible are these conditions with those necessary for topological modes?
Do these conditions have a topological interpretation? We shall elucidate their topological
character and their relation to the other topological restrictions in what follows.

2 Linearization and stability conditions

We now consider linear perturbations to a given soliton Φλ i.e. solutions of the form
Ψ = Φλ + χ1 + iχ2, such that χ⃗ = (χ1, χ2) satisfies the following linearization of eq. (1)
around Φλ using a Frechet derivative [8], [21]

∂zχ⃗ = L(λ)χ⃗, (2)

where

L(λ) =
(

0 L−(λ)
−L+(λ) 0

)
, (3)

with self-adjoint operators

L−(λ) = Hl − λI − f(x, |Φλ|2), (4)

L+(λ) = Hl − λI − f(x, |Φλ|2)− df |ϕλ .

The linear perturbation is called a mode of Φλ. Have we not lost all the interesting
information about our non-linear system by considering the linearized problem? This is
in fact one of the main methods for studying non-linear properties, that is, via linearizing
around a soliton and using the properties of the linearized operators L+(λ), L−(λ) together
with iterative methods to determine properties such as the non-linear stability of a given
soliton or existence of other soliton solutions [13], [21], [22]. Our linearized problem has
a clear analogue of a gap condition for the mode operators L±(λ). We note that Hl − λI
has its spectrum shifted and hence the level at which the soliton satisfies a gapped modes
condition is at

Emodes(λ) = Egap − λ; 0 < λ < Egap. (5)

Thus, the first constraint we put on solitons so that modes can satisfy a gapped modes
condition is λ < Egap. We also have extra potentials determined by V 1

Φλ ≡ f(x, |Φλ|2)
and V 2

Φλ ≡ f(x, |Φλ|2) − df |ϕλ , which we name the soliton potentials. For the soliton
potentials not to destroy the gapped modes condition, we need them to behave as a per-
turbation/impurity/defect, in other words, to not fill in the gap with the extra potential,
we need

σc(H− λI + V 1
Φλ − Emodes(λ)) = σc(H− Egap), (6)

σc(H− λI + V 2
Φλ − Emodes(λ)) = σc(H− Egap) (7)

where σc denotes the continuous spectrum associated to scattering states. Now the mul-
tiplication operator Φλ by the very definition of being a soliton, eventually decays expo-
nentially. There is a well known theorem due to Weyl which says that such terms V i

Φλ

only change the pure point spectrum and do not affect σc [8], [13], [23]. Thus, the soliton
potentials will in general include defect modes, but will not break the gapped modes con-
dition for most non-linearities considered. Defect modes created by the V i

Φλ ’s will play an
essential role in section 5.
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The above discussion had a caveat and here arises our first connection with instabilities.
Positive (ground-state) solitons that are focusing unstable [8], that is, solitons whose
modulus blows up become unbouded and hence can modify the continuous spectrum [23].
This means they may eventually break the gapped modes condition, implying that our
solitons should satisfy the Vakhitov-Kolokolov stability condition

dP

dλ
< 0, (8)

where P =
∫
|Ψ|2dx⃗ is the particle number (BEC) or optical power, which is conserved.

Let us now consider solitons that are drift stable, i.e. those which stay put under
small displacements of their initial position. These have to satisfy the spectral condition
n−(L+(λ)) = 1, where n− denotes the number of negative eigenvalues. Note that for
positive solitons, these conditions are necessary and sufficient for full stability [8]. The
latter condition can be interpreted as topological if we further note that from the positivity
of Hl, there is a restriction on the continuous spectrum σc(L+(λ)) (scattering modes) to
be positive. The component of our modes associated to L+(λ) lives in a Hilbert space
H2(Rd,C) and the above means there is a natural split

H2(Rd,C) = H−1(λ)⊕ H≥0(λ). (9)

The set of all such 1-dimensional subspaces H−1(λ) of H2(Rd,C) forms a topological
space known as the infinite dimensional Grassmannian Gr1(H

2(Rd,C)) [24], which we
denote Gr1 for shortness. The space Gr1 is a classifying space for the second cohomology
group H2 [24], [25]. This means that (up to homotopy) maps from any space X to Gr1 are
used to construct the cohomology group H2(X;Z). Note that the gapped modes condition
never entered into our discussion of drift stability. These two conditions are independent
as the drift stability is about what happens below σc(L+(λ)), while the gapped modes
condition is about what happens in between (same for gapped Bulk-modes). Thus, we
can view linearization around the soliton as a map I, such that

Φλ 7→
{(

0 P≥0(λ)L−(λ)
−P≥0(λ)L+(λ) 0

)
, P−1(λ)

}
, (10)

where P−1(λ) and P≥0(λ) are projections to H−1(λ) and H≥0(λ). Because of conditions (6),
(7), the first component can be seen to be equivalent, up to mode adiabatic evolution (for
definition see sec (3)), to a Hamiltonian operator in Gap(L2(Rd),Zd), the space of gapped
d-dimensional single-particle Zd-periodic Hamiltonians. In [19], using Bloch’s theorem, it is
shown using the periodicity that Gap(L2(Rd),Zd) is coarsely equivalent (by adding trivial
bands) toMap(Td, BGL∞), the space of continuous maps from the d-dimensional Brillouin
torus to the classifying space BGL∞, which can be thought of as an ever increasing
sequence of Grassmannians. Maps (up to homotopy) to BGL∞ give rise to the group K̃ 0

[26]. Analogously, for systems with a boundary, we instead have GapBulk(L
2(Rd),Zd−1),

itself being equivalent to Map(Td−1,Fsa
∗ (H)) [15], where Td−1 is now the surface Brillouin

torus and Fsa
∗ (H) is a subspace of self-adjoint Fredholm operators [27]. Maps to Fsa

∗ (H)
now give rise to the group K−1 instead of K̃ 0. The projection P−1(λ) in the second
component represents a point in Gr1, as discussed previously.

3 Mode adiabatic evolution

Consider now eq. (1) with potential, gap energy and non-linearity, which are also z-
dependent but in such a way that the linearized evolution of the modes around the soliton
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is adiabatic [16], which is guaranteed if the linearized operators L±(λ, z) satisfy a gapped
modes condition for all values of z. We set ∆gap as the adiabatic scale given by the size
of the gap and set s = z/∆gap to be the dimensionless variable that replaces z. Two
solitons Φλ0(V0, f0), Φ

λ1(V1, f1) have adiabatically equivalent modes if the modes of one
can be evolved into the modes of the other via becoming modes of the solitons Φλ(s)(s)
belonging to a parameter-dependent family of systems f(s), V (s). We name this key
concept mode adiabatic evolution. We now use the homotopy interpretation [7], [19] for
our mode adiabatic evolution. Two different solitons Φλ0(V0, f0), Φ

λ1(V1, f1) have modes
in the same homotopy class if there exists an s-dependent family of soliton solutions
Φλ(s)(V (s), f(s)) such that there is a continous family of maps I(s) from eq. (10), which
restricts to the maps I0 (coming from Φλ0(V0, f0)) at zero and I1 (coming from Φλ1(V1, f1))
at one respectively i.e. a continuous path in Map(Td, BGL∞)×Gr1, which describes their
evolution.

Thus, using this interpretation, we can separate modes into topological classes and
so, we can separate individual solitons too, according to the corresponding topological
character of their modes. Employing the homotopy type of the spaces discussed above,
we have that for periodic systems the set of distinct classes of topological modes around
solitons is equivalent to the groups:

K̃ 0(Td)⊕H2(∗;Z), (11)

where ∗ denotes (from here on) a point, viewed as a topological space. For systems
with a boundary we replace Gap(L2(Rd),Zd) with GapBulk(L

2(Rd),Zd−1) and using the
results of [15], we obtain K−1(Td−1) ⊕ H2(∗;Z) instead. We remark that many solitons
of interest, such as those that are surface-localized, are often gap solitons [2], [28] and do
not satisfy the spectral condition mentioned above. The topological interpretation of the
drift stability condition might seem irrelevant since the group H2(∗;Z) is trivial, but we
shall see it yields new classes for systems with more symmetry.

4 Crystallographic symmetries

Consider systems which further have a crystallographic symmetry with point group P ⊂
O(d) [29], [19]. If we restrict to P -symmetric soliton solutions, their corresponding L±(λ)
will be P -invariant. Further, if they satisfy all of the conditions discussed above and
the mode adiabatic evolution respects this P -invariance, then the crystalline topological
classes of modes around P -symmetric positive solitons are given by:

K̄ 0,τ
P (Td)⊕H2

P (∗;Z). (12)

The groups K̄ 0
P and H2

P denote a twisted equivariant version of K -theory 2, [19] and equiv-
ariant cohomology [30], [31], respectively. The interesting thing here is that H2

P (∗;Z) is no
longer trivial! Instead it is equivalent to H2(BP ;Z), where BP is an infinite dimensional
space known as the classifying space of P [25]. To have an example in mind note that for
P = Z2, BZ2 ≃ RP∞, the infinite dimensional real projective space. Hence, the spectral
condition for drift stability (9) becomes topologically non-trivial when we include more
symmetries. For systems with a boundary we replace K̄ 0,τ

P (Td) with K−1,τ
P (Td−1), where

P now denotes surface crystallographic symmetry and d ≥ 2 [32].
What is the physical interpretation of these classes? On the one hand for positive

solitons, H−1 is a direction of instability which has to be controlled [13]. For the perturbed

2By K̄ 0
P (Td) we mean the kernel K 0

P (Td) → K 0(∗). This is because the coarser classification does not
care about adding trivial bands and changing the dimension of our bundles.
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d Boundary
(y/n)

P L+DS

2 n 0 Z
2 y 0 Z
2 n pm Z2 ⊕ Z2

3 y pm Z3 ⊕ Z2

Table 1: Four examples of topological classes for modes around solitons in d-
dimensional systems, where P is the crystallographic point group, L+DS stands
for linear plus drift stable topological classes

solution to remain at most ϵ-distance from Φλ at any value of z, the initial perturbation
needs to be at a distance δ(ϵ,H−1) from Φλ. As we adiabatically evolve L(λ, s), we would
expect an s-dependence δ(ϵ, s); however, the topological character of H−1 and P -symmetry
will mean that δ is s-independent. Thus, how close the initial perturbation has to be to
our soliton depends only on the topological action of P on H−1 and the ϵ chosen. We
remark that this new invariant does not arise in linear systems.

We present a few examples in dimension d = 2, 3 with and without pm-symmetry in
Table 1.

5 Spaces of soliton solutions, global classes and bifurcations

So far our analysis tells us the different topological character of individual solitons, but
does a single soliton define the character of eq. (1)? Given A⃗, V and f there will generally
be many solitons which satisfy conditions (5, 6, 7, 8). Let us first, for simplicity, consider
A⃗ = 0, V = 0, f = |Ψ|2σ, the most basic type of NLS equation. This equation has
a ground state soliton Φ0(x⃗) > 0 and it is easy to see that if Φ0 is a solution so is
Φ(θ, x⃗0, v⃗, R) = eiθΦ0(R(x⃗ + x⃗0) + v⃗t) with (R, x⃗0, v⃗) ∈ E(d) × Rd i.e. eq. (1) has as its
symmetry group the Euclidean group E(d) times Galilean boosts Rd times a phase S 1,
because |eiθΨ|2σ = |Ψ|2σ. The group action (the symmetries) generates a set of solutions

M = E(d)× Rd × S 1. (13)

The space M is known as the Soliton manifold [21], [22], [33]. The soliton manifold is
extremely relevant to the non-linear dynamics, as part of said dynamics is described as
motion along M, which is called a modulation equation. However, from an algebraic
topology point of view, this symmetry is a redundancy (analogous to gauge symmetry)
since we could obtain all the equivariant information by the action of E(d)× Rd × S 1 on
Φ0. Hence, we further identify all points in M which are simply symmetry translates of
the ground state. Abusing notation we will denote this quotient space M, which in this
particular case, i.e. with no potential, is a point ∗ = E(d)× Rd × S 1/E(d)× Rd × S 1.

5.1 Symmetry breaking and non-trivial soliton manifold

Let us now include a potential V and let us call the symmetry group of V , Gsymm ⊂ E(d).
Similarly as above, Gsymm generates a soliton manifold [33]. It is well known [34] that
even for f(|Ψ|) = −g|Ψ|2 there is a critical value g∗ such that for every g ≥ g∗ there is
spontaneous symmetry breaking of the ground state into a lower dimensional symmetry
group, which we denote GSol ⊂ Gsymm. In precisely the same fashion as for lattice
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defects [35] the stable ground state soliton manifold becomes [36]

M = Gsymm/GSol. (14)

In general this coset space has a non-trivial homotopy type. We shall see how this non-
trivial topology gives rise to different purely non-linear topological phases.

5.2 Non-linear topological phases and K-theory

The soliton manifold M is a property of the non-linear system in (1) which does not
arise in linear systems. As we have stated before to study the implications of M on the
dynamics, essentially the main tool to do so is to once again linearize around a soliton
Φλ ∈ M. We can thus consider the linearization LA⃗,V,f in (4) with λ = 0 as a family of
operators parametrized by M into some space of operators.

LA⃗,V,f : M −→ FA(H ). (15)

Then, if we mode adiabatically evolve the system (A⃗(s), V (s), f(s)), M(s) will also
change and not necessarily in a continuous fashion. However, as long as M(s) is a homo-
topy of spaces, we can use M = M(0) as a fixed characteristic of our phases and study
the family LA⃗,V,f up to homotopy to define global topological classes.

What do we know about the space of operators FA(H )? From equation (4) setting
λ = 0 we know that the self-adjoint components L+, L− have finite dimensional kernel and
hence so does LA⃗,V,f and its adjoint L†

A⃗,V,f
. Thus LA⃗,V,f is a Fredholm operator [27]. Note

that we may extend to λ ̸= 0 as long as LA⃗,V,f (λ) is still Fredholm, which will happen
for some open interval around λ = 0. There is one final property of LA⃗,V,f we have to

consider, which is a stability requirement on its spectrum at each point in M satisfies [13]

σ(LA⃗,V,f (Φ)) ⊂ iR (16)

It is not difficult to show that the above conditions on the spectrum, Fredholm and
self-adjoint character of its components imply that FA(H ) ≃ Fsa

∗ (H ), the ∗-component
of the space of self-adjoint Fredolm operators [27] that we had employed in section 3
for gap modes on systems with boundary [15]. Thus, using mode-adiabatic evolution as
homotopy classes of maps, we can construct an invariant which distinguishes non-linear
topological phases

[M,Fsa
∗ (H )] = K−1(M). (17)

This invariant will most likely not be sufficient for a complete classification of non-linear
topological phases since, for a given system, there are other soliton manifolds (for larger
number of solitons) [37] which we will consider in future work. Nevertheless, this is the
first step towards a systematic classification of non-linear topological phases.

5.2.1 Extension to topological solitons

We can consider extensions of the NLS/GP equation to equations with internal degrees of
freedom and/or a dynamical gauge field such as in the case of the U(1)-Landau-Ginzburg
equation [38] or spinorial versions, including a nonlinear Dirac equation [39]. In all of these
generalizations there is also spontaneous symmetry breaking giving rise to topological
solitons [40], with their soliton manifold also given by eq. (14). However, in those cases
Gsymm is an internal symmetry. One can once again consider linearization around these
solitons (for example Majorana zero modes on vortices) and repeat all of our entire analysis.
We expect similar results but we shall postpone our analysis for future work.
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5.3 Geometric interpretation as global bifurcations and computations

Now that we have constructed a partial classification for non-linear topological phases, do
we have any kind of interpretation for these? Since the mid 1970’s to date there have been
many applications of algebraic topology to the study of global bifurcations in non-linear
PDE systems e.g. [41], [42], [43] to mention a few of the original references. In particular
the work of Pejsachowicz [43], [44], [45] (see [46] for a review and some improvements) is
most relevant for our purposes. How does Pejsachowicz study bifurcations? They consider
nonlinear Fredholm maps from a multiparameter spaceX cross a Hilbert space to the same
Hilbert space i.e. R : X × H −→ H and linearize by taking the Frechet derivative of R
at points (x, 0) ∈ X×H that is DRx(0). They then consider the index bundle associated
to this linearization [DR] ∈ KO(X) and show that it counts the number of bifurcation
points from the trivial branch at X × {0}. Not only does a non-trivial index bundle
signal bifurcations, these are global (see chapter 9 of [47] for a pedagogical introduction)
in the sense that they carry information beyond a small neighborhood of the bifurcation
point and may also signal bifurcations of orbits e.g. hetero and homoclinic orbits, periodic
orbits, stable and unstable manifolds etc [48].

In our case the role of the multiparameter space is played by the soliton manifold
M and the function R is given by moving everything in (1) to one side and evaluating
at Φ ∈ M. We should clarify that in our case DRx(0) ∈ FA(H ) instead of Fredholm
operators in a real Hilbert space as in [44], [46]. Do solitons bifurcate from M? This is
in fact the bread and butter of results in the study of the NLS/GP equation [21], [22]
including bifurcations at symmetry breaking [34]. However the study of these bifurcations
is usually either of a local nature i.e. using the Lyapunov-Schmidt method or global, but
studied using singularity theory [33]. We leave for future work the exact implications for
bifurcations of having a non-trivial element in K−1(M) as different types of topological
invariants signal different phenomena in global bifurcation theory e.g the spectral flow
and periodic orbits in Hamiltonian systems [45] or trajectories connecting bifurcation
points [44].

5.3.1 Qualitative example

Consider eq. (1) with a spherically symmetric potential i.e. V = V (|x⃗|) in d = 2. The
group of symmetries is Gsymm = SO(2), however, it can be spontaneously broken into
GSol = Z2 [36]. Thus,

M = SO(2)/Z2 ≃ S 1. (18)

Our construction predicts
K−1(S 1) = Z. (19)

This integer invariant is called the spectral flow [49] and we can interpret as resonances
(defect modes) bifurcating from the scattering modes (radiation) of negative frequency to
positive frequency as depicted in Figure 1.

Currently technical details prevent us from explicitly matching this result with those
of [45]. Nevertheless, we conjecture that we can indeed match them and that nonlinear
systems with a nonzero spectral flow, as depicted in Figure 1, have a global bifurcation of
their periodic orbits, where as those which have zero spectral flow do not.

We also note that for the much less studied case of a non-linearity f that does depend
on the phase i.e. f(Ψ) ̸= f(|Ψ|) like the ones considered in [50], we now have (without
spontaneous symmetry breaking), after symmetry identifications, that the soliton manifold
is also a circle and hence admits the same interpretation as depicted in Figure 1 except
that now the θ-axis denotes the phase dependence of our solitons.

8
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Figure 1: d = 2, Gsymm = SO(2), GSol = Z2. The θ-axis represents the
phase parametrizing a family of soliton solutions which have spontanously broken
SO(2)-symmetry into Z2. ℑ[σ(L(θ))] denotes the imaginary part of the spectrum
of L(A⃗,V,f)(θ). The solid purple regions represent the continuous spectrum asso-

ciated to scattering states (radiation). Dashed blue lines entering the continuous
spectrum are defect modes embedded into scattering states. Blue solid lines rep-
resent bounded defect modes arising between the gap. The ± signs denote the
sign of the slope as defect modes cross the θ-axis. The spectral flow depicted
here is equal to 2(+) - 1(−) = 1. Conjecturally, a nonzero value signals a global
bifurcation of the periodic orbits of the system as in [45]

9
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5.4 Comments about the physical interpretation

We have presented a generic geometric interpretation of K−1(M) as signalling a global
bifurcation (as in the above example) but what about the physical implications? In linear
topological phases the topological invariants like the Chern number appear in the for-
mula for some macroscopic property of the system like conductivity. Beyond the physical
interpretation that distinct elements of K−1(M) represent distinct non-linear topologi-
cal phases, what can we say about macroscopic properties of the phases they represent?
On the one hand we can clearly interpret, as in the example depicted in Figure 1, that
these non-linear topological phases have to do with the behaviour of defect modes and
resonances of scattering states as we move in the soliton manifold M, generated by spon-
taneous symmetry breaking. In the linear case, the topological character of zero modes
of individual defects, generated at spontaneous symmetry breaking, has been studied
in [51], [52] and [53]. In its simplest form they consider a sphere SD surrounding the
individual soliton in real space (the soliton which was created at symmetry breaking) and
give an interpretation of the conductance and polarization contributed by the defect in
terms of topological invariants of SD like K 0(SD) and its many variants when we include
symmetries. Thus, one might suspect that there is some relation as we are also building
our invariants from the behaviour of the defect modes of solitons arising from symmetry
breaking, however, we are using the soliton manifold M instead of their sphere SD so the
relation is not so direct. Atiyah and Singer [54] considered the Dirac operator coupled to
a background instanton (analogous to our linearization around a soliton) and show that
the K -theory of the instanton moduli space A (analogous to our soliton manifold M) i.e.
K 0(A ) has a physical interpretation in terms of an anomaly. So it seems reasonable that
our non-trivial non-linear topological phases represent an anomaly suitably interpreted in
the optical and exciton-polariton case. We leave the precise connection for future work.
On the other hand, we expect that the geometric interpretation in terms of a global bifur-
cation translates directly into a macroscopic property. An example of this type of relation
was found in ref. [55], where a new, purely nonlinear type of power-oscillations arise when
there is a Hopf bifurcation. We also note that the topological bifurcation methods dis-
cussed in subsection 5.3 can detect global Hopf bifurcations [56]. The system considered
in [55] seems like a strong candidate to be in a nontrivial non-linear topological phase but
since it requires considering complex terms in eq. (1) and including symmetries such as
chiral or charge conjugation, we will not address it here.

6 Conclusions

We have attacked, for the first time (to our knowledge), the problem of systematically
assigning topological invariants to non-linear topological systems in photonics, exciton-
polaritons and BECs, simultaneously. Our analysis provides the conditions for which the
modes around solitons have the same topological character as linear phases do and de-
scribes how soliton stability conditions become topologically non-trivial when including
crystallographic symmetries. These crystalline stability conditions yield new invariants
for these modes, which have no analogues in linear systems. Using the space of soliton
solutions (soliton manifold) which are symmetry breaking, we built novel, global, purely
non-linear invariants in terms of the K -theory of the soliton manifold, providing a partial
answer to the problem of classifying non-linear topological systems. We further provide a
qualitative example for d = 2 and give some evidence towards our conjecture that these
non-linear topological phases signal a global bifurcation for the systems in question. We
also briefly discuss how similar global invariants must exists for generalizations with topo-
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logical solitons and further provide some connection from the existing literature between
physical properties of the system, soliton defect modes and a global bifurcation.

Our analysis employed a linearization around a soliton solution which is the standard
way of studying non-linear systems and which, as discussed in section 5, can yield infor-
mation about global bifurcations. General optical systems are non-hermitian as they have
gains and losses, thus the natural mathematical paradigm to provide a comprehensive
classification is that of non-hermitian systems [57]. Hence, the next step in the extension
of this work is to consider the K -theory arising from the point and line gap generalizations
for these systems but also to include exceptional points [58]. We also have not included
in our discussion the generalizations of particle-hole and time reversal symmetries appear-
ing in the periodic table of linear topological phases [18], [19]. Finally we could consider
extending all of the above to so called gap solitons [28], [10], [22] which bifurcate from
the spectral edges of the linear problem however much less is known about their stability
requirements and about their soliton manifold.
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