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We address the problem of certifying quantum systems of arbitrary dimension (e.g., quantum
computers) without making assumptions about their inner working (i.e., in a device-independent
way) and without assuming that they are entangled with other systems (thus excluding self-testing
methods based on violations of Bell inequalities). We show that there is a family of noncontextuality
inequalities which can be expressed as a sum of probabilities of events whose graph of exclusivity
is an odd antihole (i.e., the complement of a cycle with an odd number n of vertices larger than
three) whose maximum quantum violation is only achieved with quantum systems of dimension
d = n � 2 and is self-testable (i.e., unique up to isometries). We show that the elements of
this family can be used for robust self-testing of quantum states and measurements of systems of
arbitrarily high odd dimension in experiments with sequential measurements. An extra assumption
needed is that measurements are ideal (i.e., minimally disturbing), which can be falsified by
observation. In addition, we introduce a protocol to determine whether the quantum state and
measurements maximally violating any non-contextuality inequality which can be expressed as a
sum of probabilities of events is provably non-self-testable.

I. INTRODUCTION

Classical computing devices store and manipulate
sequences of binary numbers to perform computational
tasks that are relevant to the society such as healthcare
scheduling, weather prediction, and routing of vehicles.
However, as the number of variables involved in a
computational task grows beyond a limit, such as in the
simulation of 50 � 60 spin-half particles, even the state-
of-the-art supercomputers fail spectacularly to carry out
the required computations. Harnessing the properties of
quantum theory to carry out computations beyond the
reach of classical supercomputers is one major objective
of quantum information processing. Quantum algorithms
choreograph the state of a number of qubits (the quantum
analogue of classical bits) in an intelligent fashion,
allowing us to perform highly complex computations.
Nevertheless, the ability of a quantum device to carry
out a specified set of instructions relies crucially on this
ability to faithfully generate on demand specific quantum
states and perform specific measurements on them.

We expect future quantum resources to be shared
through cloud or other internet accesses. In a faithfully
minimalist scenario, developing trust in the functionality
of quantum devices necessitates certification schemes
that do not rely on any assumptions of their inner
workings. One of the most important approaches for
establishing trust in third-party quantum hardware is
through the notion of self-testing [1–6]. In this setting,
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the quantum device is modeled as a black box and
interactions with the device correspond to measurement
operations. Typical self-testing results correspond to
guarantees regarding the uniqueness of the measurement
settings and the underlying state preparation, based
solely on the measurement statistics. The majority
of existing self-testing results rely on the use of Bell
inequalities, i.e., linear expressions involving probabilities
of measurement-outcome events that can be carried out
in a Bell experiment [7], whereas more recent works
extend the self-testing paradigm beyond the scope of Bell
scenarios [8, 9].

Self-testing based on Bell experiments is a powerful
technique that allows us to develop insights concerning
the inner workings of a pair of non-communicating
entangled devices, i.e., to verify distributed quantum
hardware. However, as computing typically takes place
in a localized setting, any scheme for certifying the
functionality of a programmable quantum computer must
be of a local nature to be of any practical relevance.
The first such local self-testing scheme was introduced
in [10] within the framework of contextuality, which
constitutes a broad generalization of Bell non-locality [7,
11]. However, the contextuality-based self-testing scheme
from [10] was limited in scope due to its applicability
to three dimensional quantum systems. We also note
the recent work [12] which investigates the possibility
of a self-testing-like certification of a single untrusted
quantum device. They show how a classical verifier can
robustly certify that a single computationally bounded
quantum prover must have prepared an EPR pair. Our
main result in this article is a self-testing scheme for
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local certification of programmable quantum devices of
arbitrary high dimensionality.

A contextuality scenario is characterized by a set of
measurement events, where two events are mutually
exclusive if they correspond to the same measurement
but different outcomes. The exclusivity relations between
the measurement events can be conveniently encoded
as edges in an undirected graph, called the exclusivity
graph. The seemingly simple idea to use graphs
to represent exclusivity relations has spearheaded the
development of a new line of research at the interface
of graph theory and contextuality [13]. The research
on contextuality has led to many foundational and
practical results [14–20]. The linear inequalities, the
violation of which witnesses contextuality, are referred
to as noncontextuality inequalities. Bell inequalities
are a special type of noncontextuality inequalities,
where the “contexts” are provided via the space-like
separation of the parties involved [7, 21]. The first
“local” noncontextuality inequality violated by quantum
theory was identified by Klyachko, Can, Binicioğlu,
and Shumovsky (KCBS) [22]. The bound on a
noncontextuality inequality in a noncontextual hidden
variable (NCHV) model is called the NCHV bound.
Quantum theory violates the NCHV bound for suitably
chosen state and measurement settings, and thus
manifests as a contextual theory. To any exclusivity
graph, we associate a “canonical” noncontextuality
inequality. Furthermore, we say that a graph is self-
testable, if the corresponding noncontextuality inequality
admits self-testing.

II. ASSUMPTIONS AND RESULTS

Main results— The main contributions of this work can
be summarized as follows:

1. We introduce a local and robust self-testing scheme
for certifying high-dimensional programmable
quantum devices based on contextuality. As a key
ingredient in the scheme, we show that the family
of odd anti-cyclic graphs with at least five vertices
are self-testable. This allows for self-testing pure
states and projective measurements of arbitrarily
high odd dimension.

2. We present a protocol to determine whether
a given graph is provably non-self-testable (see
Appendix IV). This protocol goes beyond the
results in Ref. [10] which only provide sufficient
conditions for self-testing. We use the protocol
to prove that not all graphs with a positive
gap between NCHV bound and the maximum
quantum bound for the corresponding canonical
noncontextuality inequality admit self-testing by
providing an explicit counterexample.

Assumptions— Our local certification protocol is built
on four key assumptions:

1. The quantum device is programmable and is error-
corrected.

2. The measurements are ideal [23, 24], i.e.,

(a) They are outcome-replicable (give the same
outcome when repeated on the same physical
system).

(b) They do not disturb the compatible
measurements.

(c) Their coarse-grainings also satisfy the above
two properties.

3. The measurements satisfy the compatibility
structure according to an odd cycle graph.

4. The device has bounded memory.

We continue with some important comments on
these four assumptions. In quantum theory, ideal
measurements correspond to projective measurements
and the assumption that measurements are projective
can be tested experimentally [25]. Some prominent
examples of experiments based on ideal measurements
are [26] and [27]. Moreover, any compatibility structure
corresponding to a set of ideal measurements can be
tested experimentally based on outcome statistics [26].
The assumption of memory is more crucial since classical
simulation of the outcome statistics corresponding to
contextuality experiments is possible with memory [28–
32]. As every programmable device has a finite memory,
the amount of memory needed to simulate the outcome
statistics will get beyond the capacity of any such
classical device after a certain number of rounds of the
contextuality test. Determining the exact memory cost
of simulating quantum contextuality corresponding to
arbitrary exclusivity graphs and building an efficient
(in terms of number of rounds) protocol to mitigate
the memory assumption is a promising future direction.
Lastly, it is important to note that our scheme is not fully
device-independent because of the above assumptions.
Nevertheless, a single device cannot be self-tested in a
device-independent manner, so our work gives the best
possible result in this setting. Our scheme is semi-device
independent with experimentally testable assumptions.

III. SELF-TESTING VIA ODD ANTI-CYCLES

Graph approach to contextuality— An arbitrary
experimental scenario can be characterized by a set of
measurement events e1, . . . , en. Two events are mutually
exclusive if they correspond to same measurement but
different outcomes. The exclusivity structure of a set
of measurement events is captured by the exclusivity
graph, denoted Gex, with nodes {1, . . . , n} (denoted by
[n]) corresponding to events {ei}ni=1. Two nodes i and j
are adjacent (denoted by i ⇠ j) if ei and ej are mutually
exclusive.
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Given an experimental scenario with an exclusivity
graph Gex, a theory assigns probability to the events
corresponding to its vertices. The mapping p : [n] !
[0, 1], where pi + pj  1, for all i ⇠ j is called a
behavior. Here, the non-negative numbers pi refer to
the probability of the event ei. We call a behavior
p deterministic noncontextual if all the probabilities
pi are either 0 or 1 and the occurrence of a event
does not depend on the possibility of occurrence of
other events. The convex hull of all deterministic
noncontextual behaviors forms a polytope, denoted by
Pnc(Gex), which contains all possible noncontextual
behaviors for the experimental scenario encoded by the
graph Gex. The behaviors which lie outside Pnc(Gex)
are contextual behaviors. The set of noncontextual
behaviors is bounded by finitely many half spaces,
which are called noncontextuality inequalities. Formally
speaking, noncontextuality inequalities correspond to
linear inequalities of the form

X

i2[n]

wipi  Bnc(Gex, w), 8p 2 Pnc(Gex), (1)

where w1, . . . , wn � 0 and Bnc(Gex, w) are real
scalars. The noncontextuality inequalities with all
the weights {wis} equal to one will be referred to as
canonical noncontextuality inequalities. By definition,
Bnc(Gex, w) corresponds to the NCHV bound on the
linear expression

P
i2[n] wipi and is also equal to the

weighted independence number of the exclusivity graph
Gex, defined as the cardinality of the largest set of
pairwise non-adjacent nodes of Gex [13]. A quantum
behavior has the following form:

pi = tr(⇢⇧i), 8i 2 [n] and tr(⇧i⇧j) = 0, for i ⇠ j, (2)

for some quantum state ⇢ and quantum projectors
⇧1, . . . ,⇧n acting on a Hilbert space H. An ensemble
⇢, {⇧}ni=1 satisfying (2) is called a quantum realisation

of the behavior p. For a given quantum behavior
p, there can be multiple quantum realisations. The
set of quantum behaviors is a convex set, which we
denote by Pq(Gex). The maximum value of the linear
expression

P
i2[n] wipi, as p ranges over the set of

quantum behaviors, Pq(Gex) can exceed the classical
bound. We will denote the maximum attainable quantum
value by Bcq(Gex, w). Interestingly, Bcq(Gex, w) is equal
to the Lovász theta number of the graph Gex and admits
a formulation as a tractable optimisation problem known
as a semidefinite program [13] (see Methods Section).

Robust self-testing— Informally speaking, a
noncontextuality inequality I is said to self-test
a quantum realisation ⇢, {⇧}ni=1 if it achieves the
quantum bound for the noncontextuality inequality
I and furthermore, all other quantum realisations
which achieve the quantum bound corresponding to
I are equivalent to ⇢, {⇧}ni=1 up to global isometry.
For a formal definition, the reader is referred to

Section B in the Appendix. As discussed in [10],
the essential ingredient in proving self-testing results
for a noncontextuality inequality I with underlying
exclusivity graph Gex is that the corresponding Lovász
theta semidefinite program (cf. (PG)) has an unique
optimal solution. In the case of the KCBS inequality,
the exclusivity graph is a pentagon. The configuration
corresponding to optimal quantum violation admits an
umbrella structure. The KCBS inequality has been
generalized to odd n-cycle exclusivity graphs, which are
called KCBSn inequalities. The KCBSn inequalities are
the canonical nonconcontextuality inequalities for an
odd cycle graph and admit robust self-testing [10].

Self-testing anti-cycles— Building on the link between
graph theory and contextuality [33], in combination with
the strong perfect graph theorem [34], it was shown in [13,
33] that the presence of certain exclusivity structures is a
necessary and sufficient condition for a noncontextuality
scenario to witness quantum contextuality. These
fundamental exclusivity structures correspond to an odd
number of events that are either cyclically or anti-
cyclically exclusive. In the graph theory literature, odd
cycles and odd anti-cycles are called odd holes and odd
antiholes respectively. The canonical noncontextuality
inequality for an antihole is given by:

nX

i=1

pi  2, for all p 2 Pnc

�
Cn

�
, (3)

which we call antihole inequalities and correspond to
facets of the classical polytope for Cn. The quantum
bound for the antihole inequalities, i.e., the Lovász
theta number for Cn is 1+cos ⇡

n
cos ⇡

n
. A canonical quantum

ensemble which achieves the quantum value for the
antihole inequalities corresponding to odd n is given by
n � 2 dimensional quantum state and projectors. In
fact the dimension of quantum system achieving optimal

quantum violation of antihole inequalities must be n � 2
for odd n. We provide a proof of the aforementioned
claim in Appendix D. Moreover, we show that the

antihole inequalities admit robust self-testing. This fact
is proven in the Appendix (Sections B and C).

As the presence of holes and/or antiholes in a
contextuality scenario dictates the possibility of quantum
advantage [33], our result regarding antihole self-testing
in combination with [10] imply that all noncontextuality

inequalities which are fundamental to quantum theory

admit local robust self-testing. This is because the
generalized KCBS and antihole inequalities are the
unique facet-defining noncontextuality inequalities for
their respective odd hole and antihole exclusivity
scenarios [35].
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IV. NOT ALL NONCONTEXTUALITY
INEQUALITIES ADMIT SELF-TESTING

We have proved that all fundamental noncontextuality
inequalities admit self-testing. A natural question
is whether every noncontextuality inequality with
separation between corresponding noncontextual hidden
variable bound and quantum bound admits self-testing.
Below we provide an explicit noncontextuality inequality
which shows that the answer is negative. In graph
theoretical terms, we identify a non-perfect graph whose
Lovász theta SDP admits multiple primal optimal
solutions. We make crucial use of the following result [36,
Theorem 5] to determine the (non)uniqueness of primal
optimal under strict complementarity, see also [37].

Theorem 1. Let (X⇤, Z⇤) be a pair of primal and dual

optimal solutions satisfying strict complementarity.Then,

uniqueness of X⇤
implies that Z⇤

is dual nondegenerate.

The exclusivity graph of our counter-example is
shown in Figure 1. The corresponding canonical
noncontextuality inequality is given by

6X

i=1

pi  2, (4)

whose quantum bound is equal to
p
5.

FIG. 1. The above exclusivity graph corresponds to the
canonical noncontextuality inequality with minimal number
of measurement events which doesn’t admit self-testing.

Consider the pair of primal-dual optimal solutions

Z? =

2

66666664

p
5 �1 �1 �1 �1 �1 �1

�1 1 0 c c 0 c
�1 0 1 0 c c c
�1 c 0 1 0 c 0
�1 c c 0 1 0 1
�1 0 c c 0 1 0
�1 c c 0 1 0 1

3

77777775

, (5)

where c =
p
5�1
2 and

X? =

2

66666664

1 f f f h f h
f f k 0 0 k 0
f k f k 0 0 0
f 0 k f r 0 r
h 0 0 r h r 0
f k 0 0 r f r
h 0 0 r 0 r h

3

77777775

, (6)

where f = 1p
5
, h = f

2 , k = 5�
p
5

10 and r = k
2 . Since

rank(Z⇤) = 3 and rank(X)? = 4, strict complementarity
holds. Using Theorem 1, the uniqueness of X⇤ implies
dual nondegeneracy. To determine dual nondegeneracy
for Z⇤ we (once again) resort to solving a system of linear
equations. The symmetric variable matrix M is given by

M =

2

66666664

0 m0 m1 m2 m3 m4 m5

m0 m0 m6 0 0 m7 0
m1 m6 m1 m8 0 0 0
m2 0 m8 m2 m9 0 m10

m3 0 0 m9 m3 m11 0
m4 m7 0 0 m11 m4 m12

m5 0 0 m10 0 m12 m5

3

77777775

, (7)

Solving for the linear systems of equations Z?M = 0,
we get m11 = �m12, m10 = m12, m5 = 1+

p
5

2 m12,
m9 = �m12, m3 = �

⇣
1+

p
5

2

⌘
m12, m0 = m1 = m2 =

m4 = m6 = m7 = m8 = 0. For example, if we set
m12 = 1, we can get a consistent assignment of mi,
from i = 0 to 12, which isn’t all zero. Hence, the
dual solution Z⇤ is degenerate, which together with strict
complementarity implies that the primal is not unique.
Thus the noncontextuality inequality in (4) does not
admit self-testing.

We also report that we found several other non-perfect
graphs ( equivalently noncontextuality inequalities)
which do not admit self-testing. Identifying the
exact classes of graphs which admit self-testing will be
interesting but we leave that as an open question.

V. TOOLS AND TECHNIQUES

The main tool we use in this work to show that antihole
inequalities admit robust self-testing is Theorem 2, shown
in [10], which provides a sufficient condition for a graph
to be self-testable. This result relies crucially on the
rich properties of a powerful class of mathematical
optimisation models, known as Semidefinite programs
(SDPs) (see Appendix A). SDPs constitute a vast
generalisation of linear optimisation models where scalar
variables are replaced by vectors and the constraints
and objective function are affine in terms of the inner
products of the vectors. Equivalently, collecting all
pairwise inner products of these vectors in matrix,
known as the Gram matrix, an SDP corresponds to
optimising a linear function of the Gram matrix subject
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to affine constraints. Analogously to linear programs,
to any SDP there is an associated a dual program
whose value is equal to the primal under reasonable
assumptions. Next, we single out certain properties of
primal-dual solutions that are of relevance to his work.
A pair of primal dual optimal solutions (X⇤, Z⇤) with
no duality gap (i.e., tr(X⇤Z⇤) = 0), satisfies strict

complementarity if the Range(X⇤) and Range(Z⇤) give
a direct sum decomposition of the underlying space.
Furthermore, an optimal dual solution Z⇤ with rank r
is dual nondegenerate if the tangent space at Z⇤ of the
manifold of symmetric matrices with rank equal to r
together with the linear space of matrices defining the
SDP span the entire space of symmetric matrices. In
this work we focus on the Lovász theta SDP, see (PG) in
Appendix B. The proof of our main result involves two
main steps. First, we construct a dual optimal solution
of (DG) for an odd-cycle graph by providing an explicit
mapping between the Gram vectors of a primal (PG)
optimal solution of an odd-cycle graph and the Gram
vectors of a dual optimal solution of the complement
graph; see Theorem 3 for details. Next, once we construct
a dual optimal solution, we show in Theorem 4 that
it satisfies the non-degeneracy conditions given in (B4).
By Theorem 2 , this shows that antihole inequalities
admit robust self-testing. Details of the proofs can be
found in Appendix C. Additionally, we show that not all
graphs admit self-testing by providing a counter example
of such a graph (see Appendix IV). The overall scheme for
determining whether a graph is self-testable (equivalently
whether the primal optimal solution of the Lovász theta
SDP corresponding to that graph is unique or not) is
provided in the form of a flowchart in Figure 2.

VI. OPEN PROBLEMS

We proceed with some mathematical questions of
physical relevance that are raised by our work. First,
the dimension of the quantum system corresponding to
the maximum quantum violation of a noncontextuality
inequality is given by the rank of the corresponding
primal optimal matrix of the semidefinite program. In
this work we proved that the dimension of the quantum
system must be at least n � 2, which corresponds
to the maximum violation of the anti-cycle inequality
with n vertices in its exclusivity graph. To make our
analysis robust with respect to experimental errors, it
is important to identify lower bounds on the dimension
of the quantum system when we tolerate ✏-suboptimal
solutions.

Second, the outcome statistics corresponding to
contextuality experiments can be classically simulated
using memory. As discussed above, one way to mitigate
this is to run the contextuality tests for sufficiently
large number of rounds so that the programmable
device runs out of memory. One future direction will
be to determine the exact memory cost of simulating

Given a pair of primal dual optimal solutions  
 (X*, Z*)

Does strict-
complimentarity  

hold ?

Is Z* non-
degenerate?

Is Z* non-
degenerate?

Yes 

Yes 

X*  is unique 

No

No

X* is not unique 

Yes 

X*  is unique 

Inconclusive*

No

FIG. 2. Flowchart for determining (non)uniqueness of primal
solution(s). Here inconclusive⇤ refers to the fact that one can
still hope to arrive at a definitive answer by restarting the
algorithm using a different dual optimal solution (if it exists).

quantum contextuality corresponding to arbitrary
exclusivity graphs. Estimating the memory cost of
simulating contextuality is comparatively easier for
state-independent scenarios. It will be interesting to
develop self-testing schemes for measurement settings
corresponding to state-independent noncontextuality
inequalities. Another exciting direction would be
to explore if it’s possible to prevent the prover
from classically simulating the output statistics
using cryptographic tools, such as blind quantum
computing [38]. This will also ensure that the protocol
is efficient in terms of the number of testing rounds.

Third, the noise robustness of a noncontextuality
inequality can be quantified by the ratio of the
corresponding quantum bound # (Gex, w) to the classical
bound ↵ (Gex, w) . For anti-cycle inequalities, the ratio
tends to one, and thus the self-testing scheme is not
noise-tolerant. However, there are graphs for which the
quantum to classical ratio scales with the number of
vertices of the underlying exclusivity graph [39]. It will
be exciting to provide self-testing schemes for such noise-
tolerant graphs, as this could be used to self test NISQ
devices.
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APPENDIX

Appendix A: Semidefinite programming basics

A semidefinite program (SDP) is given by an
optimisation problem of the following form

sup
X

�
hC,Xi : X 2 Sn

+, hAi, Xi = bi (i 2 [m])
 
, (P)

where Sn
+ denotes the cone of n ⇥ n real positive

semidefinite matrices and hX,Y i = tr(XTY ). The
corresponding dual problem is given by

inf
y,Z

(
mX

i=1

biyi :
mX

i=1

yiAi � C = Z 2 Sn
+

)
. (D)

A pair of primal-dual optimal solutions (X⇤, Z⇤) with
no duality gap (i.e., tr(X⇤Z⇤) = 0), satisfies strict

complementarity if

rank(X⇤) + rank(Z⇤) = n. (A1)

Lastly, an optimal dual solution Z⇤ is called dual

nondegenerate if the linear system in the symmetric
matrix variable M

MZ⇤ = tr(MA1) = . . . = tr(MAm) = 0, (A2)

only admits the trivial solution M = 0.
Central to this work is the Lovász theta SDP

corresponding to a graph G, whose primal formulation
is:

#(G) = max
nX

i=1

Xii

s.t. Xii = X0i, i 2 [n],

Xij = 0, i ⇠ j,

X00 = 1, X 2 S1+n
+ ,

(PG)

and the dual formulation we use is given by:

#(G) = min Z00

s.t. Zii = �(2Z0i + 1), i 2 [n],

Zij = 0, i ⌧ j,

Z 2 S1+n
+ .

(DG)

Appendix B: Robust self-testing

To prove our main result we use the following
definitions from [10]. A noncontextuality inequalityP

i2[n] wipi  Bnc(Gex, w) is a self-test for the realisation
{|uiihui|}ni=0 if:

1. {|uiihui|}ni=0 achieves the quantum supremum
Bqc(Gex, w);

2. For any other realisation {|u0
iihu0

i|}ni=0 that also
achieves Bqc(Gex, w), there exists an isometry V
such that

V |uiihui|V † = |u0
iihu0

i|, 0  i  n. (B1)

Furthermore, a noncontextuality inequalityP
i2[n] wipi  Bnc(Gex, w) is an (✏, r)-robust self-

test for {|uiihui|}ni=0 if it is a self-test, and furthermore,
for any other realisation {|u0

iihu0
i|}ni=0 satisfying

nX

i=1

wi|hu0
i|u0

0i|2 � Bqc(Gex, w)� ✏,

there exists an isometry V such that

kV |uiihui|V † � |u0
iihu0

i|k  O (✏r) , 0  i  n. (B2)

The proof of our main result hinges on the following
theorem (first introduced in [10]):

Theorem 2. Consider a noncontextuality inequalityPn
i=1 wipi  Bnc(Gex, w). Assume that

1. There exists an optimal quantum realisation

{|uiihui|}ni=0 such that

X

i

wi|hui|u0i|2 = Bqc(Gex, w) (B3)

and hu0|uii 6= 0, for all 1  i  n, and

2. There exists a dual optimal solution Z⇤
for the SDP

(DG) such that the homogeneous linear system

M0i = Mii, for all 1  i  n,

Mij = 0, for all i ⇠ j,

MZ⇤ = 0,

(B4)

in the symmetric matrix variable M only admits

the trivial solution M = 0.

Then, the noncontextuality inequality is an (✏, 1
2 )-robust

self-test for {|uiihui|}ni=0.

Appendix C: Self-testing antihole inequalities

The antihole noncontextuality inequalities are given
by

Pn
i=1 pi  2 for all p 2 Pnc

�
Cn

�
. The quantum
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bound for the antihole inequalities, i.e., the Lovász theta
number for Cn is 1+cos ⇡

n
cos ⇡

n
[40]. A canonical quantum

ensemble which achieves the quantum value for the
antihole inequalities corresponding to odd n is given
by n � 2 dimensional quantum state and projectors.
Explicitly, the quantum state is

|v0i = (1, 0, . . . , 0)T , (C1)

but the description of the projectors {⇧j = |vjihvj |}nj=1
is more involved [33]. Let us denote the k-th component
of |vji corresponding to projector ⇧j as vj,k. For
0  j  n� 1 and 0  k  n� 3,

vj,0 =

s
#(Cn)

n
(C2)

vj,2m�1 = Tj,m cosRj,m (C3)

vj,2m = Tj,m sinRj,m (C4)

for m = 1, 2, . . . n�3
2 and

Tj,m = (�1)j(m+1)

vuut2 cos(⇡n ) + (�1)m+1 cos
⇣

(m+1)⇡
n

⌘

n cos ⇡
n

,

(C5)

Rj,m =
j(m+ 1)⇡

n
. (C6)

For the antihole noncontextuality inequalities, the
ensemble described above achieves the quantum value
and satisfies the first condition of Theorem 2. It remains
to establish the existence of a dual optimal solution for
the SDP corresponding to the Lovász theta number of
antihole graphs such that the conditions in (B4) are
satisfied. Towards this goal, we first proceed to provide
the explicit form of the dual optimal solution.

Theorem 3. Let X⇤ = Gram(v0, v1, . . . , vn) be the

unique optimal solution for (PCn). Then,

Z⇤
n = #(Cn)Gram(�v0, v1, . . . , vn) (C7)

is a dual optimal solution for (DCn
). Another useful

expression for Z⇤
n is given by

Z?
n =


#(Cn) �e>

�e circ(u)

�
2 R(1+n)⇥(1+n), (C8)

where e is the vector of all ones of length n,

u = (1,#(Cn)hv1|v2i, . . . ,#(Cn)hv1|vni), (C9)

and circ(·) maps an n-dimensional vector and outputs the

corresponding circulant matrix.

Proof. It was shown in [10] that (PCn) admits a unique
optimal solution X⇤. For any k = 0, 1, . . . , n � 1, the
map taking i ! i + 1 (modulo n) is an automorphism
of Cn (i.e., a bijective map that preserves adjacency and
non-adjacency). In particular, this implies that X⇤ is
circulant and furthermore, constant along each band.
Specifically, all diagonal entries of X⇤ are equal, and as
#(Cn) =

P
i=1 X

⇤
ii, it follows that

hvi|vii = X⇤
ii = #(Cn)/n. (C10)

Analogously, for a pair of indices i, j with |i� j| = k we
have that X⇤

ij = hv1|vk+1i. Moreover, the feasibility of
X⇤ we have that X⇤

00 = hv0|v0i = 1. Thus Z⇤
00 = #(Cn)

has the correct value and it remains to show that Z⇤ is
feasible. Next, by feasibility of X⇤ we have that X⇤

ij =
hvi|vji = 0, when i ⇠ j in Cn. Thus, by definition of Z⇤

we have that Z⇤
ij = #(Cn)hvi|vji = 0 for all edges of Cn.

Finally we show that Z⇤
ii = �(2Z⇤

0i +1), i 2 [n]. Indeed,

Z⇤
ii = hvi|vii#(Cn) =

#(Cn)

n
#(Cn) = 1, (C11)

where we used (C10) and that #(Cn)#(Cn) = n (see
Theorem 8 of [41]). To finish the proof we note that

�(2Z⇤
0i + 1) = �(2#(Cn)h�v0|vii+ 1)

= 2#(Cn)hv0|vii � 1

= 2#(Cn)hvi|vii � 1

= 1.

(C12)

where the second last equality follows from the constraint
that hv0|vii = hvi|vii for i 2 [n] and the last equality
follows by substituting hvi|vii#(Cn) = 1.

Finally, we show that the dual optimal solution satisfies
the conditions in B4.

Theorem 4. The dual optimal solution Z⇤

corresponding to the complement of an odd-cycle

graph satisfies the conditions in B4.

Proof. We show that for any odd n, the only symmetric
matrix M 2 R(1+n)⇥(1+n) satisfying

M00 = 0, M0i = Mii, Mij = 0 (8 i ⇠ j), MZ⇤ = 0,
(C13)

is the matrix M = 0, where i ⇠ j here refers to an edge in
the Cn graph. Barring the MZ⇤ = 0 constraint, the rest
already guarantee that there are at most 2n potentially
non-zero entries in the M matrix (not counting the
repeated entries) corresponding to Cn graph. Let the first
row of M be (0,m1,m2, . . . ,mn). We fill the rest of the
potential non-zero slots in M with mn+1,mn+2, . . . ,m2n.
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For example, for n = 7, we have

M7 =

0

BBBBBBBBB@

0 m1 m2 m3 m4 m5 m6 m7

m1 m1 m8 0 0 0 0 m14

m2 m8 m2 m9 0 0 0 0
m3 0 m9 m3 m10 0 0 0
m4 0 0 m10 m4 m11 0 0
m5 0 0 0 m11 m5 m12 0
m6 0 0 0 0 m12 m6 m13

m7 m14 0 0 0 0 m13 m7

1

CCCCCCCCCA

,

(C14)
For notational convenience, let MZ⇤ =

⇣
q r>

r T

⌘
, where

T 2 Rn⇥n, q 2 R and r 2 Rn⇥1. In the rest of this
section we use the notation i to denote i mod n, where
i is an integer. The linear equation corresponding to q
implies that

nX

i=1

mi = 0. (C15)

For i 2 {1, 2, . . . , n}, the 2n linear equations
corresponding to Ti,i+1 and Ti,i�1 imply

mn+1 = mn+2 = . . . = m2n. (C16)

Now consider the n linear equations corresponding to r.
These equations along with C16 imply

m1 = m2 = . . . = mn. (C17)

Using C17 along with C15 we have

m1 = m2 = . . . = mn = 0. (C18)

Finally, using the equations corresponding to r again and
C18 we have

mn+1 = mn+2 = . . . = m2n = 0, (C19)

implying that M = 0, as desired.

Appendix D: Dimension for optimal violation of
antihole inequalities

Theorem 5. Given an antihole noncontextuality

inequality with an odd number of n measurement events,

the quantum system achieving the optimal quantum

bound must be at least (n� 2) dimensional.

Proof. The value of a noncontextuality inequality
achievable within quantum theory is equal to the
weighted Lovász theta number of the underlying graph
G and admits the SDP formulation (PG). The lower
bound on the dimension of a quantum system achieving
the optimal quantum bound is the rank of the unique
primal optimal matrix

X?
n =

"
1 #(Cn)

n e>

#(Cn)
n e circ(u)

#
, (D1)

where e is the all-ones vector of length n, circ(·)
is the circulant function that takes as input a n
dimension vector and outputs a n ⇥ n matrix with
the input vector as its top row and every subsequent
row being one place right shifted modulo n and u =

(#(Cn)
n , n�#(Cn)

2#(Cn)2
, 0, 0, 0, . . . , 0, 0, n�#(Cn)

2#(Cn)2
). Since X?

n is
real, its rank over complex field is the same as over real
field and equals to the number of nonzero eigenvalues
(with multiplicity). Furthermore, a lower bound on
the rank of X?

n is given by the rank of the lower right
block matrix (the circulant portion). The eigenvalues
of a circulant matrix can be calculated easily using
the circulant vector. A few lines of algebra yields the
following expression for the eigenvalues of the lower right
block matrix,

�j =
1

#n
+

n� #n

#n
cos(

2⇡j

n
) (D2)

for j 2 [n] and #n denotes the Lovász theta number for
the holes with odd n. One can see that �j 6= 0 unless
j = n�1

2 or n+1
2 . Thus, the rank of the circulant matrix

is n � 2 for all odd values of n. Thus, the lower bound
on the rank of the optimal feasible matrix X? is n � 2
which is same as the lower bound on the dimension of
the desired quantum system.

Appendix E: Complex versus Real SDPs

Lemma 6. Consider a real SDP

sup
X

�
hC,Xi : X 2 Sn

+, hAi, Xi = bi (i 2 [m])
 
, (E1)

that admits a unique optimal solution X⇤
witnessed by a

dual nondegenerate optimal solution Z⇤
. Then, the SDP

considered over the complex numbers, i.e.,

sup
X

�
hC,XiC : X 2 Hn

+, hAi, XiC = bi (i 2 [m])
 
,

(PC)
still admits a unique optimal solution, where hX,Y iC =
tr(X†Y ) and Hn

+ denotes the set of n ⇥ n Hermitian

positive semidefinite matrices.

Proof. First, we show that the study of a complex SDP
can be reduced to an equivalent real SDP. This fact is well
known but we provide a brief argument for completeness.
Indeed, for any feasible solution X = XR+iXC 2 Hn

+, the
constraint hAi, XiC = bi is equivalent to two constraints
on its real and imaginary part, namely: hAi, XRi = bi and
hAi, XCi = 0. Furthermore, checking whether XR + iXC
is Hermitian PSD is equivalent to

✓
XR �XC
XC XR

◆
2 Sn

+. (E2)

Based on these observations we define the realification of



9

(PC) as the following SDP over the real numbers:

sup
X,Y

hC,Xi

s.t. hAi, Xi = bi (i 2 [m])

hAi, Y i = 0 (i 2 [m])
✓
X �Y
Y X

◆
2 S2n

+ .

(PR)

Clearly, the solutions of (PC) are in bijection with the
solutions of the realification, and thus, to show that (PC)
has a unique solution it suffices to show that (PR) has a
unique solution. Bringing (PR) into standard SDP form
we arrive at the formulation:

sup
W

✓
C/2 0
0 C/2

◆
•W

s.t.
✓
Ai/2 0
0 Ai/2

◆
•W = bi (i 2 [m])

✓
0 Ai/2

Ai/2 0

◆
•W = 0 (i 2 [m])

X = Z, Y + Y T = 0,

W =

✓
X Y
Y T Z

◆
2 S2n

+ ,

(E3)

whose dual is to minimize the function
Pm

i=1 �ibi over all
�i, µj , tij , zij satisfying

mX

i=1

�i

✓
Ai/2 0
0 Ai/2

◆
+

mX

i=1

µi

✓
0 Ai/2

Ai/2 0

◆
+

nX

ij=1

tij

✓
Eij 0
0 �Eij

◆
+

nX

ij=1

zij

✓
0 Eij

ET
ij 0

◆
�
✓
C/2 0
0 C/2

◆
⌫ 0.

(E4)

We conclude the proof by showing that
✓
Y ⇤ 0
0 Y ⇤

◆
is a

dual nondegenerate optimal solution for the realification.
First, by dual feasibility we have Y ⇤ =

Pm
i=1 y

⇤
i Ai�C for

appropriate scalars y⇤i . Setting �i = y⇤i and all other dual
variables to zero, we have established feasibility. Second,

to show optimality note that
✓
X⇤ 0
0 0

◆
is optimal for the

realification, and furthermore,
✓
X⇤ 0
0 0

◆
•
✓
Y ⇤ 0
0 Y ⇤

◆
= 0.

Lastly, to check nondegeneracy consider a symmetric

matrix M =

✓
M1 M2

MT
2 M3

◆
satisfying

0 =

✓
M1 M2

MT
2 M3

◆✓
Y ⇤ 0
0 Y ⇤

◆
(E5)

and

0 = M •
✓
Ai/2 0
0 Ai/2

◆
= M •

✓
0 Ai/2

Ai/2 0

◆
=

= M •
✓
Eij 0
0 �Eij

◆
= M •

✓
0 Eij

ET
ij 0

◆
.

(E6)

M1Y
⇤ = M2Y

⇤ = M3Y
⇤ = 0. (E7)

Furthermore, using (E6), from the third equation we get
M1 = M3, from the first one we get hM1, Aii = 0, and
from the second one hM2, Aii = 0. Summarizing, for all
k = 1, 2, 3 we have that

MkZ
⇤ = 0 and hMk, Aii = 0 (i 2 [m]).

As Z⇤ is dual nondegenerate, it has the property that,
for any M 2 Sn,

MZ⇤ = hM,Aii = 0 8i =) M = 0.

Putting everything together, we get M1 = M2 = M3 = 0.
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