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Abstract

We explicitly construct and classify all Jordanian solutions of the classical Yang-Baxter equation
on psu(2,2[4), corresponding to Jordanian Yang-Baxter deformations of the AdSs x S° super-
string. Such deformations preserve the classical integrability of the underlying sigma-model and
thus are a subclass of all possible integrable deformations. The deformations that we consider
are divided into two families, unimodular and non-unimodular ones. The former ensure that
the deformed backgrounds are still solutions of the type IIB supergravity equations. For the
simplest unimodular solutions, we find that the corresponding backgrounds preserve a number
N < 32 of supercharges that can be N = 12,8,6,4,0.
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1 Introduction

Recent years have seen an upsurge in the understanding of integrable deformations of two-
dimensional sigma-models, including their possible classifications and applications. Well-known
cases are TsT-transformations [1-3], Yang-Baxter deformations [4-9], and A-deformations [10-
12]. Major motivations for their study follow from developing a fundamental understanding of
integrable two-dimensional field theories, their relation with generalised worldsheet dualities, and
their prospect in generalising the AdS/CFT correspondence to non-maximally supersymmetric
cases whilst preserving the computational power of integrability (see e.g. the reviews [13,14]).
In particular, when the sigma-model describes the dynamics of a string then an integrable
deformation on its worldsheet will deform the target-space background destroying many of its
(super)isometries. Whether or not the deformed background will still solve the supergravity
equations of motion is now well-understood for large classes of deformations (see e.g. [15-20]).
This thus opens exciting possibilities for applications in particular to the canonical example of



the AdSs x S° string, with hopes to find deformations of N' = 4 super-Yang-Mills that remain
integrable in the planar limit [21].

In this paper, we will focus on a particular type of deformations, called Jordanian, which
belong to the homogeneous deformations of the Yang-Baxter class [8,9]. Homogeneous deforma-
tions are generated by a linear operator R that acts on the Lie (super)algebra of (super)isometries
g of an integrable sigma-model, and they preserve integrability if R is antisymmetric as in
eq. (A.2) of appendix A and satisfies the classical Yang-Baxter equation (CYBE) (see eq. (A.3)
of appendix A).! The CYBE admits a rich number of antisymmetric solutions, all of which will
lead to different deformed target-space backgrounds of the string sigma-model. These back-
grounds will be supergravity solutions when the R-matrix is unimodular [15,22,23], which is a
simple linear constraint on R, see eq. (A.7). When instead R is non-unimodular, they will solve
the modified (or generalised) supergravity equations identified in [24,25]. Within the homo-
geneous Yang-Baxter models, R-matrices of Jordanian type are built by identifying a bosonic
subalgebra of g constructed from a Cartan element h and a root e satisfying [h,e] = e. When
h and e are the only elements in its construction, the Jordanian R-matrix is of rank-2 and will
in fact be non-unimodular. However, it was found in [26] that at least some of these rank-2
cases can be extended to unimodular R-matrices by employing, next to h and e, also fermionic
generators (supercharges) of the superalgebra g in its construction.

Our focus on the homogeneous deformations of Jordanian type originates from several mo-
tivations. In general, homogeneous deformations generalise the well-known TsT (T-duality-
shift-T-duality) transformations [1-3] to the case where the subalgebra participating in the
construction of R is non-abelian [27]. For TsT, this subalgebra is abelian and corresponds to
the commuting isometries along which the T-dualities are performed. An important property of
TsT is that the corresponding deformed models with periodic worldsheet boundary conditions
can be reformulated as undeformed models with twisted worldsheet boundary conditions [2,3,28]
that are local. In the case of “diagonal” TsT-models, where the object causing the twisting is
diagonal, this has been crucial in the understanding of their spectral problem on both sides of
deformed AdS5/SYM by means of integrability methods [29-31]. Recently, the reformulation in
terms of a (local) twisted model has been achieved for generic homogeneous Yang-Baxter defor-
mations [32].2 In contrast to other options, it was found that the Jordanian R-matrices lead to
a twist that is always diagonalisable, and therefore one could hope to apply similar integrability
techniques that worked for TsT to tackle their spectral problem. This has been done success-
fully at the semi-classical level in [36] for a specific Jordanian deformation of AdSs x S® (which
corresponds to our Ry below with a = 0,6 = —1/2 and to Ry with a = 0,b = —1/2, q;m =0 for
its unimodular version).

In this paper, we will continue the study of string sigma-models deforming the canonical
AdSs x S° background® and therefore take g = psu(2,2|4). To diversify the applications of
Jordanian models, we will classify all antisymmetric solutions to the CYBE that are of Jordanian
type. This includes a classification of all canonical rank-2 Jordanian R-matrices as well as their
bosonic extensions. We will find that they are at most of rank-6. For all of the bosonic R-
matrices, we will explicitly construct only those fermionic extensions that ensure unimodularity
and thus a corresponding supergravity background that is well-behaved. We will pay particular

1For the inhomogeneous version, the antisymmetric R must instead solve the modified Yang-Baxter equation
[4-7].

2For earlier work giving a reformulation in terms of undeformed models with non-local twisted boundary
conditions see [33-35].

3 Although our main interest is in AdSs x S®, some of our results are useful to classify also deformations of
backgrounds AdS, x M with n < 5. In fact some of our R-matrices are constructed with generators of s0(2,4) that
are also elements of the isometry groups of AdS,,,n < 5, and therefore they can be used to generate corresponding
deformations.



attention to simplifying our results as much as possible, including the identification of equivalent
solutions, by means of inner automorphisms of g = psu(2,2/4).

The paper is organised as follows. We present a summary of our main results in section 2.
In section 3, we define Jordanian R-matrices including their bosonic and fermionic extensions,
as well as the unimodularity condition. This in particular identifies the necessary requirements
that the subalgebra used to construct the R-matrix has to satisfy. In section 4, we present
our classification of the bosonic rank-2 R-matrices. These results are summarised in Table 1
and 2. In section 5, we will construct their bosonic higher-rank extensions—which only exist
for certain rank-2 cases—summarised in the rest of section 2. In section 6, we then construct
all the fermionic extensions that ensure unimodularity. Again in many of the rank-2 cases, we
will see that they actually do not admit a unimodular extension, while all higher-rank cases do.
In section 7, we revive our string theory motivation, and identify for all possible unimodular
extensions of the rank-2 R-matrices the number of (super)isometries that are preserved in the
corresponding deformed supergravity background. The number of preserved superisometries is
summarised in Table 3, while the inclusion of bosonic isometries is presented in Table 6. We end
with some conclusions in section 8. Appendix A collects facts and conventions on homogeneous
R-matrices, including the corresponding deformed sigma-model, while appendix B collects our
conventions on the psu(2,2(4) algebra and presents the explicit matrix realisation that we used.

2 Summary of the results

For the reader’s convenience, in this section we present a summary of our main results. All our
results are presented modulo inner automorphisms of the algebra, or modulo transformations
that leave the R-matrix invariant. Inner automorphisms of the algebra map equivalent solutions
of the R-matrices to each other: from the point of view of the sigma model the two deforma-
tions would be related by field redefinitions, and from the point of view of the 10-dimensional
background by coordinate transformations.

The bosonic Jordanian R-matrices may be grouped by their rank. We find that we can have
bosonic Jordanian solutions of rank 2, 4 and 6. In the following we present the results for the
bosonic R-matrices and their unimodular extensions.

Rank-2

The simplest possible case is that of rank 2, with R-matrices of the form » = h A e. Here we
are using a notation to write the R-matrix that is reviewed in appendix A. In Tables 1 and 2
we collect all possible rank-2 R-matrices of s0(2,4). In Table 1 we list the ones that admit a
unimodular extension, while in Table 2 the ones that do not admit it. It turns out that only
R-matrices with e = pg + p3 or e = pg admit a unimodular extension.

Because we are interested in all possible deformations of AdSs x S°, in principle we can
always shift h and e by elements of the Lie algebra of the isometry group of S°. In other
words, given r = h A e we can always construct 7’ = h’ A ¢’ where h’ = h +1t,¢/ = e+ ty and
t; € 50(6) C psu(2,2]4) with [t;,ta] = 0. This option has the interpretation of applying first
a sequence of 3 TsT transformations along (t1,tz2), (h,t2), (t1,€e) (the relative order among the
3 TsT’s is inconsequential) followed by the Jordanian deformation r = h A et At the level
of bosonic R-matrices, also for higher rank we always have the option of shifting the s0(2,4)

“See e.g. section 3.1 of [37].



R h e residual Inn(so(2,4))
J12, D + Jos (and p1,pe if a =0 and b = —1;
(L+0b)D + bJos + aJi2 Po + D3 and Jy1 — Jig, Joo — Jog if a = b = 0;
and pg — p3, ko + k3 if b= —1/2)
2 %(D — Jo3) +aJi2 + a(po — ps3) Po + 3 J12,p0 — p3
3 —Jo3 + ap1 Po + p3 D1, P2
4 D + a(Jo1 — J13) Po + p3 Jo1 — J13, Jo2 — Jo3
5 | (D — Joz) + aJrz + b(ko + k3 + 2p3) | po + p3 J12, ko + k3 — po + p3
6 D+ alJio Do J12 (and Jig, Jog if a = 0)

Table 1: Rank-2 bosonic Jordanian deformations of the form r = h A e that admit a unimodular
extension. The convention is that the parameter o squares to 1 (a? = 1) and a,b € R are free.
In the last column we write the residual inner automorphisms in s0(2,4) that (together with
50(6)) leave h and e invariant. In those lists we omit e itself, which always corresponds to an
isometry.

h e
D + aJdys D1
D + a(Joz — J23) P1
D + a(po + Bp3) + BJos p1
—Joz +aD Jo2 — J23
—Jog + ap1 Jo2 — Ja3
—Joz — D + a(po + p3) Jo2 — Jo3
D — Jos apy + bpz + Jo1 — Ji3
D + CLJ12 P3
2D — Jos po — p3 + Jo1 — Ji3
D — Joz — 2aadi2 + a(ko + k3 + 2ps3) aps + Jo1 — Ji3

Table 2: Rank-2 bosonic Jordanian deformations of the form r = h A e that do not admit a
unimodular extension. The convention is that the parameters a, 3 square to 1, (a? = 8% = 1),
and a,b € R are free.

elements by elements of s0(6), so we will not repeat this discussion. Importantly, the unimodular
extensions will be affected by these possible s0(6) shifts, but we will not analyse this further.

Going back to the rank-2 solutions of Table 1 that admit a unimodular extension, in the
last column we list the inner automorphisms of s0(2,4) that are residual isometries under the
deformation and that leave h and e invariant. It turns out that this information is useful also to
simplify as much as possible the unimodular extensions of these rank-2 solutions. In particular,
a unimodular R-matrix will be of the form

{
r=hAe—(QAQ +QAQ), (2.1)
where Qj, i = 1,2 are odd elements of psu(2,2|4) of the form
Q = 610, Q5" + 60,92, (2:2)

where Q¢¢ = Q7" + e (3, and qiia . are real numbers. We refer to appendix B for our conven-
tions on psu(2,2|4).

It turns out that the unimodular extensions of rank-2 solutions come in three types. First
we have Ry, Ro, R3, R4, Rs as unimodular extensions of the corresponding bosonic R-matrices
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R1, Ry, R3, R4, R5. This type of extension works only if there is no Ji2 in h, so that one has to
set a = 0in Ry, Rs, R5. We find that we can set to zero all coefficients qiia ., except three of them

that satisfy
1 _ 1
4y = Ne (¢322)° + (G21)* = 3 (2.3)

Notice that this solution admits one continuous parameter. It is a physical parameter, in fact
when q;r 99 = 0 there is an enhancement of the number of superisometries.

We then have the second type of extension, that can be constructed when there is a non-
trivial contribution of Ji2 in h. That means that we assume a # 0 in R, Rs, Rs and construct
the unimodular R-matrices Ry/, Ry, Rs/. In this case all coefficients qiim can be set to zero

except two of them
_ 1

Taking the a — 0 limit one recovers the previous type of extension with the extra condition
q;, 99 = 0.

~ Finally, R with e = pg stands out on its own. It admits the last type of unimodular extension
Rg where all coefficients are 0 except

1
- o =
1,11 = 4211 = 4120 = —d222 = 9" (2.5)

In Table 3 we summarise the number of superisometries that are preserved in the deformation
for each of the unimodular extensions of the rank-2 R-matrices. A table that includes also the
residual bosonic isometries is given in the main text, see Table 6.

R conditions supercharges
a=20 0
1 a=0,b=-1/2 8
a=0,b=—1/2,q54,=0 12
N a##0 0
9 a=20 4
a=0,q59y=0 6
2’ a#0 0
3 — 0
4 — 0
5 a=20 0
5’ a#0 0
6 — 0

Table 3: The number of independent supercharges T'; € psu(2,2|4) that satisfy adr, R = Radr,
for the unimodular extended rank-2 Jordanian R-matrices of the form r =h Ae— 5(Q1 A Q1 +
Q2 A Q2). Such elements represent superisometries of the deformed supergravity background. If
a parameter is not specified, it is assumed to be generic (modulo constraints such as (6.21)).

Rank-4

Higher-rank bosonic Jordanian R-matrices can be constructed only in the case of e = pg + ps.
Rank-4 solutions are of the form » =h A e+ ey Ae_, they are all listed in Table 4 and they all
admit a unimodular extension.



R h (SR e_
7 (1+06)D + b Jos ap1+p2 Jo23
8 3D — 2Jos ap1 + p b (po — p3) + Jozs
) b_pa + d_jo23
9 Lep_ g b d :
5 ( 03) P1+ 04p2 4 dyjo23 +(1 —bpd_ +b_dy)jors
10 —Jo3 + ap; — J023 apy + p2
11 D + ajois D2 ajo1s + Jjo23
T
=(D — J(]g) + aJio . 1 .
12 2( _1 _
199 (ko + k3 + 2p3) p1 + @ jo2s 5(ap2 — jo13)

Table 4: Rank-4 bosonic Jordanian deformations of the form » = hAe+e Ae_. In all these cases
we have e = pp+p3. To save space we are using the shorthand notation j,,, = Ju—Jy,. All these
R-matrices admit unimodular extensions, with no further restriction of the above parameters.
When we have the parameter «, it is assumed that o®> = 1, while all other parameters with latin
letters are free real numbers.

The unimodular extensions of these R-matrices are constructed with 4 (rather than just 2)
odd elements of psu(2,2|4)

r:h/\e—l—e+/\e_—%Z(Q'l/\Q|1+Q|2/\Q|2)7 (2.6)
1=1,2

where we added a label | = 1,2 and we still take
Q) = g1, Q5" + g7 00, Q" (2.7)

The unimodular extensions of R7, Rg, Rg, R1g, R11 are of the same type and can be taken as
follows. The coefficients for Q% and Q% can be simplified as in the extension R;, meaning that
we can set 1 1
+,1 +,1\2 —1\2 _
121 T 5 (42.39)” + (42.51)° = 5"

For Q% and Q3 we can have in principle 7 non-trivial parameters turned on, satisfying the

conditions (6.14) and with the extra choice of qli’ ’224 =q ’223 = qfrzf =0.

q (2.8)

The result for the unimodular extension of Rjs is simpler to present, because all coefficients
can be set to zero except

1
-1 +,1 -2 +,2
Q121 = —9221 = 4122 = —d222 = ﬁ ‘ (2.9)

Notice that there is no continuous parameter left in the odd elements used to construct this
R-matrix.

Rank-6

There are two possible types of rank-6 bosonic solutions. They are of the form r = hAe+ef1 A
e_1 +eira Ae_o and in both cases

h=(1+b)D + bJoys, e = po + p3- (2.10)

The first option is to take
Ri3: eqf1 =ap1 +pa, e_1 = Jo2 — Jo3, er2 = 1, e_o = Jo1 — Jiz — a(Joz2 — Jo3).
(2.11)



The second option is to set

Riy: b=—, €+ = G+aP1 + b+aP2 + C+a Jo13 + d+a Jo23, (2.12)
while imposing the conditions

at1C+2 + by1dio — biodiy — aroce =0,
a+1Cx2 + b:t]_d:FQ — b:,:zd:tl — GFaC4] = 0, (2.13)
A4aCatbiad g —a_acia—boadia=1, a=12

The unimodular extensions of rank-6 solutions are constructed with 6 odd elements of the
superalgebra

.3
(3
r=hheteNet+ennes—=> (QAQ +QAQY). (2.14)

2
I=1

The coefficients must again solve the constraints given in (6.14). For Q11 we may again simplify
the solution to (2.8), and for Qi2 we can set qf ’224 =q, ’223 = qgf = 0. We were not able to simplify

the other coeflicients further.

3 Extended Jordanian R-matrices

Given a Lie superalgebra g, we identify a Cartan element h and the generator e of a positive
root. Both of them will be of even grading (i.e. deg(h) = deg(e) = 0), in other words they belong
to a standard Lie algebra. The assumption is that h and e span a subalgebra of g with

[h,e] =e. (3.1)

When this is the case, they identify a so-called “Jordanian solution” of the classical Yang-Baxter
equation that is given by
r=hAe. (3.2)

We refer to appendix A for our conventions on R-matrices.

Given a Jordanian R-matrix as above, it is possible to construct “extended Jordanian”
solutions following Tolstoy [38]. The extra ingredients are N pairs of generators in g that
we will denote as {e;,e_;} with i = 1,..., N, where e; (resp. e_;) corresponds to a positive
(resp. negative) root. These extra generators may be of even or odd grading, but they must
satisfy deg(e;) = deg(e_;). Moreover, the following graded commutation relations must hold®

[eii, e] = 0, [h, eﬂ] = (% + Ei)eii, [[ek, el]] = 5]@’_5 €, (3.3)

with & > 1 € {£1,42,...,£N} and & € C. Here [[,]] denotes the graded commutator, see
appendix A. The N-extended Jordanian R-matrix is then constructed as

N
r:h/\e—Ze,i/\ei, (3.4)
i=1
where we used the graded wedge product®
aAb=a®@b— (—1)de@)de®) g, (3.5)

5Compared to [38] here we use the parameter & which is related to the parameter ¢ as t = % —&.
5The definition implies that if a, b are even then a A b = —b A a while if they are odd aAb = +b A a.



See eq. (A.4) to map r to a matrix R!/, with I,.J = 1,...,dimg.

As already noted in [15], using the above graded commutation relations, one can straight-
forwardly check the unimodularity condition (A.7) (which, we recall, gives rise to supergravity
backgrounds) for a generic N-extended Jordanian R-matrix, obtaining

RY([Ty,T)])] = 2(—1 — Ny + Ny)e, (3.6)

where Ny, N1 are respectively the numbers of even and odd extra pairs of generators, so that
No + N; = N. Unimodularity (A.7) then implies Ny = Ny + 1. Starting from a Jordanian
R-matrix of the form r = h Ae, a minimal extension that makes it unimodular will therefore be

r=hAe—e;Ne_, (3.7)
with both ey of odd grading (i.e. deg(e+) = 1, so that Nop = 0, N; = 1) and
lex,e] =0,  [hed=(5+8es, {er,e-}=e¢ (3.8)

with £ € C. In view of later calculations, we find it convenient to redefine these odd elements as

Q1= \}i(e+ —ie_), Q2 = \}i(ieJr —e_), (3.9)

so that the (anti)commutation relations become

[Qi,e] =0, h, Q] =1Qi — £ Q;, {Qi, Q} = —idje, (3.10)
with i,j = 1,2, € = i¢ and the antisymmetric tensor e1o = —eo; = 1. In this basis the R-matrix
reads .

i
r:h/\e—§(Q1/\Q1+Q2/\Q2). (3.11)

In the rest of the paper we will construct bosonic (i.e. N; = 0) extended solutions with Ny = 0
(i.e. the standard rank-2 case constructed above), with Ny =1 (i.e. rank-4 bosonic R-matrices)
and with Ny = 2 (i.e. rank-6 bosonic R-matrices), and we will find that Ny > 2 is not possible.
We will show that some R-matrices with Ny = 0 and all of those that we construct with
Ny = 1,2 admit also unimodular extensions (with N3 = Ny + 1). In the generic case, we prefer
to rewrite (3.3) in terms of e1, for the even pairs in the extension with labels a,b = 1,..., Ny,
and Q! with i = 1,2 for the odd pairs in the extension with labels I, J = 1,..., N;. The relations
then read

leta,e] =0, [hera] = (5 + éa)?ia, leta,e_p] = dabe, leta,e4p] =0, (3.12)
[Qi,e] =0, h, Q] =3Q — ;€' Q;,  {Q,Q} = —i6"5je,  [Q],exa] =0,
and the r-matrix will be
2l i Rl o LA
rzh/\e+;e+aAea—2§(Q1/\Q1+Q2/\Q2). (3.13)

In order to respect the reality conditions of g and, in our case, to generate real deformations of
the AdSs x S° background, we need to restrict the free parameters of the above relations to be
real, &, & € R. We refer to appendix A for more details.



4 Classification of the non-extended solutions in so(2,4)

Our first task is to obtain the classification of all rank-2 (i.e. non-extended with Ny = N7 = 0)
Jordanian solutions of the conformal algebra’ s0(2,4) C psu(2,2/4). In other words, we are after
all the inequivalent choices of h and e among the elements of s0(2,4) that satisfy [h,e] = e.
Two choices {h,e} and {h’, &'} are said to be equivalent if there exists an inner automorphism
of 50(2,4) that relates them, i.e. if there exists an element f € SO(2,4) such that h’ = f~'hf
and ¢ = f~lef.

From the point of view of the classification of the deformations of AdSs x S°, modding out
by inner automorphisms is justified by how the R-matrix enters the action of the deformed
o-model, see (A.6). In fact, R appears in the linear operator O = 1 — nRch : g — g, where
R, = Adg_1 RAd,. In the undeformed model, multiplication of the supercoset representative
g € G from the left by a constant element f € G corresponds to an isometry of the target-
space background. In the presence of the deformation, under a left multiplication we have
invariance of the o-model action (A.6) up to a possible change of the R-matrix itself as R —
Ad]?1 RAdy. Therefore, the group of isometries is reduced to the subgroup of G' that leaves

R invariant (i.e. R = AdJI1 R Ady). Nevertheless, when f does not correspond to an isometry
because it does not leave the R-matrix (and therefore the action) invariant, multiplication by
f amounts to just a field redefinition of g, which is simply a different language to describe the
same physics. Conversely, when two different deformations are generated by R and R’ related as
R = AdJT1 R Ady, then it is enough to identify ¢’ = fg to conclude that the two deformations

are physically equivalent. Notice that when R’ = Ad;l R Ady, then the relation between the

Lie-algebra elements is implemented precisely by the adjoint G-action T} = AdJI1 T7, a fact
which justifies the definition of equivalence for the choices {h,e} and {h’,&'}.

According to the previous discussion, we must obtain all the embeddings of {h,e} in s0(2,4)
modulo inner SO(2,4) automorphisms. To do so, we will follow a strategy that was already
used in [15] to classify all the inequivalent rank-4 unimodular bosonic R-matrices of s0(2,4).
First, we notice that the 2-dimensional algebra generated by h and e is solvable. In [39] it
was proved that all solvable subalgebras of s0(2,4) must be subalgebras of one of the maximal
solvable subalgebras® of 50(2,4). The algebra s0(2,4) has two non-abelian maximal solvable
subalgebras® which, following [15], we take as

s1 = span(p;, Jo1 — Ji13, Joz — J23, Jos, Ji2, D), (4.1)

s = span(po + p3, P, p2, Jo1 — J13, Joz — Jas, Ji2, Jos — D, ko + k3 + 2p3) - .
Let us stress that also the identification of s1 and s9 is provided only up to inner automorphisms
of 50(2,4). That means that other choices are possible but they are all physically equivalent.

At this point we only need to find all the possible embeddings of the algebra generated by h
and e in either §; or so, up to automorphisms generated by SO(2,4). This task can be performed
systematically by first identifying all possible embeddings of e up to inner automorphisms. The
reason to single out this element first is that it is the only one that appears on the right-hand-
side of the commutation relation. All such possible embeddings of e were already worked out
in [15] and we recap them in Table 5.

"The algebra spanned by h, e is non-compact and thus nor h nor e can be an element of s0(6) C psu(2,2/4).
Nevertheless, as mentioned in the previous section, h and e can be shifted by s0(6) elements and the classical
Yang-Baxter equation will still hold.

8See the corollary at the end of section I1.B of [39].

9See the results of section ITL.D of [39] for the group SU(2,2) which is locally isomorphic to SO(2,4), as
well as [40]. Notice that we are ignoring the maximal solvable subalgebra so because it is abelian. Moreover,
following [15], we swap the definition of s1 and s2 compared to [39].



51 59
(1) m (1) m
(2) Joz — Jas (2) po+ps
(3) p1+ Jo2 — Jo3 (3) api+bp2+ Jo1 — Jis
(4) Po
(5) ps
(6) po+ p3
(7) po—p3+ Jo1 — J13

Table 5: All the possible inequivalent embeddings of e in the two non-abelian maximal solvable
subalgebras of s0(2,4), up to inner SO(2,4) automorphisms. In option (3) of s3, a and b are
two real parameters.

After fixing a choice for e, it is a matter of imposing the commutation relation [h,e] = e
to find h as well. After doing so, one must act again with inner SO(2,4) automorphisms in
order to remove as many free parameters as possible, and therefore identify all the inequivalent
embeddings of h. In the following, when saying that we use an automorphism generated by x €
50(2,4) we mean that we implement the transformation h — e~*he® and e — e~ *ee”. Given that
the procedure assumes that the choice for e is fixed, we will only consider transformations that
leave e invariant (e~ "ee® = e) or at most that they rescale it by an overall factor (e *ee” = ce)
because that can be reabsorbed by the redefinition of the deformation parameter in the action.”
In general, note that in h we can never remove contributions from the last three generators of
51 and s9, because these generators never appear on the right-hand side of the commutation
relations of these subalgebras of s0(2,4).

We will describe in some detail the calculations for the first example, and we will summarise
as briefly as possible the remaining ones.

4.1 Embeddings in s,
(1) e=p1

In order to identify h one starts from the parameterisation of a generic element of s; and one
takes for example h = a'p; +B(Jo1 — J13) +7(Jo2 — J23) + o3 + €12+ AD with all the coefficients
beaing generic real parameters. After imposing [h, e|] = e, one finds that some of the parameters
need to be fixed to special values. In particular we find h = D + o'p; + v(Jo2 — J23) + 6Jo3.
At this point we can act with inner SO(2,4) automorphisms to further reduce the number of
physical parameters. This is what we will explain in the following.

First of all, if § # +1, then all contributions with p; in h can be removed by acting with an
automorphism generated by x = ¢'p; with ¢* € R. In fact, after noticing that e"*ee® = e, one
finds that

e %he® =D+ (& —yc® — 62 4+ a®)po + (¢F + aM)p1 + (2 + o — v + 7¢)py

(4.2)

+ (03 +ad - ’)/62 — (500)])3 + v(Jog — Ja3) + 6Jo3,
so that to remove the contribution of py it is enough to set ¢; = —a1. Removing the contributions
with pg, p2, ps is more delicate: one needs to impose a system of 3 linear equations for the 3

unknowns ¢, ¢2, ¢3. The determinant of the matrix associated to this linear system is det = 1—42.

10This transformation, in fact, leaves [h,e] = e invariant. One could consider also e — e 4 ch, but it would
generate new (non-physical) parameters rather than reabsorbing them.
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Therefore, if we assume that § # +1 we can remove all contributions with p; as anticipated above.
At this point, an automorphism generated by x = ¢(Jyp2 — Ja3) is able to remove also Jya — Jos,
at the extra condition that & # 0. Notice that if § = 0 and v # 0, then we can still set it to £1
by acting with x = c¢Jps.

If § = 1, instead, after removing p1 by = = c!pi, we can also remove Jyp — Jog by = =
c(Jo2 — Ja3) because now we are sure to satisfy the condition 0 # 0. A further action with
x = c'p; (with ¢! = 0) allows us to remove ps and py — p3 from h, but not necessarily po + p3.
If not 0, the coefficient in front of pg + ps can be set to +1 by © = ¢D. If § = —1 then the
reasoning is similar, but with the role of py — p3 and pg + ps interchanged.

To recap, we have the following 3 inequivalent possibilities:

1.1.a: h=D + §Jos3,
1.1b: h=D+~(Joz — Jo3), with 42 =1, (4.3)
1.1.c: h= D+ apy + dp3) + 0.Jo3, with a? = 6% = 1.

(2) e=Joz — J23

Generically we may have h = a™(pg +p3) + a'p1 + B(Jor — J13) +7(Jo2 — Jo3) + AD — Jo3. First,
we can remove both Jo; — Ji3 and Jog — Joz by @ = ¢! (Jo1 — J13) + c(Jog — Ja3). If A # 0 and
A # —1, then we can also remove pg + p3 and p; by = = ¢t (pg + p3) + c'p1. If A = 0 we can
remove po + p3 but not necessarily pi, and the coefficient of the latter (if not 0) can be set to
+1 by z = ¢D. Similarly, if A = —1 then we can remove p; but not necessarily pg + ps3, and the
coefficient of the latter can also be set to 1.

To recap, we have the following 3 inequivalent possibilities:

1.2.a: h=—-Jys+ AD,
1.2.b: h=—Jog+ ap;, with o? =1, (4.4)
1.2.c: h=—Jys — D + a(po + p3), with a?=1.

(3) e=p1+ Joz — J23

Generically we may have h = D —Jos+a™ (po+p3)+alpy +B(pa+Jo1 — Ji3) +7(Jo2 — Jo3). First,
we can act with an automorphism generated by = = ¢(p2 + Jo1 — J13) to remove the contribution
proportional to . Similarly, acting with z = ¢p; will remove p;, with = = ¢(Jpa — Ja3) will
remove Jo2 — Jog and with x = ¢(pg + p3) will remove pg + ps3.

In this example, therefore, there is only one possibility, namely

h=D— Jgs. (4.5)

(4) e=po

We must start from h = D + eJi9 + o'p;. Acting with 2 = ¢’p; we can always remove all the p;.
The contribution with Jis, instead, cannot be removed and we have only one possibility

h=D + eJps. (46)
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(5) e=ps

As in the previous example, we have h = D + e€J15 + o'p; and all contributions with p; can be
removed with & = ¢'p;. We therefore have only one possibility

h=D+ eJqo. (47)

(6) e=po+p3

In general we have h = o'p; + 8(Jo1 — J13) + v(Jo2 — J23) + 0Joz + €Ji2 + (6 + 1) D. If at least
one of the two parameters d, e is non-vanishing (i.e. if 62 + €2 # 0) then we can remove the
contributions with J01 — J13, J02 — J23 with x = Cl(J()l — J13) -+ C2(J02 — J23). If we further
assume that § # —3 and that (§ + 1)? + €2 # 0 then we can also remove all p; with z = ¢'p;.

If instead 6 = —% we can remove all p; except the combination py — p3, whose coeflicient
may be set to +1 with x = ¢D.

Another scenario is § = —1 and € = 0. We can remove pg, p3 but not pi,ps with = = c'p;.
Nevertheless, if both p;,ps are present, we can remove one of them by = = cJj2, and set the
coefficient of the remaining one to +1 by z = ¢D.

Finally, if 6 = 0 and € = 0 then we can act with © = cJy2 to remove, for example, Jps — Jos.
After doing that, we can always remove all p; by z = ¢*p;. At this point, it is possible to rescale
the coefficient of Jy; — J13 by = = ¢Jys.

To summarise, we have in total 4 possibilities:

1.6.a: h=(6+1)D + 0Jo3 + eJra,

1.6.b: h=3(D — Jo3) + €Ji2 + a(po — p3), with a® =1,
1.6.c: h=—Jog+ ap;, with a? =1,

1.6.d: h= D+ a(Jo — Ji3), with o® = 1.

(7) e=po—p3s+ Jo1 — Jis

We start from h = 2D — Jo3 + ™t (po + p3) + a?p2 + B(Jo1 — J13) +v(Joz2 — J23). We can remove
Jo1 — J13, Jog — Jag with @ = ¢! (Jo1 — J13) + c2(Joz2 — J23), p2 with 2 = cpa and py + p3 with
x = ¢(po + p3). Therefore, we only have one possibility

h = 2D — Jos. (4.9)

4.2 Embeddings in s»
(1) e=p1

We start from the parameterisation of a generic element of s, namely h = ot (pg + p3) +a'p +
o?pa + B(Jo1 — J13) + v(Joz — J23) + 6(Joz — D) + €1z + A(ko + ks + 2p3). After imposing the
commutation relation [h,e] = e we find h = D — Joz + ™t (po + p3) + alp1 + a?pa +v(Joz — Jo3).
We can remove the contribution with Jys — Jog by acting with an automorphism generated by
x = c(Jog — Jag). After that, we can remove all p; by = = ¢t (pg + p3) + c'p1 + c2p2. Therefore,
we simply have

h =D — Jys. (4.10)
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Actually this solution is the same found in case (1) of the s; embedding. This simply means
that the algebra that we are considering is a subalgebra of both s; and sa.

(2) e=po+p3

We have h = %(D—Jog)-i—a"‘(po-i—pg)-i—ozlpl +a?pa+B(Jor —J13) +7(Joz — Jo3) +eJra+ A (ko + k3 +
2p3). We can remove the contributions with Jo; —Ji3, Joo—Jo3 by = ¢! (Jo1 —J13) +c2 (Joz— J23),
and similarly the contributions of pg + ps, p1, p2. Therefore we have

h=3(D — Jo) + eJ12 + Ako + k3 + 2p3). (4.11)

(3) e=ap1+ bpa + Jo1 — Jis

Here we need to distinguish different cases. If a® —b% 4+ 1 # 0 or if ab # 0 then we have
h =D — Jo3s+aT(po+ps) + (aB + by)p1 + a?pa + B(Jo1 — Ji3) + v(Joz — Jo3). Now acting with
x=ct(po+p3) +ctpr +cpa + cg(Jo1 — J13) + ¢y (Jo2 — Jo3) we can remove all free parameters

and have just
2.3.a: h=D — Jps. (4.12)

On the other hand, if @ = 0 and b = 1 (which is the only real solution of the system a? —b?>+1 =
0 and ab = 0) then we have h = D — Jo3 + ot (po + p3) + yp1 + a’py + B(Jo1 — J13) + v(Jo2 —
J23) F 2AJ12 + A(ko + k3 + 2p3). At this point we can act with = = ¢ (pg + p3) + c'p1 + c2p2 +
cg(Jor — Ji3) + cy(Jo2 — J23) to remove several parameters and be left with only

23.b: h=D — Jog F2AJ12 + Mko + k3 + 2p3). (4.13)

5 Classification of the (bosonic) extended solutions in s0(2,4)

The reasoning followed to classify the rank-2 solutions in s0(2,4) can be applied also to find
extended (i.e. higher rank) bosonic Jordanian R-matrices. In fact, according to the commutation
relations given in (3.3) or (3.12), the N-extended algebra is also solvable, and if we want it to
be a subalgebra of s0(2,4) it must again be a subalgebra of either s; or so. Here we use this
observation to classify the extended (higher-rank) Jordanian R-matrices. The strategy is to start
from the classification of the rank-2 solutions of the previous section and construct elements e,
that satisfy (3.12) with a given h and e up to inner s0(2,4) automorphisms that now leave both
h and e invariant.

It turns out that for most choices of e € s; it is not possible to identify two elements e, e_ € s;
that commute with e and that satisfy [ey,e_] = e. We therefore conclude that in those cases it
is not possible to construct bosonic extended solutions. We find that it is possible to construct
such solutions only when e = pg + p3. This option shows up both in 51 and s,, and because it
is a subset of the rank-2 solutions admitting a unimodular extension of Table 1, we will refer to
the names used in that table. Table 1 also summarises the inner s0(2,4) automorphisms that
we can exploit. When constructing the extended solutions we will refer to the names used in
the summary of results of section 2.
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5.1 Bosonic extensions in s;
No=1
Let us first try to construct an extension with Ng = 1. We start from
ex = abpi + B+ (Jor — J13) + 7v2(Joz — J23) + 0(D + Joz) + ex 1o, (5.1)

since these commute with e = pg + p3. After imposing by brute force the relations in (3.12)
with h given in R; of Table 1 (i.e. case 1.6.a of (4.8)), we find that for { generic we can have
the following solution!!

5:5_%, e =0, (= h=(140)D +dJo3),

- _ (5.2)
er =&y =ap1 +bpo, e =e_ =c(Jo1 — J13) + d (Jo2 — Ja3),
where the free (real) parameters are constrained to satisfy
ac+bd=1. (5.3)

We may actually act with an automorphism generated by a Jj2 rotation and remove the de-
pendence on one of the above parameters. Without loss of generality'? we may set for example
¢ = 0, so that the quadratic condition reduces to d = b~!. At this point, we can act with an
automorphism generated by D + Jpz which allows us to set b = +1. Taking into account that
the transformation ey — c*les for any ¢ € R is an automorphism of the algebra and leaves the
R-matrix invariant, we can effectively set b = 1. This is the solution R7 in Table 4.

When f takes some special values, the solutions for e; can be slightly more generic. First
we find!3

A 1
1 2 1
=1 §=--, =0, (= h=2D-1jy),
£=5% 37 € ( 3D —5J03) (5.4)
e_:f(po—p3)+é_, e+:é+’

still subject to the constraint (5.3) and with the parameter f € R free. As done previously, we
can set ¢ = 0 by Jig, then b = +1 by D + Jys, and then send ey — b*le, yielding Rg in Table 4.

Second, we also have the option

£=0, 5:—%, e=0, (= h=2iD-Jy)),
ey = ayp1 +bipe + ¢y (Jor — J13) + dy (Joz — Ja3), (5.5)
e =a-p1 +b_ps+c_(Jo1 — J13) + d_(Joz — Jo3z),
with the more general constraint
ayc_ +byd_ —a_cy —b_dy =1 (5.6)

"' Notice that (3.12) is symmetric under the transformation .fa — —fa and e4, — fez,, so that in principle we
also have the solution with § = ,é — %, e=0and e =€_, e. = —e;. We do not consider these as independent
solutions because they only amount to a redefinition of the basis of the algebra. In fact, the R-matrix is unchanged
under the transformation e+, — fer,.

12Because of the condition (5.3) we cannot have at the same time ¢ = 0 and d = 0.

BAs already remarked, the relations in (3.12) are symmetric under éa — —éa and e+, — tex,. Therefore we
have also solutions obtained by this transformation, namely with f = —% and é = —%. These are not independent
solutions, see footnote 11. In principle, we also find additional solutions with either ey or e_ containing a
contribution proportional to po + ps, but this can be shifted away by an automorphism, so that the solution
reduces to a special case of Ry.
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For this constraint to admit a solution, notice that either e, or e_ must have a p; with non-
vanishing coefficient, and the other must have Jy; — J;3 with non vanishing coefficient. For
definiteness, let us assume that a4 # 0 and c¢_ # 0. The other options are obtained by applying
the symmetries e+ — der or 1 « 2 of the spatial indices 1,2, that give rise to equivalent
solutions. As we can see in Table 1, in this case h and e are invariant not only under the action
of D + Jys and Jq2 but also pg — p3 and kg + k3. It should be possible to use the last 3 of these
generators to set ¢, = by = b_ = 0, so that the quadratic constraint reduces to c_ = ajrl. After
that, using D + Jy3 one could set ay = +1. In other words, we believe it is possible to reduce
this case to

£=0, 52_; e=0, (= h=3(D~Jo3)),
ey = apy + dy(Jo2 — Ja3), (5.7)
e_ =a_p1 + a(Jo1 — J13) + d—(Jo2 — J23), with o2 = 1.

However, it is quite subtle to make sure that setting ¢, = b4 = b_ = 0 is possible for all values

of the initial parameters a+,by,ct,d+. In fact, one may worry about possible singularities
for special values of these parameters. The actions of the generators Jio,pg — p3, ko + k3 mix
non-trivially, and this makes the analysis more complicated. For this reason, the solution Ry
in Table 4 is presented without the maximal simplification by automorphisms. We simply set

c4+ = 0 by means of kg + ks, then set a; = +1 thanks to D + Jys and finally send eL — afei

The calculations to identify the possible Ny = 1 extensions of Ry (i.e. the case 1.6.b in (4.8))
1

are similar to the above ones (when setting é = 0,6 = —3). However, no solution is possible
because py — p3 does not commute with Jy; — J13 and Jyo — Jo3, and therefore Ry does not admit
a bosonic extension. Also the calculation for Rs3 (i.e. case 1.6.c) is similar to the ones above
(now setting 6 = —1) and we can obtain the solution Rjg of Table 4 by borrowing the extension
Ry (before removing any parameter by conjugation) at the condition that we further set ¢ = 0
in e_ (because of the extra contribution of p; in h). Similarly, R4 (i.e. case 1.6.d) admits an
extension as in Ry at the condition of further setting @ = 0 in €4, giving rise to the solution Rq;.
Note that, both in the case of R19p and Ry1, Ji2 and D + Jy3 do not commute with h. Therefore,

one can not use these to remove and rescale parameters.

No =2

Using the above results, we can check that it is possible to construct also extended bosonic
Jordanian solutions with Ny = 2. In particular, for generic £ we can start from R7; and construct
the solution'*

Riz:0=£-1 e=0, (= h=(E+HD+ (€~ 1)),

_ _ (5.8)
€ya = €13 = aap1 + bapo, e_y =€_5 = ca(Jo1 — J13) + da(Jo2 — Jo3),
with the simultaneous conditions
ascy + bady = 0, aica + bids = 0, asCa +bady =1, a=1,2. (59)

Using the automorphism generated by a Jis rotation we can set for example ¢; = 0 which then

implies by = 0 and dy = 1/b1,ca = 1/ag,d2 = —ay/(braz). Moreover, using D + Jp3 we can

set by = +1 and finally taking into account that also the transformation e4, — ctlei, is an

141n principle each pair {e+a,e a} may come with its own coefficient §a, but ¢ is already constrained to be
6= :I:f — % which implies that §1 «52 5 We could in fact combine different solutions related by 5 — § but
they would be equivalent to those that we write here.
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automorphism of the algebra (and leaves the R-matrix invariant) we can simply set ag = 1. This
gives the solution Rj3 of section 2.

It is not possible, instead, to construct an extended solution from Rg because pg—ps does not
commute with Jy; — Ji3 nor Jgo — Jog. Therefore we cannot construct two linearly independent
elements e_1,e_y unless they both have a vanishing coefficient in front of pg —p3 (fa = 0), which
then reduces to the previous solution. Finally, from Rg9 we can construct the following extended
solution

y 1
R14:€=O, 52—5, 6:0, (:> h:%(D—Jog)),

€+a = A4aP1 + b+ap2 + cxa(Jo1 — J13) + daa(Jo2 — Jo3),

(5.10)

with the 6 constraints

at1C+2 + bi1dio — byodi1 — arocy =0,
ax1Cx2 + bridys — byadiy — azacer =0, (5.11)
(aCa+biad g —a acia—badia=1, a=12

These are all the options for extended solutions with Ny = 2. It is not possible to construct
them from R3 and Ry (or equivalently Rjy and Rj1) because the extra condition of not having
either Jp; — J13 or p1 in e4, implies that there would not be enough linearly-independent vectors
to construct the full solution.

For a similar reason, it is obviously not possible to construct extended solutions with Ny > 2.
There would not be enough linearly-independent vectors to construct the pairs {e;a,e_a}.

5.2 Bosonic extensions in s,
Nog =1

To understand whether we can construct a bosonic extension in this case, we proceed as before
starting from

e = o (po+ps)+adpi +adpa+ By (Jor — Ji3) +ve (Joo — Jos) +ex Jio+Ax (ko + k3 +2p3), (5.12)

that commute with e. We notice that this is a slight modification of the calculation done for
the embedding in s1: first there is no combination py — p3, and second there is an additional
contribution of kg + k3 + 2p3 both in e1 and in h. In order to find a bosonic extension to this
solution that is new compared to what found in s;, we must therefore have A # 0in h or Ay # 0
in ey or A_ in e_ (or more than one of these possibilities simultaneously). We find that it is
possible to construct extended solutions of this kind at € = 0 if we set A = +5 in (4.11) and if
we take
ey = aqp1 +bips Fbi(Jor — J13) = ay(Joz — Jos),

(5.13)
e_ =a_p; +b_py Fb_(Jo1 — J13) £ a_(Jo2 — Jo3),

with the condition
a+b, — (Ifb+ = :F%, (514)

where the signs are correlated to the choice of sign in A = +5. Note that to have a genuinely
new extension (compared to the embedding in s§1) we must assume € # 0. Although both
ko + k3 — po + p3 and Ji2 leave h and e invariant, we can remove only one parameter by their
actions (because it turns out that there is only one non-trivial parameter when applying the
two actions simultaneously) and we decide to set by = 0. Then the constraint is solved just by
b_ = :Fi' Nevertheless, we can always shift e_ by a quantity proportional to ey, given that at
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the level of the R-matrix the contribution of this extra shift drops out because of antisymmetry
of R.15 Therefore, the contribution proportional to a_ produces no effect, and we can just set
a_ = 0. This is the solution Ry in Table 4.

In this case it is not possible to construct bosonic extended solutions with Ny > 1. There
are simply not enough parameters to satisfy all needed conditions.

6 Classification of the unimodular solutions in psu(2,2|4)

In this section we address the question of whether it is possible to extend the bosonic Jordanian
solutions constructed above to obtain unimodular solutions. As recalled in section 3, we should
add Nj pairs of odd generators from psu(2,2[4) with N; = Ny + 1, where Ny is the number of
extra bosonic pairs of generators in the bosonic extension.

We will construct odd elements as linear combinations of the supercharges of psu(2,2/4)
Q=q-Q+q Q+s-5+5 5. (6.1)

Here we are using a simplifying notation where the dot product means that the indices of the
supercharges are assumed to be in their canonical position Qqq, Q" 5, 5%, and are contracted
by complex coefficients ¢, q, s, 5 (where we omit the obvious |, i indices for simplicity) with Lorentz
and R-symmetry indices in appropriate positions.'® Importantly, we will demand that the odd
elements Q! satisfy the standard reality conditions of psu(2,2(4), namely (Q))T+ HQH~! = 0, see
appendix B for more details. Given that the supercharges that we are using for the superalgebra
basis are not real and satisfy (B.25) instead, this implies that the complex coefficients ¢,q, s,
must be such that

(qaa)* _ _60465(117661)’ (saa)* _ _6a65ab§ﬂb7 (62)
where the star is the complex conjugation.!” In total we therefore have 32 real coefficients for
each Q!. Alternatively, we may define the real supercharges!'®

Q% = Q™ £ 5% Qg, S%a= 8% £ 75,55, (6.3)
and rewrite

Q=g Qi +ig -Q +sT-S +ish -5, (6.4)

where now the coefficients ¢& and s* are simply real. We will present our derivation in this basis,
because it makes it straightforward to check when the reality conditions present an obstruction
to the unimodular extension.

6.1 Unimodular extension of rank-2 solutions

One can go through Tables 1 and 2, that contain the summary of all the rank-2 bosonic solutions,
and check when it is possible to construct unimodular extensions. In order to do that, we must

15Notice that this is an automorphism of the algebra only if é = 0, but we could use this transformation even
if f # 0 because ultimately we are interested in the classification of the R-matrices rather than the algebras.

16This means that ¢- Q = ¢“*Qaa, §- Q = ﬁda@aa, s-8 = 5%8,% and 5- 5 = 54%5"4. As explained in
appendix B, Lorentz indices «, ¢ are raised and lowered with € while the R-indices a are raised and lowered with
the matrix K. Given that both matrices are antisymmetric, the contraction preserves the sign if both indices are
changed of position, e.g. ¢ Q = ¢**Qaa = ¢aa@*". Otherwise the overall sign changes.

Y Tmportantly, here the a,b indices are raised and lowered with the Kronecker 6 rather than the matrix K.

8 This definition breaks Lorentz and R-symmetry covariance but is useful for practical calculations in our case.
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construct two odd elements
Q=¢" -Qy+ig -Q +s"-Si+is S, (6.5)

with i = 1,2 that satisfy the relations in (3.10) for a given h and e. If this is possible, we will
denote the unimodular extension of R by R.

Obstructions to the unimodularity extension

Let us present explicitly the calculations for one case that does not admit a unimodular extension,
namely h = D 4 aJys and e = p1. In general, the best strategy is to first impose the conditions
in (3.10) that are linear in Q;. Starting with [Qj,e] = 0 one immediately finds that this case
implies s = 0, so that Q; can be only linear combinations of the supercharges Q4. After
imposing also [h, Q] = %Qi — ;£ Qj, one finds that the only option that (potentially) does not
break the reality of the free coefficients a, &, ¢& is setting just € = a = 0. At this point we turn
to the relation quadratic in the odd elements, namely {Q;, Q;} = —idjje. This is where the real
basis for the supercharges turns out to be useful. Omitting the i index now, we find that, in
order to satisfy {Q, Q} = —ie, the following equations must hold

4 4
Z(q;fa)2 + Z(qa_a)2 =0, a=1,2,
(ZZI (Z:1 4 (6,6)
—_ — 1 — —_
> (@ + Gat20) = =1 (@050 — G12493,) = 0.
a=1 a=1

As the coefficients are real, the two equations in the first line are solved only by qiia o = 0. This
solution is not compatible with the first equation of the second line, and in fact makes Q; vanish
completely. Therefore for h = D + aJy3 and e = p; it is not possible to construct a unimodular
extension.

The calculations are similar for all other cases of Table 2, and we will not present the
details for all of them. The obstructions originate from reality conditions either from the linear
commutation relations with h or from the quadratic anticommutation relations. As indicated in
Table 1, however, it is possible to construct unimodular extensions when e = py or e = pg + ps3,
as we will now show.

Allowed unimodular extensions

Let us start from those with e = pg + p3, namely from R; to Rs of Table 1 included. With this
choice, imposing [Qj, e] = 0 sets siil . = 0 and thus kills a total of 16 parameters. To proceed we
need to specify the choice for h in each R;.

R,

Whevzn taking h = (14-b)D +bJyz + aJi2 and imposing [h, Q] = %Q; — €jj éQj we find that we must
set { = § and that we have six branches for the solutions, depending on whether the parameters
a, b and/or b + 1 are generic or vanishing.!® Nevertheless, after the quadratic commutation
relations the six branches collapse to only two branches, a is generic or a = 0.

9As in the bosonic case, the relations in (3.12) are symmetric under § - —€ and Q; < Q2. That means
that we also have solutions with £ = —a/2. We do not write these explicitly because they give rise to the same
R-matrix and deformation as the above solution.
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ea=20

If b # 0, —1 we find that we must set

Siaa =0, G, =0. (6.7)
The non-trivial coefficients qiih will be further constrained by the condition {Q;, Qj} = —idjje.
In particular we find
D IG5+ (g2.)°1 =5, fori=1,2, ) (q1040r00 + @ 2093 24) =0 (6.8)
a a

If b = 0 we find less-restrictive conditions from the linear commutation relations with e and h,
namely sijfa . = 0, but real solutions of the anti-commutation relations reduce this case back to
(6.7) and (6.8). Similarly, if b = —1, the linear commutation relations set only s=, = ¢5, = 0
but reality of the anti-commutation relations reduce this case back to (6.7) and (6.8). We will

denote this unimodular extension by Rj.
® ¢ generic
If b # 0, —1 we find from the linear commutation relations with e and h that we must set

+ + —
Sia =05 G1,.=0, G, = €i¢ 0, (6.9)

i,aa
The remaining quadratic conditions {Qj, QJ-} = —idjje can then be written as equations for the
coefficients ¢;,, only, reading
- N2 1
D (G2) =3 (6.10)
i,a

If b = 0 we find again a less restrictive solution for the linear commutation relations, namely

Sfaa = 0, qila =11, = 0, qfla = —G3 14 qi,+2a = €ijGj 20 As before, to solve the quadratic
equations {Qj,Q;} = —idje over the real numbers, however, we must set qila = 0 and we

reduce back to the previous case (6.9) and (6.10). Similarly, if b = —1, solving the linear and
quadratic equations over the reals reduces the conditions to (6.9) and (6.10). We will denote
this unimodular extension by Rjy/.

In summary, we only have to distinguish the a = 0 case, enforcing (6.7) and (6.8), and the
case in which a is generic, enforcing (6.9) and (6.10). Both cases admit solutions over the real
numbers. Note that (6.9) and (6.10) will solve (6.7) and (6.8), but not the other way around,
and therefore the solutions R;s reduce to a special solution of the R; when taking the limit
a— 0.

Ry

It turns out that the calculations for the case h = 3(D — Jog) + aJi2 + a(pg — p3) with a? =1
are completely analogous to the previous one. In fact, the parameter b of R plays no role in
the classification of the solutions, and the extra contribution with py — p3 is harmless because
the supercharges @,Q commute with the momenta p;. If a = 0, the solutions are then given
by (6.7) and (6.8), whose corresponding R-matrix we denote by Ra, or if a is generic they are
given by (6.9) and (6.10), denoted by Ry.

R3

The calculations for h = —Jy3 4+ ap; with o® = 1 are analogous to the case R; with the conditipn
a = 0, so that the solutions are given by (6.7) and (6.8), whose R-matrix will be denoted by Rs.
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R,

The calculations for h = D+ «a(Jy; — Ji13) with a? =1 are also analogous to the case R; with the
condition a = 0. In fact, the element .Jy; — J13 has non-vanishing commutators with supercharges
with a = 1, but these contributions are already set to zero by other conditions. Therefore, the
solutions are given by (6.7) and (6.8), whose R-matrix will be denoted by Rj.

Ry

Here we have h = %(D — Jos) + aJi2 + b(ko + k3 + 2ps3) and e = py + p3, which compared to
R; is a genuinely new case only if b # 0. The results are in fact identical to Rj, and therefore
if @ = 0 they are given by (6.7) and (6.8), whose R-matrix we denote by Rjs, and if a is generic
they are given by (6.9) and (6.10), with R-matrix Rs.

Rg
Let us now consider the choice h = D + aJj2 and e = py. Imposing [Q;,e] = 0 we find that all
st = 0. After imposing [h, Q] = %Qi — €; £ Q; we conclude that we must impose

- a o _

&= > and qifaa =(-1) €% aa- (6.11)

Notice that we are able to solve for all the ¢q* coefficients, for example, so that the remaining
constraints will be imposed only on the coefficients ¢; . In this case the condition {Q;, Q;} =
—idije is equivalent to the following equations

4
Z(—l)' % 10% 20 = 0; Z(ql_,lan_,Qa + 412492,14) = 0,
ha a=1 (6.12)
Z(qijaa)2 = %’ = 1’2'

i,a

The above equations admit solutions over the real numbers, and therefore the choice h = D+aJ12
and e = pg admits unimodular extensions, denoted as Rg.

In section 6.3 we will discuss how to reduce the number of parameters appearing in Q1, Q2 by
exploiting the inner s0(6) automorphisms of the algebra and possibly also the residual so(2,4)
automorphisms. This discussion will make it easier to identify the allowed solutions to the above
quadratic equations that characterise the unimodular extensions.

6.2 Unimodular extension of the rank-4 and rank-6 cases

All the rank-4 and rank-6 cases that do not have?® Jjs in h admit the generalisation of the
solution (6.7) and (6.8) found for rank-2. In particular we have

=0,  s,=0  qp=0 (6.13)

i,aa

20That is, all the extended solutions of section 2, with the extra assumption of setting = 0 in Ri2. Notice,
however, that (up to automorphisms) when a = 0 Ri2 reduces to a special case of R7 and therefore cannot be
considered genuinely new.
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and the conditions {Q!, QJJ} = —id”(SiJ-e read

STla)? + (g0 =14, fori=1,2, 1=1,...,Ny,

a

77' 77J ,I ,J . . .
> (G50 50 T Gi5a45,) =0, with (1,i) # (J,)).

a

(6.14)

The corresponding R-matrices will be denoted by R7—Ri1 and Rz, Ri4.

For a non-trivial extension of the Ris solution, denoted by Ri2, we must take the generali-
sation of the solution (6.9) and (6.10). We must assume a # 0 and set

+1 +1 4l —
Si,oca =0, Gi10a = 0, qi,2a = Eijqj,2a' (615)
Now the extra conditions from {Q-:, QJ'} = —i(SU(SiJ-e are equivalent to

(g =14 forl=1,... Ny

i,a

_71 _72 — U _71 _72 —
§ :qi,Zaqi,Qa - O’ § :6 qi,Qaqj,Qa =0.
i,a

I?JIa

(6.16)

6.3 Simplifications by inner automorphisms

The supercharges found in the previous sections still have a large number of free parameters
that in fact are not all physical. They can be removed by exploiting inner $0(6) automorphisms,
as well as in principle residual inner automorphisms of s0(2,4) that leave h and e invariant. The
latter are summarised for each rank-2 bosonic R-matrix admitting a unimodular extension in
Table 1.

Before analysing each R-matrix R; separately, let us first argue in general how the simplifi-
cation by SO(6) can be performed. Consider a general supercharge Q; of psu(2,2[4) of the form
(6.4). We know already that all unimodular extensions require siio’éla = 0 and thus we start from

Q=¢q" Q4 +ig -Q_, (6.17)

where for now we will suppress the index | = 1,..., Nj. There are 15 generators of s0(6) that
we can now exploit to simplify Q;. As follows from (B.13), their corresponding adjoint actions
are dictated by

[Roap, (Qu)] = S (pA) (@) — J(5im)n(QF)™, (6.19)
with p5 5 (p4%) the symmetric (antisymmetric) part of pap as matrices in the a, b indices. In
our anti-hermitian matrix realisation of s0(6) (see appendix B), there are precisely (g) =6
generators for which p4p is purely antisymmetric in the a, b indices and that will act as a simple
rotation on the a = 1,2, 3,4 of qi,iaa. Let us call R(") the set of these generators. The other 9
generators are purely imaginary with symmetric p4p and will thus mix q:r e and & 0 with i, «
fixed. They can be divided into 3 generators corresponding to phase transformations rotating
q:r o and % 0a with also a fixed, whose set we will call R(?), and (3) = 6 generators corresponding
to rotations on the a indices between qi'f oo and i qa> whose set we will call R(%). For clarity, we
can depict this as

RU: gf, e ah,,  with  (a,b) €{(1,2),(1,3),(1,4),(2,3),(2,4), (3,4},
RO gh, o dqh,,  with  (a,0) € {(1,2),(1,3),(1,4),(2,3),(2,4), (3,4},  (6.19)

R®) G, a4t with a fixed,
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and i, « fixed in all cases.

Let us now illustrate how these can be used to eliminate some parameters qiia . We can
start focusing, for example, on qfcla and use the {(1,2), (1,3), (1,4)} rotations of R(") and R®
to set q1 12,34y = 0 and keep for (i,a) = (1,1) only qfll non-trivial. Notice that the actions of

R and R interfere non-trivially with each other so that on each (a,b) plane the two kinds of
rotations must be implemented simultaneously in order to reach the wanted gauge. The other
rotations of R(") leave this choice invariant and subsequently the {(2,3),(2,4)} can be used to
set, for example, qf2 (34} = 0 keeping for (i,«) = (1,2) only qfﬂ and qfcm non-trivial. Within
R we are finally left with (3,4), again leaving our previous choices invariant, and which can
be used to set, for example, qu’l 4 = 0. At last there are also the RP) to exploit. Importantly,
so far we have treated the superscripts + and — in the same way (when keeping the remaining
indices i, v, a fixed). This is crucial at the moment of using the RP) transformations, because
it means that the previous choices for vanishing coefficients are not spoiled. Considering for
example the basis

RP) . % e {diag(i, 0,0, —i), diag(0,, 0, —i), diag(0, 0, i, —i)} (6.20)

we can use the first two elements to set, for example, qf’n = qi 99 = 0, and the last element
(leaving the latter choice invariant) to set, for example, q;r’ 13="0.

The most convenient “gauge” choices to be made will depend on the specific cases under
study, to which we now turn. In particular, the type of constraints following from the (anti)-
commutation relations required for the unimodular extensions will play an important role in
this. Note that these constraints will of course be left invariant after the action of inner au-
tomorphisms that leave h and e invariant. If possible, we may also employ the residual inner
50(2,4) automorphisms of each case. We first consider the rank-2 extensions and comment on
the possible higher-ranks at the end.

R; and Ry,

Given the results of section 6.1, we could distinguish here two cases, i.e. a generic or a = 0.
In both cases, only the parameters qI 2 Were left non-vanishing after imposing the required
(antl)commutatlon relations. With the exception of Ji (which acts as a phase transformation
q;—; I qi7 o With fixed indices i,a and a), the inner automorphisms of Table 1 then all act
trivially on the supercharges and therefore their possible usage can be discarded.

e Ry. In this case, the parameters qﬁa are subject to the constraints (6.8). As illustrated
above, we can use {(1,2),(1,3),(1,4)} of R to keep only qfﬂ and q§f2a. Next, we can use
{(2,3),(2,4)} of R to keep only qu, qgfm, and q§f22. At last, we can use the first two
elements of (6.20) to reduce this to qf’m, q2i’21, and q2+, 99- The constraints (6.8) are then solved

by 9;21 =0 and?!
1 _ 1
ia =5 @)+ ) =5 (6.21)

Note that, the remaining (3,4) of R(") and the last element of (6.20) do not act on these
parameters. These transformations can be used to simplify higher-rank extensions, as we will
do below starting from Ry. Similarly, one can check that the residual Ji5 action on our reduced

2IThe quadratic equation admits also the solution for qu with the negative sign. A change of sign on Qi or
Q2 however leaves the R-matrix (3.11) invariant.
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parameter space does not simplify this case further, in fact the action of Jy9 is not independent
from that of the first two elements of (6.20).

e Ry/. In this case, the parameters qi,i2 , are subjected to different constraints, namely
qua = €j¢; 5, and (6.10). As before, we can now exploit the {(1,2),(1,3),(1,4)} of R to
set qu (234} = 0. The constraint q:rg o = €ilj2a then actually implies that only the 4 coeffi-
cients qifél are left non-trivial and they are related as qim =391 q;’ 91 = —4y 91 After this we
still have the freedom {(2,3),(2,4),(3,4)} of R, In this case, they are not useful because
they rotate among each other coefficients that are already vanishing. One could imagine using
them to eliminate 6 more parameters of a higher-rank unimodular extension, however this case
(i.e. the parameter a generic) does not admit such extensions. The first element of (6.20) can
subsequently be used to set, for example, q;’ 917 = 0 which upon the constraints also implies
121 = 0. We are left with one parameter which must be fixed by solving (6.10). We take??

_ 1
9221 = C,Ifr,m = Vol (6.22)

Note that here we did not need the residual J15 automorphisms. In fact, it does not leave the
choice qf, 91 = 91 = 0 invariant.

Let us remark that in the special case for R with q;f 99 = 0, the solution (6.21) reduces to
(6.22) and thus the latter holds for truly generic a, as it should.

R2, Ry, R3, R4, R5, and Ry

All these cases are analogous to the case Ry and Ry. The Ry, R3, R4, and Rs are solved by
(6.21), while Ry and Ry are solved by (6.22), with all the other parameters set to zero. Note,
however, that certain versions of the Rs have a corresponding higher-rank extension, i.e. Ryo, for
which we will be able to use the remaining SO(6) transformations that have not been exploited
in the Ry case (see below).

R

In this case, all the qifm were left non-vanishing, and they were subjected to q;r i (—1)°‘eijqjja “
and (6.12). Following now precisely the illustration of the beginning of this section, we can use
all of the s0(6) elements to set qf1{2’374} = qf2{3’4} = q§14 = an = er,22 = QIlg = 0. The
constraint qif e = (—1)"‘eijqjjCY ., then further implies that the only non-vanishing parameters are
qil = +¢f51, 4111 = G11> and q1 9y = —q595. This, in fact, suffices to completely solve (6.12).
We find that we must set qli’21 =0=qJy and??

1

T S S
111 = 9211 = Q122 = —9222 = 9" (6.23)

22 Again the choice of sign on G301 Would not affect the resulting R-matrix.

ZWhen solving the quadratic equations we actually find G = q;,u = :I:%7 Q100 = fqzzz = :I:% where the two
choices of signs are uncorrelated. However, we first notice that the 4 choices of combinations of signs lead to only
2 independent solutions for the R-matrix, namely when the signs either agree or are opposite. This is due to the
fact that changing the overall sign to Q1 or Q2 does not change the R-matrix. Nevertheless, we find that these two
seemingly distinct choices (consider Qi with ¢; 1, = ¢y 9y = 1/2 and Q] with ¢y ; = —q; 4o = 1/2) are related by
an inner automorphism Q = MQ/M ™! with M € PSU(2,2/4). In fact several elements M € PSU(2,2|4) realise
this, including first swapping Q1 +> Q2 and then acting with Jio (which effectively exchanges the superscripts +
and —).
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All the parameters are determined, and we did not need to use the residual so(2,4) automor-
phisms. Interestingly, note that even though we exploited the (3,4) of R and the latter
element of (6.20), they are restored as inner automorphisms in this case because of the con-
straint qi'faa = (=1)"€ij4} nq-

R’?’ RS’ Rg, RlOa and Rll

These R-matrices originate from bosonic rank-4 R-matrices and they thus have the Q! with
i = 1,2 and | = 1,2. Their only non-vanishing parameters after the required commutation
relations are qétll subjected to the constraints (6.14). As we know from section 6.2, these cases
are similar to the unimodular extension Ry, and in fact using {(1,2), (1, 3), (1,4), (2,3), (2,4)} of
R and the first two elements of (6.20) as before, the equations (6.14) for quQi can be solved

as in (6.21), i.e. q;”;l =0 and

1 1
1 1 1
qfr, 1= 72 (q;f22)2 + (%,21)2 =5 (6.24)

Now we can focus on qis and use the remaining s0(6) elements to simplify them. First, with

{(3,4)} of R we can set qf’224 = 0. The last element of (6.20) can be used to set qié% = 0. Note
that we do not have further inner automorphisms of so0(2,4) that leave {h,e,e;,e_} invariant
and that would act non-trivially on the supercharges. One can now check that (6.14) further
enforces qf212 = 0 and leaves us with 13 parameters subjected to 6 constraints. We checked that

these can admit real solutions with 7 remaining free parameters in the supercharges Q.!- We will
not analyse them further here.

RIZ

Recall that for a genuinely new unimodular extension Ris we must assume a # 0 and thus
this will be similar to the Ry case. After the required (anti)-commutation relations, the
non-vanishing parameters are quQCIL subjected to qIJFQCIL = eijqjjz’(ll and (6.16). We exploit the
{(1,2),(1,3),(1,4)} of R as well as the first element of (6.20) to set qi’21{27374} = 0 and
qi ’211 = 0. The constraints for | = 1 then completely fix Qil and in particular imply that also

£1

+.1
G 5234y = 0 and gy 3 = 0 as well as

1
771 — +’1 —
N21 = —d221 = o (6.25)

where we made an inconsequential choice of the sign that will not affect the R-matrix. Now we
consider | = 2 and possibly exploit the remaining SO(6) transformations, i.e. {(2, 3), (2,4), (3,4)}
of R as well as the latter two elements of (6.20). This allows to set respectively q; S34} =

qéﬁ ’224 = 0 and ¢y ’222 = 0 which implies using q|+2¢|1 = e;jqj_Q’(Il that also qéﬁ ’223 =0 and ¢ ’222 = 0.2
Hence at this stage only q1_7 ’221 = —qz ’221, qi ’221 = qf ’221, and qi ’222 = —q; ’222 are undetermined. Using

the results of Qil, the remaining constraints simply imply ¢; ’221 =q, ’221 = q;r ’221 = qf ’221 =0 and

1
_72 +72
G120 = 42220 = —= (6.26)

7

*41n fact, we did not need to use the latter element of (6.20) which remains as a freedom that does not act on
the surviving parameters.
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where again we made a choice for the sign. Concluding, for the unimodular extension Ry we
do not have any remaining free parameters in the supercharges.

R13 and R14

These R-matrices originate the bosonic rank-6 R-matrices and are similar to the unimodular
extension Ry, albeit now with supercharges Q! with i = 1,2 and | = 1,2,3. While the R; (from
rank-2) had one remaining free parameter, their rank-4 generalisations admit solutions with
7 remaining free parameters (see R;—Ry; discussed above) after using residual inner automor-
phisms. The rank-6 generalisation Ri3 and Ri4 (where no further inner automorphisms can be
exploited) will have in principle 16 more initial parameters than the rank-4 cases which all have
to satisfy the same 10 constraints as before, i.e. (6.14). Because of these reasons, it is clear that
the Ry3 and Ry4 have a complicated and large system to solve with a large number of remaining
free parameters. We will not analyse this further.

7 Preserved isometries and superisometries

In this section, we consider the unimodular extensions of the rank-2 R-matrices and identify the
generators of T'; € psu(2,2[4) whose adjoint action commutes with the action of R, i.e.

adTA R = R adTA . (71)

Because of the Jacobi identity, these generators span a subalgebra of psu(2,2[4). They have the
important interpretation that they correspond to (super)isometries of the supergravity back-
ground. Indeed, at the group level, they generate global left transformations ¢ — ¢grg with
gr, € PSU(2,2|4) constant and satisfying

Ad,' RAdy, =R, (7.2)
which leaves the deformed semisymmetric coset sigma-model action (A.6) invariant.

We collect our results in Table 6, which is the complete version of Table 3 of our summary
section. Because the R-matrix preserves the degree of the superalgebra element, we can consider
bosonic and fermionic generators 1’5 € psu(2,2]4) separately. For the fermionic generators, we
only list the number of independent generators, corresponding to the number of superisometries
preserved. We also use a short-hand notation for those elements 75 that are strictly in s0(6),
as they are repeated frequently. We define a 9-dimensional algebra,

¢, = span(Ri6 — Roa, R14+ Ros, R36+ Rus, R3a+ Rse, R13+ Ras, Ri5 — Ra3, Ri2, R3s, Ras) , (7.3)

which is the algebra appearing once the supercharges Q; are completely determined, with the
exception of the distinct Rg case. The elements of £; correspond to the remaining s0(6) automor-
phisms that were not exploited in the previous section, i.e. the {(2,3),(2,4),(3,4)} of R ag
well as the last two phase transformations of (6.20), in addition to the first phase transformation
of (6.20).%° Tt is not hard to show that the algebra £ is isomorphic to su(3) @ u(1) by identify-
ing a central element and calculating the dual Coxeter number of the remaining 8-dimensional
algebra. We also define the following two 4-dimensional algebras

& = span(R13 + Ras, Ri5 — Ra3, R12 — R3s5, Ri3 + OéR35) ~ 5u(2) D u(l), (74)
t3 = span(R13 + Ras, Ri5 — Ra3, R12 — Rss, Ri2 + R35) ~ 5u(2) b u(l), (7.5)
*Note that the requirement of an inner automorphism that leaves {h,e, @;} invariant, i.e. [z,h] = [z,¢] =

[z, Qi] = 0, is stronger than the requirement of a (super)isometry.
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where a = g5 o; /qsr 99 With the assumption q; 99 7 0. The algebra £y appears for those cases
in which the supercharges ()i have a free parameter, while €3 is the subalgebra of isometries of
50(6) for Rg. The first three elements of € and €3 correspond to the (3,4) of R and the
latter element of (6.20), which are all residual so(6) inners of the respective cases. Furthermore,
we remark that even though the algebra ¥5 appears to depend on a continuous parameter, its
structure constants are a-independent once we redefine Ri3+aR3s — Ri3+aRs5+ %(ng —R3s).
A further appropriate shift of this element with Ri3 + Ras exposes that €2 ~ su(2) @ u(1). How
this algebra is embedded in s0(6), however, does depend on «.

From the point of view of the sigma-model action, the extra elements in £, £, €5 on top of the
residual s0(6) inners seem to imply the possibility of further simplifications of the supercharges.
Nevertheless, these transformations do not act independently on the reduced parameter space
or compared to the Ji5 action.

We will not analyse the preserved (super)isometries of the unimodular extensions of the
higher-rank solutions as in these cases, with exception of Rjo, the supercharges have a large
number of remaining free parameters which highly complicates their study. For Rjs, however,
all the parameters in Q; are completely determined, and we find for any value of a # 0 that
there are no residual superisometries.

R conditions T €50(2,4) ®50(6) supercharges
a=0 D + Jos, po + p3, Ji2 — Ras, £ 0
a=0,b=-1 D + Jo3, po + p3, p1, P2, J12 — Rag, €2 0
a=0,b=0 D + Joz, po + p3, Jo1 — J13, Jo2 — Ja23, Ji2 — Rae, &2 0
1 a=0,b=-1/2 D + Jos, po, p3, ko + k3, Ji2 — Rye, €2 8
a =0, q;fggzo D + Jos, po + p3, Ji2, &1 0
a=0,b=—1,¢39=0 | D+ Joz, po+p3, p1, p2, J12, &1 0
a=0,b=0,0350=0 [ D+ Joz, po+p3 Jo — Ji3, Jog — Jaz, Jiz, &y 0
a=0, b=—1/2, q;_22:0 D + Jos, po, p3, ko + k3, Ji2, 1 12
1 a#0 D + Jos, po + p3, J12, &1 0
a#0, b=—1/2 D + Jos, po, p3, ko + k3, J12, &1 0
9 a=0 Po, P3, J12 — Rue, €2 4
a=0, gy, =0 po, p3, Ji2, &1 6
2 a#0 Po, P3, J12, €1 0
3 = po + p3, p1, P2, t2 0
G390 =0 Po + P3, p1, P2,t1 0
4 - po + p3, Jo1 — Ji3, Jo2 — Jas, €2 0
200 =0 po + p3, Jo1 — J13, Jo2 — J23, &1 0
5 a=0 po + p3, ko + k3 + 2p3, Ji2 — Ryg, &2 0
a =0, q;m:o po + p3, ko + ks + 2ps, Jio, & 0
5 a#0 po + p3, ko + k3 + 2p3, Ji2, & 0
6 - Po, J12, €3 0

Table 6: The bosonic generators T'; € s0(2,4)®s0(6), as well as the number of fermionic elements
in psu(2,2]4) that satisfy (7.1) for the unimodular extended rank-2 Jordanian R-matrices of the
formr =hAe— %(Ql A Q1+ Q2 AQ2). Such generators represent the residual (super)isometries
of the deformed supergravity background. If a parameter is not specified, it is assumed to be
generic (modulo constraints such as (6.21)). The algebras €, £2, and €3 are subalgebras of s0(6)
and defined in (7.3), (7.4), and (7.5) respectively.
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8 Conclusions

We have classified all antisymmetric bosonic Jordanian solutions of the classical Yang-Baxter
equation on psu(2,2|4) and constructed their most generic fermionic extensions that ensure uni-
modularity. These properties are siginificant for constructing a Yang-Baxter deformation of the
integrable string sigma-model on psu(2,2|4) which gives rise to the maximally supersymmetric
AdSs x S° background. In particular, antisymmetric solutions of the CYBE ensure that the
deformation preserves the property of integrability. Unimodularity, in addition, ensures that the
deformed AdSs x S® background will still solve the type IIB supergravity equations of motion.

When the bosonic Jordanian R-matrices are not extended with fermionic supercharges, they
are non-unimodular and the corresponding background solves the modified (or generalised)
supergravity equations. We find that they are at most of rank-6, where the rank denotes the
number of bosonic elements in the construction of the R-matrix. For all these cases, we analyse
whether or not they admit a unimodular extension, which is a stringent requirement for rank-2,
but is always possible for rank-4 and rank-6. For the simplest unimodular extensions, namely
those of rank-2, we also analyse the preserved (super)isometries of the corresponding deformed
supergravity background and find that they preserve at most 12 superisometries. All of our
main results are structurally summarised in section 2.

Each of the Jordanian solutions that we have constructed are inequivalent and correspond
to a different deformed supergravity background. Our results may therefore offer a wide range
of applications for deformations of the AdS5/SYM holographic duality. See [41-44] for some
preliminary proposals of deformations of the dual gauge theory. In this paper, we were primarily
concerned with the algebraic classification of (unimodular) Jordanian solutions. For the purpose
of deformed holography, one may in a first stage also analyse if the dilaton is well-behaved for
the simpler unimodular R-matrices of table 6. In this table, the case Ry (a = 0, b = —1/2,
q{ 99 = 0) is the only one with 12 residual superisometries. It is in fact this example (up to inner
automorphisms) which was first constructed in [26] (and indeed has a well-behaved dilaton) and
of which the semi-classical spectral problem of the deformed sigma-model was later analysed
in [36] by means of algebraic curve techniques. It would be interesting to extend this study to
examples with lower residual superisometries and analyse if any obstructions occur.

As we have found, the family of Jordanian deformations of AdSs x S® is quite large. This is
a confirmation of a large landscape of integrable deformations of the string sigma-model, that
undoubtedly extends beyond the Jordanian class.
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A Conventions

In this appendix, we collect facts regarding solutions of the classical Yang-Baxter equation and
our related conventions. Let us consider a generic Lie superalgebra g (the truncation of these
facts to bosonic Lie subalgebras is straightforward). We are after “antisymmetric” constant
solutions of the classical Yang-Baxter equation on g. That means that we want to construct a
linear operator

R: g—ug, (A.1)

that is antisymmetric with respect to a bilinear form on g. For simplicity here we assume
that the latter is implemented by taking the (super)trace in a matrix realisation of g, so that
antisymmetry reads like

STr(Rx y) = —STr(z Ry), Va,y € g. (A.2)

Moreover, we demand that it solves the classical Yang-Baxter equation which reads
[Rz, Ryl| — R([[Rz,y]] + [[=, Ry]]) =0,  Vz,y €g, (A.3)
where [[,]] denotes the graded commutator on the superalgebra (i.e. it is the anticommutator

when the two elements are odd and the commutator otherwise).

Let us introduce a basis T for g to identify the structure constants as [[T7, Ts]] = f1,5Tk.
The linear operator R can be thought of as a matrix Ry’ because RT; = R;’T;. Moreover,
after denoting by K;; = STr(T;T;) the metric on g and K'” its inverse, antisymmetry just
corresponds to the statement that R'Y = KK Ry’ is antisymmetric in the I,.J indices if the
indices correspond to even generators of g, while R’ is symmetric if the indices correspond to
odd generators. This difference is due to an extra sign coming from the supertrace.

We can also map R to an element r of the 2-fold wedge product of g by
r=-iRYT/ AT, (A.4)
where we use the graded wedge product
s Ay =x®@y— (—1)le@deel) y g g (A.5)

In this definition we are using the function deg that gives the degree of the superalgebra element,
i.e. it is 0 on even elements and 1 on odd ones. This imples that A is symmetric if both z and
y are odd, otherwise it is antisymmetric.

The above algebraic ingredients can be used to construct integrable deformations of 2-
dimensional sigma models. In the case of deformations of semisymmetric supercoset sigma-
models we assume the existence of a Zy-grading of g such that g = @7_,g® and [[g¥, g¥)]] C

g+ mod 4) "Then the action of the deformed sigma model is [7]
VA |
S=—— [ drdo h|h™ — ™ STr [ Jppd———Jn | . A6
< [ ardo (VI ) Y (A6
We have introduced a worldsheet metric h,,, and the antisymmetric tensor €77 = —e?7 =

—1. We also have the Maurer-Cartan form J = g 'dg with ¢ € G and g = Lie(G), and
d= %P(l) + P® — %P(?’) with P(® the projectors on g(¥. The shorthand notation R4 means
R, = Ad;l RAd, where Adgz = gzg! and it is multiplied by the deformation parameter
n € R.
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It is now very simple to obtain the truncation to symmetric bosonic cosets. In that case, one
assumes a Zo-grading and replaces the supertrace by the trace as well as d = P?). To reduce
even further to deformations of the Principal Chiral Model, we only have to take d = 1.

Importantly, the previous algebraic ingredients can be used also to generate deformations
of supergravity backgrounds that do not necessarily correspond to integrable sigma-models. In
order to make sure that the deformation still solves the type II supergravity equations, the
R-matrix must satisfy an additional linear constraint called the “unimodularity condition” [15]

0=K"[[T;,RT;]] = R f1,5Tg. (A7)

To conclude, let us remark that we are interested only in real deformations of the supergravity
background. Demanding the reality of the sigma-model action we find that the R-matrix gives
rise to a real deformation if R!/ is anti-hermitian (R’7/)* = —R!/. This result follows from
assuming the reality condition TIJr + HTyH™' = 0 for elements of g. See appendix B for the
case of psu(2,2|4). As remarked above, on the one hand, R!/ is antisymmetric if the indices
correspond to even generators of g and then the entries of R’ must be real. On the other hand,
R is symmetric if the indices correspond to odd generators of g and then the entries of R!’
must be imaginary.

B The psu(2,2|4) superalgebra

Here we collect our conventions on the N' = 4 superconformal algebra, and we provide an
explicit matrix realisation of su(2,2|4) that is useful for explicit calculations. Useful reviews are
for example [45] and [46].

Indices conventions

We will use p,v = 0,...,3 for indices in the 4-dimensional spacetime and we will take the
Minkowski metric to be 7, = diag(—1,+1,+1,+1,). Knowing that the Lorentz algebra can be
rewritten as s0(1,3) ~ sl(2,R); ®sl(2,R) g, we will use «, 5 = 1,2 for spinor indices of sl(2,R),
and &, 8 = 1,2 for spinor indices of s[(2,R)g. Finally, we will use a,b = 1,...,4 for spinor
indices of SO(6), and A, B =1, ...6 for fundamental indices of SO(6).

The conformal algebra so(2,4)

The Lorentz algebra is spanned by J,,,, satisfying
[J/u/a Jpa] = nule/U - nupJuU + T]VUJMP - nuajup- (Bl)
With the addition of p, they form the Poincaré algebra

[J,uzlapp] = NupPv — NvpPu- (B'2)

Adding the dilatation generator D and the special conformal generators k, we obtain the full
conformal algebra, whose remaining commutation relations are

[Dapu] = Pu> [D7 ku] = _k;u [p;u ku] = _277;WD + 2Juu7 [Jum kp] = nupku - prku-
(B.3)
All other commutation relations are trivial

[pmpv] = [k‘“, k‘,,] = [Dv JAW] = 0. (B-4>
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Supercharges and R-symmetry

At this point we introduce supercharges Qua, Q" s Sa® S 4. The generators Sy Pus Qua, Q™
span the (N = 4) super-Poincaré algebra. A lower (resp. upper) index « means that they
transform in the 2 (resp. 2) representation of s[(2,R);, and similarly for dotted indices of
s[(2,R) . To be more explicit, let us define the antisymmetric tensor €19 = —€g1 = —el2 = 2l =
1 such that €*7e g = 5;‘. This is used to raise and lower indices as Y = 6“/377!)5,1/)& = eaﬁwﬁ .

We then define (0#),4 and ()% as
ot = —i(1,07), ' = —i(1,—0’), (B.5)

where o7 are the Pauli matrices. The matrices o#, 3" appear in the Weyl representation of the
4-dimensional gamma-matrices

0 oH) .
7“ - < (E,Lt)o'za ( O)aa > ) (B'G)
that satisfy {v,,7} = 21, 1. At this point we define
(0")a” = ("8 —0"5")o",  (3")%; = 1(a%a” —T0), (B.7)

so that we can write the commutators of the supercharges with the Lorentz generators

U Qoa) = (00)e’Qaar [ @1 = @) 5@ )
[T Sa®] = (0)a”S5°, - 8%a] = @)% 55
We have the following trivial commutation relations
[Pus Q] = P @) = [, Sa] = b $”] =0, (B.9)
and the commutation relations with the dilatation generator
D Qo] = 3Qea [P 5] = =350 (B.10)
[D,Q™] = 5Q™, [D,5%] = —35%.
The commutators relating the Q and S supercharges are
k", Qual = +ic', ?‘?‘a, [k#,@.ém] = —io" S, (B.11)
[P, 80 = —ioh; Q™ [P 8% = +i75" Qaa-

The N' = 4 superconformal algebra has an SU(4) ~ SO(6) R-symmetry, under which the
supercharges transform in the 4 or 4 representations (respectively for upper or lower indices
a,b,=1,...,4). We denote the R-symmetry generators as Rap with Rap = —Rpa and
A,B=1,...,6. They satisfy the commutation relations

[Rap,Rep| = dacRep — 0pcRap + 0ppRac — dapRpe, (B.12)
and they commute with all generators of the conformal algebra. The action of the R-symmetry
generators on the supercharges yields

[RaB; Qaal = (,OAB)ab Qob, ['RAB’@O"“] _ b

3 (paph” @
[Rag,S"a] = 3(pan)a” S, [Rap, S = — ’

B.13
(paB)p" Sa”. (B13)

1
2
1
2
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Indices A, B will be raised and lowered with the Kronecker delta. Simple anticommutators are

{Qaav@db} = 52 Ugd Pus {Saaugdb} = _5g UZ@ k,w (B~14)
The trivial mixed anticommutators are
{Quas 5%} =0,  {Q%, 85"} =0, (B.15)

while the remaining non-trivial mixed anticommutators
{Qaas S8"} = 4 eap (077)a" Rap + 16, 0hs Ju +i€ap 0y D+ § €apdi 1,

s o iy iy o (B.16)

Q5% = 2 (pAB) Rap —idp ol T —ie*? 5y D + £ e 5 1.
The relations that we are writing here actually correspond to the su(2,2]4) superalgebra. To
obtain the relations of psu(2,2|4) (which is isomorphic to the N' = 4 superconformal algebra)

one has to project out the identity operator.

Matrix realisation

In the anticommutators above we included the terms proportional to the identity operator be-
cause we want to give an explicit matrix realisation of the superalgebra, and su(2,2[4) admits
one while psu(2,2[4) does not. To obtain the matrix realisation we start from the above defini-
tion (B.6) of the gamma matrices, which is also equivalent to

P = —iocl @1y, =020t v =0 ® o2, v =02 ® o3, (B.17)
and we supplement them with
=0t @1, (B.18)
to obtain gamma matrices in 5 dimensions. In general, we define v, = %hm,%] for any
gamma. We also define
Yi=", t=1,...,4, Y5 = 170, (Blg)
which are gamma-matrices in 5 Fuclidean dimensions. We use them to define the matrices pap
which are antisymmetric in the indices A,B =1,...,6 as
PAB :’S/AB7 A7B - 17"‘757 PA6 = _7’;)’/14 (BQO)

Finally, we have everything we need to construct a matrix realisation of su(2,2[4) in terms of
8 x 8 matrices. For the generators of the conformal algebra we take

J. = _%FY/,LI/ 04 P, = _%(7/1,4 + 7/1) 04
v 0, 04 )° K 04 04 )’
1 1 (B.21)
p—( "2 04 o= —5(Vua — ) 04
0, 04 )’ " 04 04 /-
Similarly, for the R-symmetry generators
04 04
Rap = . B.22
AB ( 0s —3paB > ( )
To conclude, the supercharges are realised as
o 04 Ea,a ~aa . 04 04
Qa=v2 < 04 04 )’ Q" =-v2 Eoat+2 04 )7
0, 0 0, E (B.23)
a __ - 4 Q. — d+2,a
Sa N Z\/§< Ea,a 04 > ’ Saa Z\@( 04 04 ) ’

where E,;, are the 4 X 4 unit matrices with zeros everywhere, except 1 at position a, b.
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Reality condition on the superalgebra

To write down the reality condition, let us define

_( —t0 04
H_< o0, 14>. (B.24)

With this choice HT = H, where 1 denotes conjugate-transpose. For all bosonic generators
X (i.e. from the conformal or the R-symmetry algebra) the reality condition is satisfied as
X'+ HXH-! = 0. For supercharges, instead, the dagger relates the barred and unbarred
supercharges in the following way

(Qaa)' + HQ“H™ =0, (S + HSuH ' = 0. (B.25)

This means that we are using a complex basis. A generic element M of psu(2,2|4), however, is
required to satisfy simply Mt + HMH~1 = 0.

Z4 automorphism

The N = 4 superconformal algebra admits a Z, automorphism. Let us define the matrix
Kap = —i(12 ® 02)ab, (B.26)

and let us denote by K2 its inverse, so that K%K = 0y We will use K to raise and lower a, b
indices, with the same conventions as for the Lorentz indices, namely V, = K, Vb, Ve = K9V,
We also define

K=1,® K, (B.27)

which we use for the definition of the Z4 automorphism as
QX)) =KX K, (B.28)

where st denotes supertransposition. The Z, automorphism induces the decomposition g =
@?:og(z) of the superalgebra and one can construct the projectors P on each of these subspaces.
Then we find the following decomposition

Putky, Juw, Rip € 9(0) Qoa + Saas @da -5 e 9(1)’ (B.29)
P — k;lh D, RAG € 9(2)7 Qaa — Saas Qaa +§aa € 9(3)7
where above A, B =1,...,5. We remind that indices are raised and lowered with € and K. As

reviewed above, in the construction of the supercoset action and its deformations, one introduces
a particular combination of the projectors which is d = P 4 2p@ _ pB). The action of its
transpose dl' = —pPW 4 2P 4 pB) on the supercharges is

dT(Qaa) = _Soza; dNT(Saa) = _Qaan dAT(@da) = gda’ dNT(gda) = éaa' (B30)

Supertrace relations

The non-vanishing relations involving the supertrace are

STr(puku) = 2N, STr(Jl,LV']pO') = _(nupnua - nupnuo)a
STr(DD) =1, STr(RapRep) = dacdpp — 6Bcdap (B.31)
STr(QuaS3") = 2i capdl, STr(QS,) = —2i e,
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