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Abstract

We explicitly construct and classify all Jordanian solutions of the classical Yang-Baxter equation
on psu(2, 2|4), corresponding to Jordanian Yang-Baxter deformations of the AdS5 × S5 super-
string. Such deformations preserve the classical integrability of the underlying sigma-model and
thus are a subclass of all possible integrable deformations. The deformations that we consider
are divided into two families, unimodular and non-unimodular ones. The former ensure that
the deformed backgrounds are still solutions of the type IIB supergravity equations. For the
simplest unimodular solutions, we find that the corresponding backgrounds preserve a number
N < 32 of supercharges that can be N = 12, 8, 6, 4, 0.
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1 Introduction

Recent years have seen an upsurge in the understanding of integrable deformations of two-
dimensional sigma-models, including their possible classifications and applications. Well-known
cases are TsT-transformations [1–3], Yang-Baxter deformations [4–9], and λ-deformations [10–
12]. Major motivations for their study follow from developing a fundamental understanding of
integrable two-dimensional field theories, their relation with generalised worldsheet dualities, and
their prospect in generalising the AdS/CFT correspondence to non-maximally supersymmetric
cases whilst preserving the computational power of integrability (see e.g. the reviews [13, 14]).
In particular, when the sigma-model describes the dynamics of a string then an integrable
deformation on its worldsheet will deform the target-space background destroying many of its
(super)isometries. Whether or not the deformed background will still solve the supergravity
equations of motion is now well-understood for large classes of deformations (see e.g. [15–20]).
This thus opens exciting possibilities for applications in particular to the canonical example of
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the AdS5 × S5 string, with hopes to find deformations of N = 4 super-Yang-Mills that remain
integrable in the planar limit [21].

In this paper, we will focus on a particular type of deformations, called Jordanian, which
belong to the homogeneous deformations of the Yang-Baxter class [8,9]. Homogeneous deforma-
tions are generated by a linear operator R that acts on the Lie (super)algebra of (super)isometries
g of an integrable sigma-model, and they preserve integrability if R is antisymmetric as in
eq. (A.2) of appendix A and satisfies the classical Yang-Baxter equation (CYBE) (see eq. (A.3)
of appendix A).1 The CYBE admits a rich number of antisymmetric solutions, all of which will
lead to different deformed target-space backgrounds of the string sigma-model. These back-
grounds will be supergravity solutions when the R-matrix is unimodular [15, 22, 23], which is a
simple linear constraint on R, see eq. (A.7). When instead R is non-unimodular, they will solve
the modified (or generalised) supergravity equations identified in [24, 25]. Within the homo-
geneous Yang-Baxter models, R-matrices of Jordanian type are built by identifying a bosonic
subalgebra of g constructed from a Cartan element h and a root e satisfying [h, e] = e. When
h and e are the only elements in its construction, the Jordanian R-matrix is of rank-2 and will
in fact be non-unimodular. However, it was found in [26] that at least some of these rank-2
cases can be extended to unimodular R-matrices by employing, next to h and e, also fermionic
generators (supercharges) of the superalgebra g in its construction.

Our focus on the homogeneous deformations of Jordanian type originates from several mo-
tivations. In general, homogeneous deformations generalise the well-known TsT (T-duality-
shift-T-duality) transformations [1–3] to the case where the subalgebra participating in the
construction of R is non-abelian [27]. For TsT, this subalgebra is abelian and corresponds to
the commuting isometries along which the T-dualities are performed. An important property of
TsT is that the corresponding deformed models with periodic worldsheet boundary conditions
can be reformulated as undeformed models with twisted worldsheet boundary conditions [2,3,28]
that are local. In the case of “diagonal” TsT-models, where the object causing the twisting is
diagonal, this has been crucial in the understanding of their spectral problem on both sides of
deformed AdS5/SYM by means of integrability methods [29–31]. Recently, the reformulation in
terms of a (local) twisted model has been achieved for generic homogeneous Yang-Baxter defor-
mations [32].2 In contrast to other options, it was found that the Jordanian R-matrices lead to
a twist that is always diagonalisable, and therefore one could hope to apply similar integrability
techniques that worked for TsT to tackle their spectral problem. This has been done success-
fully at the semi-classical level in [36] for a specific Jordanian deformation of AdS5 × S5 (which
corresponds to our R1 below with a = 0, b = −1/2 and to R̄1 with a = 0, b = −1/2, q+2,22 = 0 for
its unimodular version).

In this paper, we will continue the study of string sigma-models deforming the canonical
AdS5 × S5 background3 and therefore take g = psu(2, 2|4). To diversify the applications of
Jordanian models, we will classify all antisymmetric solutions to the CYBE that are of Jordanian
type. This includes a classification of all canonical rank-2 Jordanian R-matrices as well as their
bosonic extensions. We will find that they are at most of rank-6. For all of the bosonic R-
matrices, we will explicitly construct only those fermionic extensions that ensure unimodularity
and thus a corresponding supergravity background that is well-behaved. We will pay particular

1For the inhomogeneous version, the antisymmetric R must instead solve the modified Yang-Baxter equation
[4–7].

2For earlier work giving a reformulation in terms of undeformed models with non-local twisted boundary
conditions see [33–35].

3Although our main interest is in AdS5 × S5, some of our results are useful to classify also deformations of
backgrounds AdSn×M with n < 5. In fact some of our R-matrices are constructed with generators of so(2, 4) that
are also elements of the isometry groups of AdSn, n < 5, and therefore they can be used to generate corresponding
deformations.
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attention to simplifying our results as much as possible, including the identification of equivalent
solutions, by means of inner automorphisms of g = psu(2, 2|4).

The paper is organised as follows. We present a summary of our main results in section 2.
In section 3, we define Jordanian R-matrices including their bosonic and fermionic extensions,
as well as the unimodularity condition. This in particular identifies the necessary requirements
that the subalgebra used to construct the R-matrix has to satisfy. In section 4, we present
our classification of the bosonic rank-2 R-matrices. These results are summarised in Table 1
and 2. In section 5, we will construct their bosonic higher-rank extensions—which only exist
for certain rank-2 cases—summarised in the rest of section 2. In section 6, we then construct
all the fermionic extensions that ensure unimodularity. Again in many of the rank-2 cases, we
will see that they actually do not admit a unimodular extension, while all higher-rank cases do.
In section 7, we revive our string theory motivation, and identify for all possible unimodular
extensions of the rank-2 R-matrices the number of (super)isometries that are preserved in the
corresponding deformed supergravity background. The number of preserved superisometries is
summarised in Table 3, while the inclusion of bosonic isometries is presented in Table 6. We end
with some conclusions in section 8. Appendix A collects facts and conventions on homogeneous
R-matrices, including the corresponding deformed sigma-model, while appendix B collects our
conventions on the psu(2, 2|4) algebra and presents the explicit matrix realisation that we used.

2 Summary of the results

For the reader’s convenience, in this section we present a summary of our main results. All our
results are presented modulo inner automorphisms of the algebra, or modulo transformations
that leave the R-matrix invariant. Inner automorphisms of the algebra map equivalent solutions
of the R-matrices to each other: from the point of view of the sigma model the two deforma-
tions would be related by field redefinitions, and from the point of view of the 10-dimensional
background by coordinate transformations.

The bosonic Jordanian R-matrices may be grouped by their rank. We find that we can have
bosonic Jordanian solutions of rank 2, 4 and 6. In the following we present the results for the
bosonic R-matrices and their unimodular extensions.

Rank-2

The simplest possible case is that of rank 2, with R-matrices of the form r = h ∧ e. Here we
are using a notation to write the R-matrix that is reviewed in appendix A. In Tables 1 and 2
we collect all possible rank-2 R-matrices of so(2, 4). In Table 1 we list the ones that admit a
unimodular extension, while in Table 2 the ones that do not admit it. It turns out that only
R-matrices with e = p0 + p3 or e = p0 admit a unimodular extension.

Because we are interested in all possible deformations of AdS5 × S5, in principle we can
always shift h and e by elements of the Lie algebra of the isometry group of S5. In other
words, given r = h ∧ e we can always construct r′ = h′ ∧ e′ where h′ = h + t1, e

′ = e + t2 and
ti ∈ so(6) ⊂ psu(2, 2|4) with [t1, t2] = 0. This option has the interpretation of applying first
a sequence of 3 TsT transformations along (t1, t2), (h, t2), (t1, e) (the relative order among the
3 TsT’s is inconsequential) followed by the Jordanian deformation r = h ∧ e.4 At the level
of bosonic R-matrices, also for higher rank we always have the option of shifting the so(2, 4)

4See e.g. section 3.1 of [37].

3



R h e residual Inn(so(2, 4))

J12, D + J03 (and p1, p2 if a = 0 and b = −1;
1 (1 + b)D + bJ03 + aJ12 p0 + p3 and J01 − J13, J02 − J23 if a = b = 0;

and p0 − p3, k0 + k3 if b = −1/2)

2 1
2(D − J03) + aJ12 + α(p0 − p3) p0 + p3 J12, p0 − p3

3 −J03 + αp1 p0 + p3 p1, p2
4 D + α(J01 − J13) p0 + p3 J01 − J13, J02 − J23
5 1

2(D − J03) + aJ12 + b(k0 + k3 + 2p3) p0 + p3 J12, k0 + k3 − p0 + p3
6 D + aJ12 p0 J12 (and J13, J23 if a = 0)

Table 1: Rank-2 bosonic Jordanian deformations of the form r = h∧ e that admit a unimodular
extension. The convention is that the parameter α squares to 1 (α2 = 1) and a, b ∈ R are free.
In the last column we write the residual inner automorphisms in so(2, 4) that (together with
so(6)) leave h and e invariant. In those lists we omit e itself, which always corresponds to an
isometry.

h e

D + aJ03 p1
D + α(J02 − J23) p1

D + α(p0 + βp3) + βJ03 p1
−J03 + aD J02 − J23
−J03 + αp1 J02 − J23

−J03 −D + α(p0 + p3) J02 − J23
D − J03 ap1 + bp2 + J01 − J13
D + aJ12 p3
2D − J03 p0 − p3 + J01 − J13

D − J03 − 2aαJ12 + a(k0 + k3 + 2p3) αp2 + J01 − J13

Table 2: Rank-2 bosonic Jordanian deformations of the form r = h ∧ e that do not admit a
unimodular extension. The convention is that the parameters α, β square to 1, (α2 = β2 = 1),
and a, b ∈ R are free.

elements by elements of so(6), so we will not repeat this discussion. Importantly, the unimodular
extensions will be affected by these possible so(6) shifts, but we will not analyse this further.

Going back to the rank-2 solutions of Table 1 that admit a unimodular extension, in the
last column we list the inner automorphisms of so(2, 4) that are residual isometries under the
deformation and that leave h and e invariant. It turns out that this information is useful also to
simplify as much as possible the unimodular extensions of these rank-2 solutions. In particular,
a unimodular R-matrix will be of the form

r = h ∧ e− i

2
(Q1 ∧ Q1 + Q2 ∧ Q2), (2.1)

where Qi, i = 1, 2 are odd elements of psu(2, 2|4) of the form

Qi = q+i,αaQ
αa
+ + i q−i,αaQ

αa
− , (2.2)

where Qαa
± ≡ Q

αa ± ϵαβQβa and q±i,αa are real numbers. We refer to appendix B for our conven-
tions on psu(2, 2|4).

It turns out that the unimodular extensions of rank-2 solutions come in three types. First
we have R̄1, R̄2, R̄3, R̄4, R̄5 as unimodular extensions of the corresponding bosonic R-matrices
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R1, R2, R3, R4, R5. This type of extension works only if there is no J12 in h, so that one has to
set a = 0 in R1, R2, R5. We find that we can set to zero all coefficients q±i,αa except three of them
that satisfy

q+1,21 =
1√
2
, (q+2,22)

2 + (q−2,21)
2 =

1

2
. (2.3)

Notice that this solution admits one continuous parameter. It is a physical parameter, in fact
when q+2,22 = 0 there is an enhancement of the number of superisometries.

We then have the second type of extension, that can be constructed when there is a non-
trivial contribution of J12 in h. That means that we assume a ̸= 0 in R1, R2, R5 and construct
the unimodular R-matrices R̄1′ , R̄2′ , R̄5′ . In this case all coefficients q±i,αa can be set to zero
except two of them

q−2,21 = q+1,21 =
1√
2
. (2.4)

Taking the a → 0 limit one recovers the previous type of extension with the extra condition
q+2,22 = 0.

Finally, R6 with e = p0 stands out on its own. It admits the last type of unimodular extension
R̄6 where all coefficients are 0 except

q−1,11 = q+2,11 = q−1,22 = −q+2,22 =
1

2
. (2.5)

In Table 3 we summarise the number of superisometries that are preserved in the deformation
for each of the unimodular extensions of the rank-2 R-matrices. A table that includes also the
residual bosonic isometries is given in the main text, see Table 6.

R̄ conditions supercharges

1
a = 0 0

a = 0, b = −1/2 8
a = 0, b = −1/2, q+2,22 = 0 12

1’ a ̸= 0 0

2
a = 0 4

a = 0, q+2,22 = 0 6

2’ a ̸= 0 0

3 − 0

4 − 0

5 a = 0 0

5’ a ̸= 0 0

6 − 0

Table 3: The number of independent supercharges TĀ ∈ psu(2, 2|4) that satisfy adTĀ
R = RadTĀ

for the unimodular extended rank-2 Jordanian R-matrices of the form r = h ∧ e− i
2(Q1 ∧ Q1 +

Q2 ∧Q2). Such elements represent superisometries of the deformed supergravity background. If
a parameter is not specified, it is assumed to be generic (modulo constraints such as (6.21)).

Rank-4

Higher-rank bosonic Jordanian R-matrices can be constructed only in the case of e = p0 + p3.
Rank-4 solutions are of the form r = h ∧ e+ e+ ∧ e−, they are all listed in Table 4 and they all
admit a unimodular extension.
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R h e+ e−
7 (1 + b)D + b J03 a p1 + p2 j023
8 2

3D − 1
3J03 a p1 + p2 b (p0 − p3) + j023

9 1
2(D − J03) p1 + b+p2 + d+j023

b−p2 + d−j023
+(1− b+d− + b−d+)j013

10 −J03 + αp1 − j023 a p1 + p2
11 D + αj013 p2 aj013 + j023

12
1
2(D − J03) + aJ12
+αa

2 (k0 + k3 + 2p3)
p1 + α j023 −1

2(αp2 − j013)

Table 4: Rank-4 bosonic Jordanian deformations of the form r = h∧e+e+∧e−. In all these cases
we have e = p0+p3. To save space we are using the shorthand notation jµνρ = Jµν−Jνρ. All these
R-matrices admit unimodular extensions, with no further restriction of the above parameters.
When we have the parameter α, it is assumed that α2 = 1, while all other parameters with latin
letters are free real numbers.

The unimodular extensions of these R-matrices are constructed with 4 (rather than just 2)
odd elements of psu(2, 2|4)

r = h ∧ e+ e+ ∧ e− − i

2

∑
I=1,2

(QI
1 ∧ QI

1 + QI
2 ∧ QI

2), (2.6)

where we added a label I = 1, 2 and we still take

QI
i = q+,I

i,αaQ
αa
+ + i q−,I

i,αaQ
αa
− . (2.7)

The unimodular extensions of R7, R8, R9, R10, R11 are of the same type and can be taken as
follows. The coefficients for Q1

1 and Q1
2 can be simplified as in the extension R̄1, meaning that

we can set

q+,1
1,21 =

1√
2
, (q+,1

2,22)
2 + (q−,1

2,21)
2 =

1

2
. (2.8)

For Q2
1 and Q2

2 we can have in principle 7 non-trivial parameters turned on, satisfying the
conditions (6.14) and with the extra choice of q±,2

1,24 = q−,2
1,23 = q+,2

i,21 = 0.

The result for the unimodular extension of R12 is simpler to present, because all coefficients
can be set to zero except

q−,1
1,21 = −q+,1

2,21 = q−,2
1,22 = −q+,2

2,22 =
1√
2
. (2.9)

Notice that there is no continuous parameter left in the odd elements used to construct this
R-matrix.

Rank-6

There are two possible types of rank-6 bosonic solutions. They are of the form r = h∧ e+ e+1 ∧
e−1 + e+2 ∧ e−2 and in both cases

h = (1 + b)D + bJ03, e = p0 + p3. (2.10)

The first option is to take

R13 : e+1 = ap1 + p2, e−1 = J02 − J23, e+2 = p1, e−2 = J01 − J13 − a(J02 − J23).
(2.11)
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The second option is to set

R14 : b = −1

2
, e±a = a±ap1 + b±ap2 + c±a j013 + d±a j023, (2.12)

while imposing the conditions

a±1c±2 + b±1d±2 − b±2d±1 − a±2c±1 = 0,

a±1c∓2 + b±1d∓2 − b∓2d±1 − a∓2c±1 = 0,

a+ac−a + b+ad−a − a−ac+a − b−ad+a = 1, a = 1, 2.

(2.13)

The unimodular extensions of rank-6 solutions are constructed with 6 odd elements of the
superalgebra

r = h ∧ e+ e+1 ∧ e−1 + e+2 ∧ e−2 −
i

2

3∑
I=1

(QI
1 ∧ QI

1 + QI
2 ∧ QI

2). (2.14)

The coefficients must again solve the constraints given in (6.14). For Q1
i we may again simplify

the solution to (2.8), and for Q2
i we can set q±,2

1,24 = q−,2
1,23 = q+,2

i,21 = 0. We were not able to simplify
the other coefficients further.

3 Extended Jordanian R-matrices

Given a Lie superalgebra g, we identify a Cartan element h and the generator e of a positive
root. Both of them will be of even grading (i.e. deg(h) = deg(e) = 0), in other words they belong
to a standard Lie algebra. The assumption is that h and e span a subalgebra of g with

[h, e] = e. (3.1)

When this is the case, they identify a so-called “Jordanian solution” of the classical Yang-Baxter
equation that is given by

r = h ∧ e. (3.2)

We refer to appendix A for our conventions on R-matrices.

Given a Jordanian R-matrix as above, it is possible to construct “extended Jordanian”
solutions following Tolstoy [38]. The extra ingredients are N pairs of generators in g that
we will denote as {ei, e−i} with i = 1, . . . , N , where ei (resp. e−i) corresponds to a positive
(resp. negative) root. These extra generators may be of even or odd grading, but they must
satisfy deg(ei) = deg(e−i). Moreover, the following graded commutation relations must hold5

[e±i, e] = 0, [h, e±i] = (12 ± ξi)e±i, [[ek, el]] = δk,−l e, (3.3)

with k > l ∈ {±1,±2, . . . ,±N} and ξi ∈ C. Here [[, ]] denotes the graded commutator, see
appendix A. The N -extended Jordanian R-matrix is then constructed as

r = h ∧ e−
N∑
i=1

e−i ∧ ei, (3.4)

where we used the graded wedge product6

a ∧ b = a⊗ b− (−1)deg(a)∗deg(b) b⊗ a. (3.5)

5Compared to [38] here we use the parameter ξ which is related to the parameter t as t = 1
2
− ξ.

6The definition implies that if a, b are even then a ∧ b = −b ∧ a while if they are odd a ∧ b = +b ∧ a.
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See eq. (A.4) to map r to a matrix RIJ , with I, J = 1, . . . ,dimg.

As already noted in [15], using the above graded commutation relations, one can straight-
forwardly check the unimodularity condition (A.7) (which, we recall, gives rise to supergravity
backgrounds) for a generic N -extended Jordanian R-matrix, obtaining

RIJ [[TI , TJ ]] = 2(−1−N0 +N1)e, (3.6)

where N0, N1 are respectively the numbers of even and odd extra pairs of generators, so that
N0 + N1 = N . Unimodularity (A.7) then implies N1 = N0 + 1. Starting from a Jordanian
R-matrix of the form r = h∧ e, a minimal extension that makes it unimodular will therefore be

r = h ∧ e− e+ ∧ e−, (3.7)

with both e± of odd grading (i.e. deg(e±) = 1, so that N0 = 0, N1 = 1) and

[e±, e] = 0, [h, e±] = (12 ± ξ)e±, {e+, e−} = e, (3.8)

with ξ ∈ C. In view of later calculations, we find it convenient to redefine these odd elements as

Q1 =
1√
2
(e+ − i e−), Q2 =

1√
2
(i e+ − e−), (3.9)

so that the (anti)commutation relations become

[Qi, e] = 0, [h,Qi] =
1
2Qi − εijξ̌Qj, {Qi,Qj} = −iδije, (3.10)

with i, j = 1, 2, ξ̌ = iξ and the antisymmetric tensor ε12 = −ε21 = 1. In this basis the R-matrix
reads

r = h ∧ e− i

2
(Q1 ∧ Q1 + Q2 ∧ Q2). (3.11)

In the rest of the paper we will construct bosonic (i.e. N1 = 0) extended solutions with N0 = 0
(i.e. the standard rank-2 case constructed above), with N0 = 1 (i.e. rank-4 bosonic R-matrices)
and with N0 = 2 (i.e. rank-6 bosonic R-matrices), and we will find that N0 > 2 is not possible.
We will show that some R-matrices with N0 = 0 and all of those that we construct with
N0 = 1, 2 admit also unimodular extensions (with N1 = N0 + 1). In the generic case, we prefer
to rewrite (3.3) in terms of e±a for the even pairs in the extension with labels a, b = 1, . . . , N0,
and QI

i with i = 1, 2 for the odd pairs in the extension with labels I, J = 1, . . . , N1. The relations
then read

[e±a, e] = 0, [h, e±a] = (12 ± ξ̂a)e±a, [e+a, e−b] = δabe, [e±a, e±b] = 0,

[QI
i, e] = 0, [h,QI

i] =
1
2Q

I
i − εijξ̌

IQI
j, {QI

i,Q
J
j } = −iδIJδije, [QI

i, e±a] = 0,
(3.12)

and the r-matrix will be

r = h ∧ e+

N0∑
a=1

e+a ∧ e−a −
i

2

N1∑
I=1

(QI
1 ∧ QI

1 + QI
2 ∧ QI

2). (3.13)

In order to respect the reality conditions of g and, in our case, to generate real deformations of
the AdS5 × S5 background, we need to restrict the free parameters of the above relations to be
real, ξ̂a, ξ̌

I ∈ R. We refer to appendix A for more details.
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4 Classification of the non-extended solutions in so(2, 4)

Our first task is to obtain the classification of all rank-2 (i.e. non-extended with N0 = N1 = 0)
Jordanian solutions of the conformal algebra7 so(2, 4) ⊂ psu(2, 2|4). In other words, we are after
all the inequivalent choices of h and e among the elements of so(2, 4) that satisfy [h, e] = e.
Two choices {h, e} and {h′, e′} are said to be equivalent if there exists an inner automorphism
of so(2, 4) that relates them, i.e. if there exists an element f ∈ SO(2, 4) such that h′ = f−1hf
and e′ = f−1ef .

From the point of view of the classification of the deformations of AdS5 × S5, modding out
by inner automorphisms is justified by how the R-matrix enters the action of the deformed
σ-model, see (A.6). In fact, R appears in the linear operator O = 1 − ηRgd̂ : g → g, where
Rg = Ad−1

g RAdg. In the undeformed model, multiplication of the supercoset representative
g ∈ G from the left by a constant element f ∈ G corresponds to an isometry of the target-
space background. In the presence of the deformation, under a left multiplication we have
invariance of the σ-model action (A.6) up to a possible change of the R-matrix itself as R →
Ad−1

f RAdf . Therefore, the group of isometries is reduced to the subgroup of G that leaves

R invariant (i.e. R = Ad−1
f RAdf ). Nevertheless, when f does not correspond to an isometry

because it does not leave the R-matrix (and therefore the action) invariant, multiplication by
f amounts to just a field redefinition of g, which is simply a different language to describe the
same physics. Conversely, when two different deformations are generated by R and R′ related as
R′ = Ad−1

f RAdf , then it is enough to identify g′ = fg to conclude that the two deformations

are physically equivalent. Notice that when R′ = Ad−1
f RAdf , then the relation between the

Lie-algebra elements is implemented precisely by the adjoint G-action T ′
I = Ad−1

f TI , a fact
which justifies the definition of equivalence for the choices {h, e} and {h′, e′}.

According to the previous discussion, we must obtain all the embeddings of {h, e} in so(2, 4)
modulo inner SO(2, 4) automorphisms. To do so, we will follow a strategy that was already
used in [15] to classify all the inequivalent rank-4 unimodular bosonic R-matrices of so(2, 4).
First, we notice that the 2-dimensional algebra generated by h and e is solvable. In [39] it
was proved that all solvable subalgebras of so(2, 4) must be subalgebras of one of the maximal
solvable subalgebras8 of so(2, 4). The algebra so(2, 4) has two non-abelian maximal solvable
subalgebras9 which, following [15], we take as

s1 = span(pi, J01 − J13, J02 − J23, J03, J12, D),

s2 = span(p0 + p3, p1, p2, J01 − J13, J02 − J23, J12, J03 −D, k0 + k3 + 2p3) .
(4.1)

Let us stress that also the identification of s1 and s2 is provided only up to inner automorphisms
of so(2, 4). That means that other choices are possible but they are all physically equivalent.

At this point we only need to find all the possible embeddings of the algebra generated by h
and e in either s1 or s2, up to automorphisms generated by SO(2, 4). This task can be performed
systematically by first identifying all possible embeddings of e up to inner automorphisms. The
reason to single out this element first is that it is the only one that appears on the right-hand-
side of the commutation relation. All such possible embeddings of e were already worked out
in [15] and we recap them in Table 5.

7The algebra spanned by h, e is non-compact and thus nor h nor e can be an element of so(6) ⊂ psu(2, 2|4).
Nevertheless, as mentioned in the previous section, h and e can be shifted by so(6) elements and the classical
Yang-Baxter equation will still hold.

8See the corollary at the end of section II.B of [39].
9See the results of section III.D of [39] for the group SU(2, 2) which is locally isomorphic to SO(2, 4), as

well as [40]. Notice that we are ignoring the maximal solvable subalgebra s0 because it is abelian. Moreover,
following [15], we swap the definition of s1 and s2 compared to [39].
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s1 s2
(1) p1 (1) p1
(2) J02 − J23 (2) p0 + p3
(3) p1 + J02 − J23 (3) a p1 + b p2 + J01 − J13
(4) p0
(5) p3
(6) p0 + p3
(7) p0 − p3 + J01 − J13

Table 5: All the possible inequivalent embeddings of e in the two non-abelian maximal solvable
subalgebras of so(2, 4), up to inner SO(2, 4) automorphisms. In option (3) of s2, a and b are
two real parameters.

After fixing a choice for e, it is a matter of imposing the commutation relation [h, e] = e
to find h as well. After doing so, one must act again with inner SO(2, 4) automorphisms in
order to remove as many free parameters as possible, and therefore identify all the inequivalent
embeddings of h. In the following, when saying that we use an automorphism generated by x ∈
so(2, 4) we mean that we implement the transformation h → e−xh ex and e → e−xe ex. Given that
the procedure assumes that the choice for e is fixed, we will only consider transformations that
leave e invariant (e−xe ex = e) or at most that they rescale it by an overall factor (e−xe ex = c e)
because that can be reabsorbed by the redefinition of the deformation parameter in the action.10

In general, note that in h we can never remove contributions from the last three generators of
s1 and s2, because these generators never appear on the right-hand side of the commutation
relations of these subalgebras of so(2, 4).

We will describe in some detail the calculations for the first example, and we will summarise
as briefly as possible the remaining ones.

4.1 Embeddings in s1

(1) e = p1

In order to identify h one starts from the parameterisation of a generic element of s1 and one
takes for example h = αipi+β(J01−J13)+γ(J02−J23)+δJ03+ϵJ12+λD with all the coefficients
beaing generic real parameters. After imposing [h, e] = e, one finds that some of the parameters
need to be fixed to special values. In particular we find h = D + αipi + γ(J02 − J23) + δJ03.
At this point we can act with inner SO(2, 4) automorphisms to further reduce the number of
physical parameters. This is what we will explain in the following.

First of all, if δ ̸= ±1, then all contributions with pi in h can be removed by acting with an
automorphism generated by x = cipi with c

i ∈ R. In fact, after noticing that e−xe ex = e, one
finds that

e−xh ex = D + (c0 − γc2 − δc3 + α0)p0 + (c1 + α1)p1 + (c2 + α2 − γc0 + γc3)p2

+ (c3 + α3 − γc2 − δc0)p3 + γ(J02 − J23) + δJ03,
(4.2)

so that to remove the contribution of p1 it is enough to set c1 = −α1. Removing the contributions
with p0, p2, p3 is more delicate: one needs to impose a system of 3 linear equations for the 3
unknowns c0, c2, c3. The determinant of the matrix associated to this linear system is det = 1−δ2.

10This transformation, in fact, leaves [h, e] = e invariant. One could consider also e → e + c h, but it would
generate new (non-physical) parameters rather than reabsorbing them.
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Therefore, if we assume that δ ̸= ±1 we can remove all contributions with pi as anticipated above.
At this point, an automorphism generated by x = c(J02 − J23) is able to remove also J02 − J23,
at the extra condition that δ ̸= 0. Notice that if δ = 0 and γ ̸= 0, then we can still set it to ±1
by acting with x = cJ03.

If δ = 1, instead, after removing p1 by x = c1p1, we can also remove J02 − J23 by x =
c(J02 − J23) because now we are sure to satisfy the condition δ ̸= 0. A further action with
x = cipi (with c

1 = 0) allows us to remove p2 and p0 − p3 from h, but not necessarily p0 + p3.
If not 0, the coefficient in front of p0 + p3 can be set to ±1 by x = cD. If δ = −1 then the
reasoning is similar, but with the role of p0 − p3 and p0 + p3 interchanged.

To recap, we have the following 3 inequivalent possibilities:

1.1.a : h = D + δJ03,

1.1.b : h = D + γ(J02 − J23), with γ
2 = 1,

1.1.c : h = D + α(p0 + δp3) + δJ03, with α
2 = δ2 = 1.

(4.3)

(2) e = J02 − J23

Generically we may have h = α+(p0+p3)+α
1p1+β(J01−J13)+γ(J02−J23)+λD−J03. First,

we can remove both J01 − J13 and J02 − J23 by x = c1(J01 − J13) + c2(J02 − J23). If λ ̸= 0 and
λ ̸= −1, then we can also remove p0 + p3 and p1 by x = c+(p0 + p3) + c1p1. If λ = 0 we can
remove p0 + p3 but not necessarily p1, and the coefficient of the latter (if not 0) can be set to
±1 by x = cD. Similarly, if λ = −1 then we can remove p1 but not necessarily p0 + p3, and the
coefficient of the latter can also be set to ±1.

To recap, we have the following 3 inequivalent possibilities:

1.2.a : h = −J03 + λD,

1.2.b : h = −J03 + αp1, with α
2 = 1,

1.2.c : h = −J03 −D + α(p0 + p3), with α
2 = 1.

(4.4)

(3) e = p1 + J02 − J23

Generically we may have h = D−J03+α+(p0+p3)+α
1p1+β(p2+J01−J13)+γ(J02−J23). First,

we can act with an automorphism generated by x = c(p2+J01−J13) to remove the contribution
proportional to β. Similarly, acting with x = cp1 will remove p1, with x = c(J02 − J23) will
remove J02 − J23 and with x = c(p0 + p3) will remove p0 + p3.

In this example, therefore, there is only one possibility, namely

h = D − J03. (4.5)

(4) e = p0

We must start from h = D+ ϵJ12 + αipi. Acting with x = cipi we can always remove all the pi.
The contribution with J12, instead, cannot be removed and we have only one possibility

h = D + ϵJ12. (4.6)

11



(5) e = p3

As in the previous example, we have h = D + ϵJ12 + αipi and all contributions with pi can be
removed with x = cipi. We therefore have only one possibility

h = D + ϵJ12. (4.7)

(6) e = p0 + p3

In general we have h = αipi + β(J01 − J13) + γ(J02 − J23) + δJ03 + ϵJ12 + (δ + 1)D. If at least
one of the two parameters δ, ϵ is non-vanishing (i.e. if δ2 + ϵ2 ̸= 0) then we can remove the
contributions with J01 − J13, J02 − J23 with x = c1(J01 − J13) + c2(J02 − J23). If we further
assume that δ ̸= −1

2 and that (δ + 1)2 + ϵ2 ̸= 0 then we can also remove all pi with x = cipi.

If instead δ = −1
2 we can remove all pi except the combination p0 − p3, whose coefficient

may be set to ±1 with x = cD.

Another scenario is δ = −1 and ϵ = 0. We can remove p0, p3 but not p1, p2 with x = cipi.
Nevertheless, if both p1, p2 are present, we can remove one of them by x = cJ12, and set the
coefficient of the remaining one to ±1 by x = cD.

Finally, if δ = 0 and ϵ = 0 then we can act with x = cJ12 to remove, for example, J02 − J23.
After doing that, we can always remove all pi by x = cipi. At this point, it is possible to rescale
the coefficient of J01 − J13 by x = cJ03.

To summarise, we have in total 4 possibilities:

1.6.a : h = (δ + 1)D + δJ03 + ϵJ12,

1.6.b : h = 1
2(D − J03) + ϵJ12 + α(p0 − p3), with α

2 = 1,

1.6.c : h = −J03 + αp1, with α
2 = 1,

1.6.d : h = D + α(J01 − J13), with α
2 = 1.

(4.8)

(7) e = p0 − p3 + J01 − J13

We start from h = 2D− J03 +α+(p0 + p3) +α2p2 + β(J01 − J13) + γ(J02 − J23). We can remove
J01 − J13, J02 − J23 with x = c1(J01 − J13) + c2(J02 − J23), p2 with x = cp2 and p0 + p3 with
x = c(p0 + p3). Therefore, we only have one possibility

h = 2D − J03. (4.9)

4.2 Embeddings in s2

(1) e = p1

We start from the parameterisation of a generic element of s2, namely h = α+(p0+ p3)+α
1p1+

α2p2 + β(J01 − J13) + γ(J02 − J23) + δ(J03 −D) + ϵJ12 + λ(k0 + k3 + 2p3). After imposing the
commutation relation [h, e] = e we find h = D− J03 +α+(p0 + p3) +α1p1 +α2p2 + γ(J02 − J23).
We can remove the contribution with J02 − J23 by acting with an automorphism generated by
x = c(J02 − J23). After that, we can remove all pi by x = c+(p0 + p3) + c1p1 + c2p2. Therefore,
we simply have

h = D − J03. (4.10)
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Actually this solution is the same found in case (1) of the s1 embedding. This simply means
that the algebra that we are considering is a subalgebra of both s1 and s2.

(2) e = p0 + p3

We have h = 1
2(D−J03)+α+(p0+p3)+α

1p1+α
2p2+β(J01−J13)+γ(J02−J23)+ϵJ12+λ(k0+k3+

2p3). We can remove the contributions with J01−J13, J02−J23 by x = c1(J01−J13)+c2(J02−J23),
and similarly the contributions of p0 + p3, p1, p2. Therefore we have

h = 1
2(D − J03) + ϵJ12 + λ(k0 + k3 + 2p3). (4.11)

(3) e = ap1 + bp2 + J01 − J13

Here we need to distinguish different cases. If a2 − b2 + 1 ̸= 0 or if ab ̸= 0 then we have
h = D− J03 +α+(p0 + p3) + (aβ + bγ)p1 +α2p2 + β(J01 − J13) + γ(J02 − J23). Now acting with
x = c+(p0 + p3) + c1p1 + c2p2 + cβ(J01 − J13) + cγ(J02 − J23) we can remove all free parameters
and have just

2.3.a : h = D − J03. (4.12)

On the other hand, if a = 0 and b = ±1 (which is the only real solution of the system a2−b2+1 =
0 and ab = 0) then we have h = D − J03 + α+(p0 + p3) ± γp1 + α2p2 + β(J01 − J13) + γ(J02 −
J23)∓ 2λJ12 + λ(k0 + k3 + 2p3). At this point we can act with x = c+(p0 + p3) + c1p1 + c2p2 +
cβ(J01 − J13) + cγ(J02 − J23) to remove several parameters and be left with only

2.3.b : h = D − J03 ∓ 2λJ12 + λ(k0 + k3 + 2p3). (4.13)

5 Classification of the (bosonic) extended solutions in so(2, 4)

The reasoning followed to classify the rank-2 solutions in so(2, 4) can be applied also to find
extended (i.e. higher rank) bosonic Jordanian R-matrices. In fact, according to the commutation
relations given in (3.3) or (3.12), the N -extended algebra is also solvable, and if we want it to
be a subalgebra of so(2, 4) it must again be a subalgebra of either s1 or s2. Here we use this
observation to classify the extended (higher-rank) Jordanian R-matrices. The strategy is to start
from the classification of the rank-2 solutions of the previous section and construct elements e±a

that satisfy (3.12) with a given h and e up to inner so(2, 4) automorphisms that now leave both
h and e invariant.

It turns out that for most choices of e ∈ si it is not possible to identify two elements e+, e− ∈ si
that commute with e and that satisfy [e+, e−] = e. We therefore conclude that in those cases it
is not possible to construct bosonic extended solutions. We find that it is possible to construct
such solutions only when e = p0 + p3. This option shows up both in s1 and s2, and because it
is a subset of the rank-2 solutions admitting a unimodular extension of Table 1, we will refer to
the names used in that table. Table 1 also summarises the inner so(2, 4) automorphisms that
we can exploit. When constructing the extended solutions we will refer to the names used in
the summary of results of section 2.
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5.1 Bosonic extensions in s1

N0 = 1

Let us first try to construct an extension with N0 = 1. We start from

e± = αi
±pi + β±(J01 − J13) + γ±(J02 − J23) + δ±(D + J03) + ϵ±J12, (5.1)

since these commute with e = p0 + p3. After imposing by brute force the relations in (3.12)
with h given in R1 of Table 1 (i.e. case 1.6.a of (4.8)), we find that for ξ̂ generic we can have
the following solution11

δ = ξ̂ − 1
2 , ϵ = 0, ( =⇒ h = (1 + δ)D + δJ03),

e+ = ē+ ≡ a p1 + b p2, e− = ē− ≡ c (J01 − J13) + d (J02 − J23),
(5.2)

where the free (real) parameters are constrained to satisfy

a c+ b d = 1. (5.3)

We may actually act with an automorphism generated by a J12 rotation and remove the de-
pendence on one of the above parameters. Without loss of generality12 we may set for example
c = 0, so that the quadratic condition reduces to d = b−1. At this point, we can act with an
automorphism generated by D + J03 which allows us to set b = ±1. Taking into account that
the transformation e± → c±1e± for any c ∈ R is an automorphism of the algebra and leaves the
R-matrix invariant, we can effectively set b = 1. This is the solution R7 in Table 4.

When ξ̂ takes some special values, the solutions for e± can be slightly more generic. First
we find13

ξ̂ = 1
6 , δ = −1

3
, ϵ = 0, ( =⇒ h = 2

3D − 1
3J03),

e− = f(p0 − p3) + ē−, e+ = ē+,
(5.4)

still subject to the constraint (5.3) and with the parameter f ∈ R free. As done previously, we
can set c = 0 by J12, then b = ±1 by D+J03, and then send e± → b±1e± yielding R8 in Table 4.

Second, we also have the option

ξ̂ = 0, δ = −1

2
, ϵ = 0, ( =⇒ h = 1

2(D − J03)),

e+ = a+p1 + b+p2 + c+(J01 − J13) + d+(J02 − J23),

e− = a−p1 + b−p2 + c−(J01 − J13) + d−(J02 − J23),

(5.5)

with the more general constraint

a+c− + b+d− − a−c+ − b−d+ = 1. (5.6)

11Notice that (3.12) is symmetric under the transformation ξ̂a → −ξ̂a and e±a → ±e∓a, so that in principle we
also have the solution with δ = −ξ̂− 1

2
, ϵ = 0 and e+ = ē−, e− = −ē+. We do not consider these as independent

solutions because they only amount to a redefinition of the basis of the algebra. In fact, the R-matrix is unchanged
under the transformation e±a → ±e∓a.

12Because of the condition (5.3) we cannot have at the same time c = 0 and d = 0.
13As already remarked, the relations in (3.12) are symmetric under ξ̂a → −ξ̂a and e±a → ±e∓a. Therefore we

have also solutions obtained by this transformation, namely with ξ̂ = − 1
2
and ξ̂ = − 1

6
. These are not independent

solutions, see footnote 11. In principle, we also find additional solutions with either e+ or e− containing a
contribution proportional to p0 + p3, but this can be shifted away by an automorphism, so that the solution
reduces to a special case of R7.
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For this constraint to admit a solution, notice that either e+ or e− must have a pi with non-
vanishing coefficient, and the other must have J0i − Ji3 with non vanishing coefficient. For
definiteness, let us assume that a+ ̸= 0 and c− ̸= 0. The other options are obtained by applying
the symmetries e± → ±e± or 1 ↔ 2 of the spatial indices 1,2, that give rise to equivalent
solutions. As we can see in Table 1, in this case h and e are invariant not only under the action
of D + J03 and J12 but also p0 − p3 and k0 + k3. It should be possible to use the last 3 of these
generators to set c+ = b+ = b− = 0, so that the quadratic constraint reduces to c− = a−1

+ . After
that, using D + J03 one could set a+ = ±1. In other words, we believe it is possible to reduce
this case to

ξ̂ = 0, δ = −1

2
, ϵ = 0, ( =⇒ h = 1

2(D − J03)),

e+ = αp1 + d+(J02 − J23),

e− = a−p1 + α(J01 − J13) + d−(J02 − J23), with α2 = 1.

(5.7)

However, it is quite subtle to make sure that setting c+ = b+ = b− = 0 is possible for all values
of the initial parameters a±, b±, c±, d±. In fact, one may worry about possible singularities
for special values of these parameters. The actions of the generators J12, p0 − p3, k0 + k3 mix
non-trivially, and this makes the analysis more complicated. For this reason, the solution R9

in Table 4 is presented without the maximal simplification by automorphisms. We simply set
c+ = 0 by means of k0 + k3, then set a+ = ±1 thanks to D + J03 and finally send e± → a±1

+ e±.

The calculations to identify the possible N0 = 1 extensions of R2 (i.e. the case 1.6.b in (4.8))
are similar to the above ones (when setting ξ̂ = 0, δ = −1

2). However, no solution is possible
because p0−p3 does not commute with J01−J13 and J02−J23, and therefore R2 does not admit
a bosonic extension. Also the calculation for R3 (i.e. case 1.6.c) is similar to the ones above
(now setting δ = −1) and we can obtain the solution R10 of Table 4 by borrowing the extension
R7 (before removing any parameter by conjugation) at the condition that we further set c = 0
in ē− (because of the extra contribution of p1 in h). Similarly, R4 (i.e. case 1.6.d) admits an
extension as in R7 at the condition of further setting a = 0 in ē+, giving rise to the solution R11.
Note that, both in the case of R10 and R11, J12 and D+J03 do not commute with h. Therefore,
one can not use these to remove and rescale parameters.

N0 = 2

Using the above results, we can check that it is possible to construct also extended bosonic
Jordanian solutions with N0 = 2. In particular, for generic ξ̂ we can start from R7 and construct
the solution14

R15 : δ = ξ̂ − 1
2 , ϵ = 0, ( =⇒ h = (ξ̂ + 1

2)D + (ξ̂ − 1
2)J03),

e+a = ē+a ≡ aap1 + bap2, e−a = ē−a ≡ ca(J01 − J13) + da(J02 − J23),
(5.8)

with the simultaneous conditions

a2c1 + b2d1 = 0, a1c2 + b1d2 = 0, aaca + bada = 1, a = 1, 2. (5.9)

Using the automorphism generated by a J12 rotation we can set for example c1 = 0 which then
implies b2 = 0 and d1 = 1/b1, c2 = 1/a2, d2 = −a1/(b1a2). Moreover, using D + J03 we can
set b1 = ±1 and finally taking into account that also the transformation e±a → c±1e±a is an

14In principle each pair {e+a, e−a} may come with its own coefficient ξ̂a, but δ is already constrained to be
δ = ±ξ̂ − 1

2
which implies that ξ̂1 = ξ̂2 = ξ̂. We could in fact combine different solutions related by ξ̂ → −ξ̂ but

they would be equivalent to those that we write here.

15



automorphism of the algebra (and leaves the R-matrix invariant) we can simply set a2 = 1. This
gives the solution R13 of section 2.

It is not possible, instead, to construct an extended solution from R8 because p0−p3 does not
commute with J01 − J13 nor J02 − J23. Therefore we cannot construct two linearly independent
elements e−1, e−2 unless they both have a vanishing coefficient in front of p0−p3 (fa = 0), which
then reduces to the previous solution. Finally, from R9 we can construct the following extended
solution

R14 : ξ̂ = 0, δ = −1

2
, ϵ = 0, ( =⇒ h = 1

2(D − J03)),

e±a = a±ap1 + b±ap2 + c±a(J01 − J13) + d±a(J02 − J23),
(5.10)

with the 6 constraints

a±1c±2 + b±1d±2 − b±2d±1 − a±2c±1 = 0,

a±1c∓2 + b±1d∓2 − b∓2d±1 − a∓2c±1 = 0,

a+ac−a + b+ad−a − a−ac+a − b−ad+a = 1, a = 1, 2.

(5.11)

These are all the options for extended solutions with N0 = 2. It is not possible to construct
them from R3 and R4 (or equivalently R10 and R11) because the extra condition of not having
either J01−J13 or p1 in e±a implies that there would not be enough linearly-independent vectors
to construct the full solution.

For a similar reason, it is obviously not possible to construct extended solutions with N0 > 2.
There would not be enough linearly-independent vectors to construct the pairs {e+a, e−a}.

5.2 Bosonic extensions in s2

N0 = 1

To understand whether we can construct a bosonic extension in this case, we proceed as before
starting from

e± = α+
±(p0+p3)+α

1
±p1+α

2
±p2+β±(J01−J13)+γ±(J02−J23)+ϵ±J12+λ±(k0+k3+2p3), (5.12)

that commute with e. We notice that this is a slight modification of the calculation done for
the embedding in s1: first there is no combination p0 − p3, and second there is an additional
contribution of k0 + k3 + 2p3 both in e± and in h. In order to find a bosonic extension to this
solution that is new compared to what found in s1, we must therefore have λ ̸= 0 in h or λ+ ̸= 0
in e+ or λ− in e− (or more than one of these possibilities simultaneously). We find that it is
possible to construct extended solutions of this kind at ξ̂ = 0 if we set λ = ± ϵ

2 in (4.11) and if
we take

e+ = a+p1 + b+p2 ∓ b+(J01 − J13)± a+(J02 − J23),

e− = a−p1 + b−p2 ∓ b−(J01 − J13)± a−(J02 − J23),
(5.13)

with the condition
a+b− − a−b+ = ∓1

2 , (5.14)

where the signs are correlated to the choice of sign in λ = ± ϵ
2 . Note that to have a genuinely

new extension (compared to the embedding in s1) we must assume ϵ ̸= 0. Although both
k0 + k3 − p0 + p3 and J12 leave h and e invariant, we can remove only one parameter by their
actions (because it turns out that there is only one non-trivial parameter when applying the
two actions simultaneously) and we decide to set b+ = 0. Then the constraint is solved just by
b− = ∓ 1

2a+
. Nevertheless, we can always shift e− by a quantity proportional to e+, given that at
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the level of the R-matrix the contribution of this extra shift drops out because of antisymmetry
of R.15 Therefore, the contribution proportional to a− produces no effect, and we can just set
a− = 0. This is the solution R12 in Table 4.

In this case it is not possible to construct bosonic extended solutions with N0 > 1. There
are simply not enough parameters to satisfy all needed conditions.

6 Classification of the unimodular solutions in psu(2, 2|4)

In this section we address the question of whether it is possible to extend the bosonic Jordanian
solutions constructed above to obtain unimodular solutions. As recalled in section 3, we should
add N1 pairs of odd generators from psu(2, 2|4) with N1 = N0 + 1, where N0 is the number of
extra bosonic pairs of generators in the bosonic extension.

We will construct odd elements as linear combinations of the supercharges of psu(2, 2|4)

QI
i = qIi ·Q+ qIi ·Q+ sIi · S + sIi · S. (6.1)

Here we are using a simplifying notation where the dot product means that the indices of the

supercharges are assumed to be in their canonical position Qαa, Q
α̇a
, Sα

a, S
α̇
a and are contracted

by complex coefficients q, q, s, s (where we omit the obvious I, i indices for simplicity) with Lorentz
and R-symmetry indices in appropriate positions.16 Importantly, we will demand that the odd
elements QI

i satisfy the standard reality conditions of psu(2, 2|4), namely (QI
i)
†+HQI

iH
−1 = 0, see

appendix B for more details. Given that the supercharges that we are using for the superalgebra
basis are not real and satisfy (B.25) instead, this implies that the complex coefficients q, q, s, s
must be such that

(qαa)∗ = −ϵαβδabqβb, (sαa)
∗ = −ϵαβδabsβb, (6.2)

where the star is the complex conjugation.17 In total we therefore have 32 real coefficients for
each QI

i. Alternatively, we may define the real supercharges18

Qαa
± ≡ Q

αa ± ϵαβδabQβb, Sα
±a ≡ S

α
a ± ϵαβδabSβ

b, (6.3)

and rewrite
QI

i = qI,+i · Q+ + i qI,−i · Q− + sI,+i · S+ + i sI,−i · S−, (6.4)

where now the coefficients q± and s± are simply real. We will present our derivation in this basis,
because it makes it straightforward to check when the reality conditions present an obstruction
to the unimodular extension.

6.1 Unimodular extension of rank-2 solutions

One can go through Tables 1 and 2, that contain the summary of all the rank-2 bosonic solutions,
and check when it is possible to construct unimodular extensions. In order to do that, we must

15Notice that this is an automorphism of the algebra only if ξ̂ = 0, but we could use this transformation even
if ξ̂ ̸= 0 because ultimately we are interested in the classification of the R-matrices rather than the algebras.

16This means that q · Q = qαaQαa, q · Q = qα̇aQ
α̇a

, s · S = sαaSα
a and s · S = sα̇

aS
α̇
a. As explained in

appendix B, Lorentz indices α, α̇ are raised and lowered with ϵ while the R-indices a are raised and lowered with
the matrix K. Given that both matrices are antisymmetric, the contraction preserves the sign if both indices are
changed of position, e.g. q ·Q = qαaQαa = qαaQ

αa. Otherwise the overall sign changes.
17Importantly, here the a, b indices are raised and lowered with the Kronecker δ rather than the matrix K.
18This definition breaks Lorentz and R-symmetry covariance but is useful for practical calculations in our case.
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construct two odd elements

Qi = q+i · Q+ + i q−i · Q− + s+i · S+ + i s−i · S−, (6.5)

with i = 1, 2 that satisfy the relations in (3.10) for a given h and e. If this is possible, we will
denote the unimodular extension of R by R̄.

Obstructions to the unimodularity extension

Let us present explicitly the calculations for one case that does not admit a unimodular extension,
namely h = D + aJ03 and e = p1. In general, the best strategy is to first impose the conditions
in (3.10) that are linear in Qi. Starting with [Qi, e] = 0 one immediately finds that this case
implies s± = 0, so that Qi can be only linear combinations of the supercharges Q±. After
imposing also [h,Qi] =

1
2Qi − ϵij ξQj, one finds that the only option that (potentially) does not

break the reality of the free coefficients a, ξ, q± is setting just ξ = a = 0. At this point we turn
to the relation quadratic in the odd elements, namely {Qi,Qj} = −iδije. This is where the real
basis for the supercharges turns out to be useful. Omitting the i index now, we find that, in
order to satisfy {Q,Q} = −ie, the following equations must hold

4∑
a=1

(q+αa)
2 +

4∑
a=1

(q−αa)
2 = 0, α = 1, 2,

4∑
a=1

(q+1aq
+
2a + q−1aq

−
2a) = −1

4 ,

4∑
a=1

(q+1aq
−
2a − q−1aq

+
2a) = 0.

(6.6)

As the coefficients are real, the two equations in the first line are solved only by q±i,αa = 0. This
solution is not compatible with the first equation of the second line, and in fact makes Qi vanish
completely. Therefore for h = D + aJ03 and e = p1 it is not possible to construct a unimodular
extension.

The calculations are similar for all other cases of Table 2, and we will not present the
details for all of them. The obstructions originate from reality conditions either from the linear
commutation relations with h or from the quadratic anticommutation relations. As indicated in
Table 1, however, it is possible to construct unimodular extensions when e = p0 or e = p0 + p3,
as we will now show.

Allowed unimodular extensions

Let us start from those with e = p0 + p3, namely from R1 to R5 of Table 1 included. With this
choice, imposing [Qi, e] = 0 sets s±i,1a = 0 and thus kills a total of 16 parameters. To proceed we
need to specify the choice for h in each Ri.

R1

When taking h = (1+b)D+bJ03+aJ12 and imposing [h,Qi] =
1
2Qi−ϵij ξ̌Qj we find that we must

set ξ̌ = a
2 and that we have six branches for the solutions, depending on whether the parameters

a, b and/or b + 1 are generic or vanishing.19 Nevertheless, after the quadratic commutation
relations the six branches collapse to only two branches, a is generic or a = 0.

19As in the bosonic case, the relations in (3.12) are symmetric under ξ̌ → −ξ̌ and Q1 ↔ Q2. That means
that we also have solutions with ξ̌ = −a/2. We do not write these explicitly because they give rise to the same
R-matrix and deformation as the above solution.
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• a = 0

If b ̸= 0,−1 we find that we must set

s±i,αa = 0, q±i,1a = 0. (6.7)

The non-trivial coefficients q±i,2a will be further constrained by the condition {Qi,Qj} = −iδije.
In particular we find∑

a

[(q+i,2a)
2 + (q−i,2a)

2] = 1
2 , for i = 1, 2,

∑
a

(q−1,2aq
−
2,2a + q+1,2aq

+
2,2a) = 0. (6.8)

If b = 0 we find less-restrictive conditions from the linear commutation relations with e and h,
namely s±i,αa = 0, but real solutions of the anti-commutation relations reduce this case back to

(6.7) and (6.8). Similarly, if b = −1, the linear commutation relations set only s±i,1a = q±i,1a = 0
but reality of the anti-commutation relations reduce this case back to (6.7) and (6.8). We will
denote this unimodular extension by R̄1.

• a generic

If b ̸= 0,−1 we find from the linear commutation relations with e and h that we must set

s±i,αa = 0, q±i,1a = 0, q+i,2a = ϵijq
−
j,2a. (6.9)

The remaining quadratic conditions {Qi,Qj} = −iδije can then be written as equations for the
coefficients q−i,2a only, reading ∑

i,a

(q−i,2a)
2 = 1

2 . (6.10)

If b = 0 we find again a less restrictive solution for the linear commutation relations, namely
s±i,αa = 0, q+2,1a = q−1,1a = 0, q+1,1a = −q−2,1a, q

+
i,2a = ϵijq

−
j,2a. As before, to solve the quadratic

equations {Qi,Qj} = −iδije over the real numbers, however, we must set q+1,1a = 0 and we
reduce back to the previous case (6.9) and (6.10). Similarly, if b = −1, solving the linear and
quadratic equations over the reals reduces the conditions to (6.9) and (6.10). We will denote
this unimodular extension by R̄1′ .

In summary, we only have to distinguish the a = 0 case, enforcing (6.7) and (6.8), and the
case in which a is generic, enforcing (6.9) and (6.10). Both cases admit solutions over the real
numbers. Note that (6.9) and (6.10) will solve (6.7) and (6.8), but not the other way around,
and therefore the solutions R̄1′ reduce to a special solution of the R̄1 when taking the limit
a→ 0.

R2

It turns out that the calculations for the case h = 1
2(D − J03) + aJ12 + α(p0 − p3) with α

2 = 1
are completely analogous to the previous one. In fact, the parameter b of R1 plays no role in
the classification of the solutions, and the extra contribution with p0 − p3 is harmless because
the supercharges Q,Q commute with the momenta pi. If a = 0, the solutions are then given
by (6.7) and (6.8), whose corresponding R-matrix we denote by R̄2, or if a is generic they are
given by (6.9) and (6.10), denoted by R̄2′ .

R3

The calculations for h = −J03+αp1 with α2 = 1 are analogous to the case R1 with the condition
a = 0, so that the solutions are given by (6.7) and (6.8), whose R-matrix will be denoted by R̄3.
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R4

The calculations for h = D+α(J01−J13) with α2 = 1 are also analogous to the case R1 with the
condition a = 0. In fact, the element J01−J13 has non-vanishing commutators with supercharges
with α = 1, but these contributions are already set to zero by other conditions. Therefore, the
solutions are given by (6.7) and (6.8), whose R-matrix will be denoted by R̄4.

R5

Here we have h = 1
2(D − J03) + aJ12 + b(k0 + k3 + 2p3) and e = p0 + p3, which compared to

R1 is a genuinely new case only if b ̸= 0. The results are in fact identical to R1, and therefore
if a = 0 they are given by (6.7) and (6.8), whose R-matrix we denote by R̄5, and if a is generic
they are given by (6.9) and (6.10), with R-matrix R̄5′ .

R6

Let us now consider the choice h = D + aJ12 and e = p0. Imposing [Qi, e] = 0 we find that all
s± = 0. After imposing [h,Qi] =

1
2Qi − ϵij ξQj we conclude that we must impose

ξ̌ =
a

2
, and q+i,αa = (−1)αϵijq

−
j,αa. (6.11)

Notice that we are able to solve for all the q+ coefficients, for example, so that the remaining
constraints will be imposed only on the coefficients q−i,αa. In this case the condition {Qi,Qj} =
−iδije is equivalent to the following equations

∑
i,a

(−1)i q−i,1aq
−
i,2a = 0,

4∑
a=1

(q−1,1aq
−
2,2a + q−1,2aq

−
2,1a) = 0,

∑
i,a

(q−i,αa)
2 = 1

4 , α = 1, 2.

(6.12)

The above equations admit solutions over the real numbers, and therefore the choice h = D+aJ12
and e = p0 admits unimodular extensions, denoted as R̄6.

In section 6.3 we will discuss how to reduce the number of parameters appearing in Q1,Q2 by
exploiting the inner so(6) automorphisms of the algebra and possibly also the residual so(2, 4)
automorphisms. This discussion will make it easier to identify the allowed solutions to the above
quadratic equations that characterise the unimodular extensions.

6.2 Unimodular extension of the rank-4 and rank-6 cases

All the rank-4 and rank-6 cases that do not have20 J12 in h admit the generalisation of the
solution (6.7) and (6.8) found for rank-2. In particular we have

ξ̌ = 0, s±,I
i,αa = 0, q±,I

i,1a = 0. (6.13)

20That is, all the extended solutions of section 2, with the extra assumption of setting a = 0 in R12. Notice,
however, that (up to automorphisms) when a = 0 R12 reduces to a special case of R7 and therefore cannot be
considered genuinely new.
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and the conditions {QI
i,Q

J
j } = −iδIJδije read∑

a

[(q+,I
i,2a)

2 + (q−,I
i,2a)

2] = 1
2 , for i = 1, 2, I = 1, . . . , N1,∑

a

(q−,I
i,2aq

−,J
j,2a + q+,I

i,2aq
+,J
j,2a) = 0, with (I, i) ̸= (J, j).

(6.14)

The corresponding R-matrices will be denoted by R̄7–R̄11 and R̄13, R̄14.

For a non-trivial extension of the R12 solution, denoted by R̄12, we must take the generali-
sation of the solution (6.9) and (6.10). We must assume a ̸= 0 and set

s±,I
i,αa = 0, q±,I

i,1a = 0, q+,I
i,2a = ϵijq

−,I
j,2a. (6.15)

Now the extra conditions from {QI
i,Q

I
j} = −iδIJδije are equivalent to∑

i,a

(q−,I
i,2a)

2 = 1
2 , for I = 1, . . . , N1,∑

i,a

q−,1
i,2aq

−,2
i,2a = 0,

∑
i,j,a

ϵijq−,1
i,2aq

−,2
j,2a = 0.

(6.16)

6.3 Simplifications by inner automorphisms

The supercharges found in the previous sections still have a large number of free parameters
that in fact are not all physical. They can be removed by exploiting inner so(6) automorphisms,
as well as in principle residual inner automorphisms of so(2, 4) that leave h and e invariant. The
latter are summarised for each rank-2 bosonic R-matrix admitting a unimodular extension in
Table 1.

Before analysing each R-matrix R̄i separately, let us first argue in general how the simplifi-
cation by SO(6) can be performed. Consider a general supercharge Qi of psu(2, 2|4) of the form

(6.4). We know already that all unimodular extensions require s±,I
i,αa = 0 and thus we start from

Qi = q+i · Q+ + iq−i · Q− , (6.17)

where for now we will suppress the index I = 1, . . . , N1. There are 15 generators of so(6) that
we can now exploit to simplify Qi. As follows from (B.13), their corresponding adjoint actions
are dictated by

[RAB, (Q±)
αa] =

1

2
(ρAS

AB)
a
b(Q±)αb − 1

2
(ρS

AB)
a
b(Q∓)αb, (6.18)

with ρS
AB (ρAS

AB) the symmetric (antisymmetric) part of ρAB as matrices in the a, b indices. In
our anti-hermitian matrix realisation of so(6) (see appendix B), there are precisely

(
4
2

)
= 6

generators for which ρAB is purely antisymmetric in the a, b indices and that will act as a simple
rotation on the a = 1, 2, 3, 4 of q±i,αa. Let us call R(r) the set of these generators. The other 9

generators are purely imaginary with symmetric ρAB and will thus mix q+i,αa and q−i,αa with i, α
fixed. They can be divided into 3 generators corresponding to phase transformations rotating
q+i,αa and q−i,αa with also a fixed, whose set we will call R(p), and

(
4
2

)
= 6 generators corresponding

to rotations on the a indices between q+i,αa and q−i,αa, whose set we will call R(i). For clarity, we
can depict this as

R(r) : q±i,αa ↔ q±i,αb, with (a, b) ∈ {(1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4)},

R(i) : q±i,αa ↔ q∓i,αb, with (a, b) ∈ {(1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4)},

R(p) : q±i,αa ↔ q∓i,αa, with a fixed,

(6.19)
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and i, α fixed in all cases.

Let us now illustrate how these can be used to eliminate some parameters q±i,αa. We can

start focusing, for example, on q±1,1a and use the {(1, 2), (1, 3), (1, 4)} rotations of R(r) and R(i)

to set q±1,1{2,3,4} = 0 and keep for (i, α) = (1, 1) only q±1,11 non-trivial. Notice that the actions of

R(r) and R(i) interfere non-trivially with each other so that on each (a, b) plane the two kinds of
rotations must be implemented simultaneously in order to reach the wanted gauge. The other
rotations of R(r,i) leave this choice invariant and subsequently the {(2, 3), (2, 4)} can be used to
set, for example, q±1,2{3,4} = 0 keeping for (i, α) = (1, 2) only q±1,21 and q±1,22 non-trivial. Within

R(r,i) we are finally left with (3, 4), again leaving our previous choices invariant, and which can
be used to set, for example, q±2,14 = 0. At last there are also the R(p) to exploit. Importantly,
so far we have treated the superscripts + and − in the same way (when keeping the remaining
indices i, α, a fixed). This is crucial at the moment of using the R(p) transformations, because
it means that the previous choices for vanishing coefficients are not spoiled. Considering for
example the basis

R(p) : ρab ∈ {diag(i, 0, 0,−i), diag(0, i, 0,−i),diag(0, 0, i,−i)} , (6.20)

we can use the first two elements to set, for example, q+1,11 = q+1,22 = 0, and the last element

(leaving the latter choice invariant) to set, for example, q+2,13 = 0.

The most convenient “gauge” choices to be made will depend on the specific cases under
study, to which we now turn. In particular, the type of constraints following from the (anti)-
commutation relations required for the unimodular extensions will play an important role in
this. Note that these constraints will of course be left invariant after the action of inner au-
tomorphisms that leave h and e invariant. If possible, we may also employ the residual inner
so(2, 4) automorphisms of each case. We first consider the rank-2 extensions and comment on
the possible higher-ranks at the end.

R̄1 and R̄1′

Given the results of section 6.1, we could distinguish here two cases, i.e. a generic or a = 0.
In both cases, only the parameters q±i,2a were left non-vanishing after imposing the required
(anti)commutation relations. With the exception of J12 (which acts as a phase transformation
q±i,αa ↔ q∓i,αa with fixed indices i, α and a), the inner automorphisms of Table 1 then all act
trivially on the supercharges and therefore their possible usage can be discarded.

• R̄1. In this case, the parameters q±i,2a are subject to the constraints (6.8). As illustrated

above, we can use {(1, 2), (1, 3), (1, 4)} of R(r,i) to keep only q±1,21 and q±2,2a. Next, we can use

{(2, 3), (2, 4)} of R(r,i) to keep only q±1,21, q
±
2,21, and q±2,22. At last, we can use the first two

elements of (6.20) to reduce this to q+1,21, q
±
2,21, and q

+
2,22. The constraints (6.8) are then solved

by q+2,21 = 0 and21

q+1,21 =
1√
2
, (q+2,22)

2 + (q−2,21)
2 =

1

2
. (6.21)

Note that, the remaining (3, 4) of R(r,i) and the last element of (6.20) do not act on these
parameters. These transformations can be used to simplify higher-rank extensions, as we will
do below starting from R7. Similarly, one can check that the residual J12 action on our reduced

21The quadratic equation admits also the solution for q+1,21 with the negative sign. A change of sign on Q1 or
Q2 however leaves the R-matrix (3.11) invariant.
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parameter space does not simplify this case further, in fact the action of J12 is not independent
from that of the first two elements of (6.20).

• R̄1′ . In this case, the parameters q±i,2a are subjected to different constraints, namely

q+i,2a = ϵijq
−
j,2a and (6.10). As before, we can now exploit the {(1, 2), (1, 3), (1, 4)} of R(r,i) to

set q±1,2{2,3,4} = 0. The constraint q+i,2a = ϵijq
−
j,2a then actually implies that only the 4 coeffi-

cients q±i,21 are left non-trivial and they are related as q+1,21 = q−2,21, q
+
2,21 = −q−1,21. After this we

still have the freedom {(2, 3), (2, 4), (3, 4)} of R(r,i). In this case, they are not useful because
they rotate among each other coefficients that are already vanishing. One could imagine using
them to eliminate 6 more parameters of a higher-rank unimodular extension, however this case
(i.e. the parameter a generic) does not admit such extensions. The first element of (6.20) can
subsequently be used to set, for example, q+2,21 = 0 which upon the constraints also implies

q−1,21 = 0. We are left with one parameter which must be fixed by solving (6.10). We take22

q−2,21 = q+1,21 =
1√
2
. (6.22)

Note that here we did not need the residual J12 automorphisms. In fact, it does not leave the
choice q+1,21 = q−2,21 = 0 invariant.

Let us remark that in the special case for R̄1 with q+2,22 = 0, the solution (6.21) reduces to
(6.22) and thus the latter holds for truly generic a, as it should.

R̄2, R̄2′, R̄3, R̄4, R̄5, and R̄5′

All these cases are analogous to the case R̄1 and R̄1′ . The R̄2, R̄3, R̄4, and R̄5 are solved by
(6.21), while R̄2′ and R̄5′ are solved by (6.22), with all the other parameters set to zero. Note,
however, that certain versions of the R̄5′ have a corresponding higher-rank extension, i.e. R̄12, for
which we will be able to use the remaining SO(6) transformations that have not been exploited
in the R̄1′ case (see below).

R̄6

In this case, all the q±i,αa were left non-vanishing, and they were subjected to q+i,αa = (−1)αϵijq
−
j,αa

and (6.12). Following now precisely the illustration of the beginning of this section, we can use
all of the so(6) elements to set q±1,1{2,3,4} = q±1,2{3,4} = q±2,14 = q+1,11 = q+1,22 = q+2,13 = 0. The

constraint q+i,αa = (−1)αϵijq
−
j,αa then further implies that the only non-vanishing parameters are

q±1,21 = ±q∓2,21, q
−
1,11 = q+2,11, and q

−
1,22 = −q+2,22. This, in fact, suffices to completely solve (6.12).

We find that we must set q±1,21 = 0 = q∓2,21 and23

q−1,11 = q+2,11 = q−1,22 = −q+2,22 =
1

2
. (6.23)

22Again the choice of sign on q−2,21 would not affect the resulting R-matrix.
23When solving the quadratic equations we actually find q−1,11 = q+2,11 = ± 1

2
, q−1,22 = −q+2,22 = ± 1

2
where the two

choices of signs are uncorrelated. However, we first notice that the 4 choices of combinations of signs lead to only
2 independent solutions for the R-matrix, namely when the signs either agree or are opposite. This is due to the
fact that changing the overall sign to Q1 or Q2 does not change the R-matrix. Nevertheless, we find that these two
seemingly distinct choices (consider Qi with q−1,11 = q−1,22 = 1/2 and Q′

i with q−1,11 = −q−1,22 = 1/2) are related by

an inner automorphism Qi = MQ′
iM

−1 with M ∈ PSU(2, 2|4). In fact several elements M ∈ PSU(2, 2|4) realise
this, including first swapping Q1 ↔ Q2 and then acting with J12 (which effectively exchanges the superscripts +
and −).
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All the parameters are determined, and we did not need to use the residual so(2, 4) automor-
phisms. Interestingly, note that even though we exploited the (3, 4) of R(r,i) and the latter
element of (6.20), they are restored as inner automorphisms in this case because of the con-
straint q+i,αa = (−1)αϵijq

−
j,αa.

R̄7, R̄8, R̄9, R̄10, and R̄11

These R-matrices originate from bosonic rank-4 R-matrices and they thus have the QI
i with

i = 1, 2 and I = 1, 2. Their only non-vanishing parameters after the required commutation
relations are q±,I

i,2a subjected to the constraints (6.14). As we know from section 6.2, these cases

are similar to the unimodular extension R̄1, and in fact using {(1, 2), (1, 3), (1, 4), (2, 3), (2, 4)} of
R(r,i) and the first two elements of (6.20) as before, the equations (6.14) for q±,1

i,2a can be solved

as in (6.21), i.e. q+,1
2,21 = 0 and

q+,1
1,21 =

1√
2
, (q+,1

2,22)
2 + (q−,1

2,21)
2 =

1

2
. (6.24)

Now we can focus on q±,2
i,2a and use the remaining so(6) elements to simplify them. First, with

{(3, 4)} ofR(r,i) we can set q±,2
1,24 = 0. The last element of (6.20) can be used to set q−,2

1,23 = 0. Note
that we do not have further inner automorphisms of so(2, 4) that leave {h, e, e+, e−} invariant
and that would act non-trivially on the supercharges. One can now check that (6.14) further
enforces q+,2

i,21 = 0 and leaves us with 13 parameters subjected to 6 constraints. We checked that

these can admit real solutions with 7 remaining free parameters in the supercharges QI
i. We will

not analyse them further here.

R̄12

Recall that for a genuinely new unimodular extension R̄12 we must assume a ̸= 0 and thus
this will be similar to the R̄1′ case. After the required (anti)-commutation relations, the

non-vanishing parameters are q±,I
i,2a subjected to q+,I

i,2a = ϵijq
−,I
j,2a and (6.16). We exploit the

{(1, 2), (1, 3), (1, 4)} of R(r,i) as well as the first element of (6.20) to set q±,1
1,2{2,3,4} = 0 and

q−,1
2,21 = 0. The constraints for I = 1 then completely fix Q1

i and in particular imply that also

q±,1
2,2{2,3,4} = 0 and q+,1

1,21 = 0 as well as

q−,1
1,21 = −q+,1

2,21 =
1√
2
, (6.25)

where we made an inconsequential choice of the sign that will not affect the R-matrix. Now we
consider I = 2 and possibly exploit the remaining SO(6) transformations, i.e. {(2, 3), (2, 4), (3, 4)}
of R(r,i) as well as the latter two elements of (6.20). This allows to set respectively q±,2

1,2{3,4} =

q±,2
2,24 = 0 and q−,2

2,22 = 0 which implies using q+,I
i,2a = ϵijq

−,I
j,2a that also q±,2

2,23 = 0 and q+,2
1,22 = 0.24

Hence at this stage only q−,2
1,21 = −q+,2

2,21, q
−,2
2,21 = q+,2

1,21, and q
−,2
1,22 = −q+,2

2,22 are undetermined. Using

the results of Q1
i , the remaining constraints simply imply q−,2

1,21 = q−,2
2,21 = q+,2

2,21 = q+,2
1,21 = 0 and

q−,2
1,22 = −q+,2

2,22 =
1√
2
, (6.26)

24In fact, we did not need to use the latter element of (6.20) which remains as a freedom that does not act on
the surviving parameters.

24



where again we made a choice for the sign. Concluding, for the unimodular extension R̄12 we
do not have any remaining free parameters in the supercharges.

R̄13 and R̄14

These R-matrices originate the bosonic rank-6 R-matrices and are similar to the unimodular
extension R̄1, albeit now with supercharges QI

i with i = 1, 2 and I = 1, 2, 3. While the R̄1 (from
rank-2) had one remaining free parameter, their rank-4 generalisations admit solutions with
7 remaining free parameters (see R̄7–R̄11 discussed above) after using residual inner automor-
phisms. The rank-6 generalisation R̄13 and R̄14 (where no further inner automorphisms can be
exploited) will have in principle 16 more initial parameters than the rank-4 cases which all have
to satisfy the same 10 constraints as before, i.e. (6.14). Because of these reasons, it is clear that
the R̄13 and R̄14 have a complicated and large system to solve with a large number of remaining
free parameters. We will not analyse this further.

7 Preserved isometries and superisometries

In this section, we consider the unimodular extensions of the rank-2 R-matrices and identify the
generators of TĀ ∈ psu(2, 2|4) whose adjoint action commutes with the action of R̄, i.e.

adTĀ
R̄ = R̄ adTĀ

. (7.1)

Because of the Jacobi identity, these generators span a subalgebra of psu(2, 2|4). They have the
important interpretation that they correspond to (super)isometries of the supergravity back-
ground. Indeed, at the group level, they generate global left transformations g → gLg with
gL ∈ PSU(2, 2|4) constant and satisfying

Ad−1
gL

R̄ AdgL = R̄ , (7.2)

which leaves the deformed semisymmetric coset sigma-model action (A.6) invariant.

We collect our results in Table 6, which is the complete version of Table 3 of our summary
section. Because the R-matrix preserves the degree of the superalgebra element, we can consider
bosonic and fermionic generators TĀ ∈ psu(2, 2|4) separately. For the fermionic generators, we
only list the number of independent generators, corresponding to the number of superisometries
preserved. We also use a short-hand notation for those elements TĀ that are strictly in so(6),
as they are repeated frequently. We define a 9-dimensional algebra,

k1 ≡ span(R16−R24, R14+R26, R36+R45, R34+R56, R13+R25, R15−R23, R12, R35, R46) , (7.3)

which is the algebra appearing once the supercharges Qi are completely determined, with the
exception of the distinct R̄6 case. The elements of k1 correspond to the remaining so(6) automor-
phisms that were not exploited in the previous section, i.e. the {(2, 3), (2, 4), (3, 4)} of R(r,i) as
well as the last two phase transformations of (6.20), in addition to the first phase transformation
of (6.20).25 It is not hard to show that the algebra k1 is isomorphic to su(3)⊕ u(1) by identify-
ing a central element and calculating the dual Coxeter number of the remaining 8-dimensional
algebra. We also define the following two 4-dimensional algebras

k2 ≡ span(R13 +R25, R15 −R23, R12 −R35, R13 + αR35) ≃ su(2)⊕ u(1), (7.4)

k3 ≡ span(R13 +R25, R15 −R23, R12 −R35, R12 +R35) ≃ su(2)⊕ u(1), (7.5)

25Note that the requirement of an inner automorphism that leaves {h, e, Qi} invariant, i.e. [x, h] = [x, e] =
[x,Qi] = 0, is stronger than the requirement of a (super)isometry.
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where α = q−2,21/q
+
2,22 with the assumption q+2,22 ̸= 0. The algebra k2 appears for those cases

in which the supercharges Qi have a free parameter, while k3 is the subalgebra of isometries of
so(6) for R̄6. The first three elements of k2 and k3 correspond to the (3, 4) of R(r,i) and the
latter element of (6.20), which are all residual so(6) inners of the respective cases. Furthermore,
we remark that even though the algebra k2 appears to depend on a continuous parameter, its
structure constants are α-independent once we redefine R13+αR35 → R13+αR35+

α
2 (R12−R35).

A further appropriate shift of this element with R13 +R25 exposes that k2 ≃ su(2)⊕ u(1). How
this algebra is embedded in so(6), however, does depend on α.

From the point of view of the sigma-model action, the extra elements in k1, k2, k3 on top of the
residual so(6) inners seem to imply the possibility of further simplifications of the supercharges.
Nevertheless, these transformations do not act independently on the reduced parameter space
or compared to the J12 action.

We will not analyse the preserved (super)isometries of the unimodular extensions of the
higher-rank solutions as in these cases, with exception of R̄12, the supercharges have a large
number of remaining free parameters which highly complicates their study. For R̄12, however,
all the parameters in Qi are completely determined, and we find for any value of a ̸= 0 that
there are no residual superisometries.

R̄ conditions TĀ ∈ so(2, 4)⊕ so(6) supercharges

1

a = 0 D + J03, p0 + p3, J12 −R46, k2 0
a = 0, b = −1 D + J03, p0 + p3, p1, p2, J12 −R46, k2 0
a = 0, b = 0 D + J03, p0 + p3, J01 − J13, J02 − J23, J12 −R46, k2 0

a = 0, b = −1/2 D + J03, p0, p3, k0 + k3, J12 −R46, k2 8
a = 0, q+2,22 = 0 D + J03, p0 + p3, J12, k1 0

a = 0, b = −1, q+2,22 = 0 D + J03, p0 + p3, p1, p2, J12, k1 0

a = 0, b = 0, q+2,22 = 0 D + J03, p0 + p3, J01 − J13, J02 − J23, J12, k1 0

a = 0, b = −1/2, q+2,22 = 0 D + J03, p0, p3, k0 + k3, J12, k1 12

1’
a ̸= 0 D + J03, p0 + p3, J12, k1 0

a ̸= 0, b = −1/2 D + J03, p0, p3, k0 + k3, J12, k1 0

2
a = 0 p0, p3, J12 −R46, k2 4

a = 0, q+2,22 = 0 p0, p3, J12, k1 6

2’ a ̸= 0 p0, p3, J12, k1 0

3
− p0 + p3, p1, p2, k2 0

q+2,22 = 0 p0 + p3, p1, p2,k1 0

4
− p0 + p3, J01 − J13, J02 − J23, k2 0

q+2,22 = 0 p0 + p3, J01 − J13, J02 − J23, k1 0

5
a = 0 p0 + p3, k0 + k3 + 2p3, J12 −R46, k2 0

a = 0, q+2,22 = 0 p0 + p3, k0 + k3 + 2p3, J12, k1 0

5’ a ̸= 0 p0 + p3, k0 + k3 + 2p3, J12, k1 0

6 − p0, J12, k3 0

Table 6: The bosonic generators TĀ ∈ so(2, 4)⊕so(6), as well as the number of fermionic elements
in psu(2, 2|4) that satisfy (7.1) for the unimodular extended rank-2 Jordanian R-matrices of the
form r = h∧ e− i

2(Q1 ∧Q1 +Q2 ∧Q2). Such generators represent the residual (super)isometries
of the deformed supergravity background. If a parameter is not specified, it is assumed to be
generic (modulo constraints such as (6.21)). The algebras k1, k2, and k3 are subalgebras of so(6)
and defined in (7.3), (7.4), and (7.5) respectively.
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8 Conclusions

We have classified all antisymmetric bosonic Jordanian solutions of the classical Yang-Baxter
equation on psu(2, 2|4) and constructed their most generic fermionic extensions that ensure uni-
modularity. These properties are siginificant for constructing a Yang-Baxter deformation of the
integrable string sigma-model on psu(2, 2|4) which gives rise to the maximally supersymmetric
AdS5 × S5 background. In particular, antisymmetric solutions of the CYBE ensure that the
deformation preserves the property of integrability. Unimodularity, in addition, ensures that the
deformed AdS5 × S5 background will still solve the type IIB supergravity equations of motion.

When the bosonic Jordanian R-matrices are not extended with fermionic supercharges, they
are non-unimodular and the corresponding background solves the modified (or generalised)
supergravity equations. We find that they are at most of rank-6, where the rank denotes the
number of bosonic elements in the construction of the R-matrix. For all these cases, we analyse
whether or not they admit a unimodular extension, which is a stringent requirement for rank-2,
but is always possible for rank-4 and rank-6. For the simplest unimodular extensions, namely
those of rank-2, we also analyse the preserved (super)isometries of the corresponding deformed
supergravity background and find that they preserve at most 12 superisometries. All of our
main results are structurally summarised in section 2.

Each of the Jordanian solutions that we have constructed are inequivalent and correspond
to a different deformed supergravity background. Our results may therefore offer a wide range
of applications for deformations of the AdS5/SYM holographic duality. See [41–44] for some
preliminary proposals of deformations of the dual gauge theory. In this paper, we were primarily
concerned with the algebraic classification of (unimodular) Jordanian solutions. For the purpose
of deformed holography, one may in a first stage also analyse if the dilaton is well-behaved for
the simpler unimodular R-matrices of table 6. In this table, the case R̄1 (a = 0, b = −1/2,
q+2,22 = 0) is the only one with 12 residual superisometries. It is in fact this example (up to inner
automorphisms) which was first constructed in [26] (and indeed has a well-behaved dilaton) and
of which the semi-classical spectral problem of the deformed sigma-model was later analysed
in [36] by means of algebraic curve techniques. It would be interesting to extend this study to
examples with lower residual superisometries and analyse if any obstructions occur.

As we have found, the family of Jordanian deformations of AdS5 × S5 is quite large. This is
a confirmation of a large landscape of integrable deformations of the string sigma-model, that
undoubtedly extends beyond the Jordanian class.
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A Conventions

In this appendix, we collect facts regarding solutions of the classical Yang-Baxter equation and
our related conventions. Let us consider a generic Lie superalgebra g (the truncation of these
facts to bosonic Lie subalgebras is straightforward). We are after “antisymmetric” constant
solutions of the classical Yang-Baxter equation on g. That means that we want to construct a
linear operator

R : g → g, (A.1)

that is antisymmetric with respect to a bilinear form on g. For simplicity here we assume
that the latter is implemented by taking the (super)trace in a matrix realisation of g, so that
antisymmetry reads like

STr(Rx y) = −STr(x Ry), ∀x, y ∈ g. (A.2)

Moreover, we demand that it solves the classical Yang-Baxter equation which reads

[[Rx,Ry]]−R([[Rx, y]] + [[x,Ry]]) = 0, ∀x, y ∈ g, (A.3)

where [[, ]] denotes the graded commutator on the superalgebra (i.e. it is the anticommutator
when the two elements are odd and the commutator otherwise).

Let us introduce a basis TI for g to identify the structure constants as [[TI , TJ ]] = fIJ
KTK .

The linear operator R can be thought of as a matrix RJ
J because RTI = RI

JTJ . Moreover,
after denoting by KIJ = STr(TITJ) the metric on g and KIJ its inverse, antisymmetry just
corresponds to the statement that RIJ = KIKRK

J is antisymmetric in the I, J indices if the
indices correspond to even generators of g, while RIJ is symmetric if the indices correspond to
odd generators. This difference is due to an extra sign coming from the supertrace.

We can also map R to an element r of the 2-fold wedge product of g by

r = −1
2R

IJTI ∧ TJ , (A.4)

where we use the graded wedge product

x ∧ y = x⊗ y − (−1)deg(x)∗deg(y) y ⊗ x. (A.5)

In this definition we are using the function deg that gives the degree of the superalgebra element,
i.e. it is 0 on even elements and 1 on odd ones. This imples that ∧ is symmetric if both x and
y are odd, otherwise it is antisymmetric.

The above algebraic ingredients can be used to construct integrable deformations of 2-
dimensional sigma models. In the case of deformations of semisymmetric supercoset sigma-
models we assume the existence of a Z4-grading of g such that g = ⊕3

i=0g
(i) and [[g(i), g(j)]] ⊂

g(i+j mod 4). Then the action of the deformed sigma model is [7]

S = −
√
λ

8π

∫
dτdσ (

√
|h|hmn − εmn) STr

(
Jm d̂

1

1− ηRgd̂
Jn

)
. (A.6)

We have introduced a worldsheet metric hmn and the antisymmetric tensor ετσ = −εστ =
−1. We also have the Maurer-Cartan form J = g−1dg with g ∈ G and g = Lie(G), and
d̂ = 1

2P
(1) + P (2) − 1

2P
(3) with P (i) the projectors on g(i). The shorthand notation Rg means

Rg = Ad−1
g RAdg where Adg x = gxg−1 and it is multiplied by the deformation parameter

η ∈ R.
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It is now very simple to obtain the truncation to symmetric bosonic cosets. In that case, one
assumes a Z2-grading and replaces the supertrace by the trace as well as d̂ = P (2). To reduce
even further to deformations of the Principal Chiral Model, we only have to take d̂ = 1.

Importantly, the previous algebraic ingredients can be used also to generate deformations
of supergravity backgrounds that do not necessarily correspond to integrable sigma-models. In
order to make sure that the deformation still solves the type II supergravity equations, the
R-matrix must satisfy an additional linear constraint called the “unimodularity condition” [15]

0 = KIJ [[TI , RTJ ]] = RIJfIJ
KTK . (A.7)

To conclude, let us remark that we are interested only in real deformations of the supergravity
background. Demanding the reality of the sigma-model action we find that the R-matrix gives
rise to a real deformation if RIJ is anti-hermitian (RJI)∗ = −RIJ . This result follows from

assuming the reality condition T †
I + HTIH

−1 = 0 for elements of g. See appendix B for the
case of psu(2, 2|4). As remarked above, on the one hand, RIJ is antisymmetric if the indices
correspond to even generators of g and then the entries of RIJ must be real. On the other hand,
RIJ is symmetric if the indices correspond to odd generators of g and then the entries of RIJ

must be imaginary.

B The psu(2, 2|4) superalgebra

Here we collect our conventions on the N = 4 superconformal algebra, and we provide an
explicit matrix realisation of su(2, 2|4) that is useful for explicit calculations. Useful reviews are
for example [45] and [46].

Indices conventions

We will use µ, ν = 0, . . . , 3 for indices in the 4-dimensional spacetime and we will take the
Minkowski metric to be ηµν = diag(−1,+1,+1,+1, ). Knowing that the Lorentz algebra can be
rewritten as so(1, 3) ∼ sl(2,R)L⊕ sl(2,R)R, we will use α, β = 1, 2 for spinor indices of sl(2,R)L
and α̇, β̇ = 1, 2 for spinor indices of sl(2,R)R. Finally, we will use a, b = 1, . . . , 4 for spinor
indices of SO(6), and A,B = 1, . . . 6 for fundamental indices of SO(6).

The conformal algebra so(2, 4)

The Lorentz algebra is spanned by Jµν satisfying

[Jµν , Jρσ] = ηµρJνσ − ηνρJµσ + ηνσJµρ − ηµσJνρ. (B.1)

With the addition of pµ they form the Poincaré algebra

[Jµν , pρ] = ηµρpν − ηνρpµ. (B.2)

Adding the dilatation generator D and the special conformal generators kµ we obtain the full
conformal algebra, whose remaining commutation relations are

[D, pµ] = pµ, [D, kµ] = −kµ, [pµ, kν ] = −2ηµνD + 2Jµν , [Jµν , kρ] = ηµρkν − ηνρkµ.
(B.3)

All other commutation relations are trivial

[pµ, pν ] = [kµ, kν ] = [D,Jµν ] = 0. (B.4)
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Supercharges and R-symmetry

At this point we introduce supercharges Qαa, Q
α̇a
, Sα

a, S
α̇
a. The generators Jµν , pµ, Qαa, Q

α̇a

span the (N = 4) super-Poincaré algebra. A lower (resp. upper) index α means that they
transform in the 2 (resp. 2) representation of sl(2,R)L, and similarly for dotted indices of
sl(2,R)R. To be more explicit, let us define the antisymmetric tensor ϵ12 = −ϵ21 = −ϵ12 = ϵ21 =
1 such that ϵαγϵγβ = δαβ . This is used to raise and lower indices as ψα = ϵαβψβ, ψα = ϵαβψ

β.

We then define (σµ)αα̇ and (σµ)α̇α as

σµ = −i (1, σj), σµ = −i (1,−σj), (B.5)

where σj are the Pauli matrices. The matrices σµ, σµ appear in the Weyl representation of the
4-dimensional gamma-matrices

γµ =

(
0 (σµ)αα̇

(σµ)α̇α 0

)
, (B.6)

that satisfy {γµ, γν} = 2ηµν1. At this point we define

(σµν)α
β = 1

4(σ
µσν − σνσµ)α

β, (σµν)α̇β̇ = 1
4(σ

µσν − σνσµ)α̇β̇, (B.7)

so that we can write the commutators of the supercharges with the Lorentz generators

[Jµν , Qαa] = (σµν)α
βQβa, [Jµν , Q

α̇a
] = (σµν)

α̇
β̇Q

β̇a
,

[Jµν , Sα
a] = (σµν)α

βSβ
a, [Jµν , S

α̇
a] = (σµν)

α̇
β̇S

β̇
a.

(B.8)

We have the following trivial commutation relations

[pµ, Qαa] = [pµ, Q
α̇a
] = [kµ, Sα

a] = [kµ, S
α̇
a] = 0, (B.9)

and the commutation relations with the dilatation generator

[D,Qαa] =
1
2Qαa, [D,Sα

a] = −1
2Sα

a,

[D,Q
α̇a
] = 1

2Q
α̇a
, [D,S

α̇
a] = −1

2S
α̇
a.

(B.10)

The commutators relating the Q and S supercharges are

[kµ, Qαa] = +iσµαα̇ S
α̇
a, [kµ, Q

α̇a
] = −iσα̇αµ Sα

a,

[pµ, Sα
a] = −iσµαα̇Q

α̇a
, [pµ, S

α̇
a] = +iσα̇αµ Qαa.

(B.11)

The N = 4 superconformal algebra has an SU(4) ∼ SO(6) R-symmetry, under which the
supercharges transform in the 4 or 4 representations (respectively for upper or lower indices
a, b,= 1, . . . , 4). We denote the R-symmetry generators as RAB with RAB = −RBA and
A,B = 1, . . . , 6. They satisfy the commutation relations

[RAB,RCD] = δACRBD − δBCRAD + δBDRAC − δADRBC , (B.12)

and they commute with all generators of the conformal algebra. The action of the R-symmetry
generators on the supercharges yields

[RAB, Qαa] =
1
2(ρAB)a

bQαb, [RAB, Q
α̇a
] = −1

2(ρAB)b
aQ

α̇b

[RAB, S
α̇
a] =

1
2(ρAB)a

b S
α̇
b, [RAB, Sα

a] = −1
2(ρAB)b

a Sα
b.

(B.13)

30



Indices A,B will be raised and lowered with the Kronecker delta. Simple anticommutators are

{Qαa, Qα̇
b} = δba σ

µ
αα̇ pµ, {Sαa, Sα̇b} = −δab σ

µ
αα̇ kµ. (B.14)

The trivial mixed anticommutators are

{Qαa, S
β̇
b} = 0, {Qα̇a

, Sβ
b} = 0, (B.15)

while the remaining non-trivial mixed anticommutators

{Qαa, Sβ
b} = i

2 ϵαβ (ρ
AB)a

bRAB + i δba σ
µν
αβ Jµν + i ϵαβ δ

b
aD + i

2 ϵαβ δ
b
a 1,

{Qα̇a
, S

β̇
b} = i

2 ϵ
α̇β̇ (ρAB)b

aRAB − i δab σ
α̇β̇
µν J

µν − i ϵα̇β̇ δab D + i
2 ϵ

α̇β̇ δab 1.
(B.16)

The relations that we are writing here actually correspond to the su(2, 2|4) superalgebra. To
obtain the relations of psu(2, 2|4) (which is isomorphic to the N = 4 superconformal algebra)
one has to project out the identity operator.

Matrix realisation

In the anticommutators above we included the terms proportional to the identity operator be-
cause we want to give an explicit matrix realisation of the superalgebra, and su(2, 2|4) admits
one while psu(2, 2|4) does not. To obtain the matrix realisation we start from the above defini-
tion (B.6) of the gamma matrices, which is also equivalent to

γ0 = −iσ1 ⊗ 12, γ1 = σ2 ⊗ σ1, γ2 = σ2 ⊗ σ2, γ3 = σ2 ⊗ σ3, (B.17)

and we supplement them with
γ4 = −σ3 ⊗ 12, (B.18)

to obtain gamma matrices in 5 dimensions. In general, we define γmn = 1
2 [γm, γn] for any

gamma. We also define
γ̃i = γi, i = 1, . . . , 4, γ̃5 = i γ0, (B.19)

which are gamma-matrices in 5 Euclidean dimensions. We use them to define the matrices ρAB

which are antisymmetric in the indices A,B = 1, . . . , 6 as

ρAB = γ̃AB, A,B = 1, . . . , 5, ρA6 = −i γ̃A. (B.20)

Finally, we have everything we need to construct a matrix realisation of su(2, 2|4) in terms of
8× 8 matrices. For the generators of the conformal algebra we take

Jµν =

(
−1

2γµν 04
04 04

)
, pµ =

(
−1

2(γµ4 + γµ) 04
04 04

)
,

D =

(
−1

2γ4 04
04 04

)
, kµ =

(
−1

2(γµ4 − γµ) 04
04 04

)
.

(B.21)

Similarly, for the R-symmetry generators

RAB =

(
04 04
04 −1

2ρAB

)
. (B.22)

To conclude, the supercharges are realised as

Qα
a =

√
2

(
04 Eα,a

04 04

)
, Q

α̇a
= −

√
2

(
04 04

Ea,α̇+2 04

)
,

Sα
a = i

√
2

(
04 04
Ea,α 04

)
, Sα̇a = i

√
2

(
04 Eα̇+2,a

04 04

)
,

(B.23)

where Ea,b are the 4× 4 unit matrices with zeros everywhere, except 1 at position a, b.
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Reality condition on the superalgebra

To write down the reality condition, let us define

H =

(
−iγ0 04
04 14

)
. (B.24)

With this choice H† = H, where † denotes conjugate-transpose. For all bosonic generators
X (i.e. from the conformal or the R-symmetry algebra) the reality condition is satisfied as
X† + HXH−1 = 0. For supercharges, instead, the dagger relates the barred and unbarred
supercharges in the following way

(Qαa)
† +HQα

aH−1 = 0, (Sα
a)† +HSαaH

−1 = 0. (B.25)

This means that we are using a complex basis. A generic element M of psu(2, 2|4), however, is
required to satisfy simply M † +HMH−1 = 0.

Z4 automorphism

The N = 4 superconformal algebra admits a Z4 automorphism. Let us define the matrix

Kab = −i(12 ⊗ σ2)ab, (B.26)

and let us denote by Kab its inverse, so that KacKcb = δab . We will use K to raise and lower a, b
indices, with the same conventions as for the Lorentz indices, namely Va = KabV

b, V a = KabVb.
We also define

K = 12 ⊗K, (B.27)

which we use for the definition of the Z4 automorphism as

Ω(X) = −KXstK−1, (B.28)

where st denotes supertransposition. The Z4 automorphism induces the decomposition g =
⊕3

i=0g
(i) of the superalgebra and one can construct the projectors P (i) on each of these subspaces.

Then we find the following decomposition

pµ + kµ, Jµν , RĀB̄ ∈ g(0) Qαa + Sαa, Q
α̇a − S

α̇a ∈ g(1),

pµ − kµ, D, RĀ6 ∈ g(2), Qαa − Sαa, Q
α̇a

+ S
α̇a ∈ g(3),

(B.29)

where above Ā, B̄ = 1, . . . , 5. We remind that indices are raised and lowered with ϵ and K. As
reviewed above, in the construction of the supercoset action and its deformations, one introduces
a particular combination of the projectors which is d̂ = P (1) + 2P (2) − P (3). The action of its
transpose d̂T = −P (1) + 2P (2) + P (3) on the supercharges is

d̂T (Qαa) = −Sαa, d̂T (Sαa) = −Qαa, d̂T (Q
α̇a
) = S

α̇a
, d̂T (S

α̇a
) = Q

α̇a
. (B.30)

Supertrace relations

The non-vanishing relations involving the supertrace are

STr(pµkν) = 2ηµν , STr(JµνJρσ) = −(ηµρηνσ − ηνρηµσ),

STr(DD) = 1, STr(RABRCD) = δACδBD − δBCδAD

STr(QαaSβ
b) = 2i ϵαβδ

b
a, STr(Q

α̇a
S
β̇
b) = −2i ϵα̇β̇δab .

(B.31)
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