
SciPost Physics Submission

Loop Amplitudes from Precision Networks

Simon Badger1, Anja Butter2,3, Michel Luchmann2, Sebastian Pitz2 and Tilman Plehn2

1 Physics Department, Torino University and INFN Torino, Torino, Italy
2 Institut für Theoretische Physik, Universität Heidelberg, Germany

3 LPNHE, Sorbonne Université, Université Paris Cité, CNRS/IN2P3, Paris, France

January 11, 2023

Abstract

Evaluating loop amplitudes is a time-consuming part of LHC event generation. For di-
photon production with jets we show that simple, Bayesian networks can learn such
amplitudes and model their uncertainties reliably. A boosted training of the Bayesian
network further improves the uncertainty estimate and the network precision in critical
phase space regions. In general, boosted network training of Bayesian networks allows
us to move between fit-like and interpolation-like regimes of network training.

Contents

1 Introduction 2

2 Dataset and benchmark results 3

3 Bayesian network 4

4 Network boosting 10
4.1 Loss-based boosting 10
4.2 Performance boosting 11
4.3 Effect of training statistics 14

5 Kinematic distributions 14

6 Outlook 15

A The (2→ 4)-process 18

References 21

1

SciPost Physics Submission

1 Introduction

Combining our expectations of a vastly increased dataset from the upcoming LHC runs with
novel analysis methods and ever-improving theory predictions, we are looking at exciting times
for particle physics. One of the keys to make optimal use of the LHC data is to consistently
employ modern techniques, inspired by data science and further developed for particle physics
application [1]. Inference based on precision predictions from first principles critically rests on
the assumption that we can provide theory predictions over the full phase space fast, precisely,
and with flexible model assumptions. To meet the speed and precision expectations from
HL-LHC we can use modern machine learning (ML) throughout the event generation and
simulation chain [2].

A straightforward ML-task is regression of loop amplitudes, represented as a smooth scalar
function over a relatively simple phase space. For simple (2 → 2)-processes learning a non-
divergent loop amplitude does not even require deep networks [3] and has been achieved
with conventional interpolation methods [4,5] as well. For higher final-state multiplicities [6]
precision turns into a challenge, which we can try to meet by separating phase space into finite
and divergent regions [7] or physics-inspired channels combined with very large training sam-
ples [8]. For our di-photon benchmark process at one-loop order current methods have shown
to work well, but with limited precision especially in challenging regions of phase space [9].

Like in many physics applications, we would like to complement precision predictions of
amplitudes with a reliable uncertainty estimate. Amplitudes are a simple problem because
the training data consists of arbitrarily precise numerical values for well-defined phase space
points. Once the network has learned all relevant features, we expect the leading uncertainties
to reflect a possible local sparsity of the training data. Bayesian networks are perfectly suited
to track training-related uncertainties [10]. In LHC physics they have been applied to regres-
sion [11], classification [12], ensembling [13], and generation [14,15]. We will use Bayesian
networks as a surrogate for ML-amplitudes because they learn amplitude values together with
an uncertainty, and because we can use their likelihood loss to improve the network training.

When we want to train a network on amplitudes over phase space, with the additional
condition that large amplitude values should be reproduced well, we need to re-think our
training strategy. While usual NN-applications can be viewed as a non-parametric fit, we want
to precisely reproduce individual amplitudes in the spirit of an interpolation [16]. We can force
the network to reproduce certain amplitudes by boosting these amplitudes in the training.
To decide which amplitudes need boosting, we use a Bayesian network with its point-wise
uncertainty estimate. We find that moving freely between fit-like and the interpolation-like
tasks allows us to improve the uncertainty estimate through a loss-based boosting and the
precision though a process-specific performance boosting.

In Sec. 2 we introduce our dataset and the benchmark results, before introducing the
Bayesian network in Sec. 3. The improved training through the two boosting strategies is
illustrated for the γγg channel in Sec. 4. Finally, we compare a set of 1-dimension kinematic
distributions for the training data and the NN-amplitudes including uncertainties and with the
different boosting strategies, before we provide an Outlook. In the Appendix we show the
corresponding results for the γγg g final state, based on the same concepts and architectures,
but using a larger network and more training data.

2

SciPost Physics Submission

2 Dataset and benchmark results

As an example process for our surrogate NN-amplitudes we use the partonic one-loop pro-
cess [9]

g g → γγg(g) , (1)

generated with SHERPA [17] and the NJET amplitude library [18]∗. We apply a basic set of
detector-inspired cuts on the partons in the final state,

pT, j > 20 GeV |η j|< 5 R j j, jγ,γγ > 0.4

pT,γ > 40,30 GeV |ηγ|< 2.37 . (2)

They cut off collinear and infrared divergences, simplifying our network task. However, we
have checked that the method developed in this paper can also be applied to squared ampli-
tudes with less restrictive cuts. The kinematic cuts reduce the originally produced dataset from
1.1M squared (2→ 3)-amplitudes of Ref. [9] to roughly 960k valid phase space points.

Our goal is to learn the transition amplitudes precisely and with minimal pre-processing.
Throughout the paper we refer to ‘amplitudes’ as the real values of the complete squared tran-
sition amplitude for the process given in Eq.(1) as a function of the phase space coordinates.
This means, at face value, each training data point is a single real number as a function of
the external 4-momenta, defining a 20-dimensional phase space. Reducing the number of di-
mensions by requiring on-shell partons or enforcing momentum conservation is expected to
help the ultimate precision [15, 19], especially for the two-jet process discussed in the Ap-
pendix. For the one-jet process we divide our dataset into 90k training amplitudes and 870k
independent test amplitudes acting as a high-statistics truth.

Transition amplitudes play a special role in the applications of neural networks to LHC
physics, because they can be computed as functions of phase space with essentially arbitrary
precision. The combination of high precision with limited training data is the challenge for the
corresponding regression networks. Implicitly, it is assumed that the NN-amplitude networks
will be faster than even the evaluation of leading-order amplitudes with state-of-the-art meth-
ods. The main figure of merit compares the true and the NN-amplitudes for a set of training
or test data points,

∆(train)
j =

A j,NN

A j,train
− 1 or ∆(test)

j =
A j,NN

A j,test
− 1 , (3)

where j runs over amplitude data points and we subtract 1 compared with the original pa-
per [9]. Typical distributions of these ∆ for existing calculations come with a width of 10%
or more for the one-jet process of Eq.(1) [9]. For the tree-level process e+e−→ qq̄g the width
of the ∆-distribution can be reduced to the per-mille level for a training dataset of 500k am-
plitudes, or to a hundredth of a per-mille for 40M training amplitudes, with the help of a
comparably complex, physics-inspired architecture of networks [8].

Our approach follows a different strategy from the physics-inspired architectures men-
tioned above. We will use a relatively simple and small network, enhanced by a Bayesian
network structure, and target the precision requirements with a new training strategy. The
goal is to show that small and hence fast networks are expressive enough to describe a scat-
tering amplitude over phase space. Enforcing and controlling the required precision leads us
to, essentially, an appropriate loss function and the corresponding network training strategy.

∗In the main body of the paper we work with the (2 → 3)-process, the corresponding results for the 4-body
final state are presented in the Appendix. The interface between NJET and SHERPA is provided with Ref. [9] and
available at https://github.com/JosephPB/n3jet.

3

https://github.com/JosephPB/n3jet

SciPost Physics Submission

3 Bayesian network

Deterministic networks, usually trained by minimizing an MSE loss function, exhibit several
weaknesses when it comes to LHC applications and controlled precision predictions. First,
they only learn the amplitude value over phase space, without any information on if they
have learned all features and how precise their estimate is. Second, the definition of the MSE
loss function as an χ2-approximation with a constant uncertainty limits their performance for
regression tasks with a wide range of functional values of the target function. We will show
how a Bayesian network with a likelihood loss comes with a whole range of conceptual and
practical benefits.

Bayesian networks and uncertainties

In contrast to standard, deterministic networks, Bayesian neural networks (BNNs) learn distri-
butions of network parameters or weights ω [10,20]. Sampling over the weight distributions
gives us an uncertainty in the network output. At the end of this introduction we will approx-
imate each weight distribution by a Gaussian, which does not limit the expressivity of a deep
Bayesian network, but means that the Bayesian network requires only twice as many param-
eters as its deterministic counterpart [10]. We will see that the relation between the usual
deterministic networks and our Bayesian network setup can be understood as a generalized
dropout and an explicit regularization term in the loss, which stabilize the training. For a
pedagogical introduction to this application of Bayesian networks we refer to Ref. [1].

With our amplitude network we want to predict the transition amplitude A for a phase
space point x . If we define p(A|x)≡ p(A) as the probability distribution for possible amplitudes
at a given phase space point x , and omitting the argument x from now on, its mean value is

〈A〉=
∫

dA A p(A) with p(A) =

∫

dω p(A|ω) p(ω|T) , (4)

where p(ω|T) are the network weight distribution and T is the training data. We do not know
the closed form of p(ω|T), but we can approximate it with a distribution q(ω),

p(A) =

∫

dω p(A|ω) p(ω|T)≈
∫

dω p(A|ω) q(ω) , (5)

⟨A⟩ = 1
N

N

∑
i

A(ωi)

σ2pred = 1
N

N

∑
i

(⟨A⟩ − A(ωi))2

BNN

sa
mp

lin
g

σ2model=
1
N

N

∑
i

σ2model(ωi)

Output

output

(A(ω1)
σmodel(ω1))

Ensemble of networks

0.2 0.8
-0.1

-0.3
0.70.5

0.9
-0.2

0.4

q(ω)

x

x

x

x

(A(ω2)
σmodel(ω2))

(A(ω3)
σmodel(ω3))

Figure 1: Illustration of the Bayesian network.

4

SciPost Physics Submission

where q(ω) is encoded in the neural network and replaces the unknown p(ω|T) in the evalua-
tion, including the information from the training data T . This so-called variational approxima-
tion leads us directly to the BNN loss function, which employs the Kullback-Leibler divergence
to minimize the difference between the two distributions,

KL[q(ω), p(ω|T)] =
∫

dω q(ω) log
q(ω)

p(ω|T)

=

∫

dω q(ω) log
q(ω)p(T)

p(ω)p(T |ω)

= KL[q(ω), p(ω)]−
∫

dω q(ω) log p(T |ω) + log p(T)

∫

dω q(ω) . (6)

Bayes’ theorem gives the corresponding networks their name. The prior p(ω) describes the
model parameters before training. The model evidence p(T) guarantees the correct normal-
ization of p(ω|T). If we ensure that the weight distributions q(ω) are normalized by construc-
tion, the evidence term does not depend on the network weights, and we can turn the first
two terms of Eq.(6) into a loss function

LBNN = −
∫

dω q(ω) log p(T |ω) + KL[q(ω), p(ω)] . (7)

The combined log-likelihood log p(T |ω) implicitly includes the sum over all training points.

To get access to the mean and the uncertainty of the network prediction for A, we exchange
the two integrals in Eq.(4) and find

〈A〉=
∫

dA dω A p(A|ω) q(ω)

≡
∫

dω q(ω) A(ω) with A(ω) =

∫

dA A p(A|ω) . (8)

A network with perfect x-resolution and perfect interpolation properties would be described
by q(ω) = δ(ω−ω0), and p(A|ω)would simply return the one correct value for the amplitude.
For noisy training data p(A|ω) actually describes a spectrum reflecting the noisy labels [11]. In
our case, the amplitudes are exact, but the network will still not interpolate perfectly between
the sparse training data points. Corresponding to Eq.(8) the variance of A is

σ2
tot =

∫

dA dω (A− 〈A〉)2 p(A|ω) q(ω)

=

∫

dω q(ω)

�∫

dA A2 p(A|ω)− 2〈A〉
∫

dA A p(A|ω) + 〈A〉2
∫

dA p(A|ω)
�

=

∫

dω q(ω)
�

A2(ω)− 2〈A〉A(ω) + 〈A〉2
�

=

∫

dω q(ω)
�

A2(ω)− A(ω)2 +
�

A(ω)− 〈A〉
�2�≡ σ2

model +σ
2
pred , (9)

where A2(ω) is defined in analogy to A(ω) in Eq.(8). This defines two contributions to the
uncertainty which have to be added in quadrature to describe the variance of the Bayesian
network prediction σtot. The two terms can be separated by the way they behave in in the
limit of perfect training using an infinitely large training dataset, q(ω)→ δ(ω−ω0).

5

SciPost Physics Submission

Tracing σtot as a function of the amount of training data [11, 12] shows how the first
contribution, σpred defined in terms of the ω-integrated expectation value 〈A〉

σ2
pred =

∫

dω q(ω)
�

A(ω)− 〈A〉
�2

, (10)

vanishes in the limit q(ω) → δ(ω −ω0) or for a large training dataset. It can therefore be
interpreted as a statistical uncertainty and we expect it to be small for a well-trained network.

In contrast, σmodel already occurs without sampling the network parameters,

σ2
model ≡ 〈σmodel(ω)

2〉=
∫

dω q(ω) σmodel(ω)
2

=

∫

dω q(ω)
�

A2(ω)− A(ω)2
�

. (11)

It is induced by limitations to the training data, but in the limit of perfect training it approaches
a plateau. It can account for a range of issues with the training data, like a non-deterministic or
stochastic label, limited expressivity of the network, not-so-smart choices of hyperparameters
etc, in the sense of a systematic uncertainty. To avoid mis-understanding we refer to it as a
model-related uncertainty rather than the usual σstoch in case our data is non-stochastic, like
the amplitudes in this application.

Looking at Eqs.(8) and (11) we can extract the central value and the systematic contri-
bution to the uncertainty of the network prediction by sampling A(ω) and σmodel(ω)2 over
Gaussian network parameter distributions q(ω) for each phase space point x ,

BNN : x ,ω →
�

A(ω)
σmodel(ω)

�

, (12)

while σpred is only defined as a function of x and after sampling over ω.

Until now, we have not made any simplifying assumptions about the prior or weight dis-
tributions. To start with, in Ref. [12] we have shown that the details of the prior p(ω) have
no visible effect on the network output. If we assume a Gaussian prior and, in addition, a
Gaussian weight distribution q(ω) with the respective means and widths, the regularization
term in Eq.(7) turns into

KL[qµ,σ(ω), pµ,σ(ω)] =
σ2

q −σ
2
p + (µq −µp)2

2σ2
p

+ log
σp

σq
. (13)

For this form we can use the reparameterization trick to translate an ω-dependence into a
dependence on σq and µq. Second, we can simplify the loss function by assuming that the
ω-dependent network output in Eq.(12) is described by a Gaussian. This allows us to approx-
imate the likelihood p(T |ω) in Eq.(7) as Gaussian, and the BNN loss function becomes

LBNN =

∫

dω qµ,σ(ω)
∑

points j

�

�

�Aj(ω)− A(truth)
j

�

�

�

2

2σmodel, j(ω)2
+ logσmodel, j(ω)

+
σ2

q −σ
2
p + (µq −µp)2

2σ2
p

+ log
σp

σq
. (14)

This loss is minimized with respect to the means and standard deviations of the network
weights describing qµ,σ(ω). In this setup, the log-likelihood term includes a trainable un-
certainty σmodel(ω) which is learned by the network in parallel to the amplitudes. When we

6

SciPost Physics Submission

evaluate the likelihood over a mini-batch rather than the full training dataset, we rescale the
normalization of the regularization term to account for the different numbers of data points.

The same heteroscedastic loss [21] can be used in deterministic networks, if we introduce
σmodel as a second trained quantity in addition to the amplitude values. The Bayesian net-
work setup guarantees that we really capture all training-related uncertainties correctly, at the
expense of splitting the uncertainty measures σmodel and σpred. It also does not make assump-
tions about a Gaussian uncertainty of the network output, so we stick to the more general BNN,
even though it might well be possible to use a deterministic network for similar applications.

Network architecture

We use one Bayesian network trained on the entire training dataset. We train on amplitudes
as a function of phase space with logarithmic preprocessing,

A j → log
�

1+
A j

σA

�

, (15)

where σA is given by the distribution of the amplitude values. In addition, all phase space
directions are preprocessed by subtracting the respective mean and dividing by the respective
standard deviation.

The network describing the (2→ 3)-part of the reference process in Eq.(1) consists of four
hidden layers with 20 kinematic input dimensions, {20,20, 30,40} nodes, and two output
dimensions corresponding to the amplitude and its uncertainty, as illustrated in Eq.(12). The
network has around 6k parameters.

Between the hidden layers we use a tanh activation function, while for the last layer we
use a SoftPlus activation for one of the two output dimensions. This ensures positive values
for the amplitudes. For the other dimension responsible for the uncertainty we do not use
any activation function. Instead, we learn the parameterization logσ2 which is numerically
more stable than directly learning σ. Our tests revealed that the SoftPlus activation function
outperforms GeLU slightly and ReLU significantly. The network is trained on 90k amplitudes
for 400000 epochs with a batch size of 8192 and learning rate of 10−4, after which we ob-
serve no significant improvement in the loss. We use the Adam optimizer [22] with standard
parameters.

BNN performance

As a first test of our BNN, we check the precision with which it approximates the true ampli-
tudes in the training and test datasets, as defined in Eq.(3). For Fig. 2 we split the amplitudes
by their absolute values, to see the effect of the limited training statistics in the collinear phase
space regions. For the complete set of amplitudes the precision follows an approximate Gaus-
sian with a width of a few per-mille, for the training and for the test data. This matches the
best available performance from the literature [8], but with a very compact and fast network.

In the logarithmic panels of Fig. 2 we see that the tails of the ∆-distributions for the full
datasets are clearly enhanced. The picture changes when we only consider the phase space
points with large amplitudes. For the 0.1% largest amplitudes the network is consistently less
accurate with a slight tendency of underestimating the amplitudes. This is the motivation for
training a separate network on the divergent phase space region(s) [9]. As we will see, the
BNN offers an alternative approach which allows the full amplitude to be accurately described
by a single network.

7

SciPost Physics Submission

0.04 0.02 0.00 0.02 0.04
(train) + overflow bin

0

20

40

60

80

100

120
no

rm
al

iz
ed

largest 0.1% ANN

largest 1% ANN

largest 100% ANNgg g

0.75 0.50 0.25 0.00 0.25 0.50 0.75
(train) + overflow bin

10 3

10 2

10 1

100

101

102

no
rm

al
iz

ed

largest 0.1% ANN

largest 1% ANN

largest 100% ANNgg g

0.04 0.02 0.00 0.02 0.04
(test) + overflow bin

0

20

40

60

80

100

120

no
rm

al
iz

ed

largest 0.1% ANN

largest 1% ANN

largest 100% ANNgg g

0.5 0.0 0.5 1.0
(test) + overflow bin

10 3

10 2

10 1

100

101

102

no
rm

al
iz

ed

largest 0.1% ANN

largest 1% ANN

largest 100% ANNgg g

Figure 2: Performance of the BNN in terms of the precision of the generated ampli-
tudes as defined in Eq.(3). In the upper panels we evaluate the training datasets,
while in the lower panels we evaluate the independent test datasets. The left and
right panels show the same information on linear and logarithmic scales.

Because the BNN provides us with an uncertainty estimate for the NN-amplitude, we can
define pull variables after integrating over the weight distributions,

tmodel, j =
〈A〉 j − A(truth)

j

σmodel, j
or tpred, j =

〈A〉 j − A(truth)
j

σpred, j
, (16)

3 2 1 0 1 2 3
(ANN-A) / model

0.0

0.1

0.2

0.3

0.4

no
rm

al
iz

ed

training
test

 (= 0.24,
 = 0.87)

 (= 0.17,
 = 0.89)

gg g

7.5 5.0 2.5 0.0 2.5 5.0 7.5
(ANN-A) / pred

0.00

0.05

0.10

0.15

0.20

no
rm

al
iz

ed

training

test

 (= 0.64,
 = 2.09)

 (= 0.52,
 = 2.57)

gg g

Figure 3: Pulls for the BNN, defined in Eq.(17) and evaluated on the training and
test data.

8

SciPost Physics Submission

3 2 1 0 1 2 3
(ANN()-A) / model()

0.0

0.1

0.2

0.3

0.4

no
rm

al
iz

ed

training
test

 (= 0.22,
 = 0.96)

 (= 0.16,
 = 0.96)

gg g

7.5 5.0 2.5 0.0 2.5 5.0 7.5
(ANN()-A) / model()

10 7

10 6

10 5

10 4

10 3

10 2

10 1

no
rm

al
iz

ed

training test

 (= 0.22,
 = 0.97)

gg g (= 0.16,
= 0.96)

Figure 4: Weight-dependent pulls for the BNN, defined in Eq.(17) and evaluated on
the training and test data. The two panels show the same curve on a linear and a
logarithmic axis.

where the point-wise ‘truth’ refers to the training or test datasets we use to evaluate the pulls.
Neither of these pulls have an ω-dependent counterpart, because their numerators and de-
nominators are sampled over the network weights independently. In Fig. 3 we see that the
two pulls follow an approximate Gaussian shape, but with a much broader distribution for
the σpred-based pull because of the smaller estimated uncertainty. We note that because of
the log-rescaling of Eq.(15) it is not actually the amplitudes A which should define Gaussian
pulls, but their logarithms. We have explicitly checked that indeed the log A lead to a Gaussian,
but that given our limited range of relevant amplitudes, the Gaussian shape translates into an
approximately Gaussian shape for the amplitudes themselves.

Making use of the Gaussian likelihood loss of the BNN, Eq.(14), we can also define the
weight-dependent pull

tmodel, j(ω) =
Aj(ω)− A(truth)

j

σmodel, j(ω)
. (17)

As part of the loss we can use its distribution as a consistency condition during network train-
ing. Given the Gaussian likelihood loss we expect a Gaussian distribution of tmodel, j(ω), sam-
pled over ω according to the Gaussian q(ω) and over phase space points x . In Fig. 4 we see
that, again, the pull distribution is Gaussian in the center, but develops symmetric, enhanced
tails roughly two standard deviations from the mean.

Finally, we need to go back to the definition of the network uncertainties and understand
how the split σ2

tot = σ
2
model + σ

2
pred can affect improved ways of training the amplitude net-

work. From Fig. 3 we know that the two sampled pulls defined in Eq.(16) are approximately
Gaussian, and the width of the tmodel, j distribution is much smaller than for tpred, j . This is an
effect of the general observation that for a well-trained model

σtot ≈ σmodel > σpred . (18)

Figure 5 shows very strong correlations between the two pulls defined in Eq. (16). Both pulls
correctly identify the training data points which are not described by the network well. For
our regression tasks with exact amplitudes both uncertainties are largely induced by the lack
of training statistics especially in the divergent phase space regions, so this correlation is ex-
pected.

The only issue with all pulls shown in Fig. 3 is that they come with a slight bias towards
positive values, which means the network slightly overestimates the amplitude values as a

9

SciPost Physics Submission

whole. The bias is small in comparison to the estimated uncertainties, and it is in contrast
to the systematic underestimation of the 0.1% largest amplitudes observed in Fig. 2. These
effects indicate a limitation in the network architecture and training, and we will target the
bias, the precision on the largest amplitudes, and Gaussian shape of the pulls by improving
the network training.

4 Network boosting

While the BNN-amplitude results described in the previous section are promising, the dis-
tribution of amplitudes and the pull distributions indicate potential improvements. We know
that for generative networks we can employ an additional discriminator network for reweight-
ing [23, 24] and identify and correct poorly learned phase space regions [15], the solution is
much simpler for a regression network. In the BNN loss we can compute the relative deviations
between data and network output, or large pulls, and target these amplitudes directly. Once
we control the network and its uncertainties, we can even think about further enhancing the
training in the direction of an interpolation.

4.1 Loss-based boosting

Because the BNN loss in Eq.(14) represents a Gaussian log-likelihood, we can modify it and
require a higher precision for those phase space points which according to the BNN uncertainty
are not yet learned well. In practice, this is equivalent to feeding these training data points n j
times into the computation of the BNN loss

LBoosted BNN =

∫

dω qµ,σ(ω)
∑

points j

n j ×

�

�

�Aj(ω)− A(truth)
j

�

�

�

2

2σmodel, j(ω)2
+ logσmodel, j(ω)

+
σ2

q −σ
2
p + (µq −µp)2

2σ2
p

+ log
σp

σq
. (19)

As mentioned for Eq.(14), the regularization has to be adjusted for the additional amplitudes in
the boosted training sample. This feedback training is similar to simple boosting algorithms for
decision trees, where amplitudes for which the decision tree gives a wrong result are enhanced

0.10 0.05 0.00 0.05 0.10
tmodel, train

0.2

0.1

0.0

0.1

0.2

t p
re

d,
tra

in

Figure 5: Correlation between the two pulls for the BNN, evaluated on the training
data.

10

SciPost Physics Submission

with additional weights. In our simple approach we duplicate some training amplitudes, or
equivalently increases their weights in discrete steps.

In a first stage, we improve the self-consistency of the network with the initial assumptions
and boost the network training for amplitudes with a large ω-dependent pull, Eq.(17). In five
iterations we identify the amplitudes with values of tmodel, j(ω), which are more than two
standard deviations away from the mean and increase their contribution to the loss function
in Eq.(19) by values n j = 5. This is done four times. After adding the weights we continue
the training on the enlarged datasets. For the next training cycle we again add weights to the
amplitudes which now have pulls more than two standard deviations away. Each training ends
when we see no more significant change to the loss which usually takes around 2000 epochs.
This boosting forces the network towards a more self-consistent description of the tails of the
pull distributions. We checked that small variations of n j or the number of cycles do not have
a significant impact on these improvements.

In Fig. 6 we show the pulls from the boosted Bayesian neural network, boosted based on
the self-consistency of the loss measured by the pull. We see a significant improvement for
tmodel(ω), the parameter we target with our boosting. One would naively expect the corre-
sponding distribution to assume a Gaussian shape with unit width. However, first of all our
loss-based boosting only moves amplitudes from the tails into the bulk, which means that the
tails of the boosted pull distributions should be low. Second, the pulls entering the loss and the
pulls shown in Fig. 6 are different because the loss includes weights for high-pull amplitudes.
In combination, both effects explain the narrower Gaussian for tmodel(ω). In the logarithmic
version we also see a visible over-training through loss-boosting.

Moving on to the precision for the amplitudes, we see in Fig. 7 that the loss-boosting only
has a mild impact on the ∆-distributions. It does not significantly improve the precision of
the amplitudes compared to Fig. 2, it even increases the fraction of the largest 1% of the
amplitudes in the overflow, indicating that we need a better, second boosting step.

4.2 Performance boosting

Given that the loss-boosting in the previous section worked for the uncertainty estimate but
only had a modest effect on the performance of our amplitude network, we proceed to a more
powerful boosting strategy. Independent of the self-consistency of the network, we know at
the training level which amplitudes challenge the network. This means we can select them

3 2 1 0 1 2 3
(ANN()-A) / model()

0.0

0.1

0.2

0.3

0.4

0.5

no
rm

al
iz

ed

training

test

 (= 0.23,
 = 0.80)

 (= 0.25,
 = 0.80)

gg g loss-boosted

7.5 5.0 2.5 0.0 2.5 5.0 7.5
(ANN()-A) / model()

10 6

10 4

10 2

100

no
rm

al
iz

ed

training

test

 (= 0.23,
 = 0.81)

 (= 0.24,
 = 0.80)

gg g loss-boosted

Figure 6: Pulls for the loss-boosted BNN, defined in Eq.(17) and evaluated on the
training and test data. The two panels show the same results on a linear and a
logarithmic axis. All curves can be compared to the BNN results without boosting in
Fig. 4.

11

SciPost Physics Submission

0.04 0.02 0.00 0.02 0.04
(train) + overflow bin

0

20

40

60

80

100

120
no

rm
al

iz
ed

largest 0.1% ANN

largest 1% ANN

largest 100% ANN

loss-boosted
BNN training

gg g

0.04 0.02 0.00 0.02 0.04
(test) + overflow bin

0

20

40

60

80

100

120

no
rm

al
iz

ed

largest 0.1% ANN

largest 1% ANN

largest 100% ANN

loss-boosted
BNN training

gg g

Figure 7: Performance of the loss-boosted BNN in terms of the precision of the gener-
ated amplitudes, Eq.(3), evaluated on the training and test datasets on a linear (left)
and logarithmic (right) axis. The curves can be compared to the BNN results without
boosting in Fig. 2.

with the goal of improving the training for the largest amplitudes. The difference between
a general loss boosting and this process-dependent strategy is that now we target the largest
and most poorly learned amplitudes by selecting them based on σtot. We choose the 200
amplitudes with the largest uncertainty σtot and add three additional copies to the training
dataset. This process is repeated 20 times, where each training ends when we see no more
significant change to the loss which is usually around 2000 epochs.

In Fig. 8 we first see that the process-specific performance boosting broadens the pull dis-
tributions and this way reverses some of the beneficial effects of the loss-boosting on tmodel(ω).
However, the widths of the boost distributions remains below one, and the bias towards larger
amplitudes is removed. This is true for the training data and for the test data. In addition,
the consistency with the Gaussian shape is broken symmetrically for too small and too large
amplitudes, again consistently for training and test data. Given that the two boostings target
different amplitudes and effectively compete with each other, this pattern is expected.

The positive impact on the large amplitudes can be seen more clearly in Fig. 9. First,

3 2 1 0 1 2 3
(ANN()-A) / model()

0.0

0.1

0.2

0.3

0.4

no
rm

al
iz

ed

training
test

perf.-boosted

 (= 0.17,
 = 0.95)

 (= 0.00,
 = 0.94)

gg g

7.5 5.0 2.5 0.0 2.5 5.0 7.5
(ANN()-A) / model()

10 5

10 4

10 3

10 2

10 1

no
rm

al
iz

ed

training

test

perf.-boosted

 (= 0.17,
= 0.96)

 (= 0.00,
= 0.94)

gg g

Figure 8: Pulls for the performance-boosted BNN, defined in Eq.(17) and evaluated
on the training and test data. The two panels show the same results on a linear and
a logarithmic axis. All curves can be compared to the BNN results without boosting
in Fig. 4 and the loss-boosted results in Fig. 6.

12

SciPost Physics Submission

0.04 0.02 0.00 0.02 0.04
(train) + overflow bin

0

20

40

60

80

100

120

140

no
rm

al
iz

ed

largest 0.1% ANN

largest 1% ANN

largest 100% ANN

perf.-boosted
BNN training

gg g

0.04 0.02 0.00 0.02 0.04
(test) + overflow bin

0

20

40

60

80

100

120

no
rm

al
iz

ed

largest 0.1% ANN

largest 1% ANN

largest 100% ANN

perf.-boosted
BNN training

gg g

Figure 9: Performance of the performance-boosted BNN in terms of the precision of
the generated amplitudes, Eq.(3), evaluated on the training (left) and test datasets
(right). All curves can be compared to the BNN results without boosting in Fig. 2
and the loss-boosted results in Fig. 7.

for the full set of amplitudes the differences between the already successful BNN training
in Fig. 2, the loss boosting in Fig. 7, and the performance boosting are minor. For the 1%
largest amplitudes the performance boosting beats the loss boosting for the training data,
some of this improvement is lost for the test data, but the generic precision of the network
for these amplitudes is stable at the sub-percent level. The big improvement happens for the
otherwise poorly learned 0.1% largest amplitudes, which now show a clear peak at small∆train,
consistent with all other amplitudes. This means the network has learned all amplitudes in
the training dataset equally well. This effect translates to the test sample qualitatively, so the
performance on the test data improves after performance-boosting, but this improvement is
less pronounced than for the training data. This means that, at the expense of an overtraining,
we have improved our network from a fit-like description to an interpolation-like description
of the largest amplitudes.

The pattern observed by performance-boosting points to a conceptual weakness of stan-
dard network training when it comes to precision applications. If we stop the network training
at the point where the performance on a training sample exceeds the performance on the test

0.04 0.02 0.00 0.02 0.04
(test)

0.00

0.25

0.50

0.75

1.00

1.25

1.50

am
pl

itu
de

s

1e5

100%

50%

20%

10%

0.2 0.1 0.0 0.1 0.2
(test)

0.0

0.5

1.0

1.5

2.0

2.5

am
pl

itu
de

s

1e3
top 1% amplitudes
perf.-boosted

100% 50%

20%10%

Figure 10: Performance of the BBN for all amplitudes (left) and a performance-
boosted BNN for the largest 1% of all amplitudes (right), after training on different
fractions of the full training dataset.

13

SciPost Physics Submission

sample, we miss the opportunity of improving the network on the test and training data, but
at a different rate. Overtraining is, per se, not a problem, as we know from applications of in-
terpolation to describe data. The only challenge from such a network overtraining is a reliable
uncertainty estimate from the generalization, for which we propose an appropriate scheduling
of loss-boosting and performance-boosting.

4.3 Effect of training statistics

Given that our amplitude-BNN has successfully learned the amplitudes for the partonic process
g g → γγg well below the percent level, with a small and simple network and 90k training
points, we can ask the question how much training data we actually need for a precision
amplitude network. For this study we use the same BNN as before, including loss-boosting
and performance-boosting, but trained on a reduced dataset of

10% (9.000 amplitudes) · · · 100% (90.000 amplitudes) . (20)

In Fig. 10 we show the corresponding∆-distributions for the test dataset. Our smallest training
dataset contains 9000 amplitudes, which turn out sufficient to train our network with its 6192
parameters. The corresponding network reproduces the test data well, albeit with sizeable
overflow bins. Increasing the amount of training data improves the precision of the network,
but relatively slowly. We observe the same level of improvement for all amplitudes and for the
1% largest amplitudes. For the latter we only show results after process boosting, without any
boosting the quality of the low-statistics training is comparably poor.

5 Kinematic distributions

After illustrating the performance of the amplitude network in a somewhat abstract manner,
we can also show 1-dimensional kinematic distributions. The integration of the remaining
phase space dimension requires a little care, because we cannot just integrate the uncertainties
together with the central values for the amplitudes.

For the central values we combine the amplitudes with phase space sampling. For example
applying the simple RAMBO [25] algorithm we identify the phase space weights with A. A 1-
dimensional distribution is generated through bins which collect the sum of the amplitudes in
the remaining phase space directions. The histogram value for a bin k is

hk =
N
∑

j=1

A j . (21)

To use the amplitudes predicted by the BNN we have to add the sampling over the weights
ω. By replacing the truth amplitudes with the NN-amplitudes we can target the uncertainties
from the modelling of the amplitudes through the BNN. In analogy to Eq.(8) and omitting the
index k for the histogram we first extract a central histogram value as

〈h〉=
∫

dω q(ω)
∑

j

Ai(ω)

=

∫

dω q(ω)h(ω) with h(ω) =
∑

j

Ā j(ω) . (22)

14

SciPost Physics Submission

Again in analogy to Eqs.(10) and (11) we define the absolute uncertainties on the bin entry as

σ2
h,pred =

∫

dω q(ω)
�

h(ω)− 〈h〉
�2

σ2
h,model =

∫

dω q(ω)
�

h2(ω)− h(ω)2
�

. (23)

The total uncertainty is again σ2
h,tot = σ

2
h,model +σ

2
h,pred. We can simplify σh,model further. In

all of the above formulas h is just a sum over amplitudes. If we assume that the corresponding
σmodel values are uncorrelated, we can relate σh,model to σmodel by exchanging the sum and
the variance,

σ2
h,model =

∫

dω q(ω)Var(h(ω))

=

∫

dω q(ω)Var

∑

j

A j(ω)

!

=

∫

dω q(ω)
∑

j

Var
�

A j(ω)
�

=

∫

dω q(ω)
∑

j

σ2
model, j(ω)≡

∑

j

σ2
model, j(ω)

·

. (24)

While we assume uncorrelated uncertainties for σmodel we cannot do the same for σpred.
To compute σpred we first sample a set of weight configurations, which turns our BNN into
an ensemble of neural networks, and then use each of these neural networks to compute the
corresponding histogram value. Computing the standard deviation of these values gives us an
estimate for σh,pred. By sampling from the weight distributions we change the neural network
itself and all of its predictions. To assume that these changes are uncorrelated for different
amplitudes seems not exceptionally well justified.

Based on this procedure we show BNN-amplitude results for a set of kinematic distributions
in the upper panels of Fig. 11. We see the effect of limited training data towards the end of
the different kinematic distributions, where the agreement between the NN-amplitudes and
truth deteriorates. For our reference process this happens for |ηg | ¦ 2.5 or |ηγ| ¦ 1.5. Still,
the BNN uncertainty estimate covers the deviation from the truth reliably.

In the lower panels of Fig. 11 we see that after performance-boosting the BNN predictions
agree with the training data spectacularly well. This is the goal of the boosting and leads to the
network learning all features in the training data extremely well. In the phase space regions
where the regular BNN precision is limited by sparse and large training amplitudes, the im-
proved agreement between NN-amplitudes and the training data carries over to the test data at
a level that the network prediction is significantly improved. The uncertainties for the training
data still cover the deviations from the truth, but unlike the central values this uncertainty esti-
mate does not generalize correctly to the test data. This structural issue with process boosting
could be ameliorated by alternating between loss-boosting and performance-boosting, until
the specific requirements of a given analysis in precision and uncertainty estimates are met.

6 Outlook

Learning loop-amplitudes for LHC simulations is a classic ML-problem, because we need to
train a precision network only once to provide a much faster simulation tool which can be
used many times. In this application neural networks really work like better fits to the train-
ing data. Unlike for many other network applications, the training amplitudes are not noisy,

15

SciPost Physics Submission

10−2

100
1/
σ

d
σ

/d
η g

gg→ γγg
σtot

gg→ γγg
σtot

gg→ γγg
σtot

gg→ γγg
σtot

test

BNNtest

train

BNNtrain

0.8

1

1.2

M
od

el
T

ra
in

in
g

−2 0 2
ηg

0.8

1

1.2

M
od

el
te

st

10−1

101

1/
σ

d
σ

/d
R
γ

2
g

gg→ γγg
σtot

gg→ γγg
σtot

gg→ γγg
σtot

gg→ γγg
σtot

test

BNNtest

train

BNNtrain

0.8

1

1.2

M
od

el
T

ra
in

in
g

1 2 3 4
Rγ2g

0.8

1

1.2

M
od

el
te

st

10−2

100

1/
σ

d
σ

/d
η g

gg→ γγg performance-boosted
σtot

gg→ γγg performance-boosted
σtot

gg→ γγg performance-boosted
σtot

gg→ γγg performance-boosted
σtot

test

BNNtest

train

BNNtrain

0.8

1

1.2

M
od

el
T

ra
in

in
g

−2 0 2
ηg

0.8

1

1.2

M
od

el
te

st

10−1

101

1/
σ

d
σ

/d
R
γ

2
g

gg→ γγg performance-boosted
σtot

gg→ γγg performance-boosted
σtot

gg→ γγg performance-boosted
σtot

gg→ γγg performance-boosted
σtot

test

BNNtest

train

BNNtrain

0.8

1

1.2

M
od

el
T

ra
in

in
g

1 2 3 4
Rγ2g

0.8

1

1.2

M
od

el
te

st

Figure 11: Kinematic distributions from the BNN without boosting (upper) and after
performance-boosting (lower). The grey error bars in the lower panels indicate the
statistical limitation of the training and test data.

which means we would like to reproduce the training amplitudes exactly, supplemented with
a controlled uncertainty over all of phase space. To provide a reliable uncertainty map over
phase space, we can rely on Bayesian regression networks [11].

The precision task reminds us of an interpolation rather than a fit, which means we need
modify our ML-approach conceptually. If we are willing to accept a certain amount of over-
training, we can significantly improve the network training through boosting certain ampli-
tudes. Because the Bayesian network provides a reliable uncertainty estimate, we can select
the to-be-boosted amplitudes based on their deviation from the training data in units of the
uncertainty. This loss-based boosting simply improves the self-consistency of the Bayesian net-
work training. In a second step, we can boost training amplitudes just based on their absolute
uncertainty. This selection helps with the precision for a given process, and because we use
the absolute uncertainty we typically focus on the largest amplitude values.

We have applied Bayesian network training and the two strategies of amplitude boosting
to the partonic process g g → γγg [9]. We have first found that the network amplitudes
agree with the true amplitudes at the sub-percent level, for the training data and for a test
dataset. For the 1% largest amplitudes an agreement at the percent level required process-
specific performance boosting. For 1-dimensional kinematic distributions we have seen that
the performance-boosting allows for extremely precise predictions in kinematic tails, albeit
with a somewhat reduced performance in the uncertainty estimate for the test dataset. This
can be improved by alternating between process and loss boosting in order to retain improved
uncertainty estimation and increased performance which will be subject of future studies.

Finally, we have checked what happens with our boosted Bayesian network training when
we reduce the number of training amplitudes from 90k to 9k and found that thanks to the

16

SciPost Physics Submission

boosting this only leads to a mild decrease in the network precision. This leaves us confident
that boosted amplitude training with its shift from a fit-like to interpolation-like objective pro-
vides us with highly efficient surrogate models whenever the generation of training data is
CPU-intensive.

Acknowledgments

First, we would like to thank Manuel Haußmann for introducing us to Bayesian networks. We
thank Steffen Schumann for many enlightening discussions and Frank Krauss for regularizing
any unreasonable enthusiasm. We are also grateful to Joseph Aylett-Bullock and Ryan Moodie
for helpful conversations. This research is supported by the Deutsche Forschungsgemeinschaft
(DFG, German Research Foundation) under grant 396021762 – TRR 257: Particle Physics Phe-
nomenology after the Higgs Discovery, through Germany’s Excellence Strategy EXC 2181/1
- 390900948 (the Heidelberg STRUCTURES Excellence Cluster) and the European Union’s
Horizon 2020 research and innovation programmes High precision multi-jet dynamics at the
LHC (consolidator grant agreement No 772009).

17

SciPost Physics Submission

A The (2→ 4)-process

We know that that increasing the number of particles in the final state leads to a significant
drop in network performance [7–9, 26, 27]. We illustrate how we can use the boosted BNN
training to improve network predictions for the (2→ 4)-process

g g → γγg g . (25)

For this process we use a network with seven hidden layers, 24 kinematic input dimensions,
{32, 64,256, 512,128,64, 32} nodes, and two output dimensions corresponding to the am-
plitude and its uncertainty. This larger network has around 600k parameters. The training
dataset contains around 90k amplitudes. Aside from these changes, we apply the same basic
BNN training with two levels of loss boosting and process-specific performance boosting.

As for the (2→ 3)-process we first show the performance of the network training in Fig. 12.
While the overall scale of the agreement has increased for the sub-percent level to the percent
level, we still see that the network has learned the largest amplitudes extremely well after
process boosting. Unlike for the standard BNN, there is a certain amount of overtraining after
performance-boosting, indicating the shift from a fit-like network training to an interpolation-
like training.

Next, we check the consistency of the network output by looking at the ω-dependent pull
distribution defined Eq.(17). We see that especially for large amplitudes the loss-boosting
guarantees a well-behaved, consistent network, while the additional process boosting reverses

0.4 0.2 0.0 0.2 0.4
(train) + overflow bin

0

2

4

6

8

10

12

no
rm

al
iz

ed

largest 0.1% ANN

largest 1% ANN

largest 100% ANNgg gg

0.4 0.2 0.0 0.2 0.4
(test) + overflow bin

0

2

4

6

8

10

12

no
rm

al
iz

ed

largest 0.1% ANN

largest 1% ANN

largest 100% ANNgg gg

0.4 0.2 0.0 0.2 0.4
(train) + overflow bin

0

5

10

15

20

25

30

35

40

no
rm

al
iz

ed

largest 0.1% ANN

largest 1% ANN

largest 100% ANN

perf.-boosted
BNN training

gg gg

0.4 0.2 0.0 0.2 0.4
(test) + overflow bin

0

2

4

6

8

10

12

no
rm

al
iz

ed

largest 0.1% ANN

largest 1% ANN

largest 100% ANN

perf.-boosted
BNN training

gg gg

Figure 12: Performance of the basic (upper) and performance-boosted (lower) BNNs
for the (2→ 4)-process in terms of the precision of the generated amplitudes, Eq.(3),
evaluated on the training (left) and test datasets (right).

18

SciPost Physics Submission

7.5 5.0 2.5 0.0 2.5 5.0 7.5
(ANN()-A) / model()

10 6

10 5

10 4

10 3

10 2

10 1

no
rm

al
iz

ed

training

test

 (= 0.07,
 = 0.99)

 (= 0.08,

= 1.13)
gg gg

7.5 5.0 2.5 0.0 2.5 5.0 7.5
(ANN()-A) / model()

10 6

10 5

10 4

10 3

10 2

10 1

no
rm

al
iz

ed

training

test

loss-boosted

 (= 0.01,
 = 0.95)

 (= 0.00,

= 1.05)

gg gg

7.5 5.0 2.5 0.0 2.5 5.0 7.5
(ANN()-A) / model()

10 6

10 5

10 4

10 3

10 2

10 1

no
rm

al
iz

ed

training

test

perf.-boosted

 (= 0.13,
 = 0.97)

 (= 0.14,

= 1.10)

gg gg

Figure 13: Pulls of the loss-bossted (left), and performance-boosted (right) BNN for
the (2→ 4)-process, defined in Eq.(17) and evaluated on the training and test data.

some of the beneficial effects of the loss-boosting. This effect was already observed for the
(2→ 3)-process.

Finally, we show the 1-dimensional kinematic distributions for the basic BNN and for the
performance-boosted BNN. As for the (2→ 3)-process the boosting step has a spectacula effect
on the training data in the poorly learned kinematic tails. After integrating over the additional
phase space directions this improvement translates well into the test dataset, but at the expense
of the uncertainty estimate on the training data.

19

SciPost Physics Submission

10−2

10−1

1/
σ

d
σ

/d
η g

1

gg→ γγgg
σtot

gg→ γγgg
σtot

gg→ γγgg
σtot

gg→ γγgg
σtot

test

BNNtest

train

BNNtrain

0.8

1

1.2

M
od

el
T

ra
in

in
g

−2 0 2
ηg1

0.8

1

1.2

M
od

el
te

st

10−2

100

1/
σ

d
σ

/d
R
γ

2
g 1

gg→ γγgg
σtot

gg→ γγgg
σtot

gg→ γγgg
σtot

gg→ γγgg
σtot

test

BNNtest

train

BNNtrain

0.8

1

1.2

M
od

el
T

ra
in

in
g

1 2 3 4
Rγ2g1

0.8

1

1.2

M
od

el
te

st

10−2

10−1

1/
σ

d
σ

/d
η g

1

loss-boosted gg→ γγgg
σtot

loss-boosted gg→ γγgg
σtot

loss-boosted gg→ γγgg
σtot

loss-boosted gg→ γγgg
σtot

test

BNNtest

train

BNNtrain

0.8

1

1.2

M
od

el
T

ra
in

in
g

−2 0 2
ηg1

0.8

1

1.2

M
od

el
te

st

10−2

100

1/
σ

d
σ

/d
R
γ

2
g 1

loss-boosted gg→ γγgg
σtot

loss-boosted gg→ γγgg
σtot

loss-boosted gg→ γγgg
σtot

loss-boosted gg→ γγgg
σtot

test

BNNtest

train

BNNtrain

0.8

1

1.2

M
od

el
T

ra
in

in
g

1 2 3 4
Rγ2g1

0.8

1

1.2

M
od

el
te

st

10−2

10−1

1/
σ

d
σ

/d
η g

1

performance-boosted gg→ γγgg
σtot

performance-boosted gg→ γγgg
σtot

performance-boosted gg→ γγgg
σtot

performance-boosted gg→ γγgg
σtot

test

BNNtest

train

BNNtrain

0.8

1

1.2

M
od

el
T

ra
in

in
g

−2 0 2
ηg1

0.8

1

1.2

M
od

el
te

st

10−2

100

1/
σ

d
σ

/d
R
γ

2
g 1

performance-boosted gg→ γγgg
σtot

performance-boosted gg→ γγgg
σtot

performance-boosted gg→ γγgg
σtot

performance-boosted gg→ γγgg
σtot

test

BNNtest

train

BNNtrain

0.8

1

1.2

M
od

el
T

ra
in

in
g

1 2 3 4
Rγ2g1

0.8

1

1.2

M
od

el
te

st

Figure 14: Kinematic distribution for the (2→ 4)-process without boosting (upper),
after loss boosting (center), and after process boosting (lower). The grey error bars
in the lower panels indicate the statistical limitation of the training and test data.

20

SciPost Physics Submission

References

[1] T. Plehn, A. Butter, B. Dillon and C. Krause, Modern Machine Learning for LHC Physicists
(2022), arXiv:2211.01421.

[2] A. Butter, T. Plehn, S. Schumann et al., Machine Learning and LHC Event Generation
(2022), arXiv:2203.07460.

[3] F. Bishara and M. Montull, (Machine) Learning Amplitudes for Faster Event Generation
(2019), arXiv:1912.11055.

[4] M. Czakon, Tops from Light Quarks: Full Mass Dependence at Two-Loops in QCD, Phys.
Lett. B 664, 307 (2008), doi:10.1016/j.physletb.2008.05.028, arXiv:0803.1400.

[5] S. Borowka, N. Greiner, G. Heinrich, S. P. Jones, M. Kerner, J. Schlenk, U. Schu-
bert and T. Zirke, Higgs Boson Pair Production in Gluon Fusion at Next-to-Leading Or-
der with Full Top-Quark Mass Dependence, Phys. Rev. Lett. 117(1), 012001 (2016),
doi:10.1103/PhysRevLett.117.079901, [Erratum: Phys.Rev.Lett. 117, 079901 (2016)],
arXiv:1604.06447.

[6] K. Danziger, T. Janßen, S. Schumann and F. Siegert, Accelerating Monte Carlo event gen-
eration – rejection sampling using neural network event-weight estimates, SciPost Phys.
12(5), 164 (2022), doi:10.21468/SciPostPhys.12.5.164, arXiv:2109.11964.

[7] S. Badger and J. Bullock, Using neural networks for efficient evaluation of high multi-
plicity scattering amplitudes, JHEP 06, 114 (2020), doi:10.1007/JHEP06(2020)114,
arXiv:2002.07516.

[8] D. Maître and H. Truong, A factorisation-aware Matrix element emulator, JHEP 11, 066
(2021), doi:10.1007/JHEP11(2021)066, arXiv:2107.06625.

[9] J. Aylett-Bullock, S. Badger and R. Moodie, Optimising simulations for diphoton pro-
duction at hadron colliders using amplitude neural networks, JHEP 08, 066 (2021),
doi:10.1007/JHEP08(2021)066, arXiv:2106.09474.

[10] Y. Gal, Uncertainty in Deep Learning, Ph.D. thesis, Cambridge, http://mlg.eng.cam.ac.
uk/yarin/thesis/thesis.pdf (2016).

[11] G. Kasieczka, M. Luchmann, F. Otterpohl and T. Plehn, Per-Object Systematics using Deep-
Learned Calibration, SciPost Phys. 9, 089 (2020), doi:10.21468/SciPostPhys.9.6.089,
arXiv:2003.11099.

[12] S. Bollweg, M. Haußmann, G. Kasieczka, M. Luchmann, T. Plehn and J. Thomp-
son, Deep-Learning Jets with Uncertainties and More, SciPost Phys. 8(1), 006 (2020),
doi:10.21468/SciPostPhys.8.1.006, arXiv:1904.10004.

[13] J. Y. Araz and M. Spannowsky, Combine and Conquer: Event Reconstruction with Bayesian
Ensemble Neural Networks (2021), arXiv:2102.01078.

[14] M. Bellagente, M. Haußmann, M. Luchmann and T. Plehn, Understanding Event-
Generation Networks via Uncertainties (2021), arXiv:2104.04543.

[15] A. Butter, T. Heimel, S. Hummerich, T. Krebs, T. Plehn, A. Rousselot and S. Vent, Gener-
ative Networks for Precision Enthusiasts (2021), arXiv:2110.13632.

21

http://arxiv.org/abs/2211.01421
http://arxiv.org/abs/2203.07460
http://arxiv.org/abs/1912.11055
https://doi.org/10.1016/j.physletb.2008.05.028
http://arxiv.org/abs/0803.1400
https://doi.org/10.1103/PhysRevLett.117.079901
http://arxiv.org/abs/1604.06447
https://doi.org/10.21468/SciPostPhys.12.5.164
http://arxiv.org/abs/2109.11964
https://doi.org/10.1007/JHEP06(2020)114
http://arxiv.org/abs/2002.07516
https://doi.org/10.1007/JHEP11(2021)066
http://arxiv.org/abs/2107.06625
https://doi.org/10.1007/JHEP08(2021)066
http://arxiv.org/abs/2106.09474
http://mlg.eng.cam.ac.uk/yarin/thesis/thesis.pdf
http://mlg.eng.cam.ac.uk/yarin/thesis/thesis.pdf
https://doi.org/10.21468/SciPostPhys.9.6.089
http://arxiv.org/abs/2003.11099
https://doi.org/10.21468/SciPostPhys.8.1.006
http://arxiv.org/abs/1904.10004
http://arxiv.org/abs/2102.01078
http://arxiv.org/abs/2104.04543
http://arxiv.org/abs/2110.13632

SciPost Physics Submission

[16] I. Chahrour and J. D. Wells, Comparing Machine Learning and Interpo-
lation Methods for Loop-Level Calculations, SciPost Phys. 12, 187 (2022),
doi:10.21468/SciPostPhys.12.6.187, arXiv:2111.14788.

[17] E. Bothmann et al., Event Generation with Sherpa 2.2, SciPost Phys. 7(3), 034 (2019),
doi:10.21468/SciPostPhys.7.3.034, arXiv:1905.09127.

[18] S. Badger, B. Biedermann, P. Uwer and V. Yundin, Numerical evaluation of virtual correc-
tions to multi-jet production in massless QCD, Comput. Phys. Commun. 184, 1981 (2013),
doi:10.1016/j.cpc.2013.03.018, arXiv:1209.0100.

[19] A. Butter, T. Plehn and R. Winterhalder, How to GAN LHC Events, SciPost Phys. 7(6), 075
(2019), doi:10.21468/SciPostPhys.7.6.075, arXiv:1907.03764.

[20] D. MacKay, Probable Networks and Plausible Predictions – A Review of Practical Bayesian
Methods for Supervised Neural Networks, Comp. in Neural Systems 6, 4679 (1995), http:
//www.inference.org.uk/mackay/network.pdf.

[21] A. Kendall and Y. Gal, What uncertainties do we need in bayesian deep learning for
computer vision?, CoRR abs/1703.04977 (2017), http://arxiv.org/abs/1703.04977,
1703.04977.

[22] D. P. Kingma and J. Ba, Adam: A Method for Stochastic Optimization (2014),
arXiv:1412.6980.

[23] S. Diefenbacher, E. Eren, G. Kasieczka, A. Korol, B. Nachman and D. Shih, DCTRGAN:
Improving the Precision of Generative Models with Reweighting, JINST 15(11), P11004
(2020), doi:10.1088/1748-0221/15/11/P11004, arXiv:2009.03796.

[24] R. Winterhalder, M. Bellagente and B. Nachman, Latent Space Refinement for Deep Gen-
erative Models (2021), arXiv:2106.00792.

[25] R. Kleiss, W. J. Stirling and S. D. Ellis, A New Monte Carlo Treatment of Multiparticle Phase
Space at High-energies, Comput. Phys. Commun. 40, 359 (1986), doi:10.1016/0010-
4655(86)90119-0.

[26] E. Bothmann, T. Janßen, M. Knobbe, T. Schmale and S. Schumann, Exploring
phase space with Neural Importance Sampling, SciPost Phys. 8(4), 069 (2020),
doi:10.21468/SciPostPhys.8.4.069, arXiv:2001.05478.

[27] C. Gao, S. Höche, J. Isaacson, C. Krause and H. Schulz, Event Generation with Normal-
izing Flows, Phys. Rev. D 101(7), 076002 (2020), doi:10.1103/PhysRevD.101.076002,
arXiv:2001.10028.

22

https://doi.org/10.21468/SciPostPhys.12.6.187
http://arxiv.org/abs/2111.14788
https://doi.org/10.21468/SciPostPhys.7.3.034
http://arxiv.org/abs/1905.09127
https://doi.org/10.1016/j.cpc.2013.03.018
http://arxiv.org/abs/1209.0100
https://doi.org/10.21468/SciPostPhys.7.6.075
http://arxiv.org/abs/1907.03764
http://www.inference.org.uk/mackay/network.pdf
http://www.inference.org.uk/mackay/network.pdf
http://arxiv.org/abs/1703.04977
http://arxiv.org/abs/1703.04977
http://arxiv.org/abs/1412.6980
https://doi.org/10.1088/1748-0221/15/11/P11004
http://arxiv.org/abs/2009.03796
http://arxiv.org/abs/2106.00792
https://doi.org/10.1016/0010-4655(86)90119-0
https://doi.org/10.1016/0010-4655(86)90119-0
https://doi.org/10.21468/SciPostPhys.8.4.069
http://arxiv.org/abs/2001.05478
https://doi.org/10.1103/PhysRevD.101.076002
http://arxiv.org/abs/2001.10028

	Introduction
	Dataset and benchmark results
	Bayesian network
	Network boosting
	Loss-based boosting
	Performance boosting
	Effect of training statistics

	Kinematic distributions
	Outlook
	The (2 4)-process
	References

