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We consider a gas of repulsive N -component fermions confined in a ring-shaped potential, sub-
jected to an e↵ective magnetic field. For large repulsion strengths, we work out a Bethe ansatz
scheme to compute the two-point correlation matrix and then the one-particle density matrix. Our
results hold in the mesoscopic regime of finite but su�ciently large number of particles and system
size that are not accessible by numerics. We access the momentum distribution of the system and
analyse its specific dependence of interaction, magnetic field and number of components N . In the
context of cold atoms, the exact computation of the correlation matrix to determine the interference
patterns that are produced by releasing cold atoms from ring traps is carried out.

I. INTRODUCTION

In low-dimensional many-body systems, quantum fluc-
tuations are particularly pronounced, and therefore even
a weak interaction can lead to dramatic correlations.
Such a simple fact makes the physics of 1d many-body
systems exotic and distinct from the physics of higher
dimensional systems [1]. The breakdown of the Fermi
liquid paradigm and Luttinger liquid behaviour, the spin-
charge separation in fermionic systems, elementary exci-
tations with fractional statistics and Haldane order are
just some of the characteristic traits addressed in the last
few decades of research on the subject [2–5]. One dimen-
sional systems can be realized by confining the spatial
degrees of freedom, as in quantum wires [6], in chains
of Josephson junctions [7] or in certain classes of poly-
mers [8]; in other instances, the dimensionality is con-
strained dynamically, as in carbon nano-tubes [9], edge
states in quantum Hall e↵ect [10] or in metals with dilute
magnetic impurities [11]. With the advent of quantum
technology, seeking quantum correlations as a resource,
the impact of 1d physics has been considerably widened.
In this paper, we will be dealing with strongly correlated
N -component fermions confined in one spatial dimension.
The two-component electronic case is ubiquitous in phys-
ical science from condensed matter to high energy physics
and clearly relevant for a large number of technological
applications. Systems with N > 2 have emerged as e↵ec-
tive descriptions in specific condensed matter or meso-
scopic physics contexts [12–15].

Recently, the relevance of N -component fermions has
been significantly boosted since the experimental re-
alizations through alkaline earth-like fermionic atomic
gases [16–19]; in there, the two-body interactions resulted
to be SU(N)-symmetric, reflecting the absence of hy-
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perfine coupling between the atoms’ electronic and nu-
clear degrees of freedom [20–22]. Such artificial matter
is relevant for high precision measurements [23, 24] and
has the potential of considerably expanding the scope of
cold atoms quantum simulators [16, 25–28]. Here, we
focus on SU(N) fermions described by a Hubbard type
model [20, 22]. In the dilute regime of less than one par-
ticle per site, the lattice model captures the physics of
continuous systems with delta-interaction [29], which is
exactly solvable by Bethe Ansatz [30, 31]. Exact solu-
tions of 1d interacting quantum many-body systems play
a particularly important role since their physics is often
non-perturbative, with properties that are beyond the re-
sults obtained with approximations [1]. As such, exact
results, though rare and technically di�cult to achieve,
form a precious compass to get oriented in the 1d physics.

Here, we provide the exact expression of the two-point
correlation matrix of fermions with N components, de-
termining the one-body density matrix, in the limit of
strong particle-particle interactions. We consider parti-
cles confined in a ring-shaped potential subjected to an
external magnetic flux in the limit of large repulsive in-
teractions. We work in the mesoscopic regime in which
such a magnetic field is able to start an N -component
fermionic matter-wave persistent current. We analyze
the distribution of the momentum of particles, which,
despite being one of the simplest correlations, is able to
reflect certain e↵ects of the interaction [32]. On the tech-
nical side, we point out that, despite its simple expres-
sion, the momentum distribution can only be calculated
numerically for a small number of particles and is even
less accessible when considering the strongly correlated
regimes. Even for integrable models, it is not manage-
able, especially in the mesoscopic regime of finite but
su�ciently large particle systems. The case N = 2 in
the absence of magnetic flux was discussed by Ogata and
Shiba [33].

The one-body density matrix plays a crucial role in dif-
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FIG. 1. Schematic representation of the decoupling of the SU(N) Fermi-Hubbard into the spinless and Heisenberg-XXX
Hamiltonians at infinite repulsive interactions U . On the left, the figure depicts the SU(4) Hamiltonian with one-particle per
colour and 4 empty sites (white). On the right, we have the spinless Hamiltonian with 4 fermions (black) and 4 empty sites. In
addition, there is the SU(4) Heisenberg Hamiltonian with one spin in each orientation. Note that after the decoupling, the index
corresponding to a given colour in the Heisenberg Hamiltonian changes in order to accommodate the new framework, but the
arrangement of the colours in the original chain is maintained. The circle indicates a function composition in a mathematical
sense: f � g = f(g).

ferent schemes of time-of-flight expansions in cold atoms
settings [28, 34–38]. The e↵ect of an artificial magnetic
field in neutral two-component fermions confined in tight
toroidal-shaped potentials was explored in recent exper-
iments [39, 40]. The arising persistent current pattern is
produced as a result of specific transitions between suit-
able current states characterized by di↵erent particles’
spin configuration[41, 42]. We will show how to handle
the extra-complications coming from the above ground-
states transitions in computing the correlation matrix of
the system for di↵erent magnetic fluxes.

The paper is structured as follows. In Sec. II we discuss
the model describing our system and introduce the spin-
charge decoupling mechanism. In Sec. III and Sec. IV
we present the results achieved for the momentum dis-
tribution and interference dynamics of SU(N) fermions.
Conclusion and outlooks are given in Sec. V.

II. MODEL AND METHODS

The one-dimensional Hubbard model forN -component
fermions residing on a ring-shaped lattice comprised of L
sites, threaded by an e↵ective magnetic flux � reads

H = �t

LX

j

NX

↵=1

(ei
2⇡�
L c

†
j,↵cj+1,↵+h.c.)+U

LX

j

X

↵<�

nj,↵nj,� ,

(1)
where c

†
j,↵ creates a particle with colour ↵ on site j and

nj = c
†
jcj is the local particle number operator. U and

t denote the interaction and hopping strengths respec-
tively. In this paper, we consider only the repulsive case

such that U > 0. The Peierls substitution t ! te
i 2⇡�

L ac-
counts for the gauge field. In standard implementations
such a field can be an actual magnetic field, while it can
be artificially created in cold atom settings [43].

For N = 2, the model in Eq. (1) is Bethe ansatz
solvable for all system parameters and filling fractions
⌫ = Np/L [44]. For N > 2, Bethe ansatz solvability
holds for the continuous limit of vanishing lattice spacing,
with the model turning into the Gaudin-Yang-Sutherland
model, that describes SU(N) symmetric fermions with
delta interactions [22, 30, 31]. This limit is achieved when

considering the dilute regime, such that ⌫ ⌧ 1 [29]. In
the following, we will refer to the Bethe ansatz solution
of the SU(N) Hubbard model in this limit.
Accordingly, within a given particle ordering xQ1 

. . .  xQNp
, the eigenstates of the model (1) can be ex-

pressed as

f(x1, ..., xNp ;↵1, ...,↵Np) =
X

P

A(Q|P )'P (↵Q1, ...,↵QNp)

⇥ exp

✓
i

NpX

j=1

kPjxQj

◆
, (2)

where A(Q|P ) = sign(P )sign(Q) with P and Q being
permutations introduced to account for the eigenstates’
dependence on the relative ordering of the particle coor-
dinates xj and quasimomenta kj , with ' being the spin
wavefunction. The latter accounts for all di↵erent com-
ponents of the system, which can be obtained by nesting
the Bethe ansatz [31]. As a result, the spin-like rapidities
for each additional colour ⇤↵, which are the conserved
quantities for the SU(N) degrees of freedom (see Ap-
pendix VIA), are all housed in ' [31, 45]. In particular,
we note that the ground-state of the system correspond
to real kj , ⇤↵.
Despite the access to the energy spectrum is greatly

simplified due to integrability, the calculation of the exact
correlation functions remains a very challenging problem
[46], especially in the mesoscopic regime of large but finite
Np and L [47].
Here, we will be focusing on the large U limit where

the correlation functions become addressable as we shall
see. The simplification arises because the charge and spin
degrees of freedom decouple (such a decoupling occurs
only for states with real kj) [33, 41, 42]. The decoupling
is manifested in the Bethe equations of the system. In the
limit U ! 1, the charge degrees of freedom are specified
as (see Appendix VIA1 for a sketch of the derivation):

kj =
2⇡

L


Ij +

X

Np
+ �

�
, (3)

where Ij are the charge quantum numbers of the spinless

fermionic model and X =
PN�1

`

PM`

�`
J�` denotes the

sum of the spin quantum numbers. As an e↵ect of the
spin-charge decoupling, each wavefunction amplitude can
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be written as a product between a Slater determinant of
spinless fermions det[exp(ikjxQj)] and a spin wavefunc-
tion '(y1, . . . , yM ) [33]

f(x1, ..., xNp ;↵1, ...,↵Np) = sign(Q)det[exp(ikjxl)]jl

'(y1, . . . , yM ). (4)

Consequently, in the limit of U ! +1 these states of
the Hubbard model can be written as

| [U ]iFermi�Hubbard

U!+1
�! | [ XXX ]ispinless, (5)

The logic of the decoupling occurring in the wavefunc-
tion is depicted in Fig. (1). It is important to emphasize
that this is not a tensor product but corresponds to a
composition of functions.

The XXX Heisenberg model in Eq. (5) is also inte-
grable for SU(N) and all 1 < N 2 N. The corresponding
Hamiltonian can be constructed as a sum of permutation
operators HXXX =

P
i Pi,i+1 [22, 48], where Pi,i+1 can

be expressed in terms of SU(N)-generators. The Hamil-
tonian Pi,i+1 permutes SU(N) states on sites i and i+ 1
(see also Appendix (VIB) and Eq. (22)). Even though
Bethe ansatz integrable, the exact access of explicit ex-
pression of the eigenstates of the antiferromagnet Heisen-
berg model is very challenging. In our paper, therefore,
the quantum state is obtained by combining the Bethe
ansatz analysis with the Lanczos numerical method. The
procedure is described below.

a. Finding the ground-state. Firstly, we note that
for each non-degenerate ground-state of the Hubbard
model, there exists a corresponding single eigenstate of
the Heisenberg model. In principle, such a state-to-state
correspondence could be obtained by identifying the spin
quantum numbers labeling the states of the Hubbard
model (through the Bethe ansatz equations) with the
quantum numbers for the Heisenberg model. However,
as mentioned above such a procedure is quite involved
when trying to access to the quantum states. There-
fore, we use a combination of Bethe ansatz and numer-
ical methods: i) inserting the spin quantum numbers
characterizing a given state in the Hubbard model into
the Heisenberg Bethe ansatz, enables us to calculate the
correct energy, which is then matched with the numer-
ically obtained spectrum of the anti-ferromagnet; then
ii) the SU(N) quadratic Casimir operators (see the Ap-
pendix VIB 2) are used to characterize the total SU(N)-
spin of the states. The Casimir operators are commuting
with the whole SU(N) group and hence are constants of
the motion of both the Heisenberg Hamiltonian and the
SU(N) Hubbard model. In particular, we note that the
Casimir operator for N = 2 corresponds to the total spin
operator squared ~S

2. For � = 0, the state of the Hub-
bard model is non-degenerate. Therefore, this approach
can uniquely characterize the states. For � 6= 0 however,
it results that the energy of the Heisenberg model is de-
generate as is the Casimir value. This degeneracy can
be resolved for the SU(2) case by looking at the permu-
tation operators Pj,j�1 (such operators do not commute

with the Heisenberg Hamiltonian by construction). For
larger N and � 6= 0 we do not have a general method.
However, we note that degenerate states with the same
Casimir value consist of di↵erent projections into the
Heisenberg basis, which allow us to uniquely identify the
correct ground-states to be taken at increasing flux [42]
(see the Appendix for a detailed explanation).
We found that non-degenerate ground-states with odd

and even number of particles per species correspond to
di↵erent values of the Casimir operators, and therefore
to di↵erent representations of the SU(N) algebra [49].
The corresponding states are hence chosen based on the
parity of the species occupation number.
We comment that, for Np = (2m)N fermions with in-

tegerm at zero flux, the ground-state wavefunction of the
Hubbard model is not a singlet in contrast with that of
the anti-ferromagnetic Heisenberg model. In the case of
SU(2), this issue was circumvented by considering anti-
periodic boundary conditions for the Hubbard model,
which results to be a singlet ground-state [33]. In con-
trast with the method presented in [33], we do not mod-
ify the boundary conditions for model (1) but instead we
modify the spin quantum numbers in Eq. (3) such that
the non-degenerate triplet eigenstate of the Heisenberg
model is selected.

FIG. 2. Schematic representation of the e↵ect of c†l,↵cj,↵ on
an SU(2) wavefunction. The upper part depicts the initial
state in a given configuration with the corresponding decou-
pled wavefunction shown on the right. The bottom figure
illustrates the final state and its corresponding wavefunction
after performing the hopping action on the initial state. This
figure is adapted from [33].

Our proposed scheme is reliant on model (1) being inte-
grable. As stated beforehand, one instance of integrabil-
ity occurs for dilute filling fractions, such that the model
turns into the Gaudin-Yang-Sutherland model. In what
follows, the system sizes considered are far from being in
the dilute limit. Nonetheless, we find that our method
is still applicable in this regime (see section VID in the
appendix), since in the limit of infinite repulsion, the
probability of having more than two particles interacting
is vanishing, thereby satisfying the Yang-Baxter condi-
tion for integrability [50]. Indeed, for the low-lying spec-
trum and the corresponding correlations, such a state-
ment was verified by comparing with exact diagonaliza-
tion (see Table I in the Appendix). It is worth remark-
ing that the numbers of Np and L considered in this
paper would correspond to a Hilbert space size, that is
intractable with exact diagonalization. On account of the
spin-charge decoupling, we are able to separate the prob-
lem into the spinless and Heisenberg parts, resulting in
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smaller Hilbert spaces, making systems with large values
of the parameters accessible (see Appendix VID).

b. The one-body density matrix. In the present
work, we apply the factorization (5) to determine the
one-particle density operator through the calculation of
the two-point correlation matrix of the SU(N) Hubbard
model (1), together with its dependence with the flux �:

h ↵(x)
† ↵(x)i =

X

l,j

w
⇤(x� xl)w(x� xj)hc

†
l,↵cj,↵i (6)

where  †
↵(x) and  ↵(x) are fermionic field operators sat-

isfying { †
↵(x), ↵0(y)} = �(x�y)�↵,↵0 . The above equa-

tion is obtained by expanding the field operators into the
basis set of single band Wannier functions w(x) (that we
take to be independent of the specific N component) such

that  (x) =
PL

j w(x� xj)cj .
The spin-charge decoupling is attained through the

Bethe equations. Subsequently, the spectrum of the
Heisenberg model is obtained through exact diagonal-
ization. In line with methodology outlined in the pre-
vious section, we point out that one can make use of
DMRG [51, 52] to certify that the chosen state from the
Heisenberg spectrum has the same total spin as its Hub-
bard counterpart. Even though DMRG is known to have
issues in the limit of large interaction and large degree of
state degeneracies, it can still be utilized for intermediate
interactions.
The energy scale is fixed by t = 1 and only systems with
an equal number of particles per component are consid-
ered.

III. MOMENTUM DISTRIBUTION

The momentum distribution is defined as

n↵(k) =
1

L

LX

j,l

e
ik(rl�rj)hc

†
l,↵cj,↵i (7)

with rj denoting the position of the lattice sites in the
ring’s plane and is normalized to the occupation number
of each species. In the aforementioned limit of infinite
repulsion, the correlation matrix can be recast as

hc
†
l,↵cj,↵i =

X

{config.}

sign(Q)sign(Q0)(S)⇤(S)0!(j ! l,↵),

(8)
where S denotes the Slater determinant of the charge de-
grees of freedom Q refers to the sign of the corresponding
permutation. S’ and Q’ are the same quantities but eval-
uated for the wavefunction of a fermion that moved from
the j-th to the l-th site (see Fig. 2). We note that one
has to account for the shift in the quasi-momenta kj in-
duced by the spin quantum numbers through Eq. (3).
These quasimomenta are di↵erent from the momenta k

of the lattice in the momentum distribution discussed

here. Furthermore, we would like to emphasize that in-
stead of calculating the Slater determinant for the con-
tinuous Gaudin-Yang-Sutherland model, we discretize it.
Such an approach is necessary in order to keep track of
the mapping between the spin wavefunctions of the Hub-
bard and Heisenberg models. This justification is numer-
ically supported in Table I in the Appendix. The term
!(j ! l,↵) corresponds to the spin part of the wave-
function of the Hubbard model; taking into account the
sum over all the spin configurations and any changes in
'(y1, . . . , yM ).

0

0.2

0.4

0.6

0.8

�10 �5 0 5 10
n
(k
)

m

N = 2, Np =6
N = 3, Np =6
N = 6, Np =6
N = 3, Np =3
N = 3, Np =6
N = 3, Np =9

FIG. 3. The momentum distribution for di↵erent SU(N) and
ratios Np/N . Main panel shows the momentum distribution,
normalized to the occupation number of each species, for a
fixed number of particles Np = 6, while the insets displays
the momentum distribution for a fixed N = 3 but di↵erent
number of particles. In both panels we showcase the inter-
play between occupation and SU(N) character of the system.
The system size is fixed to L = 27, with the integers m cor-
responding to the momenta 2⇡m/L.

Before proceeding to evaluate Eq. (8), we note that
!(j ! l,↵) is independent of ↵: !(j ! l,↵) = !(j ! l).
Moreover, in the limit of infinite repulsion, the spin wave-
function of the Hubbard model corresponds and can be
mapped to that of the Heisenberg such that !(j ! l) =
!̃(j0 ! l

0), where the tilde indicates the spin correlation
function of the Heisenberg model. In this mapping, we
associate the j

0th spin of the Heisenberg model to the
electron on the jth site of the Hubbard model, that after
the hopping operation c

†
l cj becomes the l

0th spin corre-
sponding to an electron of the lth site –see Fig. (2). We
emphasize that the expression in Eq. (8) is of the same
form as for the SU(2) case [33]. The di↵erence lies in the
definition of !̃(j, l), which encodes the SU(N) character
of the system:

!̃(j0 ! l
0) ⌘ hPl0,l0�1Pl0�1,l0�2 · · ·Pj0+1,j0iH . (9)

This corresponds to the expectation value in the Heisen-
berg state of the SU(N) permutation operator Pj0,j0�1

that exchanges the j
0th and (j0 � 1)th sites.

With the states obtained as summarized above, we
evaluate the momentum distribution n(k) in Eq. (7).
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FIG. 4. Above: The momentum distribution function n(k) for 10 particles and various sites for SU(2) fermions. One can see
that the flux essentially shifts the momentum distribution as expected. Below: We plot the symmetric (left) and anti-symmetric
(right) components of the momentum distribution denoted as n+(k) = [n(k)+n(�k��k)]/2 and n�(k) = n(k)�n(�k��k)
respectively as a function of the e↵ective magnetic flux �. We note that these intermediate values of the flux produces a
momentum distribution that is non-symmetric. The integers m correspond to the momenta 2⇡m/L.

In Fig. 3, the momentum distribution in the absence of
magnetic flux is presented for di↵erent SU(N). For a
fixed Np and increasing N , the momentum distribution
is observed to be less broad and to be more centralized
around k = 0. This is to be expected since as N ! 1,
SU(N) fermions emulate bosons in terms of level occupa-
tions [38, 53]. Conversely, for fixed N and increasing Np,
the momentum distribution reflects the fermionic statis-
tics of the system, as it becomes broader due to the oc-
cupation of di↵erent momenta (see inset of Fig. 3).

Fig. 4 depicts the momentum distribution for an SU(2)
symmetric system in the presence of an e↵ective flux.
In this case, the ground-state of the Hubbard model is
characterized by level crossings to counteract the flux
imparted to the system [41, 42]. Such level crossings cor-
respond to di↵erent Heisenberg states, which can be ob-
tained with the previously mentioned procedure in Sec. II
by an appropriate change in spin quantum numbers (see
Appendix VIC 1). From the top row of Fig. 4, it is clear
that the e↵ect of the magnetic flux manifests itself as
a shift in the momentum distribution: shift gets pro-
gressively larger with increasing flux. To capture how
this happens precisely in the momentum distribution, we
plot the symmetric and anti-symmetric components of
the momentum distribution denoted as n+ and n� re-
spectively in the bottom panel of Fig. 4.

A. The Fermi gap for U = 1

In the thermodynamic limit at temperature T = 0 and
U = 0, the Fermi function drops from a finite value to
zero at the Fermi momentum kf . At finite U , states
with k > kf can be occupied and, compared with the
U = 0 case, the gap at kf is reduced accordingly. The

Fermi gap is known as the quasi-particle weight in higher
dimensions and is related to the poles of the Green func-
tion with positive imaginary parts [54–56]. For SU(N)
symmetric particles the maximum occupation of a single
k-level is N . Consequently, the Fermi-distribution for
N ! 1 should become a Bose-distribution (which has
no gap). Therefore, this Fermi gap � must tend to zero
in this limit.

Since we consider finite number of particles and sys-
tem size, our system is far from the thermodynamic
limit. We note that parity e↵ects appear in Np/N for
SU(N) fermions [42]. Therefore we distinguish the two
cases: odd occupations (Np/N odd) and even occupa-
tions (Np/N even). Defining the gap for the odd occupa-
tions is straight forward: every single k-level up to |kf |

is occupied for U = 0. For example, in the case of SU(2),
Np = 6, all k 2 {0, 1,�1} are fully occupied. Therefore,
the gap is defined as f(kf )�f(kf+�k), with�k = 2⇡/L,
where f(k) corresponds to the Fermi-distribution func-
tion. The situation is di↵erent for an even occupation
per species. In this case, the levels |kf | are only partially
filled and this is visible even for U = 0 and finite num-
ber of particles, where a single level appears within the
gap. However, this single momentum state does not enter
the definition of the Fermi gap. Therefore, we define the
gap in this case as f(kf ��k)� f(kf +�k). Note that
in one dimension the Fermi-distribution function in the
thermodynamic limit becomes a weak singularity for the
Luttinger liquid [32]. In our case, we cannot distinguish
a gap from a weak singularity as we are far away from
the thermodynamic limit.

In agreement with the above argument, we find that
the gap is generically going down with N , but with a
non-trivial dependence on Np and with parity e↵ects
for SU(2) and more pronounced for SU(3) - see Fig. 5.
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FIG. 5. Gap in the Fermi-distribution � as function of Np in
the limit of infinite repulsion. It is shown for di↵erent cases
for dependencies of N in SU(N) (left) and for di↵erent values
of Np/N from 1 to 4 for L = 27. It can be seen that the
gap decreases with growing N . The single exception is the
case of SU(3) (see left panel). The particularities concerning
definition of the gap for finite number of particles is described
are the main text.

Specifically, we note that the two particles per species in
the SU(3) symmetric case has a non-monotonous behav-
ior with respect to the trend of decreasing gap with grow-
ingNp, that is present for the other curves. This behavior
might be attributed to parity e↵ects but larger systems,
not attainable with current techniques, would be needed
to investigate such behavior. Additionally, grouping the
di↵erent gaps as a function of Np/N does not lead to
strictly decreasing behavior (see inset of Fig. 5). How-
ever, we note that expecting the gap to decrease for Np

fixed with growing N , would give a hint towards a parity
e↵ect of the number of components N , at least in the case
Np = 6. In principle, Fermi gap need not follow a mono-
tonic behavior. The expectation is that for each Np it has
to eventually converge to zero as N ! 1, corresponding
to bosonic behaviour as mentioned previously. Lastly, it
is important to notice that in the systems considered in
this paper, we never come below the ratio of Np/N = 1
because we fixed the occupation of each component being
the same.

IV. INTERFERENCE DYNAMICS IN
ULTRACOLD ATOMS

In this section, we present a particular scenario in
which the exact one-body density matrix can be tested
in current state-of-the-art experimental observables in ul-
tracold atom settings. Specifically, we consider homo-
dyne [39] and self-heterodyne [40] protocols following the
recent experiments carried out in fermionic rings.

The homodyne protocol consists in performing time-of-
flight (TOF) imaging of the spatial density distribution
of the atomic cloud: upon sudden release from its con-

finement potential, the atomic cloud expands freely, with
the initially trapped atoms interfering with each other
creating specific interference patterns. The resulting in-
teference pattern depends on the correlations that the
particles have at the moment in which atomes are re-
leased. The TOF image can be calculated as

n
(TOF )

↵ (k) = |w(k)|2
LX

j,l

e
ik(rl�rj)hc

†
l,↵cj,↵i, (10)

where w(k) is the Fourier transform of the Wannier func-
tion, rj denotes the position of the lattice sites in the ring
in the plane and k = (kx, ky) are their corresponding
Fourier momenta. Note that we have taken the zeroth
order of w(x) through the harmonic approximation.
The self-heterodyne protocol follows the same proce-

dure as the homodyne one, albeit with an additional
condensate placed in the center of the system of inter-
est, to act as a phase reference. Accordingly, as the
center and the ring undergo free co-expansion in TOF,
characteristic spirals emerge as the two systems inter-
fere with each other and current is present in the sys-
tem. In order to observe the phase patterns in a second
quantized setting, one needs to consider density-density
correlators between the center and the ring [37, 57]:
GR,C =

P
↵

P
j,l Ijl(r, r

0
, t)hc†l,↵cj,↵i where Ijl(r, r0, t) =

wc(r0, t)w⇤
c (r, t)w

⇤
l (r

0
� r0l, t)wj(r � rj , t). By exploiting

the correlation matrix we calculated in the previous sec-
tions, we obtain the interference images that are obtained
through the two above sketched expansion protocols for
two-component fermions exactly - see Fig. 6. The left
panel displays a cut on the TOF momentum distribution
(at ky = 0), with the inset depicting the same quan-
tity in the kx-ky plane. The right panels of Fig. 6 show
the self-heterodyne interference pattern at zero and half
flux quantum. These display the characteristic disloca-
tions (radially segmenting lines) that at strong interac-
tions were shown to depend on particle number, number
of components and flux [37]. On going to the limit of infi-
nite repulsion, the energy and consequently the persistent
current landscape, changes from being periodic with the
bare flux quantum �0 to displaying a reduced periodicity
of �0/Np irrespective of the SU(N) symmetry of the sys-
tem (see Fig. 7 in the Appendix). As such, the ground-
state energy goes from being a single parabola at zero
interaction, to having Np parabolic segments, that in the
Bethe ansatz language are characterized by di↵erent spin
quantum numbers. Remarkably, these di↵erent parabo-
las manifest as a result of di↵erent energy level crossings
to counteract the flux threading the system, resulting in
an e↵ective fractionalization of the current. In [37] it
was discussed how this fractionalization can not only be
monitored but also visualized in self-heterodyne interfer-
ograms, which exhibits a di↵erent number and orienta-
tion of the dislocations for the di↵erent parabolas. In
the left panel of Fig. 6, we see that such dislocations are
captured by our proposed scheme giving us access to the
infinite repulsive limit in an exact way.
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FIG. 6. Interference patterns for SU(2) Np = 10 particles
residing in L = 15 sites. Left panel shows a cut of the TOF
momentum distribution for di↵erent fluxes, the last one (at
half flux quantization) displaying a reduction on it maximum
value. Insets display the full TOF for at zero and half flux
quantum. Right panels display the self-heterodyne interfer-
ence at zero and half flux quantum. Both show the character-
istic interference pattern and dislocations found in strongly in-
teracting SU(N) symmetric fermions. All correlators are eval-
uated using the exact one-particle density matrix for L = 15
by setting r0 = (0, R) and radius R = 1 at time t = 0.022.
The color bar is non-linear by setting sgn(GR,C)|GR,C|1/4.

V. CONCLUSIONS AND OUTLOOK

In this paper, we develop a theoretical framework to
calculate the exact one-particle density matrix of N -
components fermions in the limit of strong repulsion us-
ing a Bethe ansatz analysis working in the integrable
regime of the SU(N) Hubbard model. By splitting the
problem into the spinless fermionic and SU(N) Heisen-
berg models, we manage to compute these observables
for a number of particles Np, system size L and number
of components N well beyond the current state-of-the-
art tractable by numerical methods: On one hand, the
numbers of particles and system size are well beyond ex-
act diagonalization schemes; on the other hand, we re-
mark that by Bethe ansatz we could access the limit of
infinite repulsion that is a notoriously challenging limit

for DMRG. On the technical side, we note that the our
Bethe ansatz scheme agrees well with the numerics (at
least in the numbers which can be worked out) of the
lattice model, also slightly beyond the dilute regime of
Eq. (1). Specifically, we are able to calculate the corre-
lations of systems composed of 38 sites and 12 particles
for N = 2 and N = 3, with a total configuration space
of 2 billion in the spinless configuration. Depending on
N , this would correspond to a larger Hilbert space in the
Hubbard model, such as 7.62⇥1012 for N = 2. Exact di-
agonalization/Lanczos can only handle around 7 million.
Therefore, there is no direct comparison between the two
methods possible in this respect.
The Fourier transform of the correlation matrix is the

momentum distribution n(k) of the system. Despite be-
ing one of the simplest interesting correlation function,
n(k) reflects the many-body character of the quantum
state. In particular, we quantify exactly the dependence
of the gap at the Fermi point on di↵erent particle num-
bers and number of fermion components. We confirm
the general expectation that for large number of compo-
nents the Pauli exclusion principle relaxes. However, we
find that the suppression of the gap for finite systems is
non-monotonous.
We apply this scheme to the case in which SU(N) mat-

ter can flow in ring-shaped potentials pierced by an ef-
fective magnetic flux �. As such, an additional complica-
tion in the calculation arises since the matter-wave states
obey a complex dependence on �, ultimately leading to
persistent currents with fractional quantization [41, 42].
In particular, we read-out such phenomenon in terms of
spin-states of the Heisenberg SU(N) model.
In this context, we give an example where the devel-

oped theory allows us to calculate readily available exper-
imental observables such as time-of-flight measurements,
both homodyne and self-heterodyne [39, 40].
We believe that our exact results can be exploited to

benchmark the observables related to the one-body den-
sity matrix of SU(N) fermions in the strongly interacting
limiting. Finally, the theoretical framework we developed
opens the possibility to study more complicated correla-
tion functions.
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VI. APPENDIX

In the following sections, we provide supporting details of the theory discussed in the manuscript.

A. Separation of the spin and charge degrees of freedom

The one-dimensional SU(2) Hubbard Hamiltonian describing Np particles with M flipped spins residing on a ring-
shaped lattice with L sites,

H = �t

X

j,↵

⇣
c
†
j,↵cj+1,↵ + h.c.

⌘
+ U

X

j

nj,"nj#, (1)

which is Bethe ansatz integrable. It was found that the eigenfunctions of the Hubbard model within a given sector
xQ1  . . .  xQNp are of the form

f(x1, . . . , xNp ;↵1, . . . ,↵Np) =
X

P

sign(PQ)'P (↵Q1, . . . ,↵QNp) exp

✓
i

NpX

j=1

kPjxQj

◆
(2)

where P and Q are permutations introduced to account for the eigenstates’ dependence on the respective ordering of
the electron coordinates xj and quasimomenta kj , with ' being the spin-dependent amplitude. The spin wavefunction
contains all the spin configurations of the down spins can be expressed as

'P (↵Q1, . . . ,↵QNp) =
X

v

A�v1,...�vM

MY

l=1

FP (�vl, yl), (3)

whereby we define

FP (�vl, y) =
y�1Y

j=1

sin kPj � �vl + i
U
4t

sin kP (j+1) � �vl � i
U
4t

A(�v1, . . . ,�vM ) = (�1)v
MY

i<j

✓
⇤vi � ⇤vj � ı

U

2

◆
, (4)

with y corresponding to the coordinate of the electrons with spin-down in a given sector Q. As U ! +1, we can
neglect the sin kj

U terms such that

F (�vl, y) =
y�1Y

j=1

�vl � i
U
4t

�vl + i
U
4t

(5)

After this treatment, the spin wavefunction is no longer dependent on the charge degrees of freedom through F (�, y).
Consequently, the Bethe ansatz wavefunction as U ! +1 can be recast into the following form

f(x1, . . . , xNp ;↵1, . . . ,↵Np) = sign(P )sign(Q)'(y1, . . . , yM ) exp(ikjxQj ). (6)

Additionally, we can go a step forward and show that in this limit the spin wavefunction corresponds to that of the
one-dimensional anti-ferromagnetic SU(2) XXX Heisenberg chain. Indeed, it can be shown that

F (�vl, y) = exp[iqvl(y � 1)] A(�v1, . . . ,�vM ) = exp


ı

2

X

j<l

( vj,vl � ⇡)

�
(7)

by defining q↵ = ⇡+2arctan
�
4⇤↵

U

�
and  ↵,� = ⇡+2arctan

�
2⇤↵�⇤�

U

�
. Consequently, the spin wavefunction becomes

'(y1, . . . , yM ) =
X

v

exp

✓
ı

MX

l=1

qvlyl +
ı

2

X

j<k

 vj,vk

◆
, (8)

which except for a phase factor corresponds to the Bethe ansatz wavefunction of the Heisenberg model. Therefore,
we have that

| [U ]iFermi�Hubbard
U!+1
�! | [ XXX ]ispinless. (9)
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The same treatment can be applied for the SU(N) Hubbard model, which results to be integrable in two limits: (i)
large repulsive interactions U >> t and filling fractions of one particle per site [48]; (ii) in the continuum limit of
vanishing lattice spacing achievable by dilute filling fractions [22, 31]. The Bethe ansatz wavefunction for the model
is of the same form as the one outlined in Equation (2) with the added di↵erence that the ' houses the extra spin
degrees of freedom. In the following, we will focus on the second integrable regime and illustrate the decoupling of
the spin and charge degrees of freedom for SU(N) fermions through the Bethe ansatz equations.

1. Extension to SU(N) fermions

In the continuous limit, the SU(N) Hubbard model tends to the Gaudin-Yang-Sutherland Hamiltonian describing
N -component fermions with a delta potential interaction [31, 38], which reads

HGYS =
NX

m=1

NmX

i=1

✓
� i

@

@xi,m
�

2⇡

LR
�

◆2

+ 4U
NX

m<n

X

i,j

�(xi,m � xj,n), (10)

where Nm is the number of electrons with colour ↵ of with m = 1, . . . N , LR being the size of the ring and � denoting
the e↵ective magnetic flux threading the system.
The Bethe ansatz equations for the model are as follows,

e
i(kjL��) =

M1Y

↵=1

4
�
kj � �

(1)

↵
�
+ iU

4
�
kj � �

(1)

↵
�
� iU

j = 1, . . . , Np, (11)

MrY

� 6=↵

2
�
�
(r)
↵ � �

(r)
�

�
+ iU

2
�
�
(r)
↵ � �

(r)
�

�
� iU

=

Mr�1Y

�=1

4
�
�
(r)
↵ � �

(r�1)

�

�
+ iU

4
�
�
(r)
↵ � �

(r�1)

�

�
� iU

·

Mr+1Y

�=1

4
�
�
(r)
↵ � �

(r+1)

�

�
+ iU

4
�
�
(r)
↵ � �

(r+1)

�

�
� iU

↵ = 1, . . . ,Mr, (12)

for r = 1, . . . , N � 1 where M0 = Np, MN = 0 and �(0)� = k� . Np denotes the number of particles, Mr corresponds to

the colour with kj and �(r)↵ being the charge and spin momenta respectively. The energy corresponding to the state

for every solution of these equations is E =
NpP
j
k
2

j .

For SU(3) fermions, one obtains the three nested non-linear equations

e
i(kjL��) =

M1Y

↵=1

4(kj � q↵) + iU

4(kj � q↵)� iU
, (13)

M1Y

� 6=↵

2(q↵ � q�) + iU

2(q↵ � q�)� iU
=

NpY

j=1

4(q↵ � kj) + iU

4(q↵ � kj)� iU

M2Y

a=1

4(q↵ � pa) + iU

4(q↵ � pa)� iU
, (14)

M2Y

b 6=a

2(p↵ � p�) + iU

2(p↵ � p�)� iU
=

M1Y

�=1

4(p↵ � q�) + iU

4(p↵ � q�)� iU
, (15)

where �(1)� and �(2)� were changed to q� and pa for the sake of convenience. In the limit U ! 1 [33, 41, 42] we observe
that kj/U will tend to zero, since all k of the ground-state are real here for repulsive U . Consequently, the Bethe
equations read

e
i(kjL��) =

M1Y

↵=1

2Q↵ � i

2Q↵ + i
, (16)

M1Y

� 6=↵

(Q↵ �Q�) + i

(Q↵ �Q�)� i
=


2Q↵ + i

2Q↵ � i

�Np M2Y

a=1

2(Q↵ � Pa) + i

2(Q↵ � Pa)� i
, (17)
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M2Y

b 6=a

Pa � Pa + i

Pa � Pb � i
=

M1Y

�=1

2(Pa �Q�) + i

2(Pa �Q�)� i
, (18)

defining Q↵ = 2 q↵
U and Pa = 2pa

U respectively. The Bethe equations decouple into that of a model of spinless
fermions (16) and those of an SU(3) Heisenberg magnet (17) and (18).

Subsequently, by taking the logarithm of Equations (16) through (18) and using

2i arctanx = ±⇡ + ln
x� i

x+ i
, (19)

it can be shown that the quasimomenta kj can be expressed as [42]

kj =
2⇡

L

"
Ij +

1

Np

 
M1X

↵=1

J↵ +
M2X

a=1

La

!
+ �

#
, (20)

in terms of the charge Ij and two sets of spin J↵, La quantum numbers. By exploiting di↵erent configurations of
these quantum numbers, we can construct all the excitations and the corresponding Bethe ansatz wavefunction. The
procedure outlined here holds for any N -component fermionic systems, with the added di↵erence that there will be
N � 1 sets of spin quantum numbers (2 for the considered SU(3) case).

For strong repulsive couplings, the ground-state energy of the Hubbard model fractionalizes with a reduced period of
1

Np
as a combined e↵ect of the e↵ective magnetic flux, interaction strength and spin correlations [41, 42], which is in

turn reflected in the momentum distribution [37]. In the Bethe ansatz language, this phenomenon is accounted for
through various configurations of the spin quantum numbers X that correspond to di↵erent spin excitations that are
generated in the ground-state to counteract the increase in the flux.

B. SU(N ) Heisenberg model

The SU(2) Heisenberg model is a sum of permutation operators

HXXX =
3X

i

Pi,i+1 =
3X

i

(1l + ~�i+1 · ~�i)/2, (21)

with ~�i corresponding to the Pauli matrices, the three generators of the SU(2) Lie algebra. In the case of the SU(N)
Heisenberg model, the Hamiltonian can be constructed in a similar fashion [22, 48]. In general we obtain for the
generators �i of the SU(N)

Pi,i+1 =
1

N
1l +

1

2
~�i ·

~�i+1, (22)

which acts on sites i and i+ 1 permuting the SU(N) states.

1. Details about the SU(N) Generators

The generators in the Lie algebra of SU(N) are analogues of the Pauli matrices in SU(2). Taking SU(3) as an example,
we have six non-diagonal generators

�1 =

0

@
0 1 0
1 0 0
0 0 0

1

A �2 =

0

@
0 �i 0
i 0 0
0 0 0

1

A �3 =

0

@
0 0 1
0 0 0
1 0 0

1

A �4 =

0

@
0 0 �i

0 0 0
i 0 0

1

A �5 =

0

@
0 0 0
0 0 1
0 1 0

1

A �6 =

0

@
0 0 0
0 0 �i

0 i 0

1

A ,

(23)
that together with two diagonal generators

�7 =

0

@
1 0 0
0 �1 0
0 0 0

1

A �8 =
1
p
3

0

@
1 0 0
0 1 0
0 0 �2

1

A , (24)
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comprise the Gell-Mann matrices that are the matrix representation of the SU(3) Lie algebra. For generalization

purposes, the generators were grouped by defining �2p�1/2p, p = 1, . . . , N(N�1)

2
which are analogues to the �x/y that

operate between the di↵erent subspaces of SU(3) which are (i, j), i < j. Here, both run from 1 to 3. We decided to
group the elements of the diagonal Cartan basis at the end as �7 and �8, which di↵ers from the standard Gell-Mann
matrices, but is eases the generalisation. For the extension to SU(N), one has to consider the N(N � 1)/2 elements
�i, which would correspond to �x/y in some space (i, j), where i < j 2 {1, . . . , N}. Additionally, the corresponding
diagonal Cartan elements need to be taken into account. There are N � 1 Cartan elements that can be constructed
via the following formula �N2�(N+1)+m = diag {1, . . . , 1,�(m� 1), 0, . . . , 0}/

p
m(m� 1)/2 where m = 2, · · · , N ; the

1/0 occurs (m� 1)/(N �m) times, respectively.

2. Casimirs of SU(N) fermions

Whereas in SU(2) we have a single Casimir operator, for SU(N) we are faced with N � 1 Casimirs. Out of these
Casimirs, we are only interested in the quadratic Casimir, which for the fundamental representation reads

C1 =
1

4

N2�1X

i=1

�
2

i , (25)

as it relates to the total spin quantum number ~S2, which is necessary for us to classify the Heisenberg eigenstates. To
this end we have to evaluate the Casimir in various SU(N) representations. In the following, we sketch the procedure
to write the quadratic Casimir operator for SU(3) and SU(4).

We start by looking at the SU(3) case, where its representations ⇤(n1, n2) are labeled by integer numbers which

correspond to the simple Cartan elements (h1, h2): ⇤(n1, n2) = ~n · ~h. The elements are given by

h1 = (�3,�8) · (1, 0)
T =) h1 = (�z)1,2 ; ~h1 := (1, 0) (26)

h2 = (�3,�8) ·

✓
�

1

2
,

p
3

2

◆T

=) h2 = (�z)2,3 ; ~h2 := (�1,
p

3)/2. (27)

To calculate the quadratic Casimir values for these representations ⇤, we need the Cartan matrix

Ch = 2

 
~hi ·

~hj

||hi||
2

!

ij

=

✓
2 �1
�1 2

◆
, (28)

defined using the Killing form (�j ,�k) := K(�j ,�k) =
1

8
tr �j�k = 1

4
�jk (see [58], chapter 12 for the evaluation of the

Casimir). We obtain

3C1 = (⇤,⇤+ �) =
h
~nC

�1

h + ~�

i
~n
T =

2X

i=1

ni(ni + 3) + n1n2 , (29)

giving the value of 4/3 for the fundamental representations (1, 0) and (0, 1). Here, ~� = 1

2

P
h2�+

~h = (2, 2) (see [58–

60]) for the positive roots �+. These are the two simple roots together with their sum, h1 + h2. If one introduces
half-integer values as in the SU(2) representation for each ni such that (ni = 2Ji), we obtain

C1(⇤) =
4

3

X

i

Ji

✓
Ji +

3

2

◆
+ J1J2

�
. (30)

Likewise for SU(4), the representations ⇤(n1, n2, n3) of SU(4) are labeled by the Cartan elements (h1, h2, h3):

⇤(n1, n2, n3) = ~n · ~h, which are given by

h1 = (�13,�14,�15) · (1, 0, 0)
T =) h1 = (�z)1,2 ; ~h1 := (1, 0, 0) , (31)
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h2 = (�13,�14,�15) ·

✓
�

1

2
,

p
3

2
, 0

◆T

=) h2 = (�z)2,3 ; ~h2 := (�1,
p

3, 0)/2 , (32)

h3 = (�13,�14,�15) ·

✓
0,�

1
p
3
,

r
2

3

◆T

=) h3 = (�z)3,4 ; ~h3 := (0,�1,
p

2)/
p

3 . (33)

The corresponding Cartan matrix reads

Ch =

0

@
2 �1 0
�1 2 �1
0 �1 2

1

A . (34)

Upon evaluating the quadratic Casimir as in Equation (30), we have that

2C1(⇤) = (n1 + 2n2 + n3)
2 + n1

✓
2n1 +

3

4

◆
+ n3

✓
2n3 +

3

4

◆
+ n2 . (35)

with ~� = 1

2

P
h2�+

~h = (3, 4, 3). Here, the positive roots are the three simple roots together with h1 + h2, h2 + h3,

and h1 + h2 + h3. Introducing half-integer values as for SU(2), we obtain

C1(⇤) = 2J2

✓
J2 +

1

4

◆
+
X

i=1,3

3Ji

✓
2Ji +

1

4

◆
+ 4

X

i<j

JiJj , (36)

leading to the value of 15/8 for the fundamental representations (1, 0, 0) and (0, 0, 1), and 5/4 for the representation
(0, 1, 0).

C. Evaluating Correlation functions

In the previous sections, we outlined how the spin and charge degrees of freedom decouple yielding a simplified form
of the Bethe ansatz wavefunction (37), that at infinite repulsion reads

f(x1, . . . , xNp ;↵1, . . . ,↵Np) = sign(Q)det[exp(ikjxl)]jl'(y1, . . . , yM ). (37)

Here, we are going to show how to evaluate the Slater determinant of the charge degrees of freedom and the corre-
sponding spin wavefunction in the presence of an e↵ective magnetic flux.

1. Slater determinant

To calculate the Slater determinant of spinless fermions, we need to start by noting that

kj = �(Np � 1 + `)
⇡

L
+ (j � 1)�k + k0 +

X

Np
, j = 1, . . . , Np (38)

where �k = 2⇡
L , X denotes the sum over the spin quantum numbers and ` is the angular momentum. k0 is a constant

shift can be 0 or � ⇡
L for systems with (2m)N and (2m+1)N fermions respectively, that will henceforth be termed as

paramagnetic and diamagnetic. Through Equation (38), we can re-write the Slater determinant in the following form

det[exp(ikjxl)]jl = exp(ik1rcmNp)det

0

BBBBBB@

1 y1 y
2

1
· · · y

Np�1

1

1 y2 y
2

2
· · · y

Np�1

2

1 y3 y
2

3
· · · y

Np�1

3

...
...

...
. . .

...

1 yNp y
2

Np
· · · y

Np�1

Np

1

CCCCCCA
, (39)

with rcm denoting
P

i xi/Np which we refer to as the center of mass. The matrix elements of the determinant are of
the form y

j�l
m = exp(i(kj � kl)rm), whereby we made use of the fact that all the quasimomenta are equidistant. By
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noting that the matrix in Equation (39) has the same structure of the Vandermonde matrix [33], we can express the
Slater determinant as

det[exp(ikjxQj)] = exp(ik1rcmNp)
Y

1i<jn

(exp(i�krj)� exp(i�kri)), (40)

which upon simplification reads

det[exp(ikjxQj)] = exp(ik1rcmNp)
Y

1i<jn

exp

✓
i�k

rj + ri

2

◆ Y

1i<jn

✓
2i sin

�k(rj � ri)

2

◆
. (41)

This expression can be further simplified by noticing that

Y

1i<jn

exp

✓
i�k

rj + ri

2

◆
= exp

✓
i�k

2
[rcmN

2

p � rcmNp]

◆
, (42)

that in conjunction with Equation (38) reduces Equation (40) into

det[exp(ikjxQj)] = exp

✓
i


k0 +

X

Np
� `�k

�
rcmNp

◆ Y

1i<jn

✓
2i sin

�k(rj � ri)

2

◆
. (43)

In the presence of an e↵ective magnetic flux, the variables X and ` need to be changed in order to counteract the
increase in flux. For the spin quantum numbers, the shift needs to satisfy the degeneracy point equation [41, 42]

2w � 1

2Np
 �+D 

2w + 1

2Np
where X = �w, (44)

with � ranging from 0.0 to 1.0 and D being 0
⇥
�

1

2

⇤
for diamagnetic [paramagnetic] systems. Upon increasing �,

the angular momentum of the system increases at � =
�
s ±

1

2Np
+ �
�
with s being (half-odd) integer in the case of

(diamagnetic) paramagnetic systems, with � = ⌥
1

2Np
for an odd number of particles.

2. Resolving degeneracies of the spin wavefunction

As U ! +1, all the spin configurations of the model are degenerate. The reason is that the energy contribution
from the spin part of the wavefunction Espin is of the order t

U . However, there is no spin degeneracy observed in the
Hubbard model; the ground-state is non-degenerate for SU(2), except for special points in flux with an eigenenergy
crossing. Hence, a single state has to be chosen properly for matching with the Hubbard model. Due to the symmetry
of both models, we choose the square of the total spin, ~S2

tot
, or quadratic Casimir operator C1 to label the eigenstates.

The selected eigenstates of both models need to have the same value for this operator. We used this benchmarking
with the Hubbard model only for small system sizes in order to understand what are the representations of the
Heisenberg model we have to choose.

We observe that the resulting composition from spinless Fermions and Heisenberg Hamiltonian results in a transla-
tionally invariant model only in cases where these states match. We use this as a control mechanism. As already
explained in the main text, the spin wavefunction '(y1, . . . , yM ) is obtained by performing exact diagonalization
resp. Lanczos methods of the one-dimensional anti-ferromagnetic Heisenberg model.

a) Zero flux – The ground-state with odd and even number of particles per species for the Hubbard model corresponds
to di↵erent values of the Casimir operator, and therefore to di↵erent representations of the SU(N) algebra. For
odd number of particles per species Np/N , it corresponds to a singlet state for all SU(N). The ground-state of the
anti-ferromagnetic Heisenberg model instead is always a singlet and non-degenerate for all SU(N). Therefore, we
choose this state as the lowest energy eigenstate of the Heisenberg model with this property for U ! 1 for an odd
occupation number per species.

For an even number of particles per species, we have to choose a di↵erent state. For the SU(2) this is the lowest
non-degenerate excited triplet-state (of total spin J = 1, ~J2 = J(J + 1)) in the spectrum of the Heisenberg model. It
corresponds to an n = 2J-representation (see section VIB 2 of the Appendix). For SU(N>2), i.e. N = 3 and N = 4,
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it is the first non-degenerate state with Casimir eigenvalue C1 = 6. Examples are the 10-dimensional representations
(n1, n2) = (3, 0) for SU(3) and correspondingly (n1, n2, n3) = (4, 0, 0) for SU(4). The numbers ni in the SU(3)
representations correspond to the numbers p and q frequently used in SU(3) representations in the mathematical
literature or high energy physics; there they represent the number of (anti-)quarks. The dimension of a representation
(n1, n2) of SU(3) is d(n1, n2) = (n1 + 1)(n2 + 1)(n1 + n2 + 2)/2. Both representations for SU(3) and SU(4) have a
Casimir value of C1 = 6. We assume that this representation will be (N, 0, . . . , 0) for SU(N). This state takes the
role of the non-degenerate triplet state of SU(2) in the zero field ground-state for an even species number occupation.

b) Non-zero flux– The analysis of non-zero magnetic flux is motivated from an atomtronics context [28, 37]. As
mentioned previously, for strong repulsive interactions a fractionalization of the persistent currents in the model is
observed [41, 42]. Figure 7 shows an example of the change of the energy landscape when going from non-interacting
to strongly interacting particles in presence of an e↵ective magnetic flux. This fractionalization appears since formerly
higher excited states are bent by the field to be the ground-state. A unique method to identify these states would be
to utilize the SU(N) Heisenberg Bethe equations, which need to have the same spin quantum number configurations
as their Hubbard counterparts. In this manner, we are guaranteed that the corresponding eigenstates obtained from
the Heisenberg model correspond to the ground-state of the Hubbard model. However, it is rather tedious to achieve
the whole state using this method. This is particularly true because the Bethe ansatz gives direct solutions only for
the highest weight states and we work at an equal occupation of each species: the resulting state is then obtained by
applying su�ciently often the proper lowering operators of SU(N).

FIG. 7. Schematic figure of the energy E(�) against e↵ective magnetic flux � for Np = 6 particles. Left panel displays the
energy landscape at U = 0 while right panel shows the U ! +1 case where the parabolas are fractionalized [37].

In the case of paramagnetic systems, i.e. an even number of particles per species, the central fractionalized parabola
(centered around � = 0.5), corresponds to a singlet state. This parabola results to be non-degenerate for the
Heisenberg model and is therefore easily distinguished. As such, one obtains the corresponding states for the outer
and central fractionalized parabolas in a straight forward manner for arbitrary SU(N). We mention though that in
order to find the corresponding state for the outer parabola and the paramagnetic case (even occupation of each
species), we have to single out a non-degenerate excited state with Casimir value C1 = 6.

For finite field and degenerate ground-states of the Hubbard model, we do not have a general procedure to choose
the states for SU(N > 2). Therefore, we explain our approach in considering SU(2) first and then apply it to SU(3)
symmetric fermions.

In the case of SU(2), the remaining fractionalized parabolas (i.e. excluding the two outer parabolas and the central
one) have a common spin value of J = 1. This in turn results in a two-fold degeneracy in the spin- 1

2
Heisenberg model

for a given collective spin quantum number |X|. Hence, the relevant states for two of the parabolas of a given |X|

are superpositions of these degenerate eigenstates of the Heisenberg Hamiltonian. These states can be separated by
di↵erent eigenvalues for Pj,j�1, part of the Heisenberg model but not commuting with it. We call both eigenstates of
this permutation operator | 1/2i. The states | l/ri corresponding to the inner branches of the fractionalization are
obtained from the two spin- and energy-degenerate states | 1/2i as

| l/ri :=
1
p
2
(| 1i± i| 2i) . (45)

It is worth mentioning that these states correspond to fractionalized parabolas that emerge from a singlet state
in the absence of flux to a non-degenerate triplet state with each of the basis elements being non-zero. This
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happens here gradually via intermediate triplet states where certain basis states are excluded. As an example, we
take an SU(2) state with 6 particles to explain this better. Since this state has 3 particles of each species (" or #)
the parabolas start from a singlet and persist as a triplet state during their fractionalization up to the center parabola.

The singlet state is made of three distinct configurations: a) |111000i± cyclic permutations, b) |101010i � |010101i,
and c) the possible remaining configurations with alternating sign (singlet state). This is mediated via fractionalized
states where the component a) is missing in the first inner parabola and additionally the component b) vanishes for
the second parabola. The triplet of the central parabola has the same components as the singlet state but without
alternating signs.

For SU(2) the corresponding states that belong to the fractionalized parabolas have been triplet states, as was the
non-degenerate state corresponding to either the central (diamagnetic, odd species number) or the outer parabola
(paramagnetic, even species number). However, the representations are modified for N>2 in the intermediate parabo-
las. In the case of SU(3) we obtain (n1, n2) = (1, 1) as the 8-dimensional representation (instead of (n1, n2) = (3, 0))
which governs the intermediate parabola. For SU(4) it is (1, 2, 0) instead of (4, 0, 0) (see Appendix VIB 2). The
Casimir C1 has values 3 and 4 respectively. These representations take the role of the degenerate triplet state of SU(2).

In the case non-vanishing flux threading a ring of SU(N >2) symmetric fermions, the ground-states of the Hubbard
Hamiltonian (1) belonging to a given |X|, is N�1-fold degenerate coming from the N�1 sets of spin quantum numbers.
This degeneracy holds for the inner fractionalized parabolas. As a consequence of its one-to-one correspondence
with the Hubbard model, these degeneracies are manifested in the Heisenberg model, in addition to the two-fold
degeneracy mentioned previously for both parabolas with equal values for |X|. In order for this extra degeneracy
to be resolved, we make certain coe�cients of the wavefunction in the Heisenberg basis vanish by according su-
perpositions of the degenerate states. This has been motivated by former observations in SU(2) (see discussion above).

To get a better idea of how this is done explicitly, here we exemplify on the case of 3 particles in SU(3). There are
only two possible values for |X| in this case and each parabola is two-fold degenerate in the Hubbard model. The
degeneracy of the Heisenberg model is hence 4-fold. So, the distinct states have to be selected from a remaining two-
fold degeneracy of the operator Pi,i+1. The zeroth parabola is in the singlet state of SU(3) that belongs to C1 = 0 for
which every component of the wavefunction is non-zero. Both two-fold degenerate inner parabolas have C1 = 3 and
correspond in one case to the positive or negative permutation of the species number only; in the second degenerate
case they correspond to configurations {|021i, |102i} and {|120i, |201i} as the only non-zero component. These are
the states {| 1i, | 2i} that are to be superposed by formula (45). The direct way to obtain the corresponding state
of the Heisenberg model is via the Bethe ansatz wavefunction for the same spin quantum numbers of the Hubbard
model. The degeneracies amount to 2(N � 1)-fold for the SU(N) Heisenberg model. These are distinguished by the
eigenstates of the permutation operator Pj,j+1 up to a remaining (N � 1)-fold degeneracy.

D. Comparison with numerics

In this section, we compare the correlations obtained via the method presented in this paper to those obtained through
exact diagonalization using the Lanczos algorithm. The error between the two methods is estimated by calculating
the relative correlation distance D for the ground state, which is defined as

D =
1

L

sX

i

(c(ED)

1,i � c1,i)2 (46)

where c
(ED) correspond to the correlations obtained through exact diagonalization. We note that because of the

periodicity of the system all ci,j are a circular shift of c1,j , such that we only need to sum once. Some of the
comparisons that were carried out are tabulated in Table I. Naturally, we find that as one goes to large interactions,
the agreement of the correlations between the two methods increases. Such a result is to be expected as our proposed
scheme is viable in the limit of infinite repulsion. Furthermore, we highlight that our system is far from being in
the dilute limit, which is one of the integrable regimes of the Hubbard model. In spite of this, there is an excellent
agreement between exact diagonalization and our scheme that is intrisically reliant on the system being Bethe ansatz
integrable. Bethe ansatz integrability hinges on the fact that the scattering of more than two particles does not occur
(Yang-Baxter factorization of the scattering matrix). In the infinite repulsive regime, the multiparticle scattering is
suppressed since the probability of two particles interacting is vanishing. Therefore, despite the fact that we are far
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from the dilute limit condition, the system is indeed very close to be integrable for low lying states, and our method
is able to accurately tackle the infinite repulsive limit of the SU(N) Hubbard model.

L Np N U (ED) D
15 4 2 750 2.68⇥ 10�5

15 4 2 10,000 2.01⇥ 10�6

15 6 2 750 6.65⇥ 10�5

15 6 2 5000 9.99⇥ 10�6

15 3 3 1000 1.60⇥ 10�5

15 3 3 5000 3.19⇥ 10�6

10 6 3 1000 8.34⇥ 10�5

10 6 3 5000 1.67⇥ 10�5

TABLE I. The relative correlation distance D, defined in Equation (46), is presented as a function of the number of sites
L, particles Np, components N , and interaction U (ED). This interaction corresponds to that used in exact diagonalization
simulations, whilst that of our scheme is always infinite.

The Hilbert space of the Hubbard model for an equal number of particles per colour is given by
� L
Nc

�N
, where L

corresponds to the system size, Nc to the number of particles in a given colour, and N is the number of components.
It is straightforward to see that the size of the Hilbert space increases at least exponentially on going to a larger
value of any of these three variables. When it comes to exact diagonalization, the size of the Hilbert space is one of
the limitations as it exceeds the memory of the computer defined as Msize. This can be estimated in the following

manner Msize[GByte] =
( L
Nc
)N⇥Np⇥64

1024⇥1024⇥1024⇥8
, where we count the number of configurations, the number of particles (that

gives the numbers we need to store) and the bits occupy by Int64, then we convert this into GigaBytes. Specifically,
through our scheme we are able to consider systems with Np = 12, L = 38 and N = 3, which correspond to a
Msize= 242 GB for the spinless, and 3500 TB for the corresponding Hubbard model, which is clearly not attainable
in current High Performance Computing systems. However, in our case we can perform calculations without storing
the configurations. Similar approaches can also be followed in exact diagonalization, but not with these parameters.

In the current state-of-the-art, one can diagonalize a Hilbert space of around 7 million (corresponding to
Msize=0.31GB) using the Lanczos algorithm when taking into account the large matrices and values of the
interactions used in the numerical operations, such as for example the calculation of correlations. Our proposed
scheme is able to go to larger system parameters on account of the spin-charge decoupling.

By separating the problem into the spinless and Heisenberg parts, we deal with small Hilbert space dimensions that
are given by

� L
Np

�
and Np!

(Nc!)
N respectively. In doing so, the size of the system that we can consider, i.e. the number

of sites, comes down to calculating the Slater determinant (43). Such a calculation is limited not by the memory
size but by its runtime. However, in this manner one can calculate large system sizes, such as for example 38 sites
that corresponds to a Hilbert space of around 2 billion for the spinless part. The other part of the problem lies
in diagonalizing the Heisenberg matrix, whose dimensions are significantly smaller than its Hubbard counterpart,
enabling us to calculate the system parameters displayed in this manuscript. It should be stressed that even through
this scheme one is not able to calculate systems with very large particle numbers, as this part of the calculation
is still a↵ected by the dimensions of the matrix under consideration. Additionally, for Np = (2m)N we need to
consider the excited states of the Heisenberg model in order to get the actual ground-state of the Hubbard system,
which means that we need to perform the full diagonalization of the former instead of employing the lanczos algorithm.

Lastly, we close this section by drawing comparisons with DMRG. The system under consideration is infinitely repulsive
SU(N) fermions residing on a ring. In this context, DMRG has problems with convergence due to the large repulsive
interactions and the high number of degeneracies present in the system. It is also limited by the periodic boundary
conditions. Nonetheless, as we remarked in the manuscript, in the regime of intermediate interactions, DMRG can
still be employed giving a good agreement with exact diagonalization and the proposed scheme.
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Dear Editor,

many thanks for handling our manuscript “Exact one-particle density matrix for SU(N) fermionic matter-waves in
the strong repulsive limit”. We thank all referees for their comments and analysis of this manuscript.

The Referees’ comments/criticisms prompted us improving on our work. In the following, we provide a point-to-point
reply to the Referees’ comments and the list of changes made in the re-submitted manuscript.

Sincerely Yours,
The Authors

REFEREE 1

R: “ The authors claimed a new method which was built to evaluate the one-particle correlation function of SU(N)
fermionic systems. They carried out some calculation of such one-particle density matrix in mesoscopic systems
with the particle number less than 10. Although this research topic is of great interest and importance, to my best
knowledge, this paper did not reach a satisfactory level of research. Their main result was just a little extension of
the method used in Ref.[33], and the previous paper Ref.[42] etc. Here I raise up few questions for their manuscript:
”

1. R: “The authors claimed their results to be exact. It is true only if their calculations are e�cient and correct
in terms of Bethe ansatz equations within strong coupling limit. According to their statement, ‘dilute limit’
(Np/L ⌧ 1) was necessarily needed. However, in Figs.4 & 6, there are cases that 10 particle on 15 sites. This
density is far from the dilute limit, and they did not provide verifications or comparisons with the results based
on other methods such as exactly diagonalization (ED) or DMRG. Therefore, it should be of caution with the
validity of their results in these Figures. ”

A: We thank the Referee for pointing this out. The Referee is correct in saying that the SU(N) Hubbard
model is Bethe ansatz integrable in the dilute limit of Np/L ⌧ 1 and that the systems considered in the
manuscript are far from this condition. Bethe ansatz integrability hinges on the fact that the scattering of
more than two particles does not occur (Yang-Baxter factorization of the scattering matrix). Typically, for
SU(N) fermions such a condition can be enforced in two regimes: (i) the dilute limit as stated in the paper; and
(ii) the case ofNp = L with large repulsive interactions where the model turns into a Sutherland antiferromagnet.

In the infinite repulsive regime, the multiparticle scattering is suppressed since the probability of two particles
interacting is vanishing. Therefore, despite the fact that we are far from the dilute limit condition, the system
is indeed very close to be integrable. Indeed, both the low lying spectrum and corresponding correlations,
numerical diagonalization and Bethe ansatz agree up to 5 decimal places. As it is well know by the community
and as pointed out in our manuscript, DMRG is not feasible in the limit of large interactions and large degree
of state degeneracies.

We agree with the Referee that the manuscript would benefit greatly by highlighting this fact. Therefore, we
now provide some comparisons in the Appendix to corroborate that our analysis is justified and discuss the
limitations when comparing with other methods. Changes to manuscript 1.

2. R:“They claimed the methods are applicable to SU(N) fermionic system. Obviously, in their main results i.e.
Figs.4 & 6, only situations of SU(2) were considered. In fact, for SU(2) fermionic system in strong coupling
limit, various methods and results have been obtained in literature, see [33], also see the review articles in this
filed, etc. The discussion showed in Fig.5 looks rather rough and lacks rigorousness. The important references
for the study of the SU(N) interacting fermions in 1D are missing.”

A: We do not agree with the Referee that our methods and results are restricted solely to SU(2) fermions. Figs.
3 and 5 display results for up to N = 6. The Referee is correct in pointing out that Figs. 4 and 6 correspond
only to SU(2) fermions. As discussed in the manuscript and very extensively in the Appendix, due to the
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fractionalization of the angular momentum reproducing these plots for SU(N>2) fermions is quite challenging.
Nonetheless, we are able to replicate some of the results that we present for SU(N>2) fermions.

Moreover, we want to clarify that we are extending the already exisiting method in [33] by including the flux.
This change, although it might seem as a small addition, leads to important consequences that have been
discussed in [42]. This is confirmed in this work, which actually is shown in the limit of U ! 1 that cannot be
addressed numerically.

We do not claim at any point in the manuscript that this is the first instance of calculating correlations in SU(2)
fermionic systems in the strong coupling limit. Rather, we expand on the vast literature that exists to take into
account the e↵ect of the flux on the system.

The Referee is correct in saying that the discussion for Fig. 5 is lacking. Thus, we have expanded the discussion
of these results in the main text. Changes to the manuscript 2.

We would be happy to implement the important references for the study of SU(N) interacting fermions in 1D
that the Referee feels that we missed, provided that they point them to us.

3. R:“The authors claimed their results are well-beyond ED, while the manuscript lacks of explicit proof or com-
parison with ED results.”

A: We reiterate that our calculations are well-beyond exact diagonalization/Lanczos because of the size of the
Hilbert space. Our method, as stated in the conclusion, can access a system of 12 particles residing in 38
sites corresponding to a Hilbert space dimension of 2 billion, in the spinless configuration. Depending on N ,
this would correspond to a larger Hilbert space in the Hubbard model, such as 7.62 ⇥ 1012 for N = 2. Exact
diagonalization/Lanczos can only handle around 7 million. Therefore, there is no direct comparison between
the two methods possible in this respect.

In the previous version we did not include much discussion regarding this comparison and its limitations.
Within the small particle and system size regime, which is reachable by exact diagonalization, we now show in
the Appendix that there is perfect agreement. We have addressed the Referee’s concerns in the new version of
the manuscript. Changes to the manuscript 1.

4. R: “Their results did not show essential physics of SU(N) fermions, such as universal nature of momentum
distributions in connection to the Tan’s Contact, as well as to the power law decay of Luttinger liquid, etc. In
general, when the component N � 1, the behaviour of ground properties of the SU(N) fermions coincide with
the one of the Lieb-Liniger model. Here they also did not discuss such a kind of feature. ”

A: Tan’s contact is related to the TOF. In this paper we have mostly focused on the momentum distribution of
the particles, which is related to the momenta the particles occupy. This di↵erence is highlighted by the fact
that we specified nTOF . Although interesting, the main focus of the paper is not TOF momentum distribution.

The Referee mentions that we do not make the connection between the ground-state properties of SU(N)
fermions and that of the Lieb-Liniger model. Whilst there is no explicit connection to this specific model, in
the first paragraph of Section 3 A, we highlight the connection between the momentum distribution of SU(N)
fermions and the Bose-distribution.

REFEREE 2

R:“In the submitted manuscript, the authors investigate the one-particle density matrix and the momentum distribu-
tion function of a SU(N) Hubbard model on a ring in the presence of magnetic flux. Their results for these quantities
are based on a Bethe-ansatz solution for the model at strong repulsion that has been previously derived (see refs.
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[41,42] of the manuscript).

Exploiting such solution to find the ground state of the model (see below), they discuss several aspects of the momen-
tum distribution function, such as the dependence on the number of colors ‘N’ or its behavior with a non-vanishing
magnetic flux. The utility of their approach for TOF measurements with ultracold atoms is also discussed.”

1. R: “As the authors comment in Sec.II of the manuscript, a Bethe ansatz solution for the model easily enables
the calculation of spectral quantities but it is not very useful for the characterization of the eigenstates (which
show a complicated structure even in the limit of large U where the spin and the charge dof are decoupled).
Therefore, they propose a method for the calculation of the spin wave function based on exact diagonalization
for the spin chain, integrability of Hubbard, and proprieties of SU(N) eigenstates. This is quite an intricate
procedure to find the ground state. Although I understand how it is performed and why it is necessary, it is
not clear to me to which extent it limits the calculation of the momentum distribution function in terms of N,
Np and L, and what is its advantage w.r.t. other numerical methods. This is an important aspect that in my
opinion the authors should comment more in the text. Indeed, in the current version of the manuscript, it is
only mentioned in the conclusion.”

A: We agree with the Referee that such an issue should be highlighted further in the text. To this end, we have
added a new appendix focusing on comparing and discussing the advantages that our method presents with
respect to others such as exact diagonalization and DMRG. Changes to the manuscript 1.

2. R: “Also, in the conclusion, the authors write: “we note that our Bethe ansatz scheme agrees well with numerics
of the lattice model, also slightly beyond the dilute regime” but I do not see any direct comparison of their
result with numerics in the manuscript.”

We thank the Referee for pointing this out. As discussed previously, we have added a section in the Appendix
highlighting the comparison of our method with the numerics. Changes to manuscript 1.

R: “From the calculation of the ground state, the results for the one-particle density matrix and momentum
distribution are obtained with standard methods.

Other questions on the manuscript are collected in the section below.

Concluding, I believe that the manuscript contains interesting results for the community and it deserves to be
published after a revision according to the points below. However, in my opinion, the results proposed by the
authors are not enough groundbreaking to fully meet the acceptance criteria set by SciPost Physics. For this
reason, I recommend the publication of the revised manuscript in SciPost Physics Core.”

A: Following the suggestions of the referee and editor, we address the comments of the Referee and referred the
manuscript to the more specialized section SciPost Physics Core.

3. R:“Page 3 eq.(5) – I can understand what the authors mean with this writing and Fig.1 further explains the
spin-charge decoupling occurring at large U but the notation can be improved. Indeed, in its current form, it is
hard for me to give a precise meaning to Eq.(5)”

A: The Referee is correct in saying that the description for the notation used is lacking. Indeed, we have a Slater
determinant from the spinless fermions where the corresponding spin-part has hence to be inserted. Therefore,
this is no tensor product and corresponds to the composition f � g of two functions. We have changed the
manuscript correspondingly. Changes to the manuscript 3.

4. R: “ Page 3 section II (a) – the authors should comment more the advantage of their method to find the
ground state of the SU(N) Hubbard model. It is not clear to me what computational limit one should expect
in terms of color number N, particles Np and system size L. In addition, it would be very helpful to show the
comparison of their method with numerics for the lattice model, as mentioned by the authors in the conclusion. ”
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A: We thank the Referee for pointing this out. We have added a couple of sentences in this regard in section II
A. Changes to the manuscript 4.

In addition, as stated in our previous replies, we have addressed these comments by adding a new Appendix
where a more detailed discussion and comparison with other methods can be found. We also refer the reader to
this Appendix in the main text and in the conclusions.

5. R: “Page 3 section II (b) – the discussion on the one-particle density matrix can be improved. The relation
between lattice operators and the continuous fields  ↵ can be written down explicitly. Also, I imagine that
the continuous description is needed to exploit the integrability of the model for N > 2, as discussed in the
introduction. However, this is not commented in the text by the authors making this part not very clear for
unexpert readers. ”

A: In the updated version of the manuscript, we write the explicit formula between the lattice operators and
the continuous fields  ↵. Changes to the manuscript 4.

The Referee is correct in saying we do not elaborate further on how to obtain the momentum distribution from
the continuous description of the model. In our reply to Referee 1, we mention that due to system considered
being in the the limit of infinite repulsion, we could exploit the scheme outlined in the paper since for these
conditions, the system is close to being integrable even though one is far from the dilute limit condition. Such
a claim is corroborated by matching our results with exact diagonalization, which is now displayed in a new
section in the Appendix. Changes to manuscript 1.

In the case, where the system considered would be dilute enough such that we would be in the continuous limit,
we emphasize that instead of calculating the Slater determinant of the continuous Gaudin-Yang-Sutherland
model, we discretize it. Such an approach is necessary in order to keep track of the mapping between the
spin wavefunctions of the Hubbard and Heisenberg models. We have elaborated explicitly on this point in the
manuscript. Changes to the manuscript 5.

6. R: “Page 4: the authors write “The spin-charge decoupling is obtained by Bethe equations in addition to exact
diagonalization of the Heisenberg model and DMRG”. I do not understand what is the precise meaning of this
statement by the authors.”

A: We agree with the Referee that this sentence is quite confusing. What we meant to say is that despite the
limitations of DMRG in the limit of infinite repulsion, at intermediate interactions it could still be used to
corroborate that the state chosen from the spectrum of the Heisenberg model has the same total spin as its
Hubbard counterpart. In order to clear up any potential confusion, we have added a sentence to clarify our
comments on DMRG and make it clearer to the reader. Changes to the manuscript 6.

7. R: “Page 5, section III A – I find this section rather unclear although I can make an e↵ort to understand the
authors’ results (at least up to a certain extent). In particular, 1) the limit of large U is not mentioned at all
in the text and in the figure 5 caption (which I assume concerns this specific limit). 2) The quantity � (which
I assume is the Fermi gap) has not been introduced. 3) The Fermi gap is defined as f(kf )� f(kf +�k) but I
do not see any definition of f(k) (which I assume being the Fermi-distribution). ”

A: We thank the Referee for bringing this to our attention. The quantities f(k) and � do refer to the Fermi-
distribution function and the Fermi gap respectively. Whilst we do not explicitly mentioned the limit of larger U
in the text or the caption, the name of the section is the Fermi gap in the limit of infinite repulsion. Nonetheless,
in order to clear up any confusion, we have added this explicitly in the caption of Figure 5 and in the text.
Changes to the manuscript 7.

8. R: “Figure 5 – Do the authors have an intuitive understanding of the non-monotone behavior of the Fermi gap
at N=3?”
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A: We do not have a deeper understanding of this curious behaviour. However, from first principles, the gap
need not have a monotonic behavior. What is clear, is that for each Np it has to eventually converge to zero as
N ! 1 since this would correspond to the case of a bosonic system. The Fermi gap we study is a feature of
Fermi liquid theory and has been termed as the quasi-particle weight for higher dimensions; on this concern, we
have added the original publication of Migdal from 1957 on this and two more recent publications. However,
we have extended the discussion of the Fig. 5 as well as added one to the definition of the gap. Changes to the
manuscript 8.

REFEREE 3

R: “The authors of this work have studied a gas of repulsive N-components fermions confined in a ring-shaped
potential, subject to an e↵ective magnetic field, in the limit of large repulsion strengths. They split the problem
into the spinless fermionic and SU(N) Heisenberg models, in order to succeed in calculating the one-body density
matrix and thus the momentum distribution up to 10 particles and 6 components (Np=10 with N=2 and Np=6 and
N=6). The authors claim that their achievements are well beyond the current state-of-the-art tractable by numerical
methods. My main critcisms are the following:

1. R: “the method, as the authors say, is not new. This is an extension to the case with a flux. So this work could
be the opportunity to give some more insights on the method and to discuss some physical aspects of such a
system. In my opinion none of these two points has been developped adequatly. Even if they show some TOF
interference patterns, the physical discussion is missing. Morover they authors could study the beviour of the
k=0 mode and of the tails of the momentum distribution.”

A: Despite of taking many ideas from the original work of Ogata and Shiba, we also address aspects that were
not covered and that become even more important in the N > 2 case. For instance, regarding the relation
to the ground state of the periodic Hubbard model: in their original work the ground-state of the Heisenberg
model was calculated, hence modifying the necessary boundary condition to the Hubbard model for an even
occupation number of species. This constituted an essential drawback of the original method which we address
here. We explain this new approach in the model and methods section. Moreover, we also extended it to SU(N)
fermions by taking advantage of the integrability of the SU(N) Heisenberg model.

The TOF and related measurements are well established tools and are explained well in the concerning references
we give. Nonetheless, for completeness we have briefly extended their origin and importance in the main text.
Calculating the TOF and the interference patterns in the self-heterodyne setup from the obtained momentum
distribution is already an application of the method we developed. We agree with the Referee that further
analysis of the tails of the momentum distribution would be interesting. However, this is not the scope of the
present manuscript. Changes to the manuscript 9.

2. R: “Concerning the current state-of-art for DMRG calculation applied to SU(N) fermions, they authors should
read in details Ref. [52] (Np max=12 and N max=6)”

A: Our comments about DMRG in the manuscript seem to have created some confusion. We know that the
limit of infinite repulsion is not tractable by DMRG, which is exacerbated on account of the degeneracies present
in the model. The results presented in the manuscript are all obtained through exact diagonalization of the
Heisenberg model in the limit of infinite repulsion. Our comment on DMRG, was to highlight that in spite of its
limitations, it could sill be utilized in the regime of intermediate interactions. We have updated the manuscript
to say this explicitly.

3. R: “I invite the authors to revise deeply their manuscript. I think that their work may deserve to be published in
SciPost, but not in the actual form. I invite the authors to revise deeply their manuscript, first of all introducing
more physical discussions. Moreover I suggest them to revise the technical description. Here below they will
find some, not exhaustive, explicit points:”

A: The physics of fractionalization was investigated and discussed in our previous works through numerical
methods. Therefore, we tried to have as main focus of this work the method for obtaining quasi-exact results for
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the momentum distributions. Nonetheless we added a few paragraphs discussing on the physics of time-of-flight
and related measurements to contextualize the applications of the method. Changes to the manuscript 9.

4. R:“ In the introduction the authors have written: ”In the dilute regime of few particles per site, the lattice
model captures the physics of continuous systems..” This has to be changed in: ”In the dilute regime of less
than one particle per site, the lattice model captures the physics of continuous systems. Indeed, as the same
authors have written at the end of the first column at page 2, ⌫ ⌧ 1 (when considering the dilute regime)”

A: We thank the referee for pointing this out; we have amended the manuscript accordingly. Changes to the
manuscript 10.

5. R:“Below Eq. (2), the authors refer to the rapidities ⇤� : these rapidities are not introduced anywhere and do
not appear anywhere either. I invite the authors to introduce explicitly the formalism, including all the needed
definitions. I know that they are in the appendices, but the paper has to be ”self-consistent” for a reader even
if some details are specified in the appendices.”

A: We agree with the Referee that the manuscript should be self-consistent. We have introduced a brief
description of the rapidities ⇤� and directed the reader to the Appendix where such quantities are explicitly
defined. Changes to the manuscript 11.

6. R:“same type of comment concerning the ”the SU(N) quadratic Casimir operators” (middle of column one at
page 3): they are defined in the appendix, but here the authors may include some physical insights”

A: Indeed, there was no further explanation on the physical background of this operator. We have added some
phrases concerning the fact that the Casimirs are constants of the motion and that the quadratic Casimir is
analogous of the length of the spin vector ~S2 in SU(2). Changes to manuscript 12.

7. R: “Which is the normalization of the momentum distributions in Fig. 3? It is not Np. Is it the number if
fermions per component? Please, specify in the caption for the main figure and the inset.”

A: We thank the Referee for bringing this up. The Fermi-function/momentum distribution is normalized to the
occupation of each species. This is now clarified in the main text. Changes to the manuscript 13.

8. R:“There is a problem in the caption of Fig. 4 for the definition of n+ and n� (actually n� is identically zero!)”

A: The Referee is correct in saying that the caption of Fig. 4 has a problem with regards to the definitions of n+

and n�. We thank the Referee for pointing this out and have changed the caption with the correct definition.
Changes to the manuscript 14.

9. R: “ the term !(j ! l,↵) is introduced at the end of the first column at page 4, but is explicitly defined only
in Eq (9) (after 14 lines!).”

A: We want to highlight that it is two di↵erent functions that are involved, but we have not emphasised this
su�ciently: !(l, j) is the respective spin correlation function for the Hubbard model whereas !̃(l0, j0) is that for
the Heisenberg model. Consequently, we updated the terminology in the manuscript. Changes to the manuscript
15.

10. R:“please, revise your comments concerning DMRG calculations”

A: We agree with the Referee that our comments on DMRG calculations were not clear. To this end, we have
amended the manuscript to clear up any confusion and expanded in the new appendix the comparison between
di↵erent methods. Changes to manuscript 6.
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LIST OF CHANGES

All changes carried out in the manuscript are highlighted blue.

1. In the Appendix, we have added a new section titled ‘Comparison with numerics’ showcasing the comparison
between the results obtained by our proposed scheme and those of exact diagonalization. Additionally, on page 3
under Figure 2, we added “Our proposed scheme is reliant on model (1) being integrable. As stated beforehand,
one instance of integrability occurs for dilute filling fractions, such that the model turns into the Gaudin-
Yang-Sutherland model. In what follows, the system sizes considered are far from being in the dilute limit.
Nonetheless, we find that our method is still applicable in this regime, since in the limit of infinite repulsion,
the probability of having more than two particles interacting is vanishing, thereby satisfying the Yang-Baxter
condition for integrability [50]. Indeed, for the low-lying spectrum and the corresponding correlations, such a
statement was verified by comparing with exact diagonalization (see Table I). It is worth remarking that the
numbers of Np and L considered in this paper would correspond to a Hilbert space size, that is intractable
with exact diagonalization. On account of the spin-charge decoupling, we are able to separate the problem into
the spinless and Heisenberg parts, resulting in smaller Hilbert spaces, making systems with large parameters
accessible (see Appendix VI D).”

2. On page 6 paragraph 1 line 3, we extended our discussion of Figure 5.

3. On page 3 before Equation (4), we have added the text from the footnote to the main text, placing it on the
second line after Equation (5). Moreover, we updated the caption of Figure 2.

4. In the third line under Equation 6, we have added the following sentence: “The above equation is obtained by
expanding the field operators into the basis set of single band Wannier functions w(x) (that we take independent

on the specific N component) such  x =
P

L

j
w(x� xj)cj . Note that we taken the zeroth order approximation

of w(x) through the harmonic approximation.”.

5. On line 8 in the paragraph behind Equation 8, we added “These quasimomenta are di↵erent from the momenta
k in the momentum distribution discussed here. Furthermore, we would like to emphasize that instead of
calculating the Slater determinant for the continuous Gaudin-Yang-Sutherland model, we discretize it. Such an
approach is necessary in order to keep track of the mapping between the spin wavefunctions of the Hubbard
and Heisenberg models. This justification is numerically supported in Table I.”

6. In the third paragraph of page 4 we added “through the Bethe equations. Subsequently, the spectrum of the
Heisenberg model is calculated through the exact diagonalization. In line with methodology outlined in the
previous section, we point out that to corroborate that the chosen state from the Heisenberg spectrum has the
same total spin as its Hubbard counterpart, one can make use of DMRG [51,52]. Even though DMRG is known
to have issues in the limit of large interaction and large degree of state degeneracies, it can still be utilized for
intermediate interactions.”

7. On page 5 Section III A, we have defined f(k) and � as the Fermi-distribution function and the Fermi gap
respectively. In addition, we have updated the caption of Figure 5 to include that it is in the limit of infinite
repulsion.

8. On page 5 paragraph 4 line 5, we added “The Fermi gap is known as the quasi-particle weight in higher dimensions
and is related to the poles of the Green function with positive imaginary parts [53-55]”. Additionally, on the
same page we added the paragraph“However, we want to mention that in one dimension the Fermi-distribution
function in the thermodynamic limit becomes a weak singularity for the Luttinger liquid [32]. In our case, we are
far away from this limit and the ability of distinguishing a gap from a weak singularity would be challenging.”

9. Above Figure 6 on page 6, we elaborated more on the physics of fractionalization by adding: “On going to the
limit of infinite repulsion, the energy and consequently the persistent current landscape, changes from being
periodic with the bare flux quantum �0 to displaying a reduced periodicity of �0/Np irrespective of the SU(N)
symmetry of the system (see Fig. 7 in the Appendix). As such, the ground-state energy goes from being a
single parabola at zero interaction, to having Np parabolic segments, that in the Bethe ansatz language are
characterized by di↵erent spin quantum numbers. Remarkably, these di↵erent parabolas manifest as a result of
di↵erent energy level crossings to counteract the flux threading the system resulting in fractionalization. In [37],
it was discussed how this fractionalization can not only be monitored but also visualized in self-heterodyne
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interferograms, which exhibits a di↵erent number and orientation of the dislocations for the di↵erent parabolas.
In the left panel of Fig. 6, we see that such dislocations are captured by our proposed scheme.”

10. On page 1 paragraph 3 line 7 we changed “In the dilute regime of few particles per site, the lattice model
captures the physics of continuous systems” to “In the dilute regime of less than one particle per site, the lattice
model captures the physics of continuous systems”.

11. On page 2 paragraph 5 line 11, we have added the phrase: “which are the conserved quantities for the SU(N)
degrees of freedom (see Appendix VI A)”.

12. In paragraph 3 page 3 on line 19, we have added the comments on the Casimir operator: “The Casimir operators
are commuting with the whole SU(N) group and hence are constants of the motion of both the Heisenberg
Hamiltonian and the SU(N) Hubbard model. In particular, we note that the Casimir operator for N = 2
corresponds to the total spin operator squared ~S2.”

13. In the second line after Equation (7) and in the caption of Figure 3, we added “and it is normalized to the
occupation number of each species.”

14. On page 5, the definitions for n+ and n� in the caption of Fig. 4 were corrected to now read, n+(k) =
[n(k) + n(�k ��k)]/2 and n�(k) = n(k)� n(�k ��k). We have also amended the captions by the sentence:
”The integers m correspond to the momenta 2⇡m/L.”

15. Concerning the spin correlation functions for the Hubbard and the corresponding Heisenberg model, we updated
the terminology to make a clear distinction between the correlations denoted by ! and !̃ respectively. In addition,
we added “where the tilde indicates the spin correlation function of the Heisenberg model” on page 4 paragraph
2 line 3, as well as amending Equation (9).
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