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Abstract

We consider a quantum topological frequency converter, realized by coupling a qubit to
two slow harmonic modes. The dynamics of such a system is the quantum analog of
topological pumping. Our quantum mechanical description shows that an initial state
generically evolves into a superposition of two adiabatic states. The topological nature
of the coupling between the qubit and the modes splits these two components apart
in energy: for each component, an energy transfer at a quantized rate occurs between
the two quantum modes, in opposite directions for the two components, reminiscent
of the topological pumping. We denote such a superposition of two quantum adiabatic
states distinguishable through measures of the modes’ energy an adiabatic cat state.
We show that the topological coupling enhances the entanglement between the qubit
and the modes, and we unveil the role of the quantum or Fubini-Study metric in the
characterization of this entanglement.
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1 Introduction

Traditionally, a pump is a device that transfers energy from a source - an engine - to a fluid. The
transfer is achieved through a suitably designed mechanical coupling. Topological pumping is
a modern extension of such a device. The first historical example of such a topological pump
was provided by Thouless who considered a periodically modulated in time one dimensional
crystal [1, 2], realized experimentally in various forms [3–14]. A simpler realization was
provided recently in the form of a qubit driven at two different frequencies [15], later extended
to more complex driven zero dimensional devices [16–22]. These studies discussed pumping
through the dynamics of the pump described as a driven quantum system. Indeed, the slow and
periodically modulated parameters generates a quantized current either through the quantum
system, or, in the last case, in an abstract space of harmonics of the drives. This current thereby
effectively describes a transfer between the drives.

In this paper, we reconcile the description of such a topological device with that of traditional
pumps by considering on equal footing the qubit and the drives. This amounts to describe these
drives as quantum mechanical degrees of freedom instead of classical parameters. We model
them as quantum modes, characterized by a pair of conjugated operators accounting for their
phase and number of quanta. This extends previous mixed quantum-classical descriptions of
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the drives [23–25], into the concept of topological coupling between a qubit and two quantum
modes. We focus on the regime of adiabatic dynamics in which these quantum modes are slow
compared to the qubit, neglecting effects induced by a faster drive, recently discussed in the
context of topological Floquet systems [26–32].

The dynamics of a system with slow and fast degrees of freedom has been largely studied in
terms of an effective Hamiltonian [33–35]. Here we focus on the adiabatically evolved quantum
states. Our quantum mechanical description shows that an initial separable state generically
evolves into a superposition of two components. Each component is an adiabatic state of the
total system. The topological nature of the coupling between the qubit and the modes splits
these two components apart in energy at a quantized rate: for each component, an energy
transfer occurs between the two quantum modes, in opposite directions for the two components.
This topological dynamics effectively creates an adiabatic cat state: a superposition of two
quantum adiabatic states distinguishable through measures of the modes’ energy. Note that our
definition of cat states does not require an equal superposition of two adiabatic components. We
quantify the relative weight of each component in terms of the quantum geometry of adiabatic
states. While some specific initial states were shown to evolve into cat states in [23], here
we show that cat states are indeed generic. On the technical side, we develop an adiabatic
approximation method valid to all orders in the modes’ frequencies, which shows that the
topological splitting of each cat component at a quantized rate is robust at all orders in the
adiabatic parameter. This contrasts with the quantization of pumping occuring only for well
prepared initial states [36].

Besides, we show that for each of the component of a cat state, the qubit is entangled
with the two modes. The origin of this entanglement lies in the geometrical properties of the
coupling, characterized by the quantum or Fubini-Study metric [34, 37], related to various
physical observables, see e.g. [38–46]. Furthermore, the topological nature of the coupling
constrains these geometrical properties: a topological coupling necessarily induces a strong
entanglement between a pump and its driving modes.

While the mechanism of topological frequency conversion was introduced in [15] as an
anomalous dynamics of a qubit driven at two frequencies, it was later discussed within a unified
framework of topological pumping as a coupling between a qubit and two slow classical modes
in [24]. This classical-quantum approach was extended in [23, 25] where of one the two
modes was described by a quantum harmonic oscillator, the other one remaining a Floquet
drive. In contrast, our approach relies on a complete quantum description of both modes,
crucial to describe the decomposition of an initial state into a cat state. On a similar register,
in the case of a single quantum mode, the impact of the quantum nature of a mode on a
spin-1/2 Berry’s phase was discussed in [47]. Interestingly, similar qubit-modes systems were
recently proposed [48] and experimentally realized in quantum optical devices [49] to simulate
topological lattice models. In this context, the Hamiltonians of a qubit coupled to cavities
was expressed in terms of Fock-state lattices, and shown, with two cavities, to realize a chiral
topological phase [50,51], and, with three cavities, the quantum or valley Hall effect [48,52].
Indeed, the focus of these realizations was on synthetic topological models and their associated
zero-energy states. Our approach bridges the gap between the study of topological pumping of
driven systems and these studies of quantum optical devices.

Our paper is organized as follows. In Sec. 2 we introduce the model of a qubit topologi-
cally coupled to two quantum modes. We describe the modes firstly as harmonic oscillators
(Sec. 2.1.1) and then introduce the approximation of quantum rotors (Sec. 2.1.2). We then
discuss qualitatively the typical dynamics of adiabatic cat states (Sec. 2.2). In Sec. 3 we develop
an adiabatic theory of the rotor model to characterize the two components of the cat states as
adiabatic states and identify their topological dynamics which splits them apart in energy. We
show that due to the quantum nature of the mode, any realistic initial state decomposes into
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such a sum of two adiabatic states which split into a cat state. We characterize the weight
of each cat component for a separable initial state, and relate it to the quantum geometry of
the qubit adiabatic states. In Sec. 3.3.2 we relate the entanglement between the qubit and the
modes to the quantum geometry of the adiabatic states (Sec. 4.1). We unveil the role of the
quantum metric in this entanglement and show that a topological coupling is associated to a
high entanglement. Finally, we discuss the evolution of the number of quanta of each mode
around the quantized drift in relation with Bloch oscillations and Bloch breathing in Sec. 4.2.
We show that the quantum fluctuations of the modes reduce the temporal oscillations of the
number of quanta around the drift, stabilizing the rate of splitting of the cat components.

2 A qubit topologically coupled to two quantum modes

2.1 Topological coupling

2.1.1 Two slow harmonic oscillators coupled to a qubit

We consider two quantum harmonic oscillators coupled to a two-level system, a qubit. In the
following, we denote by “mode” each harmonic oscillator, by analogy with electrodynamics.
The annihilation and creation operators âi , â†

i , i = 1, 2, of the two modes satisfy [âi , â†
j ] = δi j1.

The Hamiltonian of the qubit coupled to the two modes reads

Ĥtot = ħhω1â†
1â1 +ħhω2â†

2â2 + Ĥ, (1)

where Ĥ contains the bare Hamiltonian of the qubit and the coupling to the modes. Generically,
we decompose this Hamiltonian on the Pauli matrices of the qubit, considering that each of
them can couple to the quadratures of the modes,

Ĥ =
∑

α=x ,y,z

hα(â1, â†
1, â2, â†

2)σα. (2)

This is represented schematically on Fig. 1(a).
Our definition of topological coupling between slow and fast quantum systems is an exten-

sion of the topological characterization of the dynamics of the qubit driven by two classical
modes [24]. Here the natural slow variables are the phase and number of quanta of the two
harmonic oscillators, and the fast degree of freedom is the qubit. To obtain a classical-quantum
description of our model, we replace the operators âi and â†

i respectively by the classical
variables

p
nie

iφi and
p

nie
−iφi , where the phase φi and number of quanta ni satisfy the clas-

sical Poisson bracket relation {ħhni ,φ j}= δi j. The quantum version of this classical-quantum
description, on which we will focus in the following, is obtained using a Wigner-Weyl phase
space representation [53]. In doing so, we obtain the following Hamiltonian of the qubit
parametrized now by the phase space variables of the modes

H(φ1,φ2, n1, n2) = h(φ1,φ2, n1, n2) ·σ, (3)

with h(φ1,φ2, n1, n2) a vector of R3 parametrized by the phases and numbers of quanta of the
modes. At fixed value of the number of quanta n1, n2, we recover a quantum system coupled
to two periodic phases φ1,φ2 for which a regime of topological coupling is characterized by a
non-vanishing Chern number as in [24]. We provide below a simple condition for this Chern
number to be non-zero.

We consider fixed values of n1, n2 and vary the periodic phases φ1,φ2 in their compact
configuration space [0, 2π]× [0, 2π]. When doing so, the ensemble of vectors h(φ1,φ2, n1, n2)
span a closed surface in R3. Such a surface is represented schematically on Fig. 1(b). The size
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Figure 1: Topological coupling. (a) Two quantum harmonic oscillators, represented
by cavities, coupled to a two-level system, represented by a Bloch sphere. The
vector h(â1, â†

1, â2, â†
2) represents the coupling between the Pauli matrices of the

qubit and the creation and annihilation operators of the modes, such that the total
Hamiltonian reads Ĥtot = ħhω1â†

1â1 + ħhω2â†
2â2 +

∑

α=x ,y,z hα(â1, â†
1, â2, â†

2)σα. (b)

We describe each mode by a phase φi and a number of quanta ni, âi →
p

nie
iφi , an

approximation valid for large enough filling ni . The yellow surface is spanned by the
vector h(φ1,φ2, n1, n2) as the phases φ1,φ2 are varied in [0,2π], at fixed numbers
of quanta (n1, n2). For standard couplings this surface does not enclose the origin,
and the qubit ground states is localized on a restricted region of the Bloch sphere
represented as a blue surface. (c) Topological coupling: the surface encloses the
origin. Any point of the Bloch sphere corresponds to a ground state of the two-level
system for a specified value of the phases of the modes.
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of the surface is set by the amplitude of the couplings between the qubit and the phases. To
keep a slow-fast separation, the qubit characteristic frequency – given by its gap |h| – must be
large compared to the modes’ frequencies ωi . As such, the closed surface must not touch the
origin. The two topologically distinct classes of couplings correspond to whether or not the
surface encloses the origin.

In the usual case where the qubit bare transition frequency ωq is very large compared to
these couplings, the surface is high along the z direction and does not enclose the origin. This
is the situation of topologically trivial couplings, represented on Fig. 1(b). The ensemble of
ground states of the qubit at fixed (n1, n2) is represented on the Bloch sphere by the projection
of the surface, represented in blue localized near the south pole. The ensemble of excited states
is localized near the north pole, such that we can determine whether the qubit is in its ground
or excited state without any knowledge on the state of the modes. This is the common situation
of a weak coupling.

In contrast, the topological coupling corresponds to the case where the surface encloses the
origin, represented on Fig. 1(c). Then any point on the Bloch sphere can correspond either to a
ground or excited state, depending on the state of the modes. There is no relevant notion of
qubit ground or excited state independently of the state of the modes. The topological coupling
is a regime of strong coupling, in the sense explained above: the couplings of the qubit to the
phases have to be of same order of magnitude as the bare qubit frequency. This picture also
shows that a topological coupling requires to couple all three Pauli matrices of the qubit to the
quadratures of the modes, i.e. the slow modes have to couple to non-commuting observables
of the fast quantum system.

2.1.2 Model of quantum rotors

Figure 2: Phase and number representations of a quantum qubit-2 modes model.
(a) Phase representation, convenient to represent the dynamics of the qubit. At
each value of the phases Φ are associated qubit eigenstates represented by a vector
b0
±(Φ) = ±h(Φ)/|h(Φ)| on the Bloch sphere (in grey). The adiabatic states, repre-

sented by a vector b±(Φ), are a perturbative deformation of the eigenstates. (b)
Number representation, convenient to represent the dynamics of the modes. In this
viewpoint the model can be interpreted as an unusual model of spin-half particle
on a discrete lattice where N = (n1, n2) ∈ Z2 represents its position on the lattice
and Φ ∈ [0,2π]2 the Bloch momenta. This particle is submitted to an electric field
ħhω · N̂ and a strong spin-orbit coupling h(Φ̂) ·σ. As a consequence, the adiabatic
states are associated to energy bands E± tilted in the direction ω of the electric field
and separated by the gap ∆ due to the spin-orbit coupling.

In the following, we describe the two quantum harmonic oscillators coupled to the qubit
by a simpler model of quantum rotors. This amounts to neglecting the dependence in n1, n2
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of the coupling between the qubit and the modes in the Hamiltonian (3). More precisely,
we consider an initial state of the total system with an average number of quanta n0

i of each
mode i = 1,2. Ignoring the dependence of the qubit Hamiltonian on the number of quanta
amounts to consider an initial state of spread ∆ni such that ∆ni ≪ n0

i . For the same reason,
this model is valid on short times of the dynamics, as long as the variation of the number
of quanta is small compared to its initial value n0

i . As such, each slow mode is described by
a phase operator φ̂i of continuum spectrum [0,2π], conjugated to a number operator n̂i of
discrete spectrum Z, such that [n̂i , φ̂ j] = iδi j [54]. Noting ω = (ω1,ω2) the frequencies of the
modes, and N̂ = (n̂1, n̂2) their respective number operators, the dynamics of the full quantum
system is governed by the Hamiltonian

Ĥtot = ħhω · N̂ ⊗ I+H(Φ̂) , H(Φ̂) =
3
∑

α=1

hα(Φ̂)⊗σα (4)

where the vector h(Φ) is given by (3) with N = N0. The specificity of the rotor model is
the linearity of the total Hamiltonian in N̂. We show below that it enables to describe the
full quantum dynamics using features of a classically driven qubit, where time-dependent
parameters φi(t) =ωi t of the qubit Hamiltonian h(φ1(t),φ2(t)) ·σ are here considered as
true quantum degrees of freedom.

The modes’ intrinsic energies depend on the number of quanta N while the qubit’s energy
depend on their phases: hence we will use two dual representations of the dynamics of the
system through this paper. When focusing on the qubit’s evolution, the phase representation is
natural, and represented in Fig. 2(a). At each value of the phases Φ are associated two qubit’s
eigenstates

�

�ψ0
±(Φ)

�

. The modes’ dynamics translate into an evolution with time of the phase,
and thus an evolution of the associated qubit’s states |ψ±(Φ)〉 which slightly differ from the
eigenstates and will be discussed in section 3.1. If instead we focus on the quantum modes,
their dynamics is conveniently represented in number representation, Fig. 2(b). The evolution
in number representation of the modes’ states is solely due to the coupling of the modes to the
qubit. Furthermore, in this viewpoint, we can interpret the model as that of a particle on a 2D
lattice of sites N = (n1, n2), with Φ = (φ1,φ2) being the associated Bloch momentum in the
first Brillouin zone. The Hamiltonian (4) describes the motion of this particle, submitted to
both a spin-orbit coupling H(Φ̂) and an electric field ħhω. We will use this analogy to relate the
geometrical and topological properties of the above quantum model to those of gapped phases
of particles on a lattice. On a side note, it is useful to notice that in the present case, there is no
embedding of the lattice in R2 as opposed to the Bloch theory of crystals. The position operator
identifies with coordinate operator on the lattice. As a consequence, there is no ambiguity in a
choice of Bloch convention and definition of the Berry curvature [55,56].

Throughout this paper, the numerical results are obtained by considering an example of
such a topological coupling provided by the quantum version of the Bloch Hamiltonian of the
half Bernevig-Hughes-Zhang (BHZ) model [57]:

hx(Φ̂) =
∆

2
sin
�

φ̂1

�

, (5a)

hy(Φ̂) = −
∆

2
sin
�

φ̂2

�

, (5b)

hz(Φ̂) =
∆

2

�

1− cos
�

φ̂1

�

− cos
�

φ̂2

��

, (5c)

where the parameter ∆ > 0 is the gap of the qubit. The Chern numbers of the ground and
excited bands of this model are C± = ∓1. We consider modes with frequency of the same order
of magnitude, small compared to this gap to ensure the slow-fast separation, ħhω1 = 0.075∆
and ω2/ω1 = (1+

p
5)/2≃ 1.618. In the following, time is arbitrarily expressed in unit given
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by the period of the first mode T1 = 2π/ω1. See appendix C for details on the numerical
method.

We focus on the unitary dynamics of a qubit topologically coupled to two quantum modes,
valid on timescales smaller that their decoherence and decay times. The effects of dissipation
on the Berry curvature of a classically driven two-level system along the lines of [58] are an
interesting perspective.

Relation with Thouless topological pump. As shown in [24], the topological frequency
conversion and the Thouless pumping are two equivalent dynamical phenomena induced by a
topological coupling between slow and fast degrees of freedom. In particular, the model (4)
can be written as a Rice-Mele model [59], on which most of the experimental realizations of
Thouless pumps are based [2]. Such a Thouless pump model is recovered by viewing φ2 as
the time-periodic driving phase of the pump, whereas n1,φ1 play the respective role of the
unit-cell position and Bloch momentum of the one dimensional lattice. Equivalently, eiφ̂1 is
the translation operator by one unit-cell. Here the qubit encodes the two intra-cell degrees
of freedom of the Rice-Mele model. In the Hamiltonian (5), after a π/2 rotation of the Bloch
sphere around the x-axis, −∆2 sin(φ2) becomes the time-periodic staggered potential while
∆
2 cos(φ2) corresponds to the time-periodic dimerization of the hopping amplitudes of the
Rice-Mele model. Hence, our results also describe the effect of the quantum nature of a drive
on a Thouless pump.

2.2 Topological dynamics of adiabatic of cat states

In this section, we first illustrate the topological dynamics of the system starting from a typical
state. This dynamics is then analyzed quantitatively in the remaining of this paper. We focus
on separable initial state, easier to prepare experimentally:

|Ψ(t = 0)〉= |χ1〉 ⊗ |χ2〉 ⊗
�

�ψq

�

. (6)

Each quantum mode is prepared in a Gaussian state1 |χi〉, characterized by an average number
of quanta n0

i and a phase φ0
i = 0, with widths ∆ni ,∆φi satisfying ∆φi∆ni =

1
2 . The qubit is

prepared in a superposition
�

�ψq

�

= (|↑z〉+ |↓z〉)/
p

2.
In Fig. 3, we represent the dynamics of this state |Ψ(t)〉 by displaying the associated number

distribution Pn1n2
(t) = 〈n1, n2| ρ̂12(t) |n1, n2〉, with ρ̂12(t) the reduced density matrix of the

modes. Three initial states are shown in Fig. 3 (a1), (b1) and (c1) with respective number
width ∆n = ∆n1 = ∆n2 = 5, ∆n = 0.7 and ∆n = 1/(2π) (quasi-Fock state delocalized in
phase ∆φ = π). The corresponding time evolved states are represented on columns 1 to 5 of
Fig. 3 for times t = 0, 8/3, 16/3, 8 and t = 32/3. We observe a splitting of the initial state into
a superposition of two states

|Ψ(t)〉= |Ψ−(t)〉+ |Ψ+(t)〉 . (7)

The number distribution of |Ψ−(t)〉 and |Ψ+(t)〉 drift in opposite directions, corresponding to
energy transfers between modes 1 and 2 in opposite directions. This drift is a manifestation of
the topological pumping previously discussed within a classical-quantum description [15,24].
This pumping is conveniently represented by introducing rotated number coordinates

nE =
1
|ω|
(ω1n1 +ω2n2) , n⊥ =

1
|ω|
(−ω2n1 +ω1n2), (8)

1For quantum harmonic oscillators, a coherent state |α〉, α =
Æ

n0
i eiφ0

i , with an average number of quanta n0
i ≫ 1

reduces to a Gaussian state with ∆ni =
Æ

n0
i .
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Figure 3: Typical dynamics of adiabatic cat states. Distribution of number of quanta of
the two modes Pn1n2

= 〈n1, n2| ρ̂12 |n1, n2〉 at different times for three initial states. The
modes are prepared in a Gaussian state with an average value of phase φ0

1 = φ
0
2 = 0

and an equal width in number of quanta ∆n1 =∆n2 =∆n, corresponding to a width
∆φ = 1/(2∆n) in phase. The qubit is prepared in (|↑〉+ |↓〉)/

p
2. The evolution of

states with different initial width ∆n is represented: line (a), ∆n= 5, ∆φ ≃ 0.03π;
line (b), ∆n = 0.7, ∆φ ≃ 0.23π, and line (c), Quasi-Fock state ∆n = 1/(2π),
delocalized in phase ∆φ = π. The columns (2) to (5) represent the time evolved
state at respectively t = 8/3, 16/3, 8 and t = 32/3 in units of the period of the first
mode T1 = 2π/ω1. The dynamics splits the initial state in a cat state in the sense of a
superposition of two states with distinguishable energy content.
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with |ω|=
q

ω2
1 +ω

2
2. nE|ω| corresponds to the total energy of the modes and is constant up

to the instantaneous energy exchange with the qubit. n⊥ is the coordinate in the direction
perpendicular to ω. A transfer of energy between mode 1 and mode 2 occurs as a drift in
the n⊥ direction. We also observe that for small initial ∆n, corresponding to lines (b) and
(c) of Fig. 3, each component |Ψ±(t)〉 undergoes a complex breathing dynamics around the
drift. This oscillatory behavior is reminiscent of Bloch oscillations of a particle submitted to an
electric field, superposed with a topological drift originating from the anomalous transverse
velocity. After an initial time of separation, the number distributions for |Ψ−(t)〉 and |Ψ+(t)〉
no longer overlap (Fig. 3 columns 4 and 5). The system is then in a cat state: a superposition
of two states with well distinguishable energy content.

We will now study quantitatively these cat states and their dynamics. In the following
section, we develop an adiabatic theory of the rotor model valid at all orders in the modes’
frequencies to characterize the two components of the cat states as adiabatic states and identify
their topological splitting.

3 Adiabatic decomposition

When the driving frequencies remain small compared to the qubit’s gap, ħhωi ≪ ∆, we nat-
urally describe the effective dynamics of the coupled qubit and drives in terms of fast and
slow quantum degrees of freedom. This is traditionally the realm of the Born-Oppenheimer
approximation. Historically both degrees of freedom were those of massive particles, the
slow modes being associated with the heavy nucleus of a molecule and the fast ones with the
light electrons [33, 60, 61]. In this context, the Born-Oppenheimer approximation assumes
that the time evolved state stays close to the instantaneous eigenstates of the fast degrees of
freedom and describes the resulting effective dynamics of the slow degree of freedom. For a
general slow-fast decomposition of a quantum system, the equations of motion of this effective
dynamics involves the Berry curvature of eigenstates of the slow subsystem [35,62]. These
equations of motion govern the dynamics of specific initial states, the adiabatic states, which
are defined by an adiabatic projector [62, 63]. The nature of these adiabatic states is often
overlooked in the literature. Here we show that they are not naturally prepared experimentally,
but any initial state decomposes into a pair of such states. The topological dynamics separates
the two components in energy at a quantized rate, leading to a cat state.

3.1 Adiabatic projector

The distinctive characteristic of the present quantum rotor - qubit model from the usual Born-
Oppenheimer setting is the linearity of the Hamiltonian (4) in the variable N̂. This allows
to express in a simple form the corrections to the Born-Oppenheimer approximation for the
adiabatic states. The linearity in N̂ enables to write the adiabatic states of the total system
in terms of states of the qubit parametrized by the conjugated phases Φ. Let us explain the
procedure to construct such states, while referring to appendix A for technical details.

Adiabatic states of the qubit. We denote by
�

�ψ0
ν(Φ)

�

, ν= ±, the normalized eigenstates of
the two-level driven Hamiltonian H(Φ)

�

�ψ0
ν(Φ)

�

= ν|h(Φ)|
�

�ψ0
ν(Φ)

�

for each Φ in [0, 2π]2. For
small frequencies ωi, we can reasonably expect that the qubit-modes system prepared in an
eigenstate |Φ〉 ⊗

�

�ψ0
ν(Φ)

�

will remain in a translated eigenstate. However this simple picture is
only qualitatively valid: eigenstates get hybridized by adiabatic dynamics, even at arbitrarily
small driving frequencies. As a consequence, we first need to identify the family of adiabatic
states |ψν(Φ)〉, stable under the dynamics. In other words, the dynamics is represented as a
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transport within this family, from |Φ〉 ⊗ |ψν(Φ)〉 to
�

�Φ′
�

⊗
�

�ψν(Φ′)
�

, indexed by translations
of the phases Φ→ Φ′ = Φ−ωt. Introducing the dimensionless perturbative parameter ε by
ω = εΩ, the qubit adiabatic states are a dressing of the eigenstates

�

�ψ0
ν(Φ)

�

in a series of ε,
see appendix A for details.

Adiabatic grading of the Hilbert space. The above adiabatic decomposition of the qubit states
allows for a natural decomposition of all states of the whole system. The two corresponding
adiabatic projectors are given by

P̂ν =
ˆ

dΦ |Φ〉 〈Φ| ⊗ |ψν(Φ)〉 〈ψν(Φ)| , ν= ± . (9)

They provide a decomposition of any state |Ψ〉 into two adiabatic states

|Ψ〉= |Ψ−〉+ |Ψ+〉 , |Ψν〉= P̂ν |Ψ〉 , ν= ± . (10)

Besides, each adiabatic component |Ψν〉 can be characterized by a wave amplitude χν(Φ) de-
duced from the wavefunction of the modes in the initial stateχ(Φ) = 〈φ1|χ1〉 〈φ2|χ2〉 according
to

|Ψν〉=
ˆ

d2Φ χν(Φ) |Φ〉 ⊗ |ψν(Φ)〉 , χν(Φ) = χ(Φ)



ψν(Φ)
�

�ψq

�

. (11)

The decomposition (10) splits the total Hilbert spaceHtot in two adiabatic subspacesHtot =H−⊕H+,
where H− and H+ are respectively the images of the projectors P̂− and P̂+. Let us stress that this
decomposition of the Hilbert space is not a spectral decomposition as the adiabatic projector is
not a spectral projector of the total Hamiltonian.

Let us comment on the relation between the adiabatic state (11) and the initial states
considered for topological pumps within a classical description of the modes (or at least one of
them) [15,23–25]. In such a description, the slow modes have initially a given phase Φ and
the fast quantum system is prepared in a corresponding eigenstate

�

�ψ0
ν(Φ)

�

. There are two
main differences between this hybrid description and the present adiabatic state (11). First, the
quantum nature of the modes leads to a spread in phase given by the wave amplitude χν(Φ).
As a result, (11) is not a separable state but is strongly entangled between the modes and the
qubit, and is not naturally prepared experimentally. Second, we stress that the qubit adiabatic
states |ψν(Φ)〉 are not instantaneous eigenstates, but a perturbative dressing of those in ħhωi/∆.
We discuss below the consequences of this dressing on the geometric and topological properties
of the adiabatic projector.

Dressed Berry curvature and topology of the family of adiabatic states. The ensemble of
adiabatic states |ψν(Φ)〉 parametrized by the classical configuration space Φ ∈ [0, 2π]2 defines
a vector bundle. This vector bundle is a smooth deformation of the eigenstates bundle

�

�ψ0
ν(Φ)

�

associated to a spectral projector (Fig. 2(a)). As a consequence, the local curvature associated
with the adiabatic bundle

Fν(Φ) = i



∂φ1
ψν(Φ)

�

�∂φ2
ψν(Φ)

�

− (1↔ 2), (12)

differs from the canonical Berry curvature associated with the eigenstates bundle [64]. The
curvature (12) is a “dressed Berry curvature” in the sense of a perturbative correction of
the Berry curvature of the eigenstates to all orders in ħhωi/∆. On the other hand, the Chern
number Cν of both bundles are identical. Indeed, the switching on of finite but small frequencies
ω1 and ω2 is a smooth transformation of the fiber bundle of the eigenstates

�

�ψ0
ν(Φ)

�

to that
of the adiabatic states |ψν(Φ)〉. Such a smooth transformation does not change the bundle
topology2.

2Note however that this robustness fails for larger frequencies comparable with the spectral gap.
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Non-adiabatic Landau-Zener transitions. The adiabatic projector is defined perturbatively
in an adiabatic parameter ε, see appendix A. This construction is valid up to non-perturbative
effects with typical exponential dependence of the form exp(−α/ε) [62,63]. The adiabatic
dynamics is the effective dynamics on each subspace, and the non-perturbative transitions
between the two subspaces are Landau-Zener transitions. The amplitude of the Landau-Zener
transitions can be estimated to obtain the time of validity of the adiabatic approximation [24],
τadiab ≈ 0.1 exp(π/(4ϵadiab))T1, with ϵadiab =maxΦħh|




ψ0
+

�

�

dH
dt

�

�ψ0
−

�

|/(E0
+ − E0

−)
2. In this work,

we choose the coupling and the frequencies of the modes such that τadiab ≈ 3100T1, allowing to
neglect such Landau-Zener transitions. Within this approximation the weight on each adiabatic
subspace

Wν(Ψ) = ||P̂ν |Ψ〉 ||2 = 〈Ψν|Ψν〉 (13)

is a conserved quantity.

3.2 Topological splitting of adiabatic components

Topological splitting. The dynamics of each adiabatic component is governed by adiabatic
equations of motion containing an anomalous velocity in the direction n⊥ proportional to the
curvature Fν(Φ), see appendix B for a detailed derivation. Similarly than within a hybrid
classical-quantum description of a topological pump [15,24], we assume an incommensurate
ratio between the frequencies ω1 and ω2 such that a time average reduces by ergodicity to an
average over the phases Φ ∈ [0,2π]2. The average of the curvature is quantized by the first
Chern number Cν of the vector bundle of adiabatic states |ψν(Φ)〉, and the topological coupling
introduced in Sec. 2.1 between the modes and the qubit corresponds to two non-vanishing
Chern numbers C+ = −C−. As a result, the topological dynamics splits in energy the two
adiabatic components |Ψ±〉:

〈n̂⊥〉Ψ±(t) = 〈n̂⊥〉Ψ±(0) ∓
|ω|t
2π

C− +δn⊥(t), (14)

where δn⊥(t) denotes bounded oscillations, the temporal fluctuations of pumping, discussed in
Sec. 4.2. A cat state is created when the two adiabatic components no longer overlap. After this
time of separation, the weight of the state in the region n⊥ < n0

⊥ identifies with the adiabatic
weight W−(Ψ).

Geometric details of the adiabatic dynamics. The precise expression of variation of number
of quanta d〈n̂i〉/dt in an adiabatic component is provided in Eq. (57) of appendix B.2. This
expression differs by two aspects from the transfer of number of quanta obtained within a
classical description of the drives (or at least one of them) of a topological pump [15,23,24].
First, due to the quantum nature of the modes, the instantaneous rate is averaged by the phase
density |χν(Φ)|2 of the adiabatic component. Second, at all orders in adiabatic theory, the
equations of motion take a similar form as the first order theory [15,24,35,62], obtained by
replacing respectively the eigenenergy and Berry curvature by the adiabatic energy and dressed
Berry curvature. The geometric details of the dynamics are affected by perturbative corrections
in ħhωi/∆, but the above discussed topological drift is not.

Relation with topological pumping. In relation with the notion of topological pumping,
we note that the pumping rate is quantized only for an adiabatic state. For a non-adiabatic
state that decomposes into a sum of two adiabatic components of relative weights W±, the
pumping rate is no longer quantized but rescaled by (W− −W+). In the following, we quantify
these weights W± for various initial states. We show that a generic initial state is not adiabatic.
Therefore, it does not lead to a topological quantized pumping but evolves into a cat state.

12
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Figure 4: Weight W− of the ground adiabatic component. The modes are in a Gaussian
state centered on φ0

1 = φ
0
2 = 0, and we vary their width in phase ∆φ =∆φ1 =∆φ2.

The qubit is prepared in |↑〉 represented by the vector Q on the Bloch sphere. The
phase density of the modes |χ(Φ)|2 on the torus translates via the map Φ 7→ b−(Φ) to
a density of adiabatic states on the Bloch sphere represented in blue. b− is the average
Bloch vector for this density. The weight of adiabaticity is controlled by the distance
of the qubit initial state Q to the average adiabatic state b̄−, W− = (1+ b̄− ·Q)/2. (a)
For an initial state localized in phase, ∆φ = 0.06π, the density of adiabatic states
is localized on the Bloch sphere such that b̄− is near the surface of the sphere. (b)
Weight of the cat depending on the width in phase ∆φ. For small ∆φ, the weight is
controlled by the quantum metric g−,i j(Φ0) of the adiabatic states (Eq. (19), dashed
line). (c) Limit of large ∆φ (quasi Fock state). Due to the topological nature of the
coupling, the adiabatic states cover the entire Bloch sphere. This leads to comparable
weights on each cat component.
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3.3 Weight of the adiabatic cat state

In this section, we focus on the weight Wν(Ψ) (13) of each component of a generic state.
We relate them to the quantum geometry of the qubit adiabatic states |ψν(Φ)〉, i.e. to their
dependence on the phases Φ of the modes, quantified by their quantum metric [34, 37]. A
topological coupling induces a strong dependence of the adiabatic states on the phases of the
modes, such that a generic initial state splits into a linear superposition of adiabatic states with
significative weights on each component.

3.3.1 General expression of the weights

The phase states in the decomposition (11) being orthogonal, the weight Wν(Ψ) reduces to the
weight of the wave amplitude χν(Φ) defined in (11):

Wν(Ψ) =
ˆ

d2Φ |χν(Φ)|2. (15)

It is instructive to express this weight by representing the qubit states on the Bloch sphere.
The qubit adiabatic states |ψν(Φ)〉 are represented by a vector bν(Φ) (see Fig. 2(a)), and
the qubit initial state

�

�ψq

�

by Q (see Fig. 4(a)). The overlap between |ψν(Φ)〉 and
�

�ψq

�

is
|



ψν(Φ)
�

�ψq

�

|2 = (1+ bν(Φ) ·Q)/2 such that the weight (15) now reads

Wν(Ψ) =
1
2

�

1+ bν ·Q
�

(16)

with the average adiabatic state

bν =
ˆ

d2Φ |χ(Φ)|2 bν(Φ). (17)

Let us comment the expression (16). The phase density |χ(Φ)|2 of the initial state translates
via the map Φ 7→ bν(Φ) to a density of adiabatic states on the Bloch sphere, represented in blue
on Fig. 4(a) and Fig. 4(c). The average adiabatic state bν is the average Bloch vector for this
density, and the weight Wν(Ψ) is the distance of the qubit initial state to this average adiabatic
state.

In the figure 4(b) we study the effect of the spreading of the initial modes’ states on the
weights Wν(Ψ). We consider the weight on the ground component W−(Ψ) of an initial state
with the modes in a Gaussian state centered on φ0

1 = φ
0
2 = 0, and the qubit prepared on |↑〉

(vector Q on the north pole). Figure 4(b) displays the evolution of W−(Ψ) as the width in
phase ∆φ = ∆φ1 = ∆φ2 of the modes is increased. The adiabatic weight is computed
numerically from the topological splitting of the adiabatic components discussed in the previous
section. For small ∆φ, the phase density is localized around Φ0 and b̄ν ≈ bν(Φ0) close to the
surface of the Bloch sphere, see Fig. 4(a). As such, if the qubit is prepared with Q aligned
with b̄−, as considered on Fig. 4, then W− ≃ 1. This leads to an asymmetric cat state with a
small excited component, W+ ≃ 0.

When increasing ∆φ, the weight of the cat is controlled by the evolution of the qubit
adiabatic state b−(Φ) with respect to the phases Φ. This evolution is encoded into their
quantum geometry, which itself is constrained by the topological nature of the coupling. Indeed,
a topological coupling corresponds to qubit adiabatic states b−(Φ) covering the entire Bloch
sphere when the phases Φ vary on [0,2π]2, see Fig. 1(c). As a result, when increasing the
width ∆φ, we average vectors over an increasing support on the Bloch sphere (Fig. 4(c)),
reducing the norm |b̄±| which controls the minimum weight of the cat (Fig. 4(b)). The
topological nature of the coupling leads to cat states with comparable weight of each component
in the limit of large ∆φ, i.e. in the limit of an initial state with a well-defined number of
quanta.
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3.3.2 Quasi phase states and quantum metric

The only separable states leading to a quantized pumping are those lying in an adiabatic sub-
space, corresponding either to W+ = 1 or W− = 1. They are pure phase states

�

�Φ0
�

⊗
�

�ψ±(Φ0)
�

for which |b±| = 1, corresponding to the limit ∆φi = 0 on Fig. 4(b). This limit is recovered
for harmonic oscillators in a coherent state with a large average number of quanta n̄i, for
which ∆φi = 1/

p

n̄i . Given that these states are fully delocalized in quanta number N, and
thus in energy according to (4), we expect them to be hard to realize. Any other separable state
lies at a finite distance from each adiabatic subspace, will not lead to a quantized pumping
and will be split into a cat state under time evolution. Let us comment on this adiabatic
decomposition for almost pure phase states with small ∆φ. In this case, the correction to
adiabaticity is controlled by the quantum metric g±,i j of the adiabatic states [34,37]:

g±,i j = Re



∂φi
ψ±
�

� (1− |ψ±〉 〈ψ±|)
�

�

�∂φ j
ψ±

¶

. (18)

Indeed, the weight (15) is dominated by the local variations of the adiabatic states |ψ±(Φ)〉
over the narrow phase support |χ(Φ)|2. These variations are encoded by the quantum metric:
|



ψ±(Φ0 +δΦ)
�

�ψ±(Φ0)
�

|2 = 1−
∑

i, j g±,i j(Φ0)δφiδφ j+O(δφ3). In the limit of a small width

(∆φ1,∆φ2) the weight (15) for
�

�ψq

�

=
�

�ψ±(Φ0)
�

reduces to

W±(Ψ) = 1− (∆φ1)
2 g±,11(Φ

0)− (∆φ2)
2 g±,22(Φ

0) +O(∆φ4). (19)

Hence for a state close to a phase state, the first correction to Wν is quadratic in ∆φ with a
factor set by the quantum metric of the adiabatic states, as shown in black dashed line on
Fig. 4(b).

Relation with topological pumping The quasi-phase state limit is relevant in the context of
topological pumps, where the phases of the modes are described by classical parameters with a
definite value and the fast quantum system is prepared in its corresponding adiabatic state. As
discussed above, a non-adiabatic initial state leads to a non-quantized pumping rate rescaled
by (W− −W+). The result (19) shows that the first correction of the pumping rate due to the
quantum fluctuations of the phase is quadratic in ∆φ and is controlled by the quantum metric.

Moreover, considering an initial state of the form (11) with the qubit in an eigenstate
�

�ψ0
ν(Φ)

�

rather than in an adiabatic state |ψν(Φ)〉 also leads to corrections to the relative weight (W−−W+)
and to the pumping rate which are quadratic in ħhωi/∆. This is similar to the non-adiabatic
breaking of topological pumping for an abrupt switching on of the drive of a Thouless pump [36].
See appendix D for quantitative discussions on the difference between eigenstate and adiabatic
state. In appendix E, we discuss the role of the qubit initial state on the adiabatic weight, and
introduce different types of cat states of equal weights W+ =W− = 1/2.

4 Entanglement and dynamics of cat states

Having characterized the balance between the two components of an adiabatic cat state, we now
study the dynamics of each component. We will focus first on the entanglement between the
qubit and the two modes, before focusing on their Bloch oscillatory dynamics in the number of
quanta representation. We unveil the role of the quantum metric in the entanglement between
the qubit and the modes, and show that the topological nature of the coupling induces a strong
entanglement.
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4.1 Entanglement

Adiabatic states naturally entangle the fast qubit with the slow driving modes, a phenomenon
out-of-reach of previous Floquet or classical descriptions of the drives [15, 16, 18–22, 24].
We study quantitatively this entanglement as a function of the initial phase spreading ∆φ of
the modes. We focus on cat states with almost equal weight Wν ≃ 1/2, that are obtained
with Φ0 = 0 and the qubit prepared in (|↑〉+ |↓〉)/

p
2 following the analysis of section 3.3.

The entanglement between the qubit and the two modes in an adiabatic component |Ψν(t)〉,
ν = ±, is captured by the purity γν(t) = Tr

�

ρ2
q,ν(t)

�

= (1+ |Qν(t)|2)/2 of the qubit, where
ρq,ν(t) is the reduced density matrix of the qubit and Qν(t) its polarization. From the adiabatic
time evolution (Eq. (53) in appendix A), we obtain that the qubit is in the statistical mixture of
adiabatic states bν(Φ) weighted by the translated phase density |χν(Φ+ωt)|2/Wν, i.e.

Qν(t) =
ˆ

d2Φ
|χν(Φ+ωt)|2

Wν

bν(Φ) . (20)

This is due to the linearity in N̂ of the rotor model which induces an absence of phase dispersion.

4.1.1 Entanglement of quasi-phase states

Let us first focus on the adiabatic states with a small ∆φ, corresponding to quasi-phase states.
We show below that for such a state, the entanglement between the qubit and the quantum
modes is set by the quantum metric of the adiabatic states.

The translated phase density |χ(Φ + ωt)|2 of the modes is a normalized 2π-periodic
Gaussian centered on Φ0−ωt and of width (∆φ1,∆φ2). Plugging into Eq. (20) the expansions
of Eqs. (11,15), and bν(Φ) in the limit of small ∆φ1,∆φ2, we get

Qν(t) = bν(Φ
0 −ωt) +

1
2

∑

i

(∆φi)
2 ∂

2bν
∂ φ2

i

(Φ0 −ωt) +O(∆φ4). (21)

Note that in the limit ∆φ1 =∆φ2 = 0 we recover the classical description of the modes, for
which the qubit follows the instantaneous adiabatic state bν(Φ0−ωt). From the normalization
of the adiabatic states |bν|2 = 1, we deduce the relation bν · ∂ 2

φi
bν = −∂φi

bν · ∂φi
bν = −4gν,ii

where the last equation is an expression of the quantum metric of a two-level system in terms
of the Bloch vectors [41,65]. From this we obtain the expansion at order ∆φ2 of the purity

γν(t) = 1− 2(∆φ1)
2 gν,11(Φ

0 −ωt)− 2(∆φ2)
2 gν,22(Φ

0 −ωt) +O(∆φ4). (22)

From the inequality gν,11 + gν,22 ≥ |Fν|, originating from the positive semidefiniteness of the
quantum geometric tensor [40], we obtain a lower bound on the entanglement between the
qubit and the modes. Indeed, for a topological coupling between the qubit and the modes, the
average Berry curvature Fν is non-vanishing, and set by the Chern number Cν, yielding

〈γν〉t ≤ 1−
|Cν|
π
(∆φ)2 +O(∆φ4). (23)

This demonstrates that a topological pump necessarily entangles the qubit with the modes, a
property only captured by the quantum description provided in this paper.

Let us illustrate on a numerical example the role on the purity of the qubit of the geometry
of the adiabatic states bν(Φ), i.e. their dependence on the phases Φ. The statistical aver-
age of the adiabatic states is represented on Fig. 5(a1) for an initial width of the Gaussian
state ∆φ =∆φ1 =∆φ2 ≃ 0.09π. At a given time t, the densities on the torus of each compo-
nent |χ±(Φ+ωt)|2/Wν translates into densities of adiabatic states on the Bloch sphere (in blue
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Figure 5: Purity of the qubit γ±(t) in each cat components |Ψ±(t)〉. The qubit is
prepared in (|↑〉+ |↓〉)/

p
2. We vary the width in phase ∆φ = ∆φ1 = ∆φ2 of the

initial state. (a1) The phase densities |χ−(Φ+ωt)|2 and |χ+(Φ+ωt)|2 of each cat
components translates to densities of adiabatic states on the Bloch sphere (respectively
in blue and orange). The qubit state is the statistical mixture weighted according
to these densities with resulting polarizations Q±. For small ∆φ, the densities of
adiabatic states are localized on the Bloch sphere. (a2) Case of small ∆φ. The
adiabatic states cover a larger domain on the Bloch sphere at t = t2 than at t = t1,
inducing a larger entanglement γ−(t2) < γ−(t1). The temporal variations of the
purity are quantified by the quantum metric (Eq. (22), black dashed line). (b1,b2)
For large ∆φ, due to the topological coupling, the adiabatic states cover a large part
of the Bloch sphere, corresponding to a high entanglement. At t = t3, the density
of excited adiabatic states (in orange) covers a larger support than the density of
ground adiabatic states (in blue), leading to a larger entanglement γ+(t3)< γ−(t3).
The situation is opposite at t = t4.
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and orange) encoding the statistical mixture (20) of the qubit in |Ψ±(t)〉. In Fig. 5(a2), the
purity of the qubit after the time of separation is represented respectively in blue and orange for
each component. The temporal fluctuations of this purity follow those of the quantum metric
represented by a black dashed line, as predicted by Eq. (22). As an illustration, we notice that
the quantum metric is smaller at time t1 than at t2, manifesting that the densities of adiabatic
states cover a smaller domain of the Bloch sphere at Φ= Φ0 −ωt1 than at Φ= Φ0 −ωt2, as
shown on Fig. 5(a1). This translates into a larger purity of the qubit at t = t1 than at t = t2.

4.1.2 Entanglement of quasi-Fock states

We now consider adiabatic states with an increasing initial width in phase ∆φ. Increasing the
phase support ∆φ increases entanglement: the larger ∆φ, the larger the support on the Bloch
sphere (shown on Fig. 5(b1)), and thus the smaller the polarization (20). The large support on
the Bloch sphere originates from the topological nature of the coupling, which imposes that
the adiabatic states b±(Φ) reach all points of the Bloch sphere as Φ varies (see Fig. 1(c)). A
topologically trivial coupling would lead to a localized distribution of adiabatic states on the
Bloch sphere corresponding to an almost pure state of the qubit. This is another manifestation
that topological pumping and entanglement between the qubit and the modes are strongly
intertwined.

Let us illustrate this increase of entanglement on a numerical example, see Fig. 5(b2).
We consider the limit of an initial Fock state entirely delocalized in phase ∆φ = π. In this
case, the phase density of the two adiabatic components |χ±(Φ+ωt)|2 have complementary
support on the torus [0, 2π]2 (see appendix E.2 for details). This translates into two extended
supports on the Bloch sphere, represented respectively in blue and orange, inducing a small
purity (see Fig. 5(b2) noting that γ = 0.5 corresponds to a maximal entanglement). At
t = t3, the excited density |χ+(Φ − ωt3)|2 covers a larger portion of the sphere than the
ground density |χ−(Φ−ωt3)|2, corresponding to |Q+(t3)|2 < |Q−(t3)|2 and γ+(t3) < γ−(t3)
on Fig. 5(b2), while the situation is opposite at t = t4.

4.2 Breathing dynamics and Bloch oscillations

We now discuss in more details the oscillations of both the center of mass and of the width in
number of each adiabatic component of cat states that manifest themselves on the examples
of Fig. 3. This dynamics is reminiscent of Bloch oscillations and Bloch breathing. For a wave-
packet on a lattice submitted to a force, Bloch oscillations correspond to temporal oscillations
of the center of the wave-packet while Bloch breathing refers to temporal variations of the
width of this wave-packet. The nature of these oscillations and breathing depends on the
width of the wavepacket’s momentum distribution. Such oscillations were first considered for
one dimensional lattices [66–68], latter extended to two dimensions [69–71] and in artificial
lattices, see e.g. [72,73].

In our context, the lattice sites are indexed by the number of quanta N = (n1, n2) of the
modes. The first term of the Hamiltonian (4) is linear in N and plays the role of the coupling
to an electric field ω, while the second term corresponds to a spin-orbit coupling as discussed
in section 2.1. Hence, the dynamics of an adiabatic state in N representation identifies with the
Bloch oscillations and breathing of the corresponding wavepacket in the presence of two forces:
one longitudinal along the direction nE of the analogous electric field defined in (8) and one in
the transverse direction n⊥, of topological origin, which gives rise to an anomalous transverse
velocity. Let us now characterize these Bloch oscillations and breathing in the presence of this
transverse topological velocity which, to our knowledge, haven’t been discussed yet.
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Figure 6: From Bloch oscillations to Bloch breathing. (a) Photon number representa-
tion. In blue, sketch of the trajectory of the average number of quanta 〈N̂〉(t) of the
ground adiabatic component |Ψ−(t)〉 for the example of Fig. 3(a). In green, spread-
ing∆n̂E and∆n̂⊥ of |Ψ−(t)〉. (b) Bloch oscillations of the center of wavepacket around
the topological drift vt along n⊥, for an initial state localized in phase ∆φ = 0.03π.
(c) Time evolution of the spreading for an initial state localized in phase. The state
remains Gaussian (insets at t = ta and t = tb). (d) Initial quasi-Fock state delocalized
in phase ∆φ = π. The amplitude of Bloch oscillations around the topological drift
are reduced. (e) Bloch breathing. The wavepacket alternates between refocusing
(t = ta, tc) and expansion (t = tb).

19



SciPost Physics Submission

4.2.1 Qualitative evolution of an adiabatic component

We sketch on Fig. 6(a) a trajectory of the average number of quanta 〈N̂〉 in the ground
component |Ψ−(t)〉. The two adiabatic subspaces are associated to opposite topological
anomalous velocities ±v, with v= (ω2,−ω1)C−/(2π) the topological velocity of the ground
component. This induces a drift of the wavepacket along the direction n⊥ defined in (8), as
shown on the figure. In the following, we focus on the dynamics of the component |Ψ−(t)〉
around this drift, the results for |Ψ+(t)〉 around its opposite drift being similar. We denote
as∆n̂i(t) = [〈n̂2

i 〉−〈n̂i〉2]
1
2 the spreading of n̂i in |Ψ−(t)〉, see Fig. 6(a), n̂i referring to either n̂E

or n̂⊥. The numbers of quanta 〈N̂〉 have temporal fluctuations around the quantized drift vt
represented on Fig. 6(b) for an initial state localized in phase with ∆φ = 0.03π, and on
Fig. 6(d) for an initial state delocalized in phase with ∆φ = π.

For an initial state localized in phase, the state remains Gaussian with its initial width
∆n̂i = 1/(2∆φ) as illustrated on the insets of Fig. 6(b). When we increase the width∆φ of the
initial state, the amplitude of the Bloch oscillations of the center of wavepacket is reduced, while
the time variation of the spreading of the wavepacket ∆n̂i increases, as shown on Fig. 6(d,e).
The Bloch oscillations become Bloch breathing, alternating between refocusing (occuring e.g.
at t = ta and tc on Fig. 6(d,e)) and expansion (e.g. at t = tb). The refocusing are discussed
in [25] as a photon number boosting mechanism. They occur at quasi-periods detailed in
appendix B.4. Let us discuss quantitatively the transition from Bloch oscillations to Bloch
breathing using the adiabatic theory developed in Sec. 3.

4.2.2 Bloch oscillations of the average number of quanta

In the hybrid classical-quantum description of a topological pump [15, 24], the topological
quantization of the pumping rate is recovered under a time-average of the instantaneous
pumping rate. The temporal fluctuations of this pumping rate originate from inhomogeneities
of the energy and Berry curvature. The time average of the Berry curvature is set by the
Chern number of the adiabatic states over the torus [0,2π]2. The quantum nature of the
mode induces another source of averaging. Let us note ni(t,Φ) the classical evolution of the
number of quanta obtained in the hybrid description for an initial phase Φ of the modes, see
Eq. (45) in appendix B.3. The average number of quanta 〈n̂i〉 in our fully quantum mechanical
description corresponds to an average of this classical evolution with respect to the initial phase
density |χν(Φ)|2, see Eq. (58) in appendix B.3. This induces a quantum average of the Berry
curvature, which smoothes out instantaneously the fluctuations of the pumping rate. Thus, an
increase of the support |χν(Φ)|2 reduces the temporal fluctuations of the average number of
quanta around its average drift. A topological pumping between quantum modes is indeed
"more quantized" than topological pumping between classical modes.

Relation with Wannier states. The reduction of the temporal fluctuations of pumping is set
by the width of the phase density |χν(Φ)|2. One would expect that a complete delocalization
in phase, |χν(Φ)|2 = 1/(2π)2, averages instantaneously the classical pumping rate over the
whole phase space such that 〈N̂〉(t) = vt without any temporal fluctuations. Such a projected
state (11) with uniform delocalization in Φ corresponds to a Wannier state for a particle on a
lattice, which is topologically obstructed [74–76]. First, let us note that the spreading ∆n̂i is
infinite in such obstructed Wannier state, making them hard to realize experimentally. Moreover,
due to the adiabatic decomposition (10) of the initial (separable) state, such adiabatic states are
never realized: the phase density |χν(Φ)|2, defined in (11) contains the density of projection of
the qubit initial state |




ψν(Φ)
�

�ψq

�

|2 which necessarily vanishes on the configuration space for
a topological pump, irrespective of

�

�ψq

�

. A Wannier state cannot be obtained by the adiabatic
decomposition of a separable state, and the temporal fluctuations of the pumping remain finite.
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4.2.3 Bloch breathing of the spreading

We now express the time evolution of the spreading ∆ni of the number of quanta in terms
of the adiabatic trajectories, to explain the transition between Bloch oscillations and Bloch
breathing. When the phase density |χν(Φ)|2 is localized aroundΦ0, the center of mass performs
Bloch oscillations following the classical trajectory ni(t,Φ0). When the phase support |χν(Φ)|2

increases, we sum the contribution of different classical trajectories ni(t,Φ) that spread around
ni(t,Φ0). This spreading of the wavepacket is captured by the variance Var[ni(t,Φ)] of the
classical trajectories with respect to the initial phase distribution |χν(Φ)|2, see Eq. (67). We
show in appendix B.3 that the time evolution of the spreading∆n̂i in the adiabatic state |Ψν(t)〉
is indeed related to this variance, and contains additional terms involving the quantum metric
(see Eq. (68)).

For a quasi-phase state with a narrow distribution |χν(Φ)|2, the classical trajectories with an
initial phase on this support are all similar, and the variance vanishes. As a result, the quantum
fluctuations do not vary in time ∆n̂i(t) ≃∆n̂i(0) ≃ 1/(2∆φ), as shown in Fig. 6(c). In the
case of large∆φ, the classical trajectories start to significantly spread for different initial phases,
leading to a large Var[ni(t,Φ)] and an expansion of the wavepacket, seen for example at t = tb
on Fig. 6(e). At quasi-periods T discussed in appendix B.3, the classical trajectories lead almost
to the same quantized drift N(T,Φ)≃ vT for all initial phases Φ, such that Var[ni(T,Φ)]≃ 0.
The wave-packet refocuses at these quasi-periods, seen at t = ta and t = tc on Fig. 6(e).

Effect of the adiabatic projection on the refocusing. The lack of perfect refocusing is
usually discussed in the literature as a lack of rephasing Var[ni(T,Φ)] ≳ 0 [25, 69], such
that (∆n̂i)(T) ≳ (∆n̂i)(t = 0). We note another important point about this refocusing: it
does not correspond to a refocusing of the initial state |Ψ(t = 0)〉 but of its adiabatic pro-
jection |Ψν(t = 0)〉. However, the adiabatic projection affects the spread of the wavepacket,
such that the adiabatic cat component do not refocus with the same spread as in the initial
state. This is visible on Fig. 6(e): even though we consider an initial Fock state, the adiabatic
component does not refocus into a Fock state at t = ta. Indeed, as discussed above the phase
distribution |χν(Φ)|2 is not fully delocalized on the torus, such that by Heisenberg inequality
the distribution of number of quanta in |Ψν(t = 0)〉 is not fully localized. For the cat state
with equal weight, we discuss in appendix E.2 that |χν(Φ)|2 covers approximately half the
torus, corresponding to a spread of order π/4, such that ∆n̂i(t = 0) ≥ 2/π ≃ 0.63. This is
approximately the values of the spreading at the refocusing times t = ta, tc on Fig. 6(e).

5 Conclusion

In this work, we have shown that the dynamics of a qubit coupled topologically to two slow
quantum modes generically creates a cat state, a superposition of two adiabatic states with
mesoscopically distinct energy content. We developed an adiabatic approximation method
which shows that the topological splitting of the two cat components at a quantized rate is
robust at all orders in the ratio between the modes’ frequency and the Bohr frequency of the
qubit. In contrast, topological pumping at a quantized rate requires to prepare the initial state
in a fine-tuned adiabatic state. For each adiabatic component of the cat, the topological
nature of the coupling induces an intrinsic entanglement between the qubit and the modes.
We unveil topological constraints on this entanglement by relating it to the quantum geometry
and quantum metric of the adiabatic states.

Our results also describe the effect the quantum nature of the drive of a Thouless pump.
We showed that the splitting of an initial wavepacket into a cat state is generic and responsible
for the breakdown of the quantization of pumping on short timescales. For a sudden switch
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on of the drive in a coherent state, the deviation from quantization contains a quadratic
contribution in the quantum fluctuation of the driving phase which adds up to the known
quadratic contribution in the drive frequency [36]. Nonetheless, each cat component drifts at
a quantized rate at all orders in the drive frequency. As such, when the two components no
longer overlap, we can prepare an adiabatic wavepacket of particle of quantized average drift
using a projective measurement. Our analysis also shows that the quantum fluctuations of the
driving phase stabilizes the pump: it reduces the time variations of the center-of-mass around
the quantized drift.

The realization of such topological adiabatic cat states opens interesting perspectives, in
particular to elaborate protocols to disentangle the qubit from the quantum modes, creating
an entangled cat state between the modes. One can build on existing protocols for a super-
conducting qubit dispersively coupled to quantum cavities, with cat composed of coherent
states non-entangled with the qubit, of typical form (|α1,α2,↑〉+ |β1,β2,↓〉)/

p
2 [77]. From our

analysis of Sec. 4.1, similar states are obtained from an adiabatic cat state in the quasi-phase
limit at a time t where a small value of the quantum metric gi j(Φ0 −ωt) is reached. Besides,
it is worth pointing out that the topological splitting of the two adiabatic components allows
for the experimental preparation of adiabatic states, by using a projection on the number of
quanta (n1, n2) such that n1 − n2 > n0

1 − n0
2 after the time of separation. In the perspective

of a superconducting qubit coupled to quantum cavities, such a measurement protocol can
be adapted from the methods of photon number resolution [78] using an additional qubit
dispersively coupled to the two cavities.

Finally, let us stress that we have focused on the adiabatic limit of a quantum description
of a Floquet system. We characterized the entanglement between the drives and the driven
quantum system in terms of the quantum geometry of adiabatic states. Extending this relation
between entanglement and geometry beyond the adiabatic limit [79, 80] is a natural and
stimulating perspective.
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A Adiabatic projector

A.1 Time evolution of phase states

We determine the time evolution of a phase eigenstate |Ψ(t = 0)〉 = |Φ〉 ⊗ |ψ〉 with |ψ〉 is
an arbitrary state of the two-level system. We consider the Hamiltonian of the rotor model
Ĥtot = ħhω · N̂+H(Φ̂) whereω = (ω1, · · · ,ωN ), N̂ = (n̂1, · · · , n̂N ), Φ̂ = (φ̂1, · · · , φ̂N ), where the
operators n̂i and φ̂i are conjugated [n̂i , φ̂ j] = iδi, j1, and ω · N̂ =

∑

iωi n̂i. In the interaction
representation with respect to the Hamiltonian of the modes, the time evolved state is:

|ΨI(t)〉= exp
�

itω · N̂
�

|Ψ(t)〉 . (24)

The dynamics of |ΨI(t)〉 is governed by the Hamiltonian in the interaction representation:

ĤI(t) = exp
�

itω · N̂
�

H(Φ̂)exp
�

−itω · N̂
�

(25)

= H(Φ̂−ωt) (26)
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since the operators n̂i are generators of the phase translation. As a consequence,

ĤI(t) (|Φ〉 ⊗ |ψ〉) = |Φ〉 ⊗H(Φ−ωt) |ψ〉 (27)

such that the time-evolution of the initial state |Φ〉 ⊗ |ψ〉 in the interaction representation is

|ΨI(t)〉= T exp
�

−
i
ħh

ˆ t

0
dτ ĤI(τ)

�

|Φ〉 ⊗ |ψ〉

= |Φ〉 ⊗ U(t;Φ) |ψ〉 (28)

where T denotes time-ordering and U(t;Φ) = T exp
�

− i
ħh

´ t
0 dτ H(Φ−ωτ)

�

is the time evolu-
tion operator associated to the time-dependent Hamiltonian H(Φ−ωt) for classical modes.
We then obtain the time-evolved state in the Schrödinger representation

|Ψ(t)〉= exp
�

−itω · N̂
�

|ΨI(t)〉 (29)

= |Φ−ωt〉 ⊗ U(t;Φ) |ψ〉 . (30)

A.2 Construction of the adiabatic states

We construct the adiabatic states of the two-level system |ψν(Φ)〉 such that the family of states
|Φ〉⊗|ψν(Φ)〉 with Φ ∈ [0, 2π]2 is stable under the dynamics governed by the total Hamiltonian
Htot =

∑

i ħhωi n̂i + H(Φ̂). This family of states corresponds to the image of the associated
adiabatic projector

P̂ν =
ˆ

dΦ |Φ〉 〈Φ| ⊗ |ψν(Φ)〉 〈ψν(Φ)| (31)

=
ˆ

dΦ |Φ〉 〈Φ| ⊗πν(Φ). (32)

We first construct the family of adiabatic projectors of the two-level systemπν(Φ) = |ψν(Φ)〉 〈ψν(Φ)|.
As detailed in appendix A.1, for an arbitrary state |ψ〉 of the fast quantum degree of freedom,
the phase eigenstates evolve according to

exp
�

−iĤtot t/ħh
�

(|Φ〉 ⊗ |ψ〉) = |Φ−ωt〉 ⊗ U(t;Φ) |ψ〉 (33)

with U(t;Φ) the time evolution operator associated to the Floquet Hamiltonian H(Φ−ωt).
Thus the previous family of states is stable if the projectors πν(Φ) satisfy

U(t;Φ)πν(Φ)U(t;Φ)
† = πν(Φ−ωt) , (34)

or equivalently −iħhω · ∇Φπν(Φ) = [H(Φ),πν(Φ)]. This equation can be solved perturbatively,
assuming that the eigenstates evolve slowly. Similarly to [81], we rescale all the frequencies by
a dimensionless parameter ε: ω→ εω. We search a projector πν(Φ) expressed a formal series
of ε

πν(Φ) =
∑

k

εkπν,k(Φ) = πν,0(Φ) + επν,1(Φ) + . . . (35)

solution of the equations

−iεħhω · ∇Φπν(Φ) = [H(Φ),πν(Φ)] (36)

πν(Φ)
2 = πν(Φ) . (37)

Such a solution exists as an asymptotic series in ε [62,63,82].
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We detail the determination of the two first terms. The conditions (36) and (37) give for
the order 0

[H(Φ),πν,0(Φ)] = 0 (38)

πν,0(Φ)
2 = πν,0(Φ) (39)

which are satisfied for a family of projectors πν,0(Φ) =
�

�ψ0
ν(Φ)

� 


ψ0
ν(Φ)

�

� on eigenstates
�

�ψ0
ν(Φ)

�

of H(Φ) associated to the eigen-energy E0
ν(Φ), H(Φ)

�

�ψ0
ν(Φ)

�

= E0
ν(Φ)

�

�ψ0
ν(Φ)

�

. At order 1, the
conditions (36) and (37) read

[H(Φ),πν,1(Φ)] = iħhω · ∇Φπν,0(Φ) (40)

πν,1(Φ) = πν,1(Φ)πν,0(Φ) +πν,0(Φ)πν,1(Φ). (41)

When the eigenstate
�

�ψ0
ν(Φ)

�

is non-degenerate for all Φ ∈ [0,2π]2, these equations are
satisfied for

πν,1(Φ) =
∑

µ̸=ν

�

�

�ψ0
µ(Φ)

¶

∑

i ħhωiA
0
µν,i(Φ)

E0
µ(Φ)− E0

ν(Φ)




ψ0
ν(Φ)

�

�+ h.c. (42)

with A0
µν,i(Φ) = i

¬

ψ0
µ(Φ)

�

�

�∂φi
ψ0
ν(Φ)

¶

the components of the non-abelian Berry connection of

the eigenstates. Thus the adiabatic state at order 1 decomposes on the eigenstates similarly to
the usual time dependent perturbation theory

|ψν(Φ)〉=
�

�ψ0
ν(Φ)

�

+ ε
∑

µ ̸=ν

�
∑

i ħhωiA
0
µν,i(Φ)

E0
µ(Φ)− E0

ν(Φ)

�

�

�

�ψ0
µ(Φ)

¶

+O(ε2). (43)

B Adiabatic dynamics

We derive the time-evolution of each adiabatic component (11) of the initial state

|Ψν(t = 0)〉=
ˆ

d2Φ χν(Φ) |Φ〉 ⊗ |ψν(Φ)〉 . (44)

We first derive the time evolution of each phase component |Φ〉 ⊗ |ψν(Φ)〉. Then we derive the
evolution of the average number of quanta, and of the spreading of the number of quanta. We
show that due the linearity in N̂ of the rotor Hamiltonian we can express these observables
from the classical trajectories ni(t,Φ) [24] which are obtained in an hybrid classical-quantum
description of the qubit-mode coupling

ni(t,Φ) =
ˆ t

0
dt ′

 

1
ħh
∂ Eν
∂ φi
(Φ−ωt ′) +

∑

j

ω j Fν,i j(Φ−ωt ′)

!

, (45)

with the adiabatic energy function

Eν(Φ) = 〈ψν(Φ)|H(Φ) |ψν(Φ)〉 (46)

and dressed Berry curvature

Fν,i j(Φ) = i
¬

∂φi
ψν(Φ)

�

�

�∂φ j
ψν(Φ)

¶

− (i↔ j). (47)

24



SciPost Physics Submission

B.1 Time evolution of the qubit adiabatic states

In appendix A.2 we constructed the projectors πν(Φ) = |ψν(Φ)〉 〈ψν(Φ)| on the states of the
two-level system such that the image of the adiabatic projector P̂ν is stable under the dynamics.
As discussed in appendix A.2, such states |ψν(Φ)〉 have to satisfy

U(t;Φ) |ψν(Φ)〉= eiθν(t;Φ) |ψν(Φ−ωt)〉 (48)

with U(t;Φ) the time evolution operator associated to the time-dependent Hamiltonian H(Φ−ωt)
and with θν(t;Φ) a phase factor. We show that this phase factor is related to the Aharonov-
Anandan phase. By definition, the time evolution operator U(t;Φ) satisfies

iħh
d
dt

U(t;Φ) = H(Φ−ωt)U(t;Φ) (49)

such that (48) gives

1
iħh

H(Φ−ωt) |ψν(Φ−ωt)〉= i
∂ θν
∂ t
(t;Φ) |ψν(Φ−ωt)〉 −

∑

i

ωi

�

�∂φi
ψν(Φ−ωt)

�

. (50)

The phase factor θν(t;Φ) is then given by

θν(t;Φ) =
ˆ t

0
dt ′

�

−
1
ħh

Eν(Φ−ωt ′)−
∑

i

ωiAν,i(Φ−ωt ′)

�

(51)

with the energy function Eν (46) and the (generalized) Berry connection

Aν,i(Φ) = i



ψν(Φ)
�

�∂φi
ψν(Φ)

�

. (52)

B.2 Time evolution of the average number of quanta

From appendix B.1, the time evolution of the projected state (43) reads

|Ψν(t)〉=
ˆ

d2Φ χν(Φ)e
iθν(t;Φ) |Φ−ωt〉 ⊗ |ψν(Φ−ωt)〉 . (53)

with the phase factor θν(t;Φ) given by (51). The Ehrenfest theorem reads

d
dt
〈n̂i〉Ψν(t) =

1
iħh
〈[n̂i , Ĥtot]〉Ψν(t) (54)

where from the Hamiltonian (4) we have [n̂i , Ĥtot] = i ∂ H
∂ φi
(Φ̂) such that

d
dt
〈n̂i〉Ψν(t) =

ˆ
d2Φ
|χν(Φ)|2

Wν

1
ħh
〈ψν(Φ−ωt)|

∂ H
∂ φi
(Φ−ωt) |ψν(Φ−ωt)〉 (55)

with the normalization factor Wν = 〈Ψν(t)|Ψν(t)〉. The average value of the derivative of the
Hamiltonian can be written

〈ψν|
∂ H
∂ φi
|ψν〉=

∂

∂ φi
(〈ψν|H |ψν〉)−




∂φi
ψν
�

�H |ψν〉 − 〈ψν|H
�

�∂φi
ψν
�

(56)

where the dependence on Φ−ωt is implicit. The first term of this equation gives the term of
variation of energy Eν(Φ) (46). Using the expression (50) for H |ψν〉 and using the normaliza-
tion condition




∂φi
ψν
�

�ψν
�

= −



ψν
�

�∂φi
ψν
�

, we write the last two terms of (56) in terms of
the curvature Fν,i j(Φ) (47) such that we obtain the expression of the pumping rate

d
dt
〈n̂i〉Ψν(t) =

ˆ
d2Φ
|χν(Φ)|2

Wν

 

1
ħh
∂ Eν
∂ φi
(Φ−ωt) +

∑

j ̸=i

ω j Fν,i j(Φ−ωt)

!

. (57)
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As a result, the time evolution of the average number of quanta reduces to a statistical average
of the classical trajectories with respect to the (normalized) initial phase density |χν(Φ)|2/Wν

〈n̂i〉Ψν(t) = 〈n̂i〉Ψν(t=0) +
ˆ

d2Φ
|χν(Φ)|2

Wν

ni(t,Φ). (58)

B.3 Time evolution of the quantum fluctuations

We derive the time evolution of the quantum fluctuation, or spreading, of the modes’ number
of quanta in an adiabatic component |Ψν(t)〉 (11)

[∆n̂i(t)]
2 = 〈n̂2

i 〉Ψν(t) − 〈n̂i〉2Ψν(t). (59)

with 〈Ô〉Ψν(t) = 〈Ψν(t)| Ô |Ψν(t)〉/ 〈Ψν(t)|Ψν(t)〉. We note

ξν(t,Φ) = χν(Φ)e
iθν(t;Φ)/Wν (60)

the normalized wavefunction entering the time-evolved state (53). Using



φ′i

�

� n̂i |φi〉 = −i∂φi
δ(φ′i−φi),

we get after a few lines

〈n̂2
i 〉Ψν(t) =

ˆ
dΦ ξν(t,Φ)

∗
�

i
∂

∂ φi
+ Aν,i(Φ−ωt)

�2

ξν(t,Φ) +
ˆ

d2Φ |ξν(t,Φ)|2 gν,ii(Φ−ωt)

(61)

with gν,ii the quantum metric of the adiabatic states (18). Let us comment this equation. In a
single band approximation of Bloch oscillations, we ignore the rotation of the states |ψν(Φ)〉
such that we assume that ξν(t,Φ) is the wavefunction of the modes ignoring the role of the
projection P̂ν. The average value of n̂2

i is then given by (61) without the connection Aν,i
and the metric gν,ii. Here the first line corresponds to the average value of the projected
observable (P̂νn̂i P̂ν)2, where P̂νn̂i P̂ν reduces to a covariant derivative with the connection Aν,i
in the representation |Φ〉 ⊗ |ψν(Φ)〉. The second term involving the quantum metric originates
from the difference between the observables and the projected observables

P̂νn̂2
i P̂ν = (P̂νn̂i P̂ν)

2 + P̂νn̂i(1− P̂ν)n̂i P̂ν, (62)

such that we show 〈P̂νn̂i(1− P̂ν)n̂i P̂ν〉=
´

d2Φ|ξν(t,Φ)|2 gν,ii(Φ−ωt).
Let us express the time evolution (61) it terms of the classical trajectories ni(t,Φ) (45).

Using Aν,i(Φ−ωt)− Aν,i(Φ) =
´ t

0 dt ′
∑

jω j∂ jAν, j(Φ−ωt ′) and Fν,i j = ∂iAν, j − ∂ jAν,i, these
trajectories can be expressed in terms of the phase factor θν(t,Φ) (51) as

ni(t,Φ) = −
∂ θν
∂ φi
(Φ; t) + Aν,i(Φ−ωt)− Aν,i(Φ). (63)

After developing the time evolution (60) of the wavefunction ξν(t,Φ) we obtain

〈n̂2
i 〉Ψν(t) =

ˆ
d2Φ

Wν

χν(Φ)
∗
�

i
∂

∂ φi
+ Aν,i(Φ)

�2

χν(Φ) +
ˆ

d2Φ

Wν

|χν(Φ)|2ni(t,Φ)

+ 2
ˆ

d2Φ

Wν

Jν,i(Φ)ni(t,Φ) +
ˆ

d2Φ

Wν

|χν(Φ)|2 gν,ii(Φ−ωt) (64)

= 〈n̂2
i 〉Ψν(t=0) +

ˆ
d2Φ

Wν

|χν(Φ)|2ni(t,Φ) + 2
ˆ

d2Φ

Wν

Jν,i(Φ)ni(t,Φ)

+
ˆ

d2Φ

Wν

|χν(Φ)|2(gν,ii(Φ−ωt)− gν,ii(Φ)) (65)
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with the current density of the initial state

Jν,i =
i
2

�

χ∗ν
∂ χν
∂ φi
−χν

∂ χ∗ν
∂ φi

�

+ |χν|2Aν,i (66)

satisfying 〈n̂i〉Ψν(t=0) =
´

Jν,i(Φ)dΦ/Wν.
As a result, the time evolution of the spreading is given by the variance

Var|χν|2[ni(t,Φ)] =
ˆ

d2Φ
|χν(Φ)|2

Wν

ni(t,Φ)
2 −

�ˆ
d2Φ
|χν(Φ)|2

Wν

ni(t,Φ)

�2

(67)

of the classical trajectories and by two other terms:

[(∆n̂i)(t)]
2 =[(∆n̂i)(t = 0)]2 + Var|χν|2[ni(t,Φ)]

+
ˆ

dΦ
|χν(Φ)|2

Wν

�

gν,ii(Φ−ωt)− gν,ii(Φ)
�

+δCi(t), (68)

where δCi(t) is a bounded term taking the form of correlations between the classical trajecto-
ries ni(t,Φ) and a current density of the initial state Jν,i(Φ)

δCi(t) = 2
ˆ

d2Φ
Jν,i(Φ)

Wν

ni(t,Φ)− 2〈n̂i〉Ψν(t=0)

ˆ
d2Φ
|χν(Φ)|2

Wν

ni(t,Φ). (69)

Let us comment the result (68). As discussed above, the classical trajectories ni(t,Φ)
characterize the spreading of the projected observables P̂νn̂i P̂ν, and the quantum metric relates
the spreading of the projected and non-projected observables. Concerning Bloch oscillations
and Bloch breathing, the important feature of this quantum metric contribution is that it
is small compared to the initial value [(∆n̂i)(t = 0)]2 in the case of small ∆φ, and it is
vanishingly small at quasi-periods T . As discussed in appendix B.4, the quasi-periods are
defined such that Φ−ωT ≃ Φ. As a result, the quantum metric contribution vanishes at a
quasi-period. The last term δCi(t) has the same features. It is vanishingly small at quasi-
periods T since ni(T,Φ) ≃ 0. It is also small in the small ∆φ limit since it can be written as
classical correlations with respect to the density |χν(Φ)|2 between the function ∂iα(Φ)+Aν,i(Φ)
and ni(t,Φ), with α(Φ) the complex argument of χν(Φ)/Wν.

We thus recover the behaviors of Bloch oscillations and Bloch breathing discuss in Sec. 4.2:
the spreading of the cat component remains almost constant (∆n̂i)(t)≃ (∆n̂i)(t = 0) in the case
of localization in phase ∆φ≪ 1, and it refocuses at quasi-period T , (∆n̂i)(T )≃ (∆n̂i)(t = 0)
irrespective to the value of ∆φ.

B.4 Quasi-periods

We introduce the quasi-periods T at which the adiabatic components refocus (for example
T = ta, tc on Fig. 6(e)) Historically, Bloch oscillations were first considered in one dimen-
sion [68]. The electric field induces a constant increase of the Bloch momenta of a semiclassical
wavepacket, which crosses periodically the one dimensional Brillouin zone. As a consequence
the average position of the wavepacket oscillates periodically. In two dimensions, Bloch oscilla-
tions are richer. The Bloch momenta evolves on the two-dimensional Brillouin zone along the
direction of the electric field: Φ(t) = Φ0−ωt. Such an evolution is periodic for a commensurate
ratio between ω1 and ω2, corresponding to an electric field in a crystalline direction. Noting
ω1/ω2 = p1/p2 with p1 and p2 coprime integers, the trajectory of the Bloch momenta on the
two-dimensional Brillouin zone is periodic with period T = p12π/ω1 = p22π/ω2. In practice
any real number ω1/ω2 can be approximated by a set of rational numbers [25, 70]. Each
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rational approximation leads to a quasi period T for which Φ0−ωT ≃ Φ0. The times ta and tc
on Fig. 6 are two examples of these quasi-periods for our choice of ω1,ω2.

The periodicity of a trajectory on the Brillouin zone translates into a periodic motion in the
direction of the electric field nE but not in the transverse direction n⊥, even in the absence of
an anomalous velocity [71,83]. For an initial phase Φ0, the classical equations of motion in
adiabatic space ν written in rotated coordinates reads

nE(t,Φ
0) =

ˆ t

0

1
ħh
∂ Eν
∂ φE

(Φ(t ′))dt ′ , (70)

n⊥(t,Φ
0) =

ˆ t

0

�

1
ħh
∂ Eν
∂ φ⊥

(Φ(t ′))− |ω|Fν(Φ(t ′))
�

dt ′. (71)

where the evolution of the phase reads in the rotated phase coordinates: φE(t) = φ0
E
− |ω|t

and φ⊥(t) = φ0
⊥. The time integral can be rewritten as a line integral over φE, leading to

the conservation equation ħh|ω|nE(t,Φ0) = Eν(Φ0)− Eν(Φ(t)), which is vanishingly small at
a quasi-period T such that Φ(T )≃ Φ0. A quasi-period defines an almost closed trajectory on
the torus. The line integral of (71) does not vanish on this closed trajectory, and is set by
the topological drift n⊥(T,Φ0) ≃ −|ω|CνT/(2π). The approximation gets better for longer
quasi-periods T , i.e. large p1 and p2.

C Numerical method

For the numerical simulation, we diagonalize the Hamiltonian in (n1, n2) representation, where
eiφ̂i |ni〉= |ni − 1〉, with the truncation −59≤ n1 ≤ 59 and −52≤ n2 ≤ 52. We keep only the
positions (n1, n2) in an rectangle oriented along the directions n⊥ and nE (8), corresponding to

|nE|=
1

q

ω2
1 +ω

2
2

|ω1n1 +ω2n2| ≤ 30 (72)

|n⊥|=
1

q

ω2
1 +ω

2
2

| −ω2n1 +ω1n2| ≤ 50 (73)

with ω2/ω1 = (1+
p

5)/2. We use open boundary conditions.
We construct numerically the adiabatic projector up to order 1 in the adiabatic parameter ε.

The adiabatic projector P̂ν is defined by an asymptotic series in the formal dimensionless
parameter ε

P̂ν =
∞
∑

r=0

εr P̂ν,r = P̂ν,0 + εP̂ν,1 + . . . (74)

such that

[Ĥtot, P̂ν] = 0 (75)

P̂ν P̂ν = P̂ν (76)

with
Ĥtot = H(φ̂1, φ̂2) + ε(ω1n̂1 +ω2n̂2). (77)

We use the half-BHZ model for the qubit (5) with the gap parameter ∆= 2. The maximum on
(φ1,φ2) of the ground state energy of H(φ1,φ2) for these values of parameters is E0

−,max = −1,
and the minimum of excited state energy is E0

+,min = 1.
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At order 0, P̂ν is a spectral projector of the Hamiltonian H(φ̂1, φ̂2). We diagonalize numeri-
cally the Hamiltonian at zero frequency H(φ̂1, φ̂2) in the truncated Hilbert space

H(φ̂1, φ̂2)
�

�Ψ0
k

�

= E0
k

�

�Ψ0
k

�

. (78)

The projector at order 0 is the projector on the states of the ground band, i.e. on the states
such that Ek < E0

−,max

P̂−,0 =
∑

k
Ek<E0

−,max

�

�Ψ0
k

� 


Ψ0
k

�

� (79)

Note that we do not take into account the edge states whose energy lie in the gap for the
construction of the projectors.

The conditions (75) and (76) translates in recursive conditions for the different orders P̂ν,r
of the projector

P̂ν,r =
r
∑

s=0

P̂ν,s P̂ν,r−s (80)

[H(Φ̂), P̂ν,r] = [P̂ν,r−1,ħhω · N̂] (81)

from which we can deduce order by order the expression of P̂ν,r in the basis of
�

�Ψ0
k

�

. At order 1
we obtain

P̂−,1 =
∑

k,l
Ek<E0

−,max

El>E0
+,min

�

�Ψ0
k

�




Ψ0
k

�

�ħhω · N̂
�

�Ψ0
l

�

E0
k − E0

l




Ψ0
l

�

�+ h.c. (82)

which can be constructed numerically.

D Difference between eigenstates and adiabatic states

We show that after the time of separation tsep, the cat component which splits in the direc-
tion n⊥ < n0

⊥ identifies with the adiabatic component P̂− |Ψ(t)〉 of the total state. The adiabatic
projector P̂− is constructed from the qubit’s adiabatic states |ψ−(Φ)〉 (9). It is a perturbative
correction of the spectral projector of the qubit Hamiltonian H(Φ̂) constructed from the eigen-
states

�

�ψ0
−(Φ)

�

. This enables us to quantify the difference between eigenstates and adiabatic
states.

We note P̂< the projector on the states |n1〉⊗|n2〉⊗|s〉 with n⊥ = (−ω2n1+ω1n2)/|ω|< n0
⊥,

s =↑z ,↓z, and |Ψ<(t)〉 = P̂< |Ψ(t)〉 the component of the system on this region n⊥ < n0
⊥.

The adiabatic projector P̂− is constructed numerically at order 0 P̂(0)− = P̂−,0 and at order 1

P̂(1)− = P̂−,0+P̂−,1 from the expressions (79) and (82). We note respectively
�

�Ψ0
−(t)

�

= P̂(0)− |Ψ(t)〉
and

�

�Ψ1
−(t)

�

= P̂(1)− |Ψ(t)〉 the adiabatic projections respectively at order 0 and order 1 of the
total state |Ψ(t)〉.

We note F(Ψ1,Ψ2) = 〈Ψ1|Ψ2〉/(〈Ψ1|Ψ1〉 〈Ψ2|Ψ2〉) the fidelity between two states |Ψ1〉 and |Ψ2〉.
The figure 7(a) represents the fidelity F(Ψ<,Ψ0

−) and F(Ψ<,Ψ1
−) between the cat compo-

nent |Ψ<(t)〉 and the adiabatic projections at order 0 and order 1. After the time of separa-
tion tsep ≃ 8, the cat component has a fidelity of approximately 99.5% with

�

�Ψ0
−(t)

�

and 99.9%
with

�

�Ψ1
−(t)

�

. The adiabatic projection at order 0 gives a very good approximation of the cat
component, corrected at higher orders to gives the full adiabatic component |Ψ−(t)〉. The
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Figure 7: Difference between ground projection and adiabatic projection. (a) Fidelity
F(Ψ<,Ψ0

−) and F(Ψ<,Ψ1
−) between the cat component |Ψ<(t)〉 and the adiabatic pro-

jections at order 0 and order 1 |Ψ0/1
− (t)〉. After the time of separation tsep ≃ 8, the cat

component |Ψ<(t)〉 is very close to the lowest order adiabatic approximation
�

�Ψ0
−(t)

�

with a fidelity of 99.5%. The fidelity further increases with the adiabatic projection of
order 1, such that |Ψ<(t)〉 identifies with |Ψ−(t)〉. (b) Effect of the difference between
eigenstates and adiabatic states on the weight of the cat. Initial state of the Fig. 4(c)
with the qubit prepared in (|↑〉+ |↓〉)/

p
2. In blue, weight W− of the cat computed

dynamically from the splitting (same as Fig. 4(c)). In orange, weight W 0
− =




Ψ0
−

�

�Ψ0
−

�

computed from the spectral projector P̂(0)− . In green, weight W 1
− =




Ψ1
−

�

�Ψ1
−

�

from the
projector at order 1, which almost identifies with the weight obtained dynamically.

slight decrease with time of the fidelity after the time of separation is due to the successive
Landau-Zener transitions.

The difference between the adiabatic projector P̂− and the spectral projector P̂(0)− is also
visible in the weight of the cat state. We represent on Fig. 7(b) the weight of the adiabatic
projection computed dynamically from the splitting W− =




Ψ<(tsep)
�

�Ψ<(tsep)
�

, and the weight
W 0
− =




Ψ0
−

�

�Ψ0
−

�

and W 1
− =




Ψ1
−

�

�Ψ1
−

�

computed numerically from the projection of the initial state
respectively at order 0 and order 1. The initial state is a Gaussian state centered on Φ0 = (0, 0)
and the qubit in (|↑〉+ |↓〉)/

p
2. The first order correction W 1

− almost identifies with the weight
obtained dynamically W−.

E Symmetric cat states

E.1 Two types of symmetric cat states

Following the analysis of Sec. 3.3, we can identify two types of separable initial states that give
rise to symmetric cat states with W+ = W− =

1
2 . The first class is obtained by preparing the

qubit orthogonally to the average adiabatic state b̄±. For our initial phase Φ0, the average of
eigenstates b̄0

− =
´

d2Φ |χ(Φ)|2b0
−(Φ) lies on the z-axis for all∆φ by symmetry of the model (5)

(see Fig. 8(a)). The adiabatic state are perturbatively close to the eigenstates, such that b̄± is
perturbatively closed to the z-axis. Hence a qubit prepared on the equator of the Bloch sphere
(θq = π/2 on Fig. 8(a)) corresponds to two almost equal weights for all ∆φ, see Fig. 8(c). The
deviation from W− = 1/2 at θq = π/2 originates from the difference between the eigenstates
and the adiabatic states detailed in appendix D.
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Figure 8: Two types of preparation of the qubit and the modes inducing a symmetric
adiabatic cat states W± = 1/2. (a) Q the qubit initial state parametrized by its
longitudinal angle θq. ∆φ the width in phase of the initial Gaussian state, and b̄0

−
the corresponding average ground state (perturbatively close to the average adiabatic
state b̄− of Fig. 4). (b) For ∆φ = 0.38π the density adiabatic states cover almost
uniformly the Bloch sphere (in green), inducing an almost vanishing average adiabatic
state b̄− ≃ 0. (c) First type of symmetric cat state obtained by preparing the qubit Q
orthogonally to b̄− (θq ≃ π/2). Second type of symmetric cat state when b̄− = 0,
obtained with ∆φ ≃ 0.38π irrespective of the qubit state Q.

The second class of symmetric cat states is obtained for well-chosen Gaussian states of the
modes, for which b̄± = 0. In such case, W± = 1/2 for any initial state of the qubit. Let us
illustrate this case. For ∆φ = 0.38π, the density adiabatic states cover almost uniformly the
Bloch sphere (in green on Fig. 8), inducing an almost vanishing average adiabatic state b̄− ≃ 0.
Thus, the cat has (almost equal) weights W+ = W− independently of the initial state of the
qubit θq (Fig. 8(c) green curve).

E.2 Purity from initial Fock state

We illustrate the role of the phase densities in the entanglement between the qubit and the
modes in the cat components |Ψ±(t)〉 for a quasi-Fock initial state ∆φ = π. The qubit is
initialized in θq = π/2, inducing a symmetric cat as discussed in the previous section.

Given (20) the reduced density matrix of the qubit corresponds to an average of adiabatic
states with respect to translated phase densities |χ±(Φ+ωt)|2. From (11), the densities of the
two components satisfy

|χ+(Φ+ωt)|2 + |χ−(Φ+ωt)|2 = |χ(Φ+ωt)|2. (83)

Hence they split the phase density of the total system |χ(Φ+ωt)|2 in two complementary
supports.

We represent these densities on Fig. 9 at t = t3 and t = t4 (see Fig. 5(b1)). The densities
on the torus translate into densities of adiabatic states on the Bloch sphere via the map
Φ 7→ b±(Φ). At t = t3, |χ−(Φ +ωt3)|2 covers a smaller part of the Bloch sphere (in blue
on Fig. 9(a)) than |χ+(Φ +ωt3)|2 (in orange on Fig. 9(b)). As a result, the qubit is more
entangled with the modes in |Ψ+(t3)〉 than in |Ψ−(t3)〉: |Q+(t3)| < |Q−(t3)|. During the
dynamics, the phase densities are translated on the torus with no dispersion, changing the
densities on the Bloch sphere and the purity of the qubit. At t = t4, the domains have
been almost exchanged |χ−(Φ+ωt4)|2 ≃ |χ+(Φ+ωt3)|2, such that Q−(t4) ≃ −Q+(t3) and
Q+(t4)≃ −Q−(t3).
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Figure 9: Phase densities |χ±(Φ+ωt)|2 of the cat components |Ψ±(t)〉 translated
to densities of adiabatic states on the Bloch sphere via the map Φ 7→ b±(Φ). The
polarization of the qubit Q±(t) is the average of adiabatic states with respect to these
densities.

For all the figures of the manuscript, the densities are computed from the eigenstates
�

�ψ0
−(Φ)

�

, providing a qualitatively accurate illustration of the densities of adiabatic states
|ψ−(Φ)〉.
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