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Abstract

In a recent numerical study [1] it was shown that signatures of proximate quantum
critical points can be observed at early and intermediate times after certain quantum
quenches. Said work focused mainly on the case of the axial next-nearest neighbour
Ising (ANNNI) model. Here we construct a simple time-dependent mean-field theory that
allows us to obtain a quantitatively accurate description of these quenches at short times
and a surprisingly good approximation to the thermalization dynamics at late times. Our
approach provides a simple framework for understanding the reported numerical results
as well as fundamental limitations on detecting quantum critical points through quench
dynamics. We moreover explain the origin of the peculiar oscillatory behaviour seen in
various observables as arising from the formation of a long-lived bound state.
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1 Introduction

Quantum phase transitions (QPT) provide a key framework for our understanding of equi-
librium phases of correlated quantum matter [2]. More recently physical properties in the
vicinity of quantum critical points in out-of-equilibrium settings have been investigated theo-
retically [3–5] and in ultra-cold atom experiments [6–9]. An interesting question that has been
raised is whether it is possible to detect the location of QPTs, and associated physical proper-
ties, through the dynamics at short and intermediate times after a quantum quench [1,10–14].
In Ref. [1] Haldar et al proposed a set of generalized susceptibilities that quantify the sensitiv-
ity of the time evolution and stationary values of local observables to changes in the quench
protocol. Based on numerical studies in the axial next-nearest neighbour Ising model (ANNNI)
the authors concluded that such susceptibilities can indeed provide signatures of a proximate
QPT not only in the stationary regime but already at short/intermediate times. An important
question is how general this approach is, and what its limitations are. In order to address these
issues we show that the findings of Ref. [1] for the ANNNI model can be understood in terms
of a simple (time-dependent) mean-field theory. This approach provides a clear insight into
the window of applicability of any approach using generalized susceptibilities to search for the
location of critical points. En route we clarify the origin of interesting oscillatory behaviours
of local observables observed in Ref. [1].

The outline of this paper is as follows. In Section 2 we introduce the ANNNI model and
describe the quench protocol we consider. In Section 3 we then construct a mean-field de-
scription of the stationary state under the assumption that the system thermalizes. In Section
4 we construct a time-dependent self-consistent mean-field description of the time evolution.
Within this approximation the density matrix is Gaussian at all times and Wick’s theorem may
be employed to calculate any correlation function. This method is expected to be quantita-
tively accurate for short times as long as the initial state is itself Gaussian. In Section 5 we show
that non-equal time correlation functions are easily accessible with this method and use it to
compute the transverse component of the generalized dynamical structure factor following a
quench in the ANNNI, demonstrating that this object contains information about the spectrum
of the post-quench Hamiltonian.

2 Definition of the model and quench protocol

The ANNNI model is a well studied non-integrable model with competing interactions, see
e.g. [15–18]. The model consists of a transverse-field Ising model with an additional next-
nearest neighbour Ising exchange, which we take to have the opposite sign to the nearest-
neighbour Ising interaction

H(h,κ) = −J
L
∑

i

σx
i σ

x
i+1 − h
∑

i

σz
i +κ

L
∑

i

σx
i σ

x
i+2 . (1)

Here σαj are the usual Pauli matrices on sites j of a ring of circumference L. The Hamilto-
nian (1) can be mapped to a model of spinless lattice fermions by means of a Jordan-Wigner
transformation [19]. As we adopt periodic boundary conditions for the spins the fermions
must obey either anti-periodic (Neveu-Schwarz) or periodic (Ramond) boundary conditions
depending on whether the fermion number is even or odd, see e.g. Appendix A of [20]. For
our purposes it is sufficient to work in the Neveu-Schwarz sector for even system sizes L. The
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Hamiltonian then reads

H(h,κ) =− J
∑

j

�

c†
j c j+1 + c†

j c
†
j+1 + h.c.
�

+ κ
∑

j

(c†
j c j+2 + c†

j c
†
j+2 + h.c.) + 2h

∑

j

c†
j c j

+ 2κ
∑

j

�

c j c
†
j+1c j+1c†

j+2 − c†
j c

†
j+1c j+1c†

j+2 + h.c.
�

. (2)

The next-nearest neighbour spin-spin interaction is seen to give rise to a quartic interaction
amongst the fermions, making the model non-integrable. The Hamiltonian (1) has a global
Z2⊗Z2 symmetry corresponding to rotations around the z-axis by π – which is broken sponta-
neously in the ferromagnetic phase – and site parity σαn 7→ σ

α
−n. The latter remains unbroken

in the situations we consider and enforces t i j ≡ 〈c
†
i c j 〉 = t ji ∈R (see Appendix A), while the

former translates into fermion number parity.
The ground state phase diagram of the ANNNI model for κ < 0.5 is shown in Fig. 1 [16,21–

23]. At κ = 0 the model (1) reduces to the transverse field Ising model (TFIM) and is exactly
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Figure 1: Ground state phase diagram of the ANNNI model for 0 < κ/J < 1/2 - the
solid curve is the boundary obtained by second order perturbation theory (3), red
triangles indicate the critical points found by our self-consistent mean-field theory at
select fields. There exist other phases at κ > J/2.

solvable as it is quadratic in fermions [2,19]. For κ > 0 a second order phase transition in the
Ising universality class separates a ferromagnetically ordered phase from a paramagnetic one.
For κ < J/2 and small values of h the locus of the critical line can be determined by second
order perturbation theory, which yields [15]

J − 2κc = hc −
1

2J

κch
2
c

J − κc
. (3)

In terms of the spins the transition is characterized by the order parameter 〈σx
j 〉 taking a non-

zero value in the ferromagnetic phase. In terms of the fermions this is a non-local (string)
operator and the transition is topological [24]. Our analysis of quench dynamics close to
quantum critical points in one dimension therefore pertains to both topological transitions
and conventional transitions with local order parameters. Moreover, our mean-field analysis
developed below is exact along the line κ = 0 and correctly accounts for the symmetry and
critical exponents of the Ising transition for κ > 0. Hence it is expected to give a quantitatively
accurate description of the ANNNI model in the region h≈ J and κ≈ 0.
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In what follows we consider quantum quenches from initial thermal states of the TFIM
with transverse field hi and inverse temperature β , i.e. our initial density matrix is

ρ(t = 0) =
exp
�

− βH(hi , 0)
�

Trexp
�

− βH(hi , 0)
� . (4)

Including thermal states at finite temperatures rather than only ground states is useful as it
allows us to tune the energy density of the stationary state reached at late times in a simple
manner. We then consider the time evolution induced by the ANNNI Hamiltonian H(h f ,κ),
i.e.

ρ(t > 0) = e−iH(h f ,κ)tρ(t = 0)eiH(h f ,κ)t . (5)

We will restrict ourselves to the case hi = h f ≡ h and quenches with κ < J/2. To simplify
notations we also set J = 1. As the ANNNI model is non-integrable when both h and κ are
non-zero we expect the model to thermalize [4,25], i.e. in the thermodynamic limit the system
should locally relax to a thermal stationary state described by an effective temperature that is
set by the energy density of the initial state

e0 = lim
L→∞

1
L

Tr
�

ρ(t = 0)H(h f ,κ)
�

. (6)

In our setup the correlation length typically starts off small as a result of a large pre-quench
gap, while at late times the system settles into a thermal state at a low effective temperature in
the vicinity of a quantum critical point. Hence the correlation length in the stationary state is
typically much larger than in the initial state. Intuitively therefore the physics should be that
of a system whose correlation length grows following the quench.

3 Mean-field theory for the Stationary State

Since the ANNNI model is believed to thermalize and has no local conservation laws other
than the total energy, we expect local observables O to reach their Gibbs ensemble values at
late times after a quantum quench

〈O〉(t) t=∞
−→ Z−1Tr[e−β f H(h f ,κ)O] . (7)

Here Z is the partition function and β f the inverse effective temperature, set by the initial
energy density (6) generated by the quench protocol. For sufficiently small values of κ this
thermal state should be amenable to a description in terms of a simple self-consistent mean-
field theory of spinless fermions

Z−1Tr[e−β f HO]≈ Z−1
MFTTr[e−βMFTHMFTO] , (8)

where

HMFT =
∑

i

2
∑

a=0

¦

J (a)Eff (c
†
i ci+a + hc) + (∆(a)Eff c†

i c†
i+a + hc)
©

+ E0 . (9)

This mean-field theory is the result of requiring that Wick’s theorem holds, or equivalently
that higher cumulants vanish. The effective couplings J (a)Eff and ∆(a)Eff and the constant E0 are
generated by decoupling the quartic interaction terms self-consistently via

ABC D 7→ 〈AB〉MFTC D+ AB〈C D〉MFT − 〈AB〉MFT〈C D〉MFT + all other Wick contractions , (10)
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where
〈O〉MFT ≡ Z−1

MFTTr[e−βMFTHMFTO] . (11)

Defining the (self-consistent) expectation values

ta ≡ 〈c
†
j c j+a〉MFT , a = 0,1, 2 ,

∆b ≡ 〈c
†
j c

†
j+b〉MFT , b = 1,2 , (12)

we have

J (0)eff = h− 2κ(t2 +Re∆2) ,

J (1)eff = −(J − 4κ(t1 +Re∆1)) , ∆(1)eff = −(J − 4κ(t1 +∆∗1)) ,

J (2)eff = κ(1− 2t0) , ∆
(2)
eff = κ(1− 2t0) ,

E0 = −hL − 4Lκ(|∆1|2 + t2
1 − t0 t2 + 2Re∆1 t1 −Re∆2 t0) .

(13)

In order to fully specify our self-consistent mean-field theory we require the self-consistent
values of the five mean-fields as well as the value of the inverse effective temperature βMFT,
which is fixed by the condition that the energy density in the stationary state is the same as in
the initial state (6), i.e.

e0 = lim
L→∞

〈HMFT〉MFT

L
. (14)

The various self-consistency equations are most easily solved in momentum space. As
stated above it is sufficient to work in the Neveu-Schwarz sector for even system sizes L, so
that

ck ≡
1
p

L

∑

m

eikmcm , k ∈
§

2π
n+ 1/2

L
, n= −

L
2

, . . . ,
L
2
− 1
ª

. (15)

The mean-field Hamiltonian then becomes

HMFT =
∑

k>0

Ak(c
†
kck − c†

−kc−k) + iBk(c
†
kc†
−k)− iB∗k(c−kck) + const ,

Ak = 2
2
∑

a=0

J (a)eff cos ak , Bk = 2
2
∑

a=1

∆
(a)
eff sin ak . (16)

We remark that in equilibrium not just the ta but also the ∆b are in fact real despite the
absence of a unitary symmetry enforcing this, see Appendix A. This in turn makes it possible
to diagonalize the Hamiltonian by a one-parameter Bogoliubov transformation

bκ(k) = cos
θκ(k)

2
c(k)− i sin

θκ(k)
2

c†(−k) , eiθκ(k) =
Ak − iBk
q

A2
k + B2

k

, (17)

which gives 1

HMFT =
∑

k>0

ϵκ(k)b
†
κ(k)bκ(k) + const , ϵκ(k) =

Ç

A2
k + |Bk|2. (18)

The self-consistency conditions on the mean-fields are given by calculating the expectation
values using (11)

ta =
1
L

∑

k

e−iak〈c†
kck〉MFT =

1
L

∑

k>0

cos ak
�

1− cosθκ(k) tanh
βMFTϵκ(k)

2

�

, (19)

∆a =
1
L

∑

k

e−iak〈c†
kc†
−k〉MFT =

1
L

∑

k>0

sin ak sinθκ(k) tanh
βMFTϵκ(k)

2
, (20)

1Here we write |Bk|2 which gives the correct dispersion for complex Bk, as it will be out-of-equilibrium, although
the form of the required canonical transformation in (17) will be more complicated.
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while the equation fixing the effective temperature (6) takes the form

4κ
�

(t1 +∆1)
2 − (t0 − 1/2)(t2 +∆2)

�

κ=0 + h−
1
L

∑

k>0

ϵκ=0(k) tanh
βiϵκ=0(k)

2

= E0 + J (0)Eff −
1
L

∑

k>0

ϵκ(k) tanh
βMFTϵ(k)

2
. (21)

The initial energy density given by the left hand side of (21) is a constant for fixed values
of κ, h, however the right-hand side depends upon the values of the mean-fields and thus this
equation must be solved self-consistently along with the other conditions on the mean-fields.

Eqs (19)-(21) need to be solved numerically, where the Bogoliubov angles are defined by
Eq (17) and Eq (13). The solutions can be directly compared to numerical results obtained
in Ref. [1] via a numerical linked cluster expansion [26,27]. In Fig. 2 we plot the mean-field
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Figure 2: (a) C x
1 = 2(t1+∆2) in the thermal state reached at late times after a quench

from the TFIM ground state at h = 0.2 as a function of κ. The solid blue line is the
result obtained from our self-consistent mean-field theory and the dashed black line
shows numerical linked cluster expansion (NLCE) results extracted from [1]. (b)
Same comparison as (a) but for χ1 = ∂κC x

1 (κ). The vertical lines indicate κc .

results for the longitudinal nearest-neighbour correlator

C x
1 ≡ 〈σ

x
i σ

x
i+1〉= 2(t1 +Re∆1) , (22)

in the (thermal) steady state following a quench from the ground state of the TFIM with h= 0.2
along with the susceptibility dC x

1 /dκ defined using an ensemble of quenches. We see that the
agreement of our mean-field analysis with the numerical results of Ref. [1] is excellent up to
fairly large values of κ. We observe similarly good agreement with the transverse magneti-
zation mz ≡ 〈σz

j 〉 and the next-nearest neighbour longitudinal correlator C x
2 ≡ 〈σ

x
i σ

x
i+2〉. In

Fig. 3 we compare the self-consistent inverse temperature βMFT to numerical results of Ref. [1].
We observe excellent agreement essentially over the full range of κ considered.

Given the good agreement with state-of-the-art numerical results we conclude that our self-
consistent fermionic mean-field theory provides a good description of the steady state reached
at late times after the quenches considered.

3.1 Scaling regime at finite energy densities

The key objective of Ref. [1] was to establish that quantum quenches can be used to locate
the positions of quantum phase transitions in some parameter space. An important question
is to what extent the observed signatures are indeed associated with the scaling behaviour
induced by the proximate quantum critical point. To answer this question by purely numerical
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Figure 3: Comparison of T = β−1
MFT to effective temperatures reported in [1]. The

dashed black curve shows the NLCE results reported in Fig. 8 of [1], while the blue
data points are the values found by our self-consistent mean-field theory. The vertical
line indicates κc .

methods would require the analysis of the long-distance behaviour of correlation functions or
entanglement entropies of large sub-systems, in order to ascertain whether they display scaling
behaviour characteristic of the proximate quantum critical point. Our mean-field theory gives
us a much simpler way of answering this question: as the field theory describing the quantum
critical point is a gapless relativistic Majorana fermion the scaling regime extends at most to
energies per particle at which the mean-field dispersion is still to a good approximation linear.
These considerations set an energy cut-off for the field theory. In Fig. 4 we plot the mean-field
dispersion relation (18) and compare it to the respective effective temperatures. We see from

-π 0 π
0

1

2

3

4

k

ϵ
(k
)

(a) h=0.2 (b) h=0.5 (c) h=0.8 (d) h=0.9

Figure 4: Effective dispersion relations in the steady state following a quench with (a)
h = 0.2, κ = 0.407 ≈ κc , (b) h = 0.5, κ = 0.269 ≈ κc , (c) h = 0.8, κ = 0.114 ≈ κc ,
(d) h = 0.9, κ = 0.058 ≈ κc . The black horizontal line is the effective temperature
T = β−1

MFT. The dashed black line is a fit to ϵfit(k) =
q

ϵκ(0)2 + v2
fitk

2 and the gray
shaded region indicates the regime of energy densities where spectral non-linearities
become significant and corrections to scaling limit behaviour can no longer be ex-
pected to be negligible.

Fig. 4(c,d) that when h is close to 1 and κ small, the scale over which the dispersion is linear
is much larger than the effective temperature. This implies that for these quenches the steady
state is in fact in the scaling regime of the Ising transition and properties of the underlying
quantum critical point are readily accessible.

By contrast in Fig. 4(a,b) we show the mean-field dispersion relation (18) in the steady
state for quenches with small h and large κ can be fitted with a relativistic dispersion only for
a small energy window. Here the scale over which the Majorana dispersion is linear is very
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small and of the same order of magnitude as the effective temperature. This means that for
these quenches the steady state is outside the scaling regime of the Ising transition, and so we
can’t actually glean any useful information about the underlying quantum critical point using
quench dynamics.

We expect the fact that the cut-off decreases for smaller values of h to be an accurate
prediction of the mean-field theory presented here in light of the good agreement with the
numerics seen in Fig. 2. The point that the energy density needs to be sufficiently below the
cut-off scale of the quantum critical point one is trying to probe is of course both obvious and
very general.

4 Self-consistent time-dependent mean-field theory (SCTDMFT)

Following Refs [28–34]we now turn to the dynamics after our quantum quenches in the frame-
work of a self-consistent time-dependent Gaussian approximation. This amounts to consider-
ing time evolution with a time-dependent mean-field Hamiltonian

HMFT(t) =
∑

i

2
∑

a=0

¦

J (a)Eff (t)(c
†
i ci+a + hc) + (∆(a)Eff (t)c

†
i c†

i+a + hc)
©

+ E0(t) , (23)

where the time-dependent couplings are given by the time-dependent analogs of (13), i.e.

ta(t) = Tr
�

ρMFT(t)c
†
j c j+a

�

, a = 0, 1,2 ,

∆b(t) = Tr
�

ρMFT(t)c
†
j c

†
j+b

�

, b = 1, 2 ,

ρMFT(t) =
¦

T e−i
∫ t

0 HMFT(t ′)dt ′
©

ρ(t = 0)
¦

T e−i
∫ t

0 HMFT(t ′)dt ′
©†

. (24)

Here T denotes time ordering; the initial density matrix ρ(t = 0) (4) is by construction Gaus-
sian and concomitantly so is ρMFT(t). This is the essence of the SCTDMFT, which by construc-
tion is expected to work best at short times. This is because it is based on the assumption that
all higher cumulants vanish, which is strictly true at time t = 0. At short times the higher
cumulants will become non-zero, but their growth is expected to be slow for small κ. At late
times SCTDMFT is not expected to work well in general [35,36] and in some models is known
to describe relaxation towards a “prethermalization plateau” [37–39] rather than thermaliza-
tion. However, as we will see, it works reasonably well even at late times for some of the
quenches considered here.

As a consequence of the translation invariance of the problem the time-evolved Gaussian
density matrix ρMFT(t) is fully characterised by the two momentum space two-point averages

t̃k(t) = Tr
�

ρMFT(t) c†
kck

�

, ∆̃k(t) = Tr
�

ρMFT(t) c†
kc†
−k

�

. (25)

The self-consistent equations of motion for these k space two-point functions can be obtained
using the Heisenberg equations of motion associated to the (now time-dependent) analog of
the momentum space Hamiltonian (16). The result is

d∆̃k(t)
dt

=2iAk(t)∆̃k(t) + B∗k
�

1− 2 t̃k(t)
�

d t̃k(t)
dt

=2Re
�

Bk(t)∆̃k(t)
�

, (26)

where

Ak = 2
2
∑

a=0

J (a)eff (t) cos ak , Bk = 2
2
∑

b=1

∆
(b)
eff (t) sin ak . (27)
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We now integrate the equations (26) using a second-order midpoint scheme with a timestep
of 10−3, which we choose to ensure that the mean-fields are converged with respect to the
timestep. At each timestep we must update the real space mean-fields ta and ∆b using t̃k and
∆̃k

ta =
1
L

∑

k

t̃k(t)e
−ika , ∆b =

1
L

∑

k

∆̃k(t)e
−ikb . (28)

Physical quantities such as spin-spin correlation functions can then be calculated in terms of
(sums of products of) the fermionic two-point functions.

κ=0.30 κ=0.35 κ=0.40

0 5 10 15 20 25

0.90

0.92

0.94

0.96

0.98

1.00

C
1x

t

Figure 5: Comparison of SCTDMFT results for C x
1 (t) to iTEBD results taken from [1]

for a quench from the ground state at h = 0.2,κ = 0 to κ > 0. Here the solid
lines are SCTDMFT results for L = 2000 and the dashed lines in the respective color
are iTEBD. The agreement is seen to be very good except for near the critical point
(κc ≈ 0.407).

4.1 Short and intermediate-time behaviour of local correlation functions

In Fig. 5 we compare the results of the above SCTDMFT approximation to iTEBD results taken
from [1], which are believed to be essentially numerically exact. For small values of κ com-
pared to the critical value κc we find excellent agreement over the entire time range accessible
to iTEBD. For larger values of κ the agreement is still very good at short times, but gets worse
at late times.

While Ref. [1] focused on spin correlations, the time evolution of the fermionic two-point
functions is of interest as well, in particular in relation to the question of detecting topological
transitions by quench dynamics. In Fig. 6 we present results obtained by SCTDMFT for t1(t)
and Re(∆1(t)) following quenches from the ground state of H(h,κ = 0) with h = 0.2,0.8 to
κ= 0.05,0.20. We observe the following:

• For quenches with small transverse fields h there are persistent oscillations around a
constant value, which is in good agreement with the corresponding expectation value
after thermalization.

• For quenches at large fields h there are no long-lived oscillations. Instead the expectation
values relax to stationary values that differ from the ones predicted by thermalization
by an amount that scales at O(κ2). This is expected by virtue of the perturbative nature
of the mean-field approximation.

An explanation of the oscillatory behaviour is provided below in section 4.3.
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Figure 6: Nearest neighbour fermion two-point functions t1(t), Re∆1(t) after
quenches from the ground state of H(h,κ = 0) with h = 0.2 and h = 0.8 to H(h,κ).
Horizontal lines indicate the stationary values found in Section 3.

As suggested in [1], a signature of the proximate quantum phase transition can be obtained
by processing data for the expectation value of a local observable for an ensemble of quenches
at a fixed time t after the quench. In Fig. 7 we show results for C x

1 (t) and dC x
1 (t)/dκ for an

ensemble of quenches starting in the ground state of H(h,κ= 0) and quenching to H(h,κ) for
h= 0.2,0.8 and a wide range of κ values.

(b) h=0.2, t=20
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κ
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Figure 7: Performing quenches from H(h, 0) to H(h,κ) we build a picture of observ-
ables as a function of final κ. (a-b) Comparison with iTEBD data taken from [1] for
h = 0.2 (κc ≈ 0.407, indicated by thick gray line). (c-d) Equivalent calculation at
h = 0.8 (κc ≈ 0.114). All quenches done starting from the ground state for system
size L = 2000.

In Fig. 7(a-b) we find very good agreement between our SCTDMFT results and the iTEBD
simulations of Ref. [1] for h = 0.2 and in Fig. 7(c-d) we show the results for h = 0.8. The
generalized susceptibility dC x

1 /dκ in Fig. 7(b,d) shows a strong dip even at the relatively early
time t = 20 around the critical value κc . Intuitively one expects that the reason for this strong
response to the varying post-quench parameters is that the correlation length at time t = 20 is
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already large and the system “feels” the proximity of the QPT; this implies a large correlation
length and consequently a strong linear response of the system, reflected in the dips in gener-
alized susceptibilities. We return to this point in the next section where, in Fig. 9, we extract
correlation lengths for the non-equilibrium state of the system following the quench for h= 0.8
and find that the correlation length has grown from ξ ≈ 1.9 at t = 0 to ξ ≈ 12 at t = 20.
Conversely, in cases where the correlation length is short we do not expect the susceptibility
to be large. This is indeed the case for small values of κ in Fig. 7. In Fig. 8 we show the time

(a)
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t
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−1.00

−0.75
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d
C
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κ

κ =0.05

κ =0.08

κ =0.11

(b)
0 10 20 30

t
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−4

−3
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0

1

d
C
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/d
κ

κ =0.3

κ =0.35

κ =0.41

Figure 8: Short time dynamics of the generalized susceptibility for quenches from
an initial thermal state with β = 2.0 and (a) h = 0.8 (κc ≈ 0.114) and (b) h = 0.2
(κc ≈ 0.407) on a system with L = 2000.

evolution of the generalized susceptibilities. Fig. 8 shows , for two values of h, quench data for
various κ, including near the critical value κc . For κ far from κc we observe a quick relaxation
to a plateau, whilst for κ close to the QPT we observe a longer relaxation time. Fig. 8(b) fea-
tures growing oscillations due a ‘beat’ phenomenon when numerically differentiating between
the different quench data with slightly different persistent oscillation frequencies.

4.2 Growth of the correlation length in time

As we have noted above, the correlation length grows in time for many of the quenches we
consider. To show this explicitly we focus on the connected order-parameter two-point function

C x
c,ℓ(t) = Tr
�

ρMFT(t) σ
x
nσ

x
n+ℓ

�

︸ ︷︷ ︸

C x
ℓ
(t)

−
�

Tr
�

ρMFT(t) σ
x
n

��2
, (29)

as it is easier to extract a correlation length for thanσz
j . Since the order parameter expectation

value is itself difficult to calculate even in the TFIM [40, 41] we follow Ref. [42] in using the
Lieb-Robinson bound [43] to express the connected correlator as

C x
c,ℓ(t) = C x

ℓ (t)− C x
R (t) , R≫ vmax t, (30)

where vmax is the Lieb-Robinson velocity. In our self-consistent mean-field approximation we
can use Wick’s theorem to express C x

ℓ
(t) as a block-Toeplitz Pfaffian [44]

C x
ℓ (t) =Pf











G0(t) G1(t) . . . Gℓ−1(t)

−GT
1 (t)

. . . . . .
...

...
. . . . . .

...
−GT

ℓ−1(t) . . . . . . G0(t)











, (31)
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where

Gn(t) =2

�

i Im∆n(t) Re(t1−n(t) +∆1+n(t))−
1
2δ0,n+1

−Re(t1−n(t) +∆1−n(t)) +
1
2δ0,1−n i Im∆n(t)

�

. (32)

We note that if we replace the time-dependent Gaussian density matrix by a thermal equilib-
rium state Eq (31) reduces to a determinant because ∆n ∈R.
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Figure 9: Connected order-parameter two-point function C x
c,ℓ(t) for a quench from

the ground state of the TFIM at h = 0.8 to the ANNNI with h = 0.8,κ = 0.11
(κc ≈ 0.114). Vertical lines indicate the lightcone distance at t = 15,20, 25 using
the maximal group velocity of the effective dispersion in the steady state. Gray lines
indicate fits to functions of the form C x

c,fit = aℓ−ν exp(−ℓ/ξ) where ξ is the fitted
correlation length.

In Fig. 9 we show the connected order-parameter two-point function for a quench from
the ground state of the TFIM with h= 0.8 and turning on next nearest neighbour interactions
of strength κ = 0.11. In the initial state the connected correlator displays exponential decay
with a correlation length ξ(0) ≈ 1.9. Extracting correlation lengths at t > 0 is complicated
by the fact that the connected correlator for outside the “light-cone” remains unchanged and
we are therefore restricted to separations ℓ < 2vmax t, where vmax is the maximal propagation
velocity [4,45,46]. On the other hand, in order to extract a correlation length ξ(t) we require
that ℓ ≫ ξ(t). This causes us to be unable to convincingly fit correlation lengths for short
times (other than t = 0 which is an equilibrium state by design), although we obtain relatively
good fits to the exponential behaviour at times t ≥ 20 which show the correlation length has
grown to about ξ(25)≈ 14.3.

4.3 Oscillations in the low energy-density regime

A striking feature seen in Figs. 5, 6, 8 are the high-frequency oscillations in local observables
for quenches at reasonably small h which do not appear to decay in time in the mean-field
theory. These do not occur in quenches in the TFIM and hence seem to be a result of fermion
interactions. We stress that these oscillations were previously observed in the iTEBD simula-
tions of Ref. [1] and are not an artifact of the mean-field approximation. Importantly they
are observed in quenches that result in small energy densities compared to the fermion gap,
which puts us in a regime where we are dealing with the non-equilibrium dynamics of a very
dilute gas of fermions. This suggests that these oscillations could be related to the formation
of long-lived bound states of (pairs of) fermions, cf. Refs [47–51]. A simple limiting case in
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which this bound state formation can be seen is h = 0. Here excitations are (highly degen-
erate) domain-wall states, whilst the antiferromagnetic next-nearest neighbour term partially
lifts this degeneracy by introducing an energy penalty of 4κ when the domain-walls are on
exactly neighbouring bonds. That is, at h= 0 the next-nearest neighbour interaction produces
a spin-flip (anti-)bound state. In order to investigate the possibility of these bound states per-
sisting to the non-zero values of h we consider we have determined the spectrum of low-lying
excitations of the ANNNI model by exact diagonalization using the QuSpin [52] package on
L = 24 sites. These results provide useful information for physical properties at finite energy
densities that are small compared to the excitation gap over the ground state. As in the ferro-
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Figure 10: Spectrum of the ANNNI Hamiltonian for (a) h = 0.1, κ = 0.15 and (b)
h = 0.2, κ = 0.2 from exact diagonalisation using QuSpin [52] on L = 24 sites.
As physical states have even fermion parity, the lowest excited states are the two
domain-wall continuum and a sharp bosonic mode corresponding to the anti-bound
state. For h= 0.2,κ= 0.2 the four-particle continuum is low enough in energy to be
visible on this scale.

magnetic phase of the TFIM the lowest excitations can then be thought of as a continuum of
pairs of ferromagnetic domain-walls. This is indeed observed in the exact diagonalization re-
sults in Fig. 10. In addition we observe a bosonic bound state of two domain-walls that occurs
at energies above the two domain-wall continuum. With regards to the oscillations observed
in local observables after some of our quenches we note the following:

• The bound state energy at k = 0 agrees with the oscillation frequency observed after the
quantum quenches.

• For reasonably large values of h the bound state ceases to exist around k = 0. It can be
seen from a Lehmann representation that only excited states with k = 0 contribute to
the dynamics when performing quenches from translationally invariant states as we do
here. As such this is consistent with the fact that when we perform quenches with larger
h we do not see persistent oscillations.

An important caveat is that in the quench set-up we are dealing with there is a small, but
finite, energy density above the ground state and thus in the thermodynamic limit the system is
in fact at an energy infinitely above what is pictured in Fig. 10. There the bound states always
“sit” on top of multi domain-wall excitations and are not expected to be stable. However, as
the density of domain-walls is very small the life-time of the bound state can be very large
compared to the time scale we observe in our quenches. We believe that this is indeed the
case.

A rough estimate of the decay time of the bound states can be obtained by thinking in the
quasiparticle picture described above. If there were truly a single bound state then energy
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and momentum conservation would prevent it from decaying, however the decay is allowed
due a background density of domain walls that the bound state may scatter from. A semi-
classical approach to compute the scattering time is to introduce the mean-free-path of the
domain-walls

λmfp =
Eg

ϵ
, (33)

where ϵ is the energy density relative to the ground state after the quench and Eg the quasipar-
ticle gap. If the mean-free-path is larger than the system size λmfp > L, then the state has in
expectation fewer than one quasi-particle in the entire system and the system does not require
a many-body description and the bound states will have nothing to scatter from. Even for
thermodynamically large systems however if we consider times less than

2vmax t ≲ λmfp , (34)

where vmax is the Lieb-Robinson velocity of the domain-wall excitations, we may consider
the bound state quasiparticles as having little interaction with the domain-wall background.
We now estimate all the relevant quantities in the case of interest. The post-quench energy

0.1 0.2 0.3 0.4
κ

0

2000

4000

6000

8000

10000

λ
m

fp

0.35 0.40 0.45
0

50

100

Figure 11: Mean free path of the quasiparticles generated by quantum quenches
from the TFIM ground state at transverse field h = 0.2 to the ANNNI model with
0.1< κ < 0.45 (κc ≈= 0.407).

density e0 defined in (14) may be calculated using Wick’s theorem. The energy density ϵ
appearing in Eq (33) is however not the e0 of (14) but rather one must subtract the ground
state energy density of the ANNNI, which is not known analytically. We estimate the latter
by exact diagonalization for L = 18 sites, for which it is essentially converged. The resulting
mean-free-path for quenches from the ground state of the TFIM with h = 0.2 to the ANNNI
model with 0.1< κ < 0.45 is shown in Fig. 11. We see that for these quenches the mean free
path is extremely large unless κ is very close to the QPT. The time range accessible to us in
our SCTDMFT analysis is limited by finite-size effects, which strongly influence observables
after the traversal time L/(2vmax) [4, 53, 54]. To access very late times without encountering
finite-size effects therefore requires larger system sizes and more memory. In order to test
whether or not the oscillations eventually decay in mean-field theory we instead change our
initial density matrix in a way that reduces the mean free path, e.g. for a quench with h= 0.1
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Figure 12: Time evolution of the mean field t1 following a quench from β = 2.0,
h= 0.1,κ= 0.15.

and κ= 0.15 from an initial temperature β = 2.0, we estimate that the mean free path should
be roughly 50 sites and the scattering time about ts ∼ 56, see Table (1). Nonetheless there is
no visible damping in the mean-field theory up to very late times (t = 103), see Fig. 12. We

e0(β = 2.0) eGS(h= 0.1,κ= 0.15) ϵ 2Eg λmfp vmax ts

-0.82739 -0.85295 0.02556 2.410 47.14 0.4187 56.29

Table 1: Postquench energy density e0 obtained from Eq (14), ground state energy
density eGS and two particle gap estimated with ED on L = 20 sites. Lieb-Robinson
velocity is estimated as the maximal group velocity for the dispersion εκ(k) given in
Eq (18) using the values of the mean-fields at t = 100.

conclude that in SCTDMFT the oscillations are undamped while we expect in an exact theory
they would decay.

5 Non-equal time correlation functions

A natural question is whether the existence of a bound state can be detected more directly
in the quench setup. One proposal in the literature is to use certain Fourier transforms of
equal-time correlation functions [55,56], but these do not provide useful insights in our case.
In thermal equilibrium it is well established that dynamical response functions give detailed
information about the particle content of the theory. An obvious question then is to what extent
their non-equilibrium analogs can be used to do the same. In order to address this question
we now determine certain non-equal time correlation functions in our SCTDMFT. We do not
attempt to address the problem of calculating non-equal time two-point functions of the order
parameter, as this is difficult even for the transverse field Ising chain itself [41, 57]. In MFT
the Heisenberg equations of motion for the fermion operators ck are linear

d
dt

ck(t) = i[HMFT(t), ck(t)] = −iAk(t)ck(t) + Bkc†
−k(t) , (35)
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and can be solved by a time-dependent Bogoliubov transformation

ck(t) =αk(t)ck(0) + βk(t)c
†
−k(0) , (36)

where the time-dependent coefficients are solutions to

dαk(t)
dt

=− iAk(t)αk(t) + Bk(t)β
∗
−k(t) ,

dβk(t)
dt

= −iAk(t)βk(t) + Bk(t)α
∗
−k(t) . (37)

As we are dealing with a Gaussian theory all non-equal time correlation functions are then
expressible in terms of the two non-equal time Green’s functions given by

Gk(t, t ′) = 〈c†
k(t)ck(t

′)〉=α∗k(t)αk(t
′) fk +α

∗
k(t)βk(t

′)gk

+ β∗k (t)αk(t
′)g∗k + β

∗
k (t)βk(t

′)(1− f−k) = G−k(t, t ′) , (38)

G̃k(t, t ′) = 〈c†
k(t)c

†
−k(t

′)〉=α∗k(t)α
∗
−k(t

′)gk +α
∗
k(t)β

∗
−k(t

′) f−k

+ β∗k (t)α
∗
−k(t

′)(1− fk) + β
∗
k (t)β

∗
−k(t

′)g∗ = −G̃−k(t, t ′) , (39)

where expectation values are always taken with respect to ρ(t = 0), i.e. 〈O〉= Tr[ρ(t = 0)O].
The final equalities hold due to the parity symmetry and fk, gk encode the initial conditions

fk = Gk(0, 0), gk = G̃k(0, 0) . (40)

As an example of the use of these formulas we consider the non-equilibrium analog of the
density response function

χρρ(r, t, t ′) =
1
L2

∑

k1,...k4

ei(k1−k2)r〈[c†
k1
(t)ck2

(t), c†
k3
(t ′)ck4

(t ′)]〉 . (41)

After Fourier transforming in the spatial co-ordinate this takes the following form in SCTDMFT

χ̃(q, t, t ′) =
1
L

∑

k

¦

G̃k(t, t ′)G̃∗k−q(t
′, t)− G̃k(t

′, t)G̃∗k−q(t, t ′)

+ Gk(t, t ′)
�

α∗k−q(t
′)αk−q(t) + β

∗
k−q(t

′)βk−q(t)
�

−
�

α∗k(t)αk(t
′) + β∗k (t)βk(t

′)
�

Gk−q(t
′, t)
©

. (42)

We note that χ(q, t, t ′) is in principle measurable via linear-response measurements, see Ap-
pendix B. Employing a Lehmann representation suggests that spectral properties of the post-
quench Hamiltonian should be inferrable by taking appropriate “Fourier transforms” in time.
In practice we consider

χt f
(q,ω) =

∫ t f

0

d t ′ χ̃(q, t f , t ′) eiωt ′ . (43)

The imaginary part of this generalized dynamical susceptibility is shown in Fig. 13 for a quench
from κ= 0 to κ= 0.15 and initial temperature β = 1.0. We can clearly identify the continuum
of two domain-wall excitations but there is no evidence for a bound state above it. In order to
capture the latter one has to go beyond the SCTDMFT.

6 Conclusion

We have formulated both equilibrium (at finite energy density) and time-dependent mean-
field descriptions for quantum quenches in the ANNNI model starting from a Gaussian state.
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Figure 13: Out-of-equilibrium density-density susceptibility calculated for the mean-
field theory with L = 200, h= 0.1,κ= 0.15,β = 1.0

We first used this to compute properties of the expected stationary state following a quan-
tum quench, assuming that the system looks thermal again at late times and then used the
time-dependent formulation to probe the approach to stationarity. Comparisons in both the
stationary and time-dependent cases with the numerical results of Ref. [1] show that this sim-
ple description is surprisingly accurate even for large next-nearest neighbour interactions close
to the critical value. Importantly it fully reproduces the signatures of the equilibrium phase
transition previously found numerically. Our approach makes it clear that the observed sig-
natures are associated with the growth of the correlation length following a quantum quench
and sheds light on the applicability of this mechanism for detecting quantum phase transitions
in general. Our theory is based on a fermionic description with a topological transition and so
it is clear that topological as well as conventional transitions may be detected in this manner.
Moreover, we give an explanation for a potentially puzzling feature of the real time dynamics,
namely long-lived oscillations, by showing that the oscillation frequency is the mass of a bound
state in the interacting theory.

Finally, we showed that the time-dependent mean-field approach used here is capable of
calculating non-equal time correlation functions, however it is unable to capture the bound
state produced by the quartic interaction in the theory.
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A Reality of certain mean-fields

When evaluating our self-consistent mean-fields we observe that some of them are real. In
this appendix we explain why this is the case, beginning with a clarification of the site parity
σαj 7→ σ

α
− j . This does not act on the fermions as c j 7→ c− j due to the presence of the Jordan-
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Wigner string. The simplest way to deduce the effect of site parity in the fermion basis is
to look at the action of site parity on fermion bilinears, which can be simply related to spin
operators without semi-infinite strings. In particular, we consider the following spin bilinears
of definite parity

A=σx
i σ

x
i+1 ,

B =σ y
i σ

y
i+1 ,

C± =σx
i σ

x
i+1 ±σ

y
i σ

y
i+1 . (44)

We then note that the fermionic bilinears can be decomposed in terms of these via

c†
i c j =

1
4
(A+ B − iC−) ,

c†
j ci =

1
4
(A+ B + iC−) ,

c†
i c†

j =
1
4
(A− B − iC+) ,

cic j =
1
4
(−A+ B − iC+) . (45)

We thus see that the action of site parity on the bilinears is to exchange c†
i c j with c†

j ci and

therefore t i j = 〈c
†
i c j〉= t ji ∈R as stated in the main text.

Additionally, the ANNNI Hamiltonian satisfies H = H∗ = HT in both the spin and fermion
bases. In particular, in the fermion basis cic j is also real. By the spectral theorem for real
symmetric matrices we then know that the eigenvectors of H are real in the same basis and so

〈cic j〉β =
1

Z(β)

∑

n

〈En|cic j|En〉e−βEn ∈R (46)

is manifestly real in equilibrium. However, after the quench the corresponding time-evolved
quantity becomes

〈cic j〉t =
1

Z(β)

∑

n,n′,m′
e−βE0

n 〈En|Em′〉〈Em′ |cic j|En′〉〈En′ |En〉e−i t(Em′−En′ ) , (47)

where E0
n are the pre-quench energies and Em′ the post-quench energies. Even if the post-

quench Hamiltonian is also real and thus the post-quench energy eigenstates |En′〉 real, the
phase factors will cause it to be generically complex. However, at very late times we would
expect that the system would come back to equilibrium via these factors dephasing and so the
correlation function should become real again at late times. Since tn are all real due to the site
parityZ2 this implies that all effective couplings are real in equilibrium, and out of equilibrium
the only complex one will be ∆(1)Eff (t).

B Linear response

In this appendix we summarize how to derive Kubo linear response relations after a quantum
quench that occurs at time t = 0, see e.g. Ref. [58]. The Hamiltonian is of the form

H(t) = θ (−t)Hi + θ (t)H f + f (t)V , (48)

where θ (t) is the Heaviside step function. If f = 0 this corresponds to a quench at t = 0.
The linear response regime is when f (t)≪ 1 and for this to be genuinely non-equilibrium we
require f (t) to have support in the time period before the system thermalizes after the quench.
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We work in an interaction picture such that H = H0 + f (t)V , where H0 is generally not
free. The interaction picture states |ψ(t)〉I are defined by

|ψ(t)〉I = eiH0 t U(t, t0)|ψ(t0)〉 , (49)

where U(t, t0) is the full time-evolution operator associated with H(t), |ψ(t0)〉 is the Schrödinger
picture state at t0 and H0 is considered time independent by requiring, according to (48), that
t0 ≥ 0. Consistently, in the interaction picture the general operator O evolves in time as

OI(t) = eiH0 tOe−iH0 t . (50)

The time-evolution according to H(t) of the expectation value of O in the state defined at t0
by ρ(t0) = |ψ(t0)〉〈ψ(t0)| can be expressed in the interaction picture as

Tr (ρ(t)O) = Tr (ρI(t)OI(t))≈ Tr (ρ(t0)OI(t))− i

∫ t

t0

f (t ′)χ(t, t ′)dt ′ , (51)

where the susceptibility χ(t, t ′) is given by

χ(t, t ′)≡ Tr
�

ρ(t0)[OI(t), VI(t
′)]
�

. (52)

In the last step of (51) we have expressed ρI(t) = |ψ(t)〉I I〈ψ(t)| by the first two terms in its
power series in the small function f (t). Eq (51) is the usual linear response formula except
that the time-translation invariance of the susceptibility is broken by the quench and hence
χ(t, t ′) does not depend only on the time-difference t − t ′.
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