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Abstract

Central spin models provide an idealized description of interactions between a central
degree of freedom and a mesoscopic environment of surrounding spins. We show that the
family of models with a spin-1 at the center and XX interactions of arbitrary strength
with surrounding spins is integrable. Specifically, we derive an extensive set of conserved
quantities and obtain the exact eigenstates using the Bethe ansatz. As in the homogenous
limit, the states divide into two exponentially large classes: bright states, in which the
spin-1 is entangled with its surroundings, and dark states, in which it is not. On resonance,
the bright states further break up into two classes depending on their weight on states
with central spin polarization zero. These classes are probed in quench dynamics wherein
they prevent the central spin from reaching thermal equilibrium. In the single spin-flip
sector we explicitly construct the bright states and show that the central spin exhibits
oscillatory dynamics as a consequence of the semilocalization of these eigenstates. We
relate the integrability to the closely related class of integrable Richardson-Gaudin models,
and conjecture that the spin-s0 central spin XX model is integrable for any s0.
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1 Introduction

Central spin models provide a minimal description for a central degree of freedom interacting
with an environment of surrounding spins. They are ubiquitous in physics, and have recently
gained increased attention with advances in quantum metrology and sensing [1–12]. In such
setups the central degree of freedom is typically well controlled and can be used to sense or
influence the environment. In solid-state quantum computing platforms, the central degree
of freedom could be the spin associated with an electron (hole) in a quantum dot or that
associated with a defect center in diamond, while the environment is composed of nuclear
spins [13–18]. In cavity-QED systems on the other hand, the cavity acts as the central
degree of freedom and the many atoms it interacts with form the environment [19–25].

On the theory side, central spin models have been widely investigated because of their
underlying integrability. Integrability guarantees an extensive set of conserved quantities
and allows all eigenstates to be exactly obtained using Bethe ansatz techniques, which has
led to various studies of the equilibrium and dynamical properties in these models [10,26–32].
For XXX interactions (Sx0S

x
j + Sy0S

y
j + Sz0S

z
j ) between the central spin (at site 0) and the

environment spins (at sites j), the central spin model belongs to the class of Richardson-
Gaudin models [33–36]. Such models are integrable for any value of the central spin and
their exact solution has long been established.

In this work, we focus on a system where the central spin interacts with its environment
through XX interactions. Such spin-flip terms (Sx0S

x
j +Sy0S

y
j ) ∝ (S+

0 S
−
j +S−0 S

+
j ) naturally

arise from dipolar couplings in nuclear magnetic resonance experiments [37–39], in nitrogen
vacancy (NV) centers [40], and in certain quantum dots [41]. Some of the authors recently
showed that the XX model with a central spin-1/2 particle is integrable with two classes of
eigenstates: dark states, in which the central spin is maximally polarized along the z-axis
and is unentangled with the environment, and bright states, in which the central spin is
entangled with the environment [31]. Subsequent work [42] showed that the spin-1/2 XX
model remains integrable in the presence of an arbitrarily oriented magnetic field with
emergent dark states (building on results in Refs. [31, 43, 44]). However, in all cases the
exact solution strongly depends on the central spin being a spin-1/2 particle.

We here consider the case where a central spin-1 particle interacts with its environment
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through XX interactions. By explicitly constructing an extensive set of conserved charges
and exact Bethe eigenstates, we establish the integrability of the spin-1 model. While the
eigenstate structure is different from that of the spin-1/2 model, we can again identify
different classes of bright and dark states. The bright and dark states have striking
consequences on the dynamics of the central spin and prevent the central spin from
equilibrating with its environment.

This work is structured as follows. In Sec. 2 we present an overview of the integrability
of the spin-1 central spin model, detailing its conserved charges and eigenstates. Its
integrability can be closely connected to the integrability of XXZ Richardson-Gaudin
models, and in Sec. 3 we review some relevant results. These are then used in Sec. 4 to
construct the conserved charges and discuss several simple limits. The exact eigenstates are
constructed in Sec. 5. These eigenstates are similar to the eigenstates of the homogeneous
model (where all couplings are set to be equal), which can be solved in terms of collective
spin operators [45]. We therefore present the eigenspectrum for the homogeneous model
before moving on to the inhomogeneous model. Following this theoretical analysis, we
probe the (semi)localization properties of the eigenstates and the effect on quench dynamics
in Sec. 6 in the limiting case of a single spin-flip excitation above the polarized ground state.
Dynamics for quenches to resonance from a maximally mixed and unpolarized environment
is presented in Sec. 7. We combine the known structure of the eigenstates and the exact
solution at the homogeneous point to make predictions for the long-time values of central
spin polarization and show that they retain memory of the initial state. Sec. 8 is reserved
for conclusions.

While our construction now explicitly depends on the central spin being a spin-1 particle
rather than spin-1/2, the integrability of both models suggests that the central spin model
with XX interactions is integrable for arbitrary spin values s0. We present two pieces of
evidence in support of this conclusion in Appendix C. The first is the integrability of the
effective Hamiltonian in the limit of a large z-field on the central spin. Specifically, up to
second order in the strength of the XX interactions, the effective Hamiltonian obtained by
a Schrieffer-Wolff transformation is integrable for any value of the central spin. Second,
numerical investigations of the corresponding classical (large s0) model—which can be
simulated efficiently—show features of integrability. Integrability of the classical model
would imply integrability at smaller s0 within a truncated Wigner approximation [46,47].

Despite this evidence, proving integrability beyond the spin-1/2 and spin-1 cases remains
an outstanding challenge.

2 Overview of main results

The focus of this work is the central spin Hamiltonian

H = ω′0S
z
0 + Ω

L∑
j=1

Szj +
L∑
j=1

gj

(
S−0 S

+
j + S+

0 S
−
j

)
, (1)

describing a central spin-1 particle interacting with an environment of L surrounding spins
through an inhomogeneous XX interaction. Both the interaction strengths gj and the spin
quantum numbers sj of the surrounding environment particles can be chosen freely. The
central spin and the environment spins are subject to external fields along the z-direction
with strength ω′0 and Ω respectively. However, since the total z magnetization

Sztot =
L∑
j=0

Szj , with eigenvalues M ∈
{
− 1−

L∑
j=1

sj , . . . , 1 +
L∑
j=1

sj

}
, (2)
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Figure 1: Schematic illustration of the central spin-1 XX Hamiltonian. The central
spin-1 particle interacts with an environment of surrounding spins (of any spin
quantum number) through an inhomogeneous and anisotropic XX interaction
with strength gj . The field strength on the central spin is ω0.

is conserved, only the detuning ω0 = ω′0 − Ω governs the structure of the eigenstates.
Indeed, a rotating frame transformation by e−iΩS

z
tott takes ω′0 7→ ω0 and Ω 7→ 0, while

leaving the eigenstates (which may be chosen to be eigenstates of Sztot) unaltered. Without
loss of generality, we work within this rotating frame, where the Hamiltonian takes the
form

H = ω0S
z
0 +

(
S−0 G

+ + S+
0 G
−) . (3)

For convenience, we introduce the environment spin effective raising/lowering operators

G± =

L∑
j=1

gjS
±
j . (4)

This model is illustrated in Fig. 1.
We establish the integrability of the Hamiltonian (1) by constructing both an extensive

set of conserved charges and the exact eigenstates. For each environment spin Sj there is
an associated conserved charge given by

Q̃j = ω0S
z
0Qj + ω0 (2P0 − 1)Szj + {S+

0 G
− + S−0 G

+, P0Qj} , (5)

in which P0 = 1− (Sz0)2 is a projector on central spin |0〉0, {·, ·} the anticommutator, and

Qj =
S+
j S
−
j + S−j S

+
j

2
+

L∑
k 6=j

gjgk
g2
j − g2

k

(
S+
j S
−
k + S−j S

+
k

)
+ 2

L∑
k 6=j

g2
k

g2
j − g2

k

SzjS
z
k . (6)

These conserved charges mutually commute and commute with the central spin Hamiltonian.
Note that these charges consist of up to 4-body operators, whereas the conserved charges
of the spin-1/2 central spin Hamiltonian consist of up to 2-body operators [31].

Two different classes of exact eigenstates with a fixed number of spin excitations
can be constructed by adding excitations to the vacuum state, which is defined as the
fully polarized state |∅〉 = ⊗Lj=1 |−sj〉 if the environment spin at site j has total spin sj .
Environment states are then given by unnormalized Bethe states

|v1, . . . , vN 〉 =

N∏
a=1

 L∑
j=1

gj
g2
j − va

S+
j

 |∅〉 , (7)
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parametrized by N (possibly complex) variables v1, v2, . . . , vN . These variables are also
known as rapidities1. The number of excitations is bounded by N ≤ 2

∑L
j=1 sj , where

equality corresponds to the fully polarized state ⊗Lj=1 |sj〉.
First, the Hamiltonian has a class of degenerate dark eigenstates, where the central

spin is maximally polarized along either the positive or negative z-direction. For M < 0,
all dark states have central spin down, reading

|D(v1, . . . , vN )〉 = |−1〉0 ⊗ |v1, . . . , vN 〉 , (8)

with rapidities satisfying a set of Bethe equations

L∑
j=1

sjg
2
j

g2
j − va

−
N∑
b 6=a

vb
vb − va

= 0, a ∈ {1, . . . , N} , (9)

such that G− |v1, . . . , vN 〉 = 0. Note that the rapidities, and thus the dark states |D〉, are
independent of the magnetic field strength ω0.

The dark states span a degenerate manifold of energy E = −ω0:

H |D(v1, . . . , vN )〉 = −ω0 |D(v1, . . . , vN )〉 . (10)

Above half-filling, the dark states have central spin polarization |+1〉0. The environment
states are annihilated by G+ and can be similarly obtained by spin inversion.

The second class of eigenstates are bright states, in which the central spin is entangled
with the environment states. Bright states can be parametrized as

|B(κ, v1, . . . , vN )〉 =

√
1

2
|0〉0 ⊗ |v1, . . . , vN 〉

+
1

κ− ω0
|1〉0 ⊗G

− |v1, . . . , vN 〉+
1

κ+ ω0
|−1〉0 ⊗G

+ |v1, . . . , vN 〉 ,

satisfying the eigenvalue equation

H |B(κ, v1, . . . , vN )〉 = κ |B(κ, v1, . . . , vN )〉 , (11)

provided the rapidities satisfy the set of Bethe equations

ω0 − κ
2κ

+

L∑
j=1

sjg
2
j

g2
j − va

−
N∑
b 6=a

vb
vb − va

= 0, for all a ∈ {1, . . . , N} , (12)

κ(κ+ ω0) = −4

 N∑
a=1

va −
L∑
j=1

sjg
2
j

 . (13)

These bright states contain N + 1 spin excitations on top of the vacuum state |−1〉0 ⊗ |∅〉
and have total spin magnetization M = N −

∑L
j=1 sj .

While completeness of the Bethe ansatz is typically not easy to establish, in Sec. 5
we argue that these bright and dark states exhaust all possible eigenstates, such that the
Bethe ansatz is complete for this model.

1Both va and 1/va are used throughout the literature as variables, leading to slightly different Bethe
states and equations as compared to e.g. Ref. [31].

5



SciPost Physics Submission

3 Factorizable Richardson-Gaudin Hamiltonians

In this section, we review various properties of the class of factorizable Richardson-Gaudin
Hamiltonians [33–36] that will be useful in establishing the conserved charges and eigenstates
of the spin-1 central spin Hamiltonian. The integrability and eigenstates of the spin-1/2
model were similarly obtained using the properties of these models in Ref. [31], but
the construction for the spin-1 model is more involved and cannot be seen as a direct
generalization of the spin-1/2 model.

The family of factorizable Hamiltonians can be written as

H(α) =
1 + α

2
G+G− +

1− α
2

G−G+ = α

L∑
j=1

g2
jS

z
j +

1

2

L∑
j,k=1

gjgk

(
S+
j S
−
k + S−j S

+
k

)
. (14)

The Hamiltonian H(α) is integrable for every choice of α, and results for its eigenstates
and conserved charges can be found in, for example, Refs. [34, 35, 48–56]. For reference,
the conserved quantities are:

Qj(α) = αSzj +
S+
j S
−
j + S−j S

+
j

2
+

L∑
k 6=j

[
gjgk
g2
j − g2

k

(S+
j S
−
k + S−j S

+
k ) +

2g2
k

g2
j − g2

k

SzjS
z
k

]
. (15)

These satisfy [H(α), Qj(α)] = [Qj(α), Qk(α)] = 0, for all j, k = 1, . . . , L. In the conserved
charges of the central spin model we have Qj ≡ Qj(α = 0).

All eigenstates can be written as Bethe states, where a Bethe state with N spin
excitations on top of the vacuum state |∅〉 = ⊗Lj=1 |−sj〉 is defined as

|v1, v2, . . . vN 〉 =
N∏
a=1

G+(va) |0〉 with G+(v) =
L∑
j=1

gj
g2
j − v

S+
j , (16)

expressed in terms of generalized spin raising operators that depend on the parameters
v1, v2, . . . vN . These Bethe states are eigenstates provided these rapidities satisfy a set of
Bethe equations

α− 1

2
+

L∑
j=1

sjg
2
j

g2
j − va

−
N∑
b 6=a

vb
vb − va

= 0, a ∈ {1, . . . , N}, (17)

resulting in eigenvalue equations for the conserved charges,

Qj(α) |v1, v2, . . . vN 〉 = −2sj

α− 1

2
+

N∑
a=1

va
g2
j − va

−
L∑
k 6=j

skg
2
k

g2
j − g2

k

 |v1, v2, . . . vN 〉 , (18)

as well as the Hamiltonian,

H(α) |v1, v2, . . . vN 〉 = (α− 1)

 N∑
a=1

va −
L∑
j=1

sjg
2
j

 |v1, v2, . . . vN 〉 . (19)

Note that the eigenstates and eigenvalues have an implicit dependence on α through
the Bethe equations (17). As apparent from Eq. (19), the rapidities can be given an
interpretation as spin excitation energies on top of a vacuum energy, with the Bethe
equations acting as a set of self-consistency equations.
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The model exhibits a quantum phase transition at |α| = 1. Consider, for example,
α = 1, at which point the Hamiltonian reduces to a positive semi-definite Hamiltonian
G+G−. The ground states have energy zero, are necessarily annihilated by G−, and are
highly degenerate (see, for example, Ref. [56]). The Bethe ground states are parametrized
by N rapidities satisfying

L∑
j=1

sjg
2
j

g2
j − va

−
N∑
b 6=a

vb
vb − va

= 0, a ∈ {1, . . . , N} . (20)

All excited states have strictly positive energy and correspond to Bethe states with a single
diverging rapidity v → ∞, and the remaining N − 1 (finite) rapidities satisfy the set of
Bethe equations

−1 +

L∑
j=1

sjg
2
j

g2
j − va

−
N−1∑
b6=a

vb
vb − va

= 0, a ∈ {1, . . . , N − 1} , (21)

leading to a strictly positive (energy) eigenvalue
∑L

j=1 2sjg
2
j − 2

∑N−1
a=1 va for the Hamilto-

nian G+G−. The ground and excited states result in dark and bright states respectively in
Sec. 5.

4 Conserved charges

The general conserved charges of the central spin Hamiltonian are most easily derived in a
3× 3 block-matrix representation, in which the Hamiltonian (1) is given by

H =

 ω0

√
2G− 0√

2G+ 0
√

2G−

0
√

2G+ −ω0

 . (22)

The different blocks correspond to different eigenvalues of the central spin polarization Sz0 ,
here ordered as {+1, 0,−1}, and every matrix element acts on the L environment spins.
The diagonal terms correspond to ω0S

z
0 and are proportional to the identity within each

block. The off-diagonal factors of
√

2 arise from the action of S±0 connecting different
blocks.

The L corresponding conserved charges (5) establishing integrability can be expressed
in block-matrix form as

Q̃j =

ω0(Qj − Szj )
√

2G−Qj 0√
2QjG

+ ω0S
z
j

√
2QjG

−

0
√

2G+Qj −ω0(Qj + Szj )

 . (23)

These satisfy [Q̃j , H] = [Q̃j , Q̃k] = 0, for all j, k = 1, . . . , L. These properties are checked
by direct calculation below using properties of the Qj as defined in Eq. (6). The different
terms in Eq. (23) can first be motivated by considering two simplifying limits.

Far away from resonance. Close to the limit ω0 →∞ we can perform a Schrieffer-
Wolff transformation [57,58] to obtain an effective Hamiltonian

Heff = ω0S
z
0 +

1

ω0

[
S+

0 G
−, S−0 G

+
]
,

= ω0S
z
0 +

1

ω0

(
S+

0 S
−
0 G
−G+ − S−0 S

+
0 G

+G−
)
, (24)
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which has block-matrix representation

Heff =

ω0 + 2
ω0
G−G+ 0 0

0 2
ω0

[G−, G+] 0

0 0 −ω0 − 2
ω0
G+G−


=

ω0 + 2
ω0
H(α = −1) 0 0

0 − 4
ω0
H(α→∞) 0

0 0 −ω0 − 2
ω0
H(α = 1)


(25)

All diagonal elements correspond to Richardson-Gaudin integrable Hamiltonians for the
environment from Sec. 3, such that the effective Hamiltonian itself is also integrable. The
diagonal elements of Eq. (23) are the dominant terms for ω0 →∞ and correspond exactly
to the conserved charges of the Hamiltonian in Eq. (25).

At resonance. In the opposite limit where ω0 = 0, i.e. at resonance, the diagonal
elements of both the Hamiltonian (22) and the conserved charges (23) vanish. In this limit
the commutator of the Hamiltonian with the conserved charges can be directly evaluated
as

[H, Q̃j ] =

0 0 0
0 2[G+G− +G−G+, Qj ] 0
0 0 0

 . (26)

This expression for the commutator is independent of the choice of Qj . The single
nontrivial element now vanishes since G+G− + G−G+ is again a Richardson-Gaudin
integrable Hamiltonian, with conserved charges Qj .

An alternative way of obtaining the conserved charge in this limit is by noting that
H2 commutes with (Sz0)2. If we consider the component of H2 in the space with zero spin
polarization, we have that

P0H
2 = 2P0

(
G+G− +G−G+

)
, (27)

returning the factorizable Hamiltonian with conserved charges Qj for the environment
space. The Hamiltonian squared then has conserved charges P0Qj , such that at resonance
the Hamiltonian itself has conserved charges {H,P0Qj}. Expressing these charges as a
block matrix then returns the conserved charges (23) with ω0 = 0.

General. The general conserved charges (23) are linear in ω0, such that they interpolate
between the two limiting cases. The commutation relation at arbitrary values of ω0 can be
checked by evaluating the commutator [H, Q̃j ], which reads


0

√
2ω0(G−Q

(+)
j −Q(−)

j G−) 0
√

2ω0(G+Q
(−)
j −Q(+)

j G+) 2[G+G− +G−G+, Qj ] −
√

2ω0(G−Q
(+)
j −Q(−)

j G−)

0 −
√

2ω0(G+Q
(−)
j −Q(+)

j G+) 0


(28)

where we have introduced the shorthand Q
(±)
j = Qj ± Szj . No properties of the Qj have

been used yet. The diagonal element again vanishes since Qj are the conserved charges
of G+G− + G−G+ [see Eq. (15)]. The off-diagonal elements can be shown to vanish by

noting that G+Q
(−)
j = Q

(+)
j G+ or G−Q

(+)
j = Q

(−)
j G− (see, for example, Ref. [31]).

It is an open question how the integrability of this model and the construction of the
conserved charges can be incorporated in the general framework of (Richardson-Gaudin)
integrability such as generalized Gaudin algebras [49], the algebraic Bethe ansatz [59], or
constructions based on solutions to the “generalized” classical Yang-Baxter equation [44,60].
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Figure 2: Illustration of the spectrum of the central spin Hamiltonian (with all
environment spins being spin-1/2) in the homogeneous case (dashed black line
and full colored lines) and the inhomogeneous case (full gray lines) in the sector
with L = 10, N = 4 such that M = −2. In the homogeneous case, dark states
correspond to states with environment spin J = |M | − 1 = 1. Sectors with
J = |M | = 2 contribute two states, sectors with |M | < J ≤ L/2 = 5 contribute
three states.

5 Eigenstates

Central spin XX models generally support two different classes of eigenstates: bright and
dark states. All such states can be obtained explicitly and systematically. We note that
the construction of dark states does not depend on the value of the central spin (see, for
example, Refs. [45,61–64]), such that the construction for dark states in the spin-1/2 model
immediately extends to the current model. The construction of the bright states, however,
is particular to this model, and these exhibit a richer behavior as compared to the spin-1/2
case.

5.1 Homogeneous limit

It is instructive to first examine the special case of homogeneous couplings, gj = g for
all j. In this case G± is proportional to the total spin raising/lowering operator on the
environment and we can write

H = ω0S
z
0 + g

(
S+

0 J
− + S−0 J

+
)
, where Jµ =

L∑
j=1

Sµj . (29)

The eigenstates of the model (29) can be found without resorting to Bethe ansatz
machinery. The homogeneous limit has symmetries

[H,Sz0 + Jz] = [H,S2
0 ] = [H,J2] = 0, (30)

where J2 = 1
2(J+J− + J−J+) + (Jz)2 is the total spin operator for the environment. The

central spin Hamiltonian can be represented as a block-diagonal matrix in a fixed (M,J)

9
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sector of linear dimension 1, 2 or 3, depending on the relation between J and M . All such
matrices can be explicitly diagonalized to return the spectrum of the homogeneous central
spin model.

Bright states. We first consider the case J > |M |. The Hamiltonian has contributions
from 3× 3 blocks spanned by

|+1〉0 ⊗ |J,M − 1〉 , |0〉0 ⊗ |J,M〉 , |−1〉0 ⊗ |J,M + 1〉 , (31)

where |m0〉0 denotes the eigenstates of Sz0 and |J,MJ〉 is a simultaneous eigenstate of J2

and Jz with eigenvalues J(J + 1) and MJ , respectively. In this block H takes the form

HJM =

 ω0

√
2gc−JM 0√

2gc−JM 0
√

2gc+
JM

0
√

2gc+
JM −ω0

 with c±JM =
√

(J ∓M)(J ±M + 1). (32)

The resulting states generally depend strongly on ω0 and are known as bright states—to
be contrasted with the dark states that will be introduced later in this section.

In the special case of resonance (ω0 = 0) the eigenstates can be analytically constructed
and used to further divide the bright states in two subclasses. The Hamiltonian matrix
reduces to

HJM =
√

2g

 0 c−JM 0
c−JM 0 c+

JM

0 c+
JM 0

 . (33)

A single eigenstate can be constructed as

|B0〉 =
1

B

(
c+
JM |+1〉0 ⊗ |J,M − 1〉 − c−jM |−1〉0 ⊗ |J,M + 1〉

)
, (34)

with |B|2 = (c+
JM )2 + (c−JM )2 and energy E0 = 0. A notable feature of this class is that

these states have no weight on |0〉0. This feature will persist to the inhomogeneous case,
and we will refer to these states as double states.

The remaining two eigenstates follow as

|B±〉 =
1√
2
|0〉0 ⊗ |J,M〉 ±

1√
2B

(
c−JM |+1〉0 ⊗ |J,M − 1〉+ c+

JM |−1〉0 ⊗ |J,M + 1〉
)
,

(35)

with degenerate energy eigenvalues E± =
√

2gB. The persistent feature of this class is
that exactly half the weight of the state is on |0〉0. These states form pairs and since they
always have support on all three central spin states we will refer to these as triple states.

Next, we can consider the case J = |M | with M 6= 0. The Hamiltonian now only
couples two different states, depending on the sign of M ,

|0〉0 ⊗ |M,M〉 and |+1〉0 ⊗ |M,M − 1〉 for M > 0, (36)

|0〉0 ⊗ |−M,M〉 and |−1〉0 ⊗ |−M,M + 1〉 for M < 0. (37)

Constructing the central spin Hamiltonian in this basis leads to a 2×2 matrix. For example,
for M > 0,

HMM =

(
0 2g

√
M

2g
√
M ω0

)
, (38)

10
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which can be explicitly diagonalized to return a pair of eigenvalues

E =
ω0

2
±
√
ω2

0

4
+ 4Mg2 . (39)

These states have common properties of both double and triple states. At resonance the
corresponding eigenstates are supported on two states, as with double states, but half
the weight of the state is on |0〉0, as with the triple states. Since we will be interested in
quench dynamics of the central spin magnetization, we also refer to these as triple states.

Dark states. If we consider a total environment spin where J = |M | − 1, the blocks
reduce to 1× 1 blocks. This condition enforces that the environment is in a state |J, J〉 or
|J,−J〉, and the corresponding states can now only take the form

|+1〉0 ⊗ |J, J〉 = |+1〉0 ⊗ |M − 1,M − 1〉 for M > 0, (40)

|−1〉0 ⊗ |J,−J〉 = |−1〉0 ⊗ |−M − 1,M + 1〉 for M < 0. (41)

Crucially, these states have the property that they are annihilated by both S+
0 J
− and

S−0 J
+, the interaction terms in the Hamiltonian, such that |D〉 = |±1〉0 ⊗ |J,±J〉 is an

eigenstate of H with eigenvalue ±ω0. These product eigenstates |D〉 are called dark states
and are independent of ω0. Note that dark states with central spin state |+1〉0 only appear
for M > 0, whereas dark states with central spin state |−1〉0 only appear for M < 0. In the
specific case where J = M = 0, the homogeneous model supports additional dark states of
the form |0〉0 ⊗ |0, 0〉, which are eigenstates of the Hamiltonian with zero eigenvalue.

In Appendix A, we provide the counting of each class of states, assuming each environ-
mental spin is spin-1/2. In the limit of large L, there are twice as many triple states as
double states, while the ratio of the number of dark states to that of triple states scales
as |M |/L. We use these results to predict the late-time expectation value of central spin
projectors in Sec. 7.

5.2 The inhomogeneous model

The eigenstates of the inhomogeneous model can be constructed as Bethe states that are a
direct generalization of the eigenstates of the homogeneous model.

Dark states

At every value of the magnetic field ω0, the central spin Hamiltonian in Eq. (1) supports a
set of dark eigenstates in which the central spin is not entangled with the environment spins.
These dark states |D〉 are product states of the form |−1〉0⊗|D−〉 or |+1〉0⊗|D+〉, where the
environment state is adiabatically connected to the states |J,±J〉 and satisfies [31,45,61–63]

G± |D±〉 = 0. (42)

This condition guarantees that such dark states are annihilated by the (inhomogeneous)
interaction part of the Hamiltonian (1), as well as being eigenstates of the central spin
term Sz0 with eigenvalues ±1. As such, dark states are independent of the central spin field
ω0 and form degenerate manifolds with energy ±ω0.

As outlined in Ref. [31], the environment states correspond to the ground states of
the factorizable Hamiltonians G+G− and G−G+, which can be expressed as Bethe states
satisfying the Bethe equations (20). As reviewed in Sec. 3, for M < 0 these dark states
can be written as

|D(v1, . . . , vN )〉 = |−1〉0 ⊗ |v1, . . . , vN 〉 , (43)

11



SciPost Physics Submission

with rapidities satisfying the Bethe equations

L∑
j=1

sjg
2
j

g2
j − va

−
N∑
b 6=a

vb
vb − va

= 0, a ∈ {1, . . . , N} . (44)

Bright states

The bright eigenstates can similarly be related to the eigenstates of the factorizable
Richardson-Gaudin models, albeit in a more involved way. Specifically, we consider an
ansatz expressed in terms of a single environment state |ψ〉 and a free parameter κ, writing

|B〉 =

√
1

2
|0〉0 ⊗ |ψ〉+

1

κ− ω0
|1〉0 ⊗G

− |ψ〉+
1

κ+ ω0
|−1〉0 ⊗G

+ |ψ〉 . (45)

The above state is an eigenstate of the Hamiltonian (1) with eigenvalue κ provided the
environment state |ψ〉 satisfies the (self-consistent) eigenvalue equation

Hκ |ψ〉 =

[
G+G−

κ− ω0
+
G−G+

κ+ ω0

]
|ψ〉 =

κ

2
|ψ〉 . (46)

This equation is self-consistent because the Hamiltonian Hκ depends on the eigenvalue, but,
crucially, is Richardson-Gaudin integrable for every choice of κ. As such, its eigenstates
can be exactly constructed as Bethe states for every choice of κ. The Hamiltonian is
(up to a prefactor) the Hamiltonian from Eq. (14) from Sec. 3, where the parameter α
can be determined as ω0/κ. In order to find a set of Bethe equations we can express the
eigenvalue κ in terms of rapidities, and now the Bethe equations for these rapidities need
to be modified to take into account the self-consistency. This approach directly returns the
equations (12).

Spectrum at resonance

The eigenstates of the inhomogeneous model at resonance can again be compared with the
eigenstates at resonance in the homogeneous limit, recovering the double, triple and dark
states.

At resonance, ω0 = 0, the self-consistency equation for the bright states (46) reduces to
a regular eigenvalue equation. In this limit the self-consistent equation can be rewritten as

[
G+G− +G−G+

]
|ψ〉 =

κ2

2
|ψ〉 , (47)

such that the environment states will correspond to the eigenstates of the above (integrable)
Hamiltonian. Since the Hamiltonian G+G− + G−G+ is positive definite, κ2 is always
positive. For a given eigenstate of this Hamiltonian with eigenvalue κ2/2, the central spin
Hamiltonian has two corresponding eigenstates with eigenvalue ±κ, given by

|B±〉 =

√
1

2
|0〉0 ⊗ |ψ〉 ±

1

κ

(
|+〉0 ⊗G

− |ψ〉+ |−〉0 ⊗G
+ |ψ〉

)
. (48)

These are the (normalized) triple states identified previously in the homogeneous limit,
and continue to have exactly half their weight on |0〉0.

The double states, with zero energy and vanishing weight on |0〉0, can be constructed in
an alternative way (since in this limit the corresponding Bethe equations become singular):

|B0〉 = |−〉0 ⊗G
+(G−G+)−1 |ψ〉 − |+〉0 ⊗G

−(G+G−)−1 |ψ〉 , (49)

12
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where the inverse should be interpreted as a pseudo-inverse, with the condition that the
pseudo-inverse should act as the actual inverse on the environment states |ψ〉, i.e.

G−G+(G−G+)−1 |ψ〉 = G+G−(G+G−)−1 |ψ〉 = |ψ〉 . (50)

This condition can be satisfied if we consider an initial state that has vanishing overlap
with the dark states, since the dark states lie in the kernel of either G+G− or G−G+. For
example, if we consider M < 0, all dark states are annihilated by G+G− whereas G−G+

has no dark states, such that the inverse of G−G+ is well defined. Taking the state |ψ〉 to
be an excited state of G+G−, every excited state gives rise to a well defined double state.

Completeness

It is possible to count the total number of dark and bright states and show that they
exhaust all eigenstates of the central spin Hamiltonian (1). The number of these states
depends on the choice of environment spins, and for concreteness we here focus on the case
where each environmental spin is spin-1/2 and M < 0. The argument for completeness
does not depend on the specific choice of spins or total magnetization.

The total number of dark states is set by the number of solutions to

G− |D−〉 = 0 . (51)

For a total magnetization M and a dark state |−1〉0 ⊗ |D−〉, the state |D−〉 has a magneti-
zation M + 1 and the state G− |D−〉 has magnetization M . The total number of solutions
to the above equation is given by the dimension of the former Hilbert space (fixing the
number of variables) minus the dimension of the latter (fixing the number of constraints),
and we find2

Ndark =

(
L

M + L/2 + 1

)
−
(

L

M + L/2

)
. (52)

The same result can be recovered in the homogeneous case (see Eq. (84)).
For the bright states, the total number of solutions to the self-consistent equation can

be found by plotting the spectrum of the Hamiltonian

Hκ =
G+G−

κ− ω0
+
G−G+

κ+ ω0
(53)

as a function of κ, as illustrated in Fig. 3 for generic choices of the interaction strengths
and ω0. Our conclusions do not depend on any specific choice of the parameters.

Any intersection between this spectrum and the dashed red line denoting κ determines
a solution to the self-consistent equation (46). The number of solutions can now be directly
related to the number of bright states: the different lines in Fig. 3 correspond to the
different eigenstates of the Hamiltonian (53). As κ→ ±∞ all eigenvalues go to zero. At
intermediate values of κ all eigenvalues are monotonously decreasing, as follows from the
Hellmann-Feynman theorem:

∂E

∂κ
=

〈
∂Hκ

∂κ

〉
= − 〈G

+G−〉
(κ− ω0)2

− 〈G
−G+〉

(κ+ ω0)2
≤ 0. (54)

Here we have made use of the positive semi-definiteness of G±G∓. Since the Hamiltonian

2Eq. (52) requires that G− is surjective on the M magnetization sector. This can be seen by noting
that G− = P−1J−P is related to the total spin lowering operator by a similarity transformation, where

P = exp
(∑L

j=1− ln gjS
z
j

)
[56].
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Figure 3: Graphical illustration of the self-consistency equation for L = 4. Full
black lines denote the spectrum E(κ) of the Hamiltonian (53) and the dashed red
line E(κ) = κ/2 (46). Vertical dotted lines mark the asymptotics at κ = ±ω0.

diverges at κ = ±ω0, there are now two options for every eigenvalue E(κ): either these
diverge at κ = ±ω0 and the eigenvalue has two vertical asymptotes, or the corresponding
eigenstate is annihilated by the residue of Hκ at κ = ω0 or κ = −ω0 and the eigenvalue
has a single vertical asymptote (the state cannot be annihilated by both, as will be made
apparent shortly). In the former case the eigenvalue has 3 intercepts with the diagonal line,
leading to 3 bright state solutions per environment state. In the latter case the eigenvalue
has 2 intercepts with the diagonal line, leading to 2 bright states per environment state.
Crucially, the number of states that are annihilated by the residue is exactly equal to the
number of dark states, since these are the states that are annihilated by G+G− (or G−G+

for M > 0).
As such, the total number of bright state solutions equals three times the environment

space dimension minus the number of dark states, which combined with the total number
of dark states returns the full dimension of the spin-1 central spin Hamiltonian, where
the central spin can take 3 different values. The completeness of the Bethe ansatz for the
spin-1 central spin Hamiltonian then directly follows from the completeness of the Bethe
ansatz for the Richardson-Gaudin Hamiltonian (14) [65,66].

6 Single excitation

In the case of a single spin excitation the eigenstates are amenable to a more detailed
analytical treatment, even away from resonance and in the limit of an infinite environment
L → ∞. In the following, we first analyze the localization properties of the (bright)
eigenstates and then present exact results for quench dynamics starting from a product
state.

6.1 Multifractality and semilocalization

In the case of a single excitation, the Hamiltonian (1) can be written as a so-called
arrowhead matrix. Such models generally support both dark and bright eigenstates, and
these states have recently gained attention [67] in the context of semilocalization, being
neither fully localized nor fully delocalized. Calculations of the inverse participation ratio
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(IPR) instead indicated a multifractal behavior.
The IPR is defined as

P(q) =
L∑
j=0

|ψj |2q, (55)

with |ψj |2 the component of the (normalized) wave function where the excitation is located
on spin j. For a delocalized eigenstate, all components are on the order 1/L, resulting
in an IPR scaling with L as P(q) = O

(
L1−q), whereas a localized eigenstate has a few

components O(1), resulting in a scaling of P(q) = O(1). A change of scaling as q is varied
is a signature of multifractality in the eigenstate [67–70].

For a single excitation in the central spin model, there are L − 1 dark states and 2
bright states. In the construction of the bright states (45), the environment state |ψ〉 is
necessarily the vacuum state |∅〉. The wave function reads

|κ〉 =

√
1

2
|0〉0 ⊗ |∅〉+

1

κ+ ω0
|−1〉0 ⊗G

+ |∅〉 , (56)

with κ satisfying [
G+G−

κ− ω0
+
G−G+

κ+ ω0

]
|∅〉 =

G−G+

κ+ ω0
|∅〉 =

κ

2
|∅〉 . (57)

As G− |∅〉 = 0 and G−G+ |∅〉 = [G−, G+] |∅〉 = 2
∑L

j=1 sjg
2
j |∅〉, the self-consistent eigen-

value equation simplifies to a quadratic equation for κ. This quadratic equation can be
explicitly solved to return the two bright states.

In order to have a finite κ value when the number of environment sites L goes to infinity,
we will consider a distribution of interaction strengths gj = g̃j/

√
L with g̃j distributed in

some fixed interval. The quadratic equation returns two solutions corresponding to two
bright states with

κ = −ω0

2
±
√
ω2

0

4
+ 2g2 with g2 =

1

L

L∑
j=1

2sj g̃
2
j . (58)

Crucially, κ stays finite in the limit L → ∞, resulting in both a finite eigenvalue and
nonzero components in the wave function (56). The normalized components of the wave
function immediately follow as

|ψ0|2 =
(κ+ ω0)2

(κ+ ω0)2 + 2g2 , |ψj |2 = 2
2sjg

2
j

(κ+ ω0)2 + 2g2 , j = 1, . . . , L. (59)

The IPR can be calculated from these components as

P(q) = |ψ0|2q +
L∑
j=1

|ψj |2q =
(κ+ ω0)2q

((κ+ ω0)2 + 2g2)q
+

2q

Lq

L∑
j=1

(
2sj g̃

2
j

(κ+ ω0)2 + 2g2

)q
. (60)

Assuming a uniform distribution for 2sj g̃
2
j in a finite interval [0, 2g2], the sum can be

explicitly evaluated to return

P(q) =
(κ+ ω0)2q

((κ+ ω0)2 + 2g2)q
+

1

Lq−1

4qg2q

(q + 1)((κ+ ω0)2 + 2g2)q
. (61)
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The scaling of the IPR with L for a fixed q results in

P(q) =

{
O
(
L1−q) if 0 < q < 1,

O(1) if 1 < q.
(62)

This quantifies what is already apparent from the parametrizations (56) and (59): in the
thermodynamic limit the component of the bright states on the central spin remains O(1),
whereas all other components are delocalized over the environment states and O(1/L).
This scenario has been dubbed semilocalization [67, 70].

6.2 Quench dynamics

The effect of semilocalization can be directly observed in quench dynamics. We consider
quenches where the system is initially prepared in a product state, with the single excitation
localized either on the central spin or on one of the environment spins, and is subsequently
evolved using the central spin Hamiltonian.

For simplicity, we focus on the dynamics of the central spin magnetization 〈Sz0(t)〉
starting from a general initial state |ψ0〉. Since the dark states are eigenstates of Sz0 all
nontrivial dynamics is due to the two bright states, and we can write

〈Sz0(t)〉 =−
∑
D
|〈ψ0|D〉|2 +

∑
κ=κ±

〈κ|Sz0 |κ〉|〈κ|ψ0〉|2

+
(
e−i(κ+−κ−)t 〈ψ0|κ−〉〈κ−|Sz0 |κ+〉〈κ+|ψ0〉+ h.c.

)
, (63)

where we have labeled the two bright states by their eigenvalues κ± = −ω0/2±
√
ω2

0/4 + 2g2

and the (L− 1) dark states as D. The central spin magnetization oscillates with a single
frequency κ+ − κ− = 2

√
ω2

0/4 + 2g2, and both the amplitude of the oscillations and their
average value are determined by the overlaps with the bright states.

Consider first the case where the initial state consists of an excitation on the central
spin, i.e. |ψ0〉 = |0〉0⊗ |∅〉. This state has a vanishing overlap with the dark states, and the
contribution from the bright states can be calculated using the explicit parametrization
(56) as

〈κ|Sz0 |κ〉|〈κ|ψ0〉|2 = − g2

2
(
ω2

0/4 + 2g2
) , (64)

which holds for both bright states |κ±〉. The resulting central spin dynamics immediately
follows as

〈Sz0(t)〉 = − g2

ω2
0/4 + 2g2

[
1− cos

(
2t
√
ω2

0/4 + 2g2

)]
, (65)

This result is illustrated in Fig. 4 and is identical to the dynamics in the homogeneous model
(29) with interaction strength g = g/

√
2J and environment spin J =

∑L
j=1 sj . Crucially,

the amplitude of the central spin oscillation remains finite in the limit L→∞ provided g2

remains finite. The nonvanishing amplitude of the oscillation is a direct consequence of the
semilocalized nature of the bright states: the overlap between the initial state and the two
bright states remains O(1) in this limit.

These dynamics can be contrasted with the central spin dynamics for an initial product
state localized on an environment spin. The amplitude of the central spin oscillations
is set by 〈ψ0|κ−〉〈κ+|ψ0〉 and hence by the component ψj from Eq. (59) for an initial

excitation localized on spin j. The individual overlaps scale as O
(

1/
√
L
)

, such that the
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Figure 4: Quench dynamics in single-excitation sector away from resonance.
(a) Dynamics of the central spin magnetization Sz0 for an initial product state
that is either localized on the central spin (line starting at 〈Sz0〉 = 0) or on an
environment spin, with the different lines starting at 〈Sz0〉 = −1 illustrating the L
different initial states. (b) Dynamics of the environment spin magnetization Szj
for an excitation initially localized on site j. Parameters: L = 12, ω0 = 2, and g̃j
is uniformly distributed in the interval [1, 2] for environment spins with sj = 1/2.

total amplitude of the spin oscillations will scale as O(1/L). As illustrated in Fig. 4(a) and
Fig. 5(a), central spin oscillations are indeed suppressed for states initially localized in the
environment.

A similar behavior is observed in the dynamics of the environment spin polarizations
〈Szj (t)〉 for an excitation initially localized on spin i. Since the dark states are no longer
eigenstates of the observable these will also contribute to the dynamics, and the spins will
oscillate with three frequencies

κ+ − κ− = 2
√
ω2

0/4 + 2g2, κ± + ω0 = ω0/2±
√
ω2

0/4 + 2g2 . (66)

The dynamics is illustrated in Fig. 4(b). Note that the frequencies are generally not
commensurate, but the spin dynamics may exhibit approximate revivals whenever the two
frequencies κ± + ω are close to being commensurate (in which case the third frequency
κ+ − κ− = (κ+ + ω) − (κ− + ω) is also close to being commensurate), as apparent in
Fig. 4(b). The revivals become exact in the special case of quenches to resonance (ω0 = 0),

in which case the three frequencies reduce to two commensurate frequencies,
√

2g2 and
2
√

2g2. In this scenario the environment spins oscillate periodically with a frequency that
is half the oscillation frequency of the central spin, as illustrated in Fig. 5(b).

In all cases, the amplitude of these oscillations scales as O(1/L). This scaling can be
understood by noting that

∑L
j=1 〈ψ0|Szj (t)|ψ0〉 = 1 − 〈ψ0|Sz0(t)|ψ0〉, with the right-hand

side being O(1). Because of the delocalization in the environment all contributions to the
summation are on the same order, leading to the observed O(1/L) scaling.

To summarize, we note that semilocalization of the eigenstates can be observed by
noting that an initial state that is supported on the localized component of the bright
state (i.e. on the central spin) will lead to oscillations in 〈Sz0〉 that do not vanish as the
system size goes to infinity, whereas initial states that are supported on the delocalized
environment spins exhibit oscillations that vanish in this limit.

7 Quenches to resonance with an unpolarized environment

In this section we consider generic quenches to resonance and use the known structure of
the eigenstates to show that central spin observables do not relax to thermal equilibrium.
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Figure 5: Quench dynamics in single-excitation sector for a quench to resonance
(ω0 = 0). (a) Dynamics of the central spin magnetization Sz0 for an initial product
state that is either localized on the central spin (line starting at 〈Sz0〉 = 0) or on
an environment spin, with the different lines starting at 〈Sz0〉 = −1 illustrating the
L different initial states. (b) Dynamics of the environment spin magnetization
Szj for an excitation initially localized on site j. Parameters: L = 12, and g̃j is
uniformly distributed in the interval [1, 2] for environment spins with sj = 1/2.

Specifically, we consider

Sz0 , P0 = 1− (Sz0)2, P±1 =
(Sz0)2 ± Sz0

2
. (67)

with the latter two corresponding to projectors on central spin states |0〉0 and |±1〉0
respectively.

While exact predictions in the inhomogeneous model are currently out of reach, we
show that, for not too strong inhomogeneities, the late-time expectation values in the
inhomogeneous model are well approximated by the diagonal ensemble expectation values
in the homogeneous model. We refer to this approximation as the homogeneous dephasing
approximation (HDA). Inhomogeneity in the couplings breaks the degeneracy of states
in the homogeneous model, causing dephasing between formerly degenerate eigenstates.
Meanwhile, the matrix elements of central spin observables between eigenstates are not
significantly affected. A similar approximation was used in Ref. [71] for a nonintegrable
Ising model in a many-particle dephasing regime. The HDA ignores any change to said
matrix elements, and only accounts for dephasing.

Depending on the initial state and measured observable we can systematically probe
the effect of bright states, both triple and double, as well as dark states. Specifically,
we consider an initial state where the central spin is polarized in the state |m0〉0, the
environment (which we again take to consist of spin-1/2 particles) is at infinite temperature
in a fixed magnetization sector ME = M −m0, and the total magnetization3 M = 1. The
initial density matrix can be written as

ρ(t = 0) = Pm0 ⊗
1ME

ZE
, with ZE = Tr(1ME

) =

(
L

L/2−ME

)
. (68)

Here 1ME
acts as the identity on states with magnetization ME and as zero everywhere

else. For convenience we take L, the number of environment spins, to be even.

7.1 Prediction of late-time values under the HDA

The HDA simplifies the prediction for late-time values of central spin observables by
circumventing the use of the Bethe Ansatz solution, which is mathematically cumbersome.

3We are interested in probing the dark states, which are only supported in sectors with M 6= 0.
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Within the diagonal ensemble, the late-time values of all projectors are determined by their
overlaps with the eigenstates in the inhomogeneous model. Under the HDA, these overlaps
are approximated by those with the corresponding states in the homogeneous model.
This approximation can be justified by numerically comparing the expectation values of
projectors in the homogeneous model with those of the inhomogeneous model. Fig. 6 shows
that the eigenstate expectation values of P0, P1, Sz0 and J2 in the inhomogeneous model
have small spread around the homogeneous limit.

Initial state m0 = 0. We first consider the case where m0 = 0 and hence ME = M .
The initial density matrix is only nonvanishing in the triple bright state manifold (35).
The diagonal values are equal 〈B|ρ(t = 0)|B〉 = 1/2, as the triple states have half their
weight on states with central spin value 0. The diagonal ensemble (obtained by setting the
off-diagonal elements in the triple bright basis to zero) is thus

ρDE =
1

ZE

∑
B
〈B|ρ(t = 0)|B〉 |B〉 〈B| = 1

2ZE

∑
B
|B〉 〈B| . (69)

The property 〈B|P0|B〉 = 1/2 also implies that the long-time expectation value of P0 is

Tr [ρ(t→∞)P0] =
1

2ZE

∑
B
〈B|P0|B〉 =

1

2
, (70)

where we further used that the total number of triple bright states is 2ZE .
Under the HDA, we find for the projectors on central spin ±1 that (see Appendix B)

Tr [ρ(t→∞)P±1] =
1

ZE

L/2∑
J=|M |

C

(
L

2
+ J,

L

2
− J

)(
(c∓J,M )2

4(J2 + J −M2)

)
(71)

≈ 1

4

(
1± 8M

L+ 2M

)
, (72)

where

C

(
L

2
+ J,

L

2
− J

)
=

(
L

L/2− J

)
−
(

L

L/2− J − 1

)
. (73)

is the degeneracy of environment states with spin J , and Eq. (72) follows from Stirling’s
approximation in the limit L� |M | (far away from the single-excitation limit).

Initial state m0 = −1. For M > 0 (such that all dark state have central spin |+1〉0),
the initial state has overlap with both the double and triple bright states, but not with the
dark states. In this case, the HDA gives:

Tr [ρ(t→∞)P0] =
1

ZE

L/2∑
J=|M |

C

(
L

2
+ J,

L

2
− J

)(
(c+
J,M )2

4(J2 + J −M2)

)
(74)

≈ e
4M+2

L

4

(
1− 8M

L+ 2M

)
, (75)

where the approximation on the second line again holds in the limit L � |M |. The
additional exponential factor arises from the environment sector ME = M + 1.

For the projectors on the central spin states |±1〉0 we similarly find

Tr [ρ(t→∞)P1] =
2

ZE

L/2∑
J=|M |

C

(
L

2
+ J,

L

2
− J

)(
(c+
J,M )2(c−J,M )2

42(J2 + J −M2)2

)
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Figure 6: Eigenstate expectation values of: (a) P1 and (b) P0 (the projectors on
central spin states as defined in Eq. (67)), (c) the central spin polarization Sz0 , and
(d) the total environment spin J2 (defined in Eq. (30)). The expectation values
from the inhomogeneous model are plotted as dots, while those in the homogeneous
limit are plotted as open squares. The energy eigenvalues {em} are rescaled to lie
between ±1. The plots show that upon introducing inhomogeneities in the XX
couplings, the expectation values of central spin and environmental observables in
eigenstates of the inhomogeneous model retain the overall structure and can be
approximated by the corresponding values in the homogeneous model. Parameters:
L = 12, ω0 = 10−10, gj uniformly distributed in the interval π/3 + [−0.5, 0.5], and
M = 1.
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Figure 7: Quench dynamics for (a) Tr[ρ(t)P0] and (b) Tr[ρ(t)P−1]. The dashed
lines indicate the long-time values predicted by the HDA for different values of the
initial central spin magnetization m0. The projectors relax to their corresponding
HDA values (dahsed lines), whereas in the Gibbs ensemble all solid lines would
converge to a single value in the limit L� |M |. Parameters: L = 10, ω0 = 10−10,
gj ∈ π/3 + [−0.5, 0.5], M = 1, τ = (

∑L
j=1 g

2
j )
−1/2.

+
1

ZE

L/2∑
J=|M |+1

C

(
L

2
+ J,

L

2
− J

)(
(c+
J,M )2(c−J,M )2

22(J2 + J −M2)2

)
(76)

≈ 3e
4M+2

L

8

(
1− 8M

L+ 2M

)
, (77)

and

Tr [ρ(t→∞)P−1] ≈ e
4M+2

L

8

(
1− 8M

L+ 2M

)
+

1

4

[
1 +

8(M + 1)

L+ 2(M + 1)

(
2M

3M + 2
+

M2

(3M + 2)2

)]
. (78)

Initial state m0 = +1. For M > 0, the dark states contribute to the quench
dynamics.

Following the same steps as above, the late-time values are, for L� |M |,

Tr [ρ(t→∞)P0] ≈ e
4M−2

L

4

(
1 +

8M

L+ 2M

)
(79)

Tr [ρ(t→∞)P−1] ≈ 3e
4M−2

L

8

(
1− 8M

L+ 2M

)
(80)

Tr [ρ(t→∞)P1] ≈ e
4M−2

L

8

(
1 + 3

8M

L+ 2M

)
+
e−

8M
L

4

[
1 +

8(M + 1)

L+ 2(M + 1)

(
− 2M

3M + 2
+

M2

(3M + 2)2

)]
+

4M − 2

L+ 2M
. (81)

The expressions above demonstrate that under the HDA, the late-time values of central
spin observables retain memory of the initial state m0. In contrast, the maximally mixed
Gibbs ensemble in a fixed M sector predicts the same late-time values for each central spin
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Figure 8: (a) Quench dynamics for 〈Sz0(t)〉 for different initial values of m0. The
dotted line shows the value predicted by the Gibbs ensemble (82). (b) Expected
late-time polarization under the HDA as a function of L as compared to the Gibbs
prediction (dotted line). Only the m0 = 1 line has the same slope as the dotted
line (≈ 2.5/L) at large L. Parameters: L = 10, ω0 = 10−10, gj ∈ π/3 + [−0.5, 0.5],

M = 1, τ = (
∑L

j=1 g
2
j )
−1/2.

projector P0,±1, regardless of initial state4 (up to O(|M |/L) corrections). For instance, in
the limit L� |M |, we find that Tr [ρ(t→∞)P0] approaches 1/4 for m0 = ±1 and 1/2 for
m0 = 0, clearly differing from the Gibbs prediction of 1/3.

7.2 Comparison with the inhomogeneous model

We can now compare the theoretical predictions in Sec. 7.1 with numerical results for the
inhomogeneous model. In the case where m0 = 0, the HDA prediction (70) applies exactly.
This is because the initial density matrix is only non-vanishing in the triple state manifold
(48), which has exactly the same weight on |0〉0 and counting as the triple states in the
homogeneous model.

Otherwise, the late-time values in the diagonal ensemble are different between the
inhomogeneous and homogeneous models. Nonetheless, late-time values of central spin
observables are well approximated by the HDA. These approximations are compared
with numerical results for the inhomogeneous model in Fig. 7. In all cases the diagonal
ensemble from the homogeneous model accurately reproduces the steady-state value of the
inhomogeneous model. Furthermore, the late-time values for different initial states m0 are
clearly different.

Fig. 8(a) shows the corresponding dynamics of 〈Sz0(t)〉. Crucially, in a given total
magnetization sector M , the late-time expectation values heavily depend on the initial
value of the central spin m0 and differ from the Gibbs ensemble prediction, which can be
calculated as ∑M+1

ME=M−1(M −ME)ZE∑M+1
ME=M−1ZE

= O(1/L) . (82)

This scaling with L can be contrasted with the numerically observed scaling of 〈Sz0〉HDA,
as illustrated in Fig. 8 (b). While the m0 = +1 curve shows the 1/L scaling from the
Gibbs predictions, the m0 = 0 and m0 = −1 curves show different scaling exponents,
approximately given by L−0.8 and L−0.7 respectively.

4The energy of the initial state is given by ω0m0. However, ω0 = 0 in a quench to resonance, hence the
energy is always 0 and the use of the maximally mixed Gibbs ensemble is justified.
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In the case where the initial environment does not have a fixed magnetization and is
at infinite temperature, i.e. ρE ∝ 1, one can also perform similar calculations for all M
sectors and perform a weighted average. The resulting long-time values for the polarization

follow as 〈Sz0〉HDA = O
(

1/
√
L
)

for L→∞ as illustrated in Fig. 9(d). We note that this

result is consistent with numerical results in the classical model (Fig. 10 in Appendix C.2),
and inconsistent with the Gibbs prediction (82).

These results show that even in highly excited states, the integrability of the inhomoge-
neous model can be detected by the remnant memory of the initial state m0 in late-time
central spin observables.

8 Conclusion

We have established the integrability of the spin-1 central spin XX model by providing
the exact construction of Bethe eigenstates and the extensive set of conserved charges,
extending the results in Ref. [31] for the spin-1/2 central spin XX model. Like the spin-1/2
model, the eigenstates in the spin-1 model can be broadly classified into dark states and
bright states, with the bright states showing semilocalization [67,70] in the single-excitation
sector. Unlike the spin-1/2 model, bright states in the spin-1 model on resonance can
further be classified into double or triple bright states.

The eigenstate structure of the spin-1 model prevents the central spin from reaching
thermal equilibrium in quenches to resonance. In particular, for weakly inhomogeneous
couplings, the late-time values of central spin observables approach diagonal ensemble
expectation values in the homogeneous models. We expect this can be observed experimen-
tally. Based on our numerical results, the time required to reach these late-time values is on
the order of 10τ , where τ = (

∑L
j=1 g

2
j )
−1/2. This is within the range of the spin relaxation

time T1 in NV systems, which limits the measurement of central spin observables in the
z basis. Indeed, the relaxation time we estimate as 10τ is essentially the dephasing time
T2, which can be much shorter than T1. For instance, at room temperature, T1 has been
observed to exceed 1 ms [72], while Ref. [73] recently measured T2 ≈ 1 µs.

In Appendix C, we have provided two pieces of evidence that support the integrability of
the XX central spin model for any value of central spin s0. First, the effective Hamiltonian
at large ω0 for arbitrary s0 is integrable. Second, numerical simulations of the fully classical
model (s0, sj → ∞) show residual memory in the late-time central spin magnetization,
supporting integrability of the classical equations of motion. Within the truncated Wigner
approximation, said classical equations govern dynamics for any value of s0 [46,47]. An
obvious future direction is to rigorously establish integrability at any s0.

Other technical questions remain open. While the conserved charges in the spin-1 central
spin XX model are closely related those of the XXZ Richardson-Gaudin integrable models,
it is unclear how to incorporate them into the general framework of Richardson-Gaudin
integrability. A specific challenge is the different scaling of the diagonal and off-diagonal
terms in Eq. (23) with the number of environmental spins L. Because of this different
scaling, it is unclear in which way the conserved charges constrain, for example, late-time
observables in dynamical experiments.
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A Counting of states in the resonant homogeneous model

In this section, we provide the counting of the three classes of states (dark, double and
triple bright states) in the homogeneous model on resonance.

The degeneracy of every eigenvalue is set by the total number of ways in which the
L environment spins can be combined to form a total spin J . We now focus on the case
where each environmental spin is spin-1/2. For a given M , J can then take integer values
ranging from J = Jmin = max(0, |M | − 1) to a maximal value of L/2. Each of the spin-J
irreducible representations has multiplicities given by entries in Catalan’s triangle

C

(
L

2
+ J,

L

2
− J

)
=

(
L

L/2− J

)
−
(

L

L/2− J − 1

)
. (83)

Dark states reside in the Jmin sector. Thus, for a fixed total magnetization M 6= 0, the
degeneracy of the dark states immediately follows as

Ndark = C (L/2 + |M | − 1, L/2− |M |+ 1) (84)

For bright states, the total number of double states is given by

Ndouble =

L/2∑
J=|M |+1

C

(
L

2
+ J,

L

2
− J

)
=

(
L

L/2− |M | − 1

)
(85)

in M 6= 0 sectors. The triple states are allowed in J ≥ |M | for |M | 6= 0, leading to

Ntriple = 2

L/2∑
J=|M |

C

(
L

2
+ J,

L

2
− J

)
= 2

(
L

L/2− |M |

)
= 2

(
L

L/2 + |M |

)
. (86)

It is easily checked that the total number of dark and (double and triple) bright states
leads to the expected number of eigenstates in each magnetization sector.

For a given M 6= 0 sector, the ratio of the number of double states to that of the triple
states is given by

Ndouble

Ntriple
=

1

2

L/2− |M |
L/2 + |M |+ 1

≈ 1

2

(
1− 4

|M |
L

)
, (87)

remaining finite in the limit of large L. The ratio of the number of dark states to that of
the triple states is given by

Ndark

Ntriple
=

2|M | − 1

L− 2|M |+ 2
, (88)

In all cases, each class of states spans a nonvanishing fraction of the Hilbert space in
the thermodynamic limit L → ∞ provided |M | scales with L. Keeping |M | fixed and
increasing L, the fraction of dark states vanishes as O(1/L).
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For M = 0, the number of J = 0 dark states is given by C(L/2, L/2). The number of
double states is given by

Ndouble =

L/2∑
J=1

C

(
L

2
+ J,

L

2
− J

)
=

(
L

L/2− 1

)
(89)

in the M = 0 sector. There are triple states in the J ≥ 1 sectors, resulting in

Ntriple = 2

L/2∑
J=1

C

(
L

2
+ J,

L

2
− J

)
= 2

(
L

L/2− 1

)
= 2

(
L

L/2 + 1

)
. (90)

The ratio Ndouble/Ntriple in this sector is exactly 1/2, while

Ndark

Ntriple
=

1

L
. (91)

B Expectation values at large system size under the HDA

In this section we detail the approximations used in evaluating the summations for the
diagonal ensemble expectation values in the homogeneous model. In the limit where J � L,
Stirling’s approximation gives

C

(
L

2
+ J,

L

2
− J

)
≈ 2J + 1

L/2 + J + 1

1√
2πL

1√
1/4− (J/L)2

eLf(1/2−J/L), (92)

where
f(p) = −p log p− (1− p) log(1− p). (93)

Similarly, when ME � L, the same approximation can be used for the ratio

1

ZE
C

(
L

2
+ J,

L

2
− J

)
≈ 2J + 1

L/2 + J + 1

√
L2 − 4M2

E

L2 − 4J2
exp

{
2(M2

E − J2)

L

}
≈ 2J

L/2 + J
exp

{
2(M2

E − J2)

L

}
,

(94)

to leading order in J . Evaluating diagonal ensemble expectation values involves summations
of the form

L/2∑
J=M0

[
M

J2 + J −M2

]p 1

ZE
C

(
L

2
+ J,

L

2
− J

)
, (95)

where p is a non-negative integer. In all these cases, the summands are dominated by the
smallest J , i.e. M0. The summation may be approximated by substituting J = M0 into
the expression for the summand and multiply it by an O(1) factor to capture the entire
sum. This factor can be extracted by comparing the sum to the summand for specific
values of M , M0, ME and (large) L. We find that multiplying the summand by a factor of
4 gives the overall best fit to the exact sum. This results in[

M

M2
0 +M0 −M2

]p 8M0

L/2 +M0
exp

{
2(M2

E −M2
0 )

L

}
. (96)

For instance, substituting M0 = ME = M , p = 1, we recover one of the terms in (72).
Figs. 9(a), (b) and (c) compare the HDA expectation values evaluated exactly and their
respective approximations outlined in Sec. 7.1. They agree at large L.
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Figure 9: Quenches to resonance for a fully mixed environment. The HDA
expectation values of the central spin projectors Pσ0 , where σ0 = 0,±1 for initial
states (a) m0 = 1, (b) m0 = −1, and (c) m0 = 0 in the M = 1 sector as a function
of L. The colored dash-dotted lines show the corresponding values under the
Stirling approximation. (d) The expected remanent polarization averaged over
all M sectors when |m0| = 1. Values computed with the exact expressions are
plotted as stars, while those computed in the Stirling approximation are plotted
as a dashed line. The solid line corresponds to |〈Sz0〉HDA| ∝ L−1/2. Parameters:
ω0 = 10−10.
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C Integrability in higher spin models

Motivated by the results from the main text, we conjecture that the central spin Hamiltonian

H = ω0S
z
0 +

(
S−0 G

+ + S+
0 G
−) , (97)

is integrable for any central spin quantum number s0. The integrability of this model has
already been explicitly shown for s0 = 1/2 in Ref. [31], and for s0 = 1 in this work.

We support our conjecture through two pieces of evidence: perturbative conserved
charges for H in the limit of large ω0 (Appendix C.1), and numerical signatures of
integrability in the classical limit of s0, sj → ∞ (Appendix C.2). We also present a
semi-classical argument for integrability, assuming exactness of the truncated Wigner
approximation.

If the central spin Hamiltonian is integrable for all s0, then it is likely that the related
inhomogeneous Tavis-Cummings model (with off-diagonal disorder),

HTC = ω0a
†a+

(
a†G− + aG+

)
, (98)

is also integrable. In Appendix C.3, we expand on this additional conjecture.

C.1 Conserved charges far from resonance

A Schrieffer-Wolff transformation to H in the ω0 →∞ limit provides an effective Hamilto-
nian (24)

H
(1)
eff = ω0S

z
0 +

1

ω0

(
S+

0 S
−
0 G
−G+ − S−0 S

+
0 G

+G−
)
, (99)

for any value of the central spin s0. This Hamiltonian may be written as

ω0S
z
0 +H(α) = ω0S

z
0 +

1 + α

2
G+G− +

1− α
2

G−G+ (100)

where H(α) is a factorizable Hamiltonian from Eq. (14) and

α = − 1

ω0
(S−0 S

+
0 + S+

0 S
−
0 ) (101)

commutes with Sz0 , and so may be treated as a scalar in each Sz0 sector. Thus, in each

sector, H
(1)
eff is Richardson-Gaudin integrable and has an extensive set of conserved charges

given by Qj(α) (15). Combined with the fact that both the s0 = 1/2 and s0 = 1 cases are
known to be integrable, the existence of this integrable limit is suggestive of integrability
for any s0.

Higher-order corrections to the effective Hamiltonian may also be computed, though it
is unclear if they preserve integrability. We discuss them here for completeness and only
note some connections with known integrable models.

The next correction to the effective Hamiltonian (at O
(
g4
)
) is given by

H
(2)
eff = − 7

12ω3
0

([[[
S+

0 G
−, S−0 G

+], S+
0 G
−], S−0 G

+] +
[[[
S+

0 G
−, S−0 G

+], S−0 G
+], S+

0 G
−]

)
= − 7

12ω3
0

(
4(S+

0 S
−
0 S

+
0 S
−
0 G
−G+G−G+ − S−0 S

+
0 S
−
0 S

+
0 G

+G−G+G−)

+ 2(S−0 S
−
0 S

+
0 S

+
0 G

+G+G−G− − S+
0 S

+
0 S
−
0 S
−
0 G
−G−G+G+)

)
. (102)
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Evaluating these corrections in a sector with fixed s0 and m0 results in linear combinations
of four different operators,

G−G+G−G+, G+G−G+G−, G+G+G−G−, G−G−G+G+, (103)

where all terms of the form G−G+G+G− and G+G−G−G+ cancel out. Each of these
operators can again be shown to be Richardson-Gaudin integrable—although this does
not guarantee that linear combinations will be integrable. G−G+G−G+ = (G−G+)2 is
the square of a factorizable Hamiltonian, as is G+G−G+G−. The terms G±G±G∓G∓ are
also each integrable. To see this, we use the following generalization of a relation between
Richardson-Gaudin charges introduced below Eq. (28),

(G+)k
[
(k + 1)Q

(−)
j − (k − 1)Q

(+)
j

]
=
[
(k + 1)Q

(+)
j − (k − 1)Q

(−)
j

]
(G+)k, (104)

where Q
(±)
j = Qj ± Szj and k ≥ 1 is an integer. From this expression and its Hermitian

conjugate, we see that a complete set of conserved charges for, say, G+G+G−G− is given
by

3Q
(+)
j −Q(−)

j = 2Qj + 4Szj , (105)

where j ∈ {1, . . . , L}. Similar charges may be constructed for G−G−G+G+.
The two quartic terms that drop out in the effective Hamiltonian are the only terms

that are not known to be integrable, such that the fact that they cancel out suggests that

H
(1)
eff +H

(2)
eff is itself integrable. Nonintegrability of H

(1)
eff +H

(2)
eff does not imply that the

higher-s0 central spin XX models are nonintegrable—for instance, the same perturbative

expansion holds for s0 = 1, which is integrable. However, integrability of H
(1)
eff + H

(2)
eff

indicates a special structure in the full Hamiltonian, consistent with the conjecture.

C.2 Classical limit

Taking s0, sj → ∞ while keeping gjs0sj ∼ gcl
j /2 and ω0s0 ∼ ωcl

0 finite results in a model
which is formally identical to H,

Hcl = ωcl
0 S̃

z
0 +

L∑
j=1

gcl
j

2
(S̃+

0 S̃
−
j + S̃−0 S̃

+
j ) (106)

= ωcl
0 S̃

z
0 +

L∑
j=1

gcl
j (S̃x0 S̃

x
j + S̃y0 S̃

y
j ), (107)

with the spins S̃µ0 and S̃µj being classical degrees of freedom.
If H is integrable for all values of ω0, gj , s0 and sj , it is natural to suspect that this

limit model is also integrable. Conversely, integrability of the classical model suggests
special structure with sj <∞. In this section, we numerically search for nonergodicity (a
consequence of integrability) in the classical model (107), which can be simulated efficiently.

Equations of motion for the classical model are defined through Poisson brackets in the
usual way:

dtS̃
µ
j = {S̃µj , Hc}, where {S̃µj , S̃

ν
k} = δjkεµνρS̃

ρ
j , (108)

where εµνρ is the Levi-Civita tensor and summation over the index ρ is implied.
If the central spin is initially aligned along the z-axis while the environment is in an

infinite temperature state, and a quench to resonance ωcl
0 = 0 is performed, then ergodicity

implies a late time average value of the central spin polarization given by

lim
T→∞

1

T

∫ T

0
dt 〈S̃z0(t)〉 =

1

L+ 1
. (109)
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Figure 10: (a) The expectation value 〈S̃z0(t)〉 (110) in a quench to resonance
of the classical central spin model (107) quickly reaches a steady state limit.
(b) Rescaling 〈S̃z0(t)〉 by

√
L collapses the late-time data, whereas the ergodic

prediction scales as 1/L (dashed lines). Parameters: 〈S̃z0(t)〉 is computed from
200 samples of initial conditions in the integral Eq. (110) with ωcl

0 = 0 and
τ = (

∑L
j=1(gcl

j )2)−1/2. 〈S̃z0(t)〉 is further averaged over 200 realizations of gcl
j

drawn independently from a box distribution, gcl
j ∈ π/3 + [−0.3, 0.3]. In (b), 〈S̃z0〉

is additionally averaged within bins of 100τ to reduce its oscillatory part. Error
bars give one standard error of the mean.

Here,

〈S̃z0(t)〉 =

∫  L∏
j=0

d2S̃j(0)

4π2

 4π2δ(S̃z0(0)− 1) S̃z0(t) (110)

is the average of S̃z0(t) over an ensemble of initial states with a fixed central spin state,
and an infinite temperature environment.

Fig. 10 demonstrates that the late time average value of 〈S̃z0(t)〉 is not 1/(L + 1).
Instead, the late time value decreases more slowly with L, as

lim
T→∞

1

T

∫ T

0
dt 〈S̃z0(t)〉 = O

(
1/
√
L
)
, (111)

numerically demonstrating nonergodicity.
The 1/

√
L scaling of the remanent magnetization is also a feature of the spin-1 model (see

Fig. 8). That the same phenomenology persists in the classical limit favors the hypothesis
of integrability of the classical model.

Integrability of the quantum model at any values of the central spin, including the
classical large s0, sj limit, also follows from semiclassical considerations. Namely, for
this system one can anticipate that the truncated Wigner approximation (TWA) [46,47]
accurately describes dynamics in the large L limit for any values of the central and
environment spins s0, sj . This feature is general for all large L-models with long range
interactions, where classical dynamics governed by Eq. (108) emerges as a saddle point
within the path integral formulation of the Heisenberg evolution on a Schwinger-Keldysh
contour (see for example Refs. [76–78]). Within the TWA the values of the spins are
encoded in the Wigner function representing the initial state. Because the spin-1/2 or
spin-1 systems are integrable, Eqs. (108)—which are expected to describe dynamics of the
central spin in the large L limit—must be non-ergodic as well to avoid thermalization.
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Because these equations are independent of the spin quantum numbers, we can anticipate
that integrability holds for all values of s0, sj .

These qualitative considerations cannot be viewed as a proof of integrability, as in
general the limits L→∞ and t→∞ do not commute, and the TWA is expected to be
accurate in the limit L→∞ first. The opposite limit is much harder to analyze analytically
within the TWA and needs further study. Nevertheless, putting these subtleties aside, a
combination of analytical and numerical evidence we presented in this paper suggests that
the model is integrable in the limit s0 →∞ for any L and is integrable in the limit L→∞
for small values of s0 = 1/2, 1. Because both of these limits are described by the same
semiclassical equations of motion it is natural to assume that the model is integrable for
any s0.

C.3 Inhomogeneous Tavis-Cummings model

Several interesting models may be obtained as limits of H. Assuming the integrability
of H for any values of s0, sj , ω0, and gj , it is natural to suspect that the limit models
are also integrable. One such model was the classical central spin model of Appendix C.2.
Here, we remark upon another notable large s0 limit, which results in an inhomogeneous
Tavis-Cummings model.

Taking an alternative large-s0 limit of s0 →∞ with gj
√
s0 ∼ gTC

j increases the central
spin Hilbert space while maintaining its level spacing. The limit model above the ground
state may be expressed as an oscillator model,

HTC = ω0a
†a+

L∑
j=1

gTC
j (a†S−j + aS+

j ). (112)

The Hamiltonian HTC is a generalization of the Tavis-Cummings model (which is
known to be integrable [19,79]) with inhomogeneous couplings. Due to its connection with
the central spin XX model, we conjecture that the inhomogeneous Tavis-Cummings model
is also integrable.

The Hamiltonian HTC is known to be integrable when additional non-linear terms are
introduced [80], but no r-matrix is known for the model without such additional couplings.

The consequence of integrability in the central spin-1 XX model is that the structure of
the homogenous limit persists to large inhomogeneity of the couplings. We speculate that
this is also the case in the Tavis-Cummings model—the inhomogeneous model continues to
exhibit the phenomenology of the homogeneous model, such as a superradiant transition
(as expected from mean-field calculations).

References

[1] R. Kosloff, Quantum thermodynamics and open-systems modeling, J. Chem. Phys.
150(20), 204105 (2019), doi:10.1063/1.5096173@jcp.2019.OSQD2019.issue-1.

[2] C. P. Koch, Controlling open quantum systems: Tools, achievements, and limitations, J.
Phys. Condens. Matter 28(21), 213001 (2016), doi:10.1088/0953-8984/28/21/213001.

[3] G. De Lange, T. Van Der Sar, M. Blok, Z.-H. Wang, V. Dobrovitski and R. Hanson,
Controlling the quantum dynamics of a mesoscopic spin bath in diamond, Sci. Rep. 2,
382 (2012), doi:10.1038/srep00382.

30

https://doi.org/10.1063/1.5096173@jcp.2019.OSQD2019.issue-1
https://doi.org/10.1088/0953-8984/28/21/213001
https://doi.org/10.1038/srep00382


SciPost Physics Submission

[4] J. Cai, A. Retzker, F. Jelezko and M. B. Plenio, A large-scale quantum simu-
lator on a diamond surface at room temperature, Nat. Phys. 9(3), 168 (2013),
doi:10.1038/nphys2519.

[5] T. Villazon, A. Polkovnikov and A. Chandran, Swift heat transfer by fast-
forward driving in open quantum systems, Phys. Rev. A 100, 012126 (2019),
doi:10.1103/PhysRevA.100.012126.

[6] L. Dong, H. Liang, C.-K. Duan, Y. Wang, Z. Li, X. Rong and J. Du, Optimal control
of a spin bath, Phys. Rev. A 99(1), 013426 (2019), doi:10.1103/PhysRevA.99.013426.

[7] M.-H. Yung, Spin star as a switch for quantum networks, J. Phys. B: At., Mol. Opt.
Phys. 44(13), 135504 (2011), doi:10.1088/0953-4075/44/13/135504.

[8] M. C. Tran and J. M. Taylor, Blind quantum computation using the central spin
Hamiltonian (2018), 1801.04006.

[9] A. Sushkov, I. Lovchinsky, N. Chisholm, R. Walsworth, H. Park and M. Lukin,
Magnetic resonance detection of individual proton spins using quantum reporters,
Phys. Rev. Lett. 113(19), 197601 (2014), doi:10.1103/PhysRevLett.113.197601.

[10] W.-B. He, S. Chesi, H.-Q. Lin and X.-W. Guan, Exact quantum dynam-
ics of XXZ central spin problems, Phys. Rev. B 99(17), 174308 (2019),
doi:10.1103/PhysRevB.99.174308.

[11] M. H. Abobeih, J. Cramer, M. A. Bakker, N. Kalb, M. Markham, D. J. Twitchen and
T. H. Taminiau, One-second coherence for a single electron spin coupled to a multi-qubit
nuclear-spin environment, Nat Commun 9(1), 2552 (2018), doi:10.1038/s41467-018-
04916-z.

[12] M. H. Abobeih, J. Randall, C. E. Bradley, H. P. Bartling, M. A. Bakker, M. J.
Degen, M. Markham, D. J. Twitchen and T. H. Taminiau, Atomic-scale imaging of a
27-nuclear-spin cluster using a quantum sensor, Cah Rev The 576(7787), 411 (2019),
doi:10.1038/s41586-019-1834-7.

[13] R. Hanson, L. P. Kouwenhoven, J. R. Petta, S. Tarucha and L. M. Vander-
sypen, Spins in few-electron quantum dots, Rev. Mod. Phys. 79(4), 1217 (2007),
doi:10.1103/RevModPhys.79.1217.

[14] H. J. Mamin, M. Kim, M. H. Sherwood, C. T. Rettner, K. Ohno, D. D. Awschalom
and D. Rugar, Nanoscale nuclear magnetic resonance with a nitrogen-vacancy spin
sensor, Science 339(6119), 557 (2013), doi:10.1126/science.1231540, https://www.
science.org/doi/pdf/10.1126/science.1231540.

[15] I. Schwartz, J. Scheuer, B. Tratzmiller, S. Müller, Q. Chen, I. Dhand, Z.-Y. Wang,
C. Müller, B. Naydenov, F. Jelezko et al., Robust optical polarization of nuclear spin
baths using Hamiltonian engineering of nitrogen-vacancy center quantum dynamics,
Sci. Adv. 4(8), eaat8978 (2018), doi:10.1126/sciadv.aat8978.

[16] P. London, J. Scheuer, J.-M. Cai, I. Schwarz, A. Retzker, M. B. Plenio, M. Katagiri,
T. Teraji, S. Koizumi, J. Isoya et al., Detecting and polarizing nuclear spins with
double resonance on a single electron spin, Phys. Rev. Lett. 111(6), 067601 (2013),
doi:10.1103/PhysRevLett.111.067601.

31

https://doi.org/10.1038/nphys2519
https://doi.org/10.1103/PhysRevA.100.012126
https://doi.org/10.1103/PhysRevA.99.013426
https://doi.org/10.1088/0953-4075/44/13/135504
1801.04006
https://doi.org/10.1103/PhysRevLett.113.197601
https://doi.org/10.1103/PhysRevB.99.174308
https://doi.org/10.1038/s41467-018-04916-z
https://doi.org/10.1038/s41467-018-04916-z
https://doi.org/10.1038/s41586-019-1834-7
https://doi.org/10.1103/RevModPhys.79.1217
https://doi.org/10.1126/science.1231540
https://www.science.org/doi/pdf/10.1126/science.1231540
https://www.science.org/doi/pdf/10.1126/science.1231540
https://doi.org/10.1126/sciadv.aat8978
https://doi.org/10.1103/PhysRevLett.111.067601


SciPost Physics Submission

[17] J. Schliemann, A. Khaetskii and D. Loss, Electron spin dynamics in quantum dots
and related nanostructures due to hyperfine interaction with nuclei, J. Phys. Condens.
Matter 15(50), R1809 (2003), doi:10.1088/0953-8984/15/50/R01.

[18] B. Urbaszek, X. Marie, T. Amand, O. Krebs, P. Voisin, P. Maletinsky, A. Högele and
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