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Theory of linear microwave response of thin films of type-II superconductors in the mixed state is
developed taking into account random spatial fluctuations of the parameters of the system, such as
the order parameter, diffusion coefficient, or film thickness. In the regime of collective pinning the
microwave response of the system exhibits strong frequency dispersion, arising from nonequilibrium
vortex core quasiparticles. The corresponding contribution to the ac conductivity is controlled by
the inelastic relaxation time, and may exceed the usual Bardeen-Stephen conductivity. It is caused
by the Debye-type inelastic relaxation. Debye mechanism of microwave losses may be responsible for
strong effects of electromagnetic noise upon dc conductivity in the mixed state at low temperatures.

In broad range of magnetic fields, Hc1 < H < Hc2,
where Hc2/1 are the upper/lower critical fields, a type-
II superconductor forms a mixed state, which hosts
Abrikosov vortices. The superfluid and dissipative prop-
erties the system are closely related to the pinning and
dynamics of the vortices. For a thin film of type-II
superconductor in a magnetic field normal to the sam-
ple, which is subjected to an in-plane ac electric field
E(t) = ReEωe

−iωt, the induced density of macroscopic
transport current j(t) = Rejωe

−iωt may be written for
sufficiently low frequencies as

jω =

[
ic2

4πωλ2eff(H)
+ σ

]
Eω. (1)

Here σ is the conductivity and λeff(H) is the effective
penetration depth of the magnetic field. The latter is
very sensitive to the character of vortex pinning. In par-
ticular, for H ≪ Hc2, the effective penetration depth
λeff(H) is given by the Campbell relation [1]

λ2eff(H) = λ2L +
Φ0Hd

8πk(0)
. (2)

Here the first term is inversely proportional to the super-
fluid density Ns and is expressed in terms of the London
penetration length λL =

√
mc2/4πNse2. In the second

term Φ0 = πℏc/|e| is the flux quantum, d is the film thick-
ness, and k(0) is the “spring constant” of vortex pinning.
Equation (2) reflects the fact that the motion of vortices
creates dissipation, and superfluid response is possible
only in the presence of pinning, i.e. when k(0) > 0.
The dissipative conductivity σ satisfies the Bardeen-

Stephen relation[2], and has been analyzed in different
regimes [3–6],

σBS = ζσn
Hc2

H
. (3)

Here ζ ∼ 1 depends on the details of the system, σn is
the conductivity in normal metal σn = e2νnDn, where
Dn and νn are the electron diffusion coefficient and the

density of states at the Fermi energy, respectively. We
note that the Bardeen-Stephen conductivity is insensi-
tive to the details of pinning, and is of the same order as
the conductivity in the flux-flow regime. It arises from
elastic scattering of vortex core quasiparticles and is pro-
portional to the elastic relaxation time τel.

A different dissipation mechanism was shown to ex-
ist in superconductors [7–11] when some vector break-
ing the time-reversal symmetry, e.g. a dc current, is
present in the system. This mechanism is similar to the
Debye absorption mechanism and is caused by inelastic
scattering of quasiparticles. When present, it provides a
contribution to the conductivity, σDB , which is propor-
tional to the inelastic relaxation time τin. Since typically
τin ≫ τel, the Debye contribution σDB may exceed the
conventional conductivity.

The Debye absorption mechanism arises in supercon-
ductors because the quasiparticle density of states ν(ϵ)
depends on the superfluid momentum ps = −iℏ∇χ −
2e
c A, where χ is the phase of the order parameter, and A
is the vector potential. In the presence of an electric field
E(t) = −Ȧ/c the superfluid momentum acquires a time-
dependent correction δps, which satisfies the condensate
acceleration equation d

dtδps = 2eE(t). The linear de-
pendence of the quasparticle density of states ν(ϵ) on
δps requires the presence of another vector which breaks
time reversal symmetry. As a result the Debye contribu-
tion to conductivity discussed in previous studies arose
either in the nonlinear regime or in the presence of a
dc supercurrent [7–10], or in two-dimensional samples of
non-centrosymmetric superconductors in the presence of
an in-plane magnetic field [11]. In either case, the Debye
contribution to differential conductivity is anisotropic; it
is present only for the electric field along the symmetry
breaking vector.

In this Letter we show that in the mixed state of type-II
superconductors the Debye contribution to the conduc-
tivity arises in the linear response regime in the absence
of a dc supercurrent, and is isotopic in the plane per-
pendicular to the magnetic field. The explanation for
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this somewhat unexpected result is that microwave ab-
sorption is caused by vortex core quasiparticles. While
the time reversal symmetry is obviously broken, the lo-
cal vector necessary for the linear Debye absorption arises
from the pinning force on the vortex. Since the direction
of the pinning force is random in space the macroscopic
conductivity is isotropic. Thus, in contrast to the tradi-
tional picture, the ac dissipative conductivity in this case
is closely related to pinning properties. Since the De-
bye contribution to the conductivity exhibits strong fre-
quency dispersion at ω ∼ 1/τin the effective penetration
depth, describing the superfluid response also acquires
strong frequency dependence. In particular, for weak pin-
ning, λeff at high frequencies can be much smaller than
the static value in Eq. (2).

The motivation for this study originates partly from
the recent observation [12] that rather weak electromag-
netic noise in the microwave frequency range may change
drastically the low-temperature behavior of disordered
superconductors in the mixed state. This indicates that
low-temperature dissipation in the mixed state of su-
perconductors may be much larger than expected from
Eq.(3); the Debye mechanism we study here might be
responsible for the effect.

Below we consider thin superconducting films whose
thickness d is small as compared to the skin depth, so
that the electric field E(t) and the density of induced
transport current, j(t) are nearly spatially uniform. The
vortices oscillate under the action of the Lorentz force
exerted by the current j(t) and create non-equilibrium
quasi-particle distribution inside vortex cores, leading to
energy dissipation.

Depending on the magnitude of the individual pinning
force, there can be two fundamentally different cases:
pinning of individual vortices and collective pinning - re-
spectively strong and weak. We will analyse the case of
collective pinning. In this case, the positional order of
the vortex lattice is preserved within a domain of size
Lcor ≫

√
Φ0/H but the long range order is destroyed by

collective pinning [4, 13, 14]. Another length scale, Lp,
usually referred to as the Larkin length, characterizes
the size of vortex domains that are collectively pinned by
disorder. At H ≲ Hc2 the two length scales are of the
same order of magnitude, while at low fields, H ≪ Hc2,
the Larkin length Lp is shorter than Lcor; it is Lp which
is important for our purposes below. Collective pinning
scenario corresponds to the situation of Lp ≫

√
Φ0/H.

In the presence of macroscopic transport current j
through the sample the vortices are displaced from their
equilibrium positions. The displacement ua of the a-th
vortex is determined by the balance between the Lorentz
force and the pinning force fa. In a steady state, the
pinning force can be obtained by differentiating the free
energy of the system with respect to the vortex displace-

ment, fa = −dF{u}
ua

. Due to elastic stresses in the vortex
lattice both the free energy F{u} and the pinning force

fa depend on the displacements of all the vortices, re-
sulting in a collective character of pinning.
A particularly interesting contribution to the pinning

force arises from the vortex core quasiparticles. It is
caused by the dependence of the quasiparticle energy lev-
els ϵa,j(ua) (where j labels the energy level, and a - the
vortex) on the vortex displacements ua. This depen-
dence originates from the spatial variations gap ∆(r) =
∆0 + δ∆(r), diffusion coefficient D(r) = D0 + δD(r),
and the film thickness d(r). We use a shorthand no-
tation α(r) for these quantities, and characterize their
spatial variations by the correlation function

⟨δα (r1) δα (r2)⟩ =
〈
(δα)

2
〉
g

(
|r1 − r2|

rc

)
, (4)

where rc is the correlation radius, g(r/rc) is normalized
to g(0) = 1.
In the presence of spatial variations of the parameters

α(r), the displacement of the vortices caused by the mi-
crowave field causes time-dependence of the quasiparticle
energy levels in the vortex cores, creating a nonequilib-
rium population of these levels. In this case the pinning
force depends not only on the instantaneous positions
of the vortices, but also on the distribution function of
the vortex core quasiparticles. As a result it acquires a
strong temporal dispersion on the time scale of order of
the inelastic relaxation time τin. To linear order in the
displacements the pinning force is given by

fa(t) = −dF{u}
dua

−
∑
j

δna,j(t)∇uaϵa,j − ηu̇a. (5)

Here η = ζΦ0dHc2σn/2c
2, with d being the film thick-

ness and Φ0 = πℏc/|e| - the flux quantum, ζ is the
friction coefficient, which corresponds to the Bardeen-
Stephen expression for the conductivity. Microscopically,
the last term in the RHS of (5) originates from non-
adiabatic transitions between quasi-particle electron-hole
states localized in the vortex core. The second term in
the RHS describes the contribution of nonequilibrium
vortex core quasi-particles to the pinning force. It is
expressed in terms of the nonequilibrium occupancy of
the quasi-particle levels, ϵa,j(ua), δna,j(t) = na(ϵa,i, t)−
nF (ϵa,j(ua)), with nF (ϵ) being the Fermi distribution,
and the energy level sensitivities with respect to ua at

zero displacements, ∇uaϵa,j ≡ d
dua

ϵa,j(ua)
∣∣∣
ua=0

. This

term may be obtained by evaluating the rate of change
of the energy of the quasiparticles, f qp

a ·u̇a = −dEqp

dt , and
applying Ehrenfest’s theorem,

dEqp
a

dt
=

〈
∂tĤ

qp
a

〉
=

∑
j

na,j(t)u̇a ·∇ua
ϵa,j .

Here Ĥqp
a is the Hamiltonian of the vortex core quasipar-

ticles and ⟨. . .⟩ denotes averaging over the quasiparticle
distribution function.
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Below we focus on the regime of weak collective pin-
ning [13]. In this case, due to the stiffness of the vortex
lattice, the displacements of the vortices turn out to be
nearly uniform within the Larkin domain. The average
displacement ū(t) is determined by balancing the spa-
tial average of the pining force (5) with the Lorentz force
density. The Lorentz force per unit area is given by

fL =
d

c
[j ×H], (6)

where d is the film thickness, and j(t) is the density of
macroscopic transport current. In the presence of mi-
crowave radiation the time-dependent part of the trans-
port current depends on both the microwave field and the
displacement of the vortex lattice, and can be expressed
as,

j(t) = −e
2Ns

mc

(
δA(t) +

1

2
[H × ū(t)]

)
, (7)

where Ns is the macroscopic superfluid density in the
absence of vortices, δA(t) is a uniform time-dependent
vector potential, which is related to the microwave elec-
tric field by E(t) = −δȦ(t)/c. The expression in Eq. (7)
follows from invariance under magnetic translations. For
example, in the symmetric gauge, a magnetic transla-
tion by u transforms the order parameter and the vector

potential as: ψ(r) → T̂aψ(r) = ψ(r + u)ei
|e|
ℏc r·[H×u],

A(r) → A(r + u) − 1
2 [H × u]. Since the vortex lat-

tice is displaced by u the expression in Eq. (7) remains
invariant.

Averaging the pinning force (5) over space and equat-
ing it to the negative of the Lorentz force density, and
using Eqs. (6), and (7), we get

k(0)ū(t) + η ¯̇u(t) =
Φ0d

8πHλ2L

(
2[H × δA(t)]−H2ū(t)

)
−
∑
j

δna,j(t)∇uaϵa,j . (8)

We denoted averaging over the vortices by the overline,
· · · and expressed the average static pinning force per

vortex in terms of a “spring constant” k(0) as dF{u}
dua

≈
k(0)ū.
In the static limit ¯̇u(t) and the non-equilibrium part

of the quasi-particle distribution function vanish. In
this case substituting Eq. (8) into Eq. (7) we obtain
j = − c

4πλ2
eff (H)

δA, where the effective penetration depth

in the pinned vortex state, λeff(H), is given by the Camp-
bell relation [1], see Eq.(2). At relatively weak pinning
the spring constant k(0) is small, and the dominant con-
tribution to λeff is provided by the second term in (2);
we will refer to such a situation as the Campbell limit.
In this case, since k(0) is independent of H for H ≪ Hc2,
we have λeff(H) ∝

√
H.

For a general time-dependent microwave field the lin-
ear relation between ū(t) and δA(t) becomes nonlocal

in time. Its determination requires solving the evolu-
tion equation for the quasiparticle distribution function
δna(t). To linear order in ū(t) the evolution equation for
the distribution function of vortex core quasiparticles has
the form [8–10](

d

dt
+

1

τin

)
δna,j(t) =− ˙̄u (t) ·∇ua

ϵa,j
dnF (ϵa,j)

dϵa,j
, (9)

Let us consider a superconducting film subjected to a
monochromatic microwave field δA(t) = Re

(
Aωe

−iωt
)
.

Introducing complex amplitudes for all time-dependent
quantities, e.g. ū(t) = Re

(
uωe

−iωt
)
, and δna,j(t) =

Re
(
δna,j(ω)e

−iωt
)
we get from Eq. (9)

δna,j(ω) =
ωuω ·∇ua

ϵa,j

ω + i
τin

(
−dnF (ϵa,j)

dϵa,j

)
.

Substituting this expression into Eq. (8) yields(
k(ω) +

Φ0Hd

8πλ2L

)
uω =

Φ0d

4πHλ2L
[H × δAω], (10)

where k(ω) = k̃(ω)− iωη is determined via another func-
tion k̃(ω):

k̃(ω) = k(0)− iωτinδk

1− iωτin
. (11)

The quantity δk = k̃(∞) − k(0) has the meaning of the
change in the pinning “spring constant” between the high
frequency limit, ωτin ≫ 1, and the static limit ωτin ≪ 1.
It is expressed in terms of the sensitivities of the quasi-
particle levels to the displacement of the vortex as

δk =
1

2

∑
j

(∇uaϵa,j)
2

(
−dnF (ϵa,j)

dϵa,j

)
. (12)

To obtain this expression we rely on the isotropy of gra-
dients ∇ua

ϵa,j in a random sample. Note that frequency

dependence of k̃(ω) is expressed in Eq. (11) in terms of
three parameters; the inelastic relaxation time τin, and
the static spring constant k(0), and its change δk.
Substituting Eqs. (11) and (10) into Eq. (7) we get the

following expression for the ac conductivity,

σ(ω) =
ic2

4πω

1

λ2L + Φ0Hd
8πk(ω)

. (13)

In the Campbell limit, λeff ≫ λL, we may neglect λ2L in
the denominator. In this case the real part of conductiv-
ity is given by

Reσ(ω) =
2c2τinδk

Φ0dH(1 + ω2τ2in)
+
Hc2

H
ζσn. (14)

Equation (14) is our main result. It shows that apart
from the Bardeen-Stephen contribution, the real part of
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part of the ac conductivity of a pinned vortex lattice con-
tains an additional contribution caused by inelastic scat-
tering of quasiparticles. This contribution arises from
Debye relaxation mechanism and exhibits a strong dis-
persion at frequency scales on the order of inelastic re-
laxation rate 1/τin. At low frequencies this contribu-
tion is proportional to τin. Since τin may exceed the
elastic relaxation time by several orders of magnitude,
at low frequencies the Debye contribution may exceed
the Bardeen-Stephen contribution. The expression in
Eq. (14) applies at frequencies below the elastic relax-
ation rate 1/τel, and describes the frequency dispersion
of the ac conductivity in terms of the inelastic relaxation
rate 1/τin, and δk. The latter is defined by Eq. (12)
and corresponds to the quasiparticle contribution to the
“spring constant” of the pinning force. In accordance
with the Le Chatelier’s principle δk > 0. Under weak
pinning conditions Lp ≫ ξ, the “non-equilibrium” con-
tribution to the spring constant may appear to be domi-
nant, δk ≫ k(0). If the inequality δk ≫ η/τin is fulfilled,
in the intermediate frequency region 1/τin ≪ ω ≪ δk/η
the entire response will be mainly reactive, with effective
penetration depth

λ2eff (H;∞) = λ2L +
Φ0Hd

8π(k(0) + δk)
, (15)

which may differ considerably from the zero-frequency
value given by Eq.(2).

Equation (12) expresses δk in terms of the sensitivi-
ties of individual energy levels of vortex-core quasiparti-
cles to the vortex displacement. Since in practically all
situations the mean level spacing in the vortex core is
negligibly small, it is convenient describe the vortex core
quasiparticles by a continuum density of states νa(ϵ,u).
The transformation from the quasiparticle energy levels
to the density of states is equivalent to the transforma-
tion between Lagrangian and Eulerian variables in the
hydrodynamics of one-dimensional liquids. The formu-
las in the Eulerian representation can be obtained [8, 9]
by replacing in Eq. (12) the summation over levels by
the integration,

∑
j . . .→

∫∞
0
. . . νa(ϵ,u)dϵ, and the level

sensitivity as ∇ua
ϵa,j → Va(ϵ) where Va(ϵ) is expressed

in terms of the density of states νa(ϵ, ū) of vortex core
quasiparticles in the form

Va(ϵ) =− 1

νa(ϵ, 0)

ϵ∫
0

dϵ
∂νa(ϵ, ū)

∂ū

∣∣∣∣
ū=0

. (16)

Making these substitutions in Eq. (12) we obtain the fol-
lowing expression

δk =− 1

2

∫ ∞

0

dϵ
dnF (ϵ)

dϵ
νa(ϵ)Va(ϵ)2. (17)

Let us now estimate the electron contribution to the
spring constant δk in thin films. The density of states

of the vortex core quasiparticles may be estimated as
ν(ϵ) ∼ ν0ξ

2(r)d(r), where ν0 = mpF /(2π
2ℏ3) is the nor-

mal state density of states per single spin projection, and
d(r) and ξ(r) are, respectively, the local film thickness
and coherence length. Therefore the level sensitivity in
Eq. (16) may be estimated as Va(ϵ) ∼ ϵ∇ ln

[
ξ2(r)d(r)

]
.

Substituting this into (17) yields

δk ∼T 2ν0ξ
2d

〈(
∇ ln

[
ξ2(r)d(r)

])2〉
, (18)

where T is the temperature. In obtaining this esti-
mate we tacitly assumed that energy relaxation is caused
by electron-phonon scattering. The reason is that for
energy-independent density of quasiparticle states in the
vortex core, the nonequilibrium distribution of quasipar-
ticles generated by the vortex displacement corresponds
to a change of the quasiparticle temperature. Its relax-
ation requires transfer of energy between the quasipar-
ticles and phonons. Using Eqs. (18) and (4) we get the
following estimate

δk ∼ T 2ν0ξ
2d

r2c

〈
(δα)

2
〉

⟨α⟩2
.

Substituting this into Eq. (14), at ωτin ≪ 1 we estimate
the ratio of the Debye contribution to the conductivity,
σDB , to the Bardeen-Stephen result, σBS , as

σDB

σBS
∼ τin
τel

T 2ξ2

ℏ2v2F
ξ2

r2c

〈
(δα)

2
〉

⟨α⟩2
. (19)

This estimate for σDB in the linear response regime turns
out to be of the same order as that in the flux flow
regime [10].
If variations of the film thickness, δd(r), are the lead-

ing source of disorder then in the above expressions one

should set
〈
(δα)

2
〉
/⟨α⟩2 → ⟨(δd)2⟩/d2. In the dirty case,

ξ2 ∼ ℏv2F τel/∆, we get

σDB

σBS
∼v

2
F τinτel
r2c

T 2

∆2

⟨(δd)2⟩
d2

. (20)

In the clean regime, where the elastic mean free path is
limited by surface scattering, ξ2 ∼ ℏvF d/∆, and τel ∼
d/vF . We thus get

σDB

σBS
∼vF τind

r2c

T 2

∆2

⟨(δd)2⟩
d2

. (21)

In conclusion, we have shown that the Debye mecha-
nism of relaxation may lead, for a mixed state of type-II
superconductors, to a strong enhancement of ac conduc-
tivity σ(ω) at relatively low frequencies, ω ≤ 1/τin. For
the case of thin films the corresponding result is provided
by Eq. (14), assuming the Campbell limit, λeff(H) ≫ λL,
is realized. The relative importance of the Debye contri-
bution to conductivity, σDB , and the Bardeen-Stephen
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contribution, σBS , is characterized by the estimates in
Eqs. (19)-(21). The linear response conductivity σDB

turns out to be of the same order as the Debye contribu-
tion to the conductivity in the flux flow regime obtained
in Ref. 10. The Debye contribution can be dominant at
low temperatures T ≪ Tc where inelastic relaxation time
τin strongly increases and can exceed τel by several or-
ders of magnitude. The relative magnitude of the Debye
contribution depends on the temperature via the prod-
uct T 2τin(T ), see Eqs. (14), and (19)-(21)); it is expected
to grow with decreasing temperature at T ≪ Tc, since in
this region the inelastic relaxation time grows faster than
T−2. On the low temperature side, the applicability of
our results is limited by the assumption T ≫ δ, where
δ is the energy scale associated with discreteness of the
Caroli-DeGennes-Matricon (CdGM) energy levels in the
vortex core. For a single-layer or quasi-2D layered super-
conductors δ ∼ ∆2/EF ≪ ∆, while in isotropic materials
δ is even smaller due to hybridization of CdGM states be-
tween different atomic layers; in either case there is a very
wide range of temperatures δ ≤ T ≪ Tc.

The new microwave absorption mechanism we found
may be responsible for anomalously strong effects of weak
electromagnetic noise on dc transport, which was re-
ported in Ref. [12]. Our theory may also be relevant to
recent experiments [15–19] on disordered superconduct-
ing films with high kinetic inductance, which are intended
to be used in magnetic-field-tuned resonators.

Due to the presence of the Debye relaxation mechanism
the reactive part of the response may demonstrate strong
frequency dispersion if δk ≥ k(0), see Eqs.(2) and (15).
Such a situation should arise naturally in the case of weak
pinning with the Larkin length Lp ≫ ξ. Indeed, the
equilibrium “spring constant” k(0) scales as a negative
power of Lp due to collective nature of pinning, while
the non-equilibrium part δk in Eq. (17) depends on the
local properties of disorder near each separate vortex and
does not depend on Lp.
We note that in recent experiments on microwave ab-

sorption in a mixed state of d-wave superconductors
strong frequency dispersion of microwave impedance at
rather low frequencies was observed [20]. Although
in d-wave materials in addition to vortex core quasi-
particles, a nodal quasi-particles away from vortex cores
are present, the mechanism of strong low frequency dis-
persion may be similar to the one discussed here. The
detailed study of microwave absorption in d-wave mate-
rials is outside the scope of the present study.
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