An objective collapse model without state dependent stochasticity
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The impossibility of describing measurement in quantum mechanics while using a quantum me-
chanical model for the measurement machine, remains one of its central problems. Objective collapse
theories attempt to resolve this problem by proposing alterations to Schrodinger’s equation. Here,
we present a minimal model for an objective collapse theory that, in contrast to previous proposals,
does not employ state dependent stochastic terms in its construction. It is an explicit proof of prin-
ciple that it is possible for Born’s rule to emerge from a stochastic evolution in which no properties
of the stochastic process depend on the state being evolved. We propose the presented model as a
basis from which more realistic objective collapse theories can be constructed.

I. INTRODUCTION

Quantum physics gives an extremely accurate descrip-
tion for the dynamics of systems consisting of up to at
least 10% atoms [I, 2]. Contrarily, in the macroscopic
realm of objects comprised of about 10'® atoms or more,
classical physics suffices to predict their collective dynam-
ics. There is an inherent conflict between these two limits
which becomes apparent when considering the measure-
ment of microscopic particles with a macroscopic mea-
surement machine that itself is built from quantum con-
stituents [3H6]. This inconsistency is known as the quan-
tum measurement problem and it remains the focus of
an active field of research to this day [T, [7HIT].

Proposals for solving the quantum measurement prob-
lem can be divided into roughly two classes: interpre-
tations and objective collapse theories. The interpreta-
tions assume Schrodingers equation holds unaltered at
all scales. The interpretations attempt to interpret the
mathematical objects appearing in Schrodinger’s equa-
tion in a way that explains why we always perceive
only a single classical state for any macroscopic object,
even if its wave function is superposed over many such
states [I]. On the other hand, objective collapse theo-
ries assume that in between the microscopic and macro-
scopic worlds, at the so-called mesoscopic scale, a tran-
sition takes place from quantum to classical dynam-
ics [7, 2], 13]. This transition is described by a small
alteration of Schrodinger’s equation that has no measur-
able effect on microscopic objects, but begins to dominate
the dynamics in the mesoscopic regime [I]. The result is
a reduction or ‘collapse’ of quantum superpositions into
a basis of classical states, which becomes instantaneous
in the macroscopic limit. State of the art experimen-
tal efforts have recently begun to probe the mesoscopic
region where deviations from Schrodinger’s equation pre-
dicted by objective collapse theories may become observ-
able [T], [T4H22]. These efforts attempt to create superpo-
sitions and observe quantum interference on mesoscopic
scales, and typically involve objects of mesoscopic size,
such as a nano-mechanical resonator or large molecule

being superposed over different vibrational modes or po-
sitions.

The precise dynamics predicted by objective collapse
theories in the mesoscopic realm depend on the details
of the particular theory being considered. In order to
reproduce the observed properties of the collapse pro-
cess in the macroscopic limit however, any objective col-
lapse theory needs to at least contain stochastic, non-
unitary [§], and non-linear[23] elements in its time evo-
lution. Together, these need to ensure that the collapse
dynamics give rise to Born’s rule when averaged over
many individual collapse processes [24, 25] . In exist-
ing objective collapse theories, this outcome is explicitly
imposed in the proposed dynamical equations by mul-
tiplying the stochastic variable with a non-linear, state
dependent factor. The origin of this coupling remains
unexplained [I]. The resulting probability distribution
function of the combined non-linear stochastic term in-
evitably depends on the state it acts on, which necessarily
implies the stochastic term has complete information on
the state. Here, we show that this feature can be avoided
by explicitly constructing an objective collapse theory
in which the non-linear elements are separate from any
stochastic term. The stochastic term may still depends
on state-independent properties of the system (such as
the coupling constant defining magnetic interactions be-
tween spins in a magnet), but not on properties of the
state the system is in (such as the weights of particular
spin configurations in the wave function of a magnet).

This model therefore distinguishes from existing col-
lapse models, because Born’s rule emerges without a
state-dependent probability distribution function for the
stochastic variable. This proof of principle is worked out
in the context of a Heisenberg antiferromagnet acting
as a measurement machine for staggered magnetisation,
and we demonstrate that it exhibits all characteristics
required of an objective collapse model. The proposed
theory is not intended to be a realistic proposal for ob-
jective collapse in antiferromagnetic materials, but rather
serves as a minimal example that can be used as the basis
for constructing more general and more realistic objective
collapse models.



The article is organised as follows. First, the require-
ments that should be met by any objective collapse model
are summarised. Next, a recipe is given for constructing
an objective collapse theory applying to a general two-
state measurement. Each step is then applied to the spe-
cific situation of a Heisenberg antiferromagnet, and the
properties of the ensuing collapse process are detailed.
Finally, an interpretation is given for the proposed dy-
namics, and the advantages of the proposed model over
existing theories are discussed.

II. REQUIREMENTS FOR ANY OBJECTIVE
COLLAPSE THEORY

Regardless of their detailed constructions, all objective
collapse theories propose an alteration or correction to
Schrédinger’s equation that can be written as [26]:

(1) = (H + €C) (1) (1)

Here, we (arbitrarily) use the Schrodinger picture, and
explicitly include the strength € of the term G generating
collapse.

The first requirement that any objective collapse model
written in the form of Eq. should obey, is that the
time evolution it generates should reduce to standard
quantum mechanics when acting on microscopic objects.
This is ensured by assuming € to be suitably small, so
that any deviations from the usual quantum dynamics
become apparent only at very late times scaling with 1/e
(which could even lie beyond the current age of the uni-
verse). Despite the smallness of €, however, any suc-
cessful collapse theory should also predict macroscopic
objects that are somehow forced into a superposition of
classically distinguishable states (f.e. by instantaneously
coupling them to a microscopic quantum system), to very
quickly collapse towards just one such state [27] 28]. This
happens when the operator GG scales with some measure
N of the system size, such as the number of particles it
involves, its mass, its volume, or the value of its classi-
cal order parameter, which distinguishes different classi-
cal states [I [29]. The collapse time scale 7. o 1/(Ne)
can then become arbitrarily small in the thermodynamic
limit, while remaining arbitrarily large for microscopic
objects [29].

With this requirement satisfied, the time evolution im-
plied by Eq. can be used to describe quantum mea-
surement by splitting it into two stages [24]. First, a
microscopic object is coupled to a macroscopic measure-
ment device in such a way that part of the device, tra-
ditionally referred to as the ‘pointer’, becomes entan-
gled state with the microscopic object. It is then in
a superposition of classically distinguishable states, or
pointer states [30]. This superposition will almost in-
stantaneously reduce to just a single pointer state, after
which the measurement outcome can be read off. The
first part of this process is dominated by the coupling

between the measurement device and the microscopic ob-
ject, which is encoded in H, while G induces the latter
part.

This description of measurement brings to the fore a
second requirement for any objective collapse theory: it
should cause stable quantum state reduction. That is,
when acting on a macroscopic system, G should cause it
to be reduced to a single pointer state. Moreover, once
the measurement device is localised in a single pointer
state, it should not be able to spontaneously evolve out of
it. The requirement of reduction to a single pointer state
turns out to be readily fulfilled for example by realising
that the dynamics generated by the usual Schrodinger
equation (with G = 0) is unstable [8]. That is, if G
is not Hermitian and couples to an order parameter of
any symmetry-breaking system (such as the position of
a crystal or the magnetization of a magnet), it has been
shown that even an infinitesimal value for e suffices to in-
stantaneously collapse sufficiently large macroscopic sys-
tems into a pointer basis [§].

Notice that although G being non-Hermitian implies
non-unitary time evolution, this does not present any
fundamental problems with regard to wave function
normalisation. Upon redefining expectation values as
(0) = (| OY)/{(¥|yY), all of the predictions of quan-
tum mechanics are recovered even with a time-dependent
norm [8}, 23].

The possible lack of energy conservation under non-
unitary time evolution similarly does not pose a prob-
lem. [3I] The conservation of (H) is ensured in the
thermodynamic limit if the non-Hermitian field couples
(with non-vanishing strength) only to the order parame-
ter, such as the centre of mass position or magnetization,
and not to any internal degrees of freedom such as sound
or spin wave excitations. This way, the non-Hermitian
field causes transitions only between states that are de-
generate in the thermodynamic limit, and hence have no
effect on the total energy [8]. For mesoscopic systems,
small fluctuations in (H) provide one possible way to ex-
perimentally distinguish the predictions of objective col-
lapse theories from those of unitary interpretations. [32].

Finally, the third requirement on the predicted dynam-
ics of the pointer state in any objective collapse theory, is
that it should reproduce Born’s rule. That is, the relative
frequency of any particular measurement outcome should
equal the squared weight of the corresponding component
in the initial pointer state wave function. This require-
ment also implies that in general, a given initial state
needs to be able to collapse to different pointer states
representing different measurement outcomes. This vari-
ation in possible end states necessarily implies the pres-
ence of a stochastic variable in the time evolution gen-
erator, which changes value from one collapse process to
the next, and possibly even within a single process. It
has recently been shown that besides a stochastic com-
ponent, it is also necessary for the generator to contain a
non-linear component (independent of normalisation) to
be able to satisfy Born’s rule, [23].



In summary, the ingredients necessary for any objec-
tive collapse theory are that its time evolution operator
should be non-unitary, should scale with the system size,
should couple only to the order parameter of the system
in the thermodynamic limit, and should contain both
non-linear and stochastic terms.

III. CONSTRUCTING AN OBJECTIVE
COLLAPSE THEORY

Here, we explicitly construct an objective collapse the-
ory by systematically including all necessary ingredients
identified above. We will construct the theory in the
context of an antiferromagnet acting as a measurement
device [29], but the procedure is readily generalised. The
result differs in a crucial aspect from the many existing
flavours of objective collapse theory [6] [12], T3] 33, B4]: it
gives rise to Born’s rule without the stochastic contribu-
tion to the evolution having any knowledge of the state of
the system. This way, Born’s rule is not imposed on the
dynamics by the way the theory is formulated, but rather
emerges spontaneously in the thermodynamic limit.

A. Introducing the pointer basis

Consider a macroscopic system governed by the Hamil-
tonian H, consisting of many internal degrees of freedom.
If the system represents a measurement device, it will be
described by a classically accessible collective variable de-
scribing properties of the system as a whole, such as its
centre of mass or total magnetization, which we call the
‘pointer’ [8,29]. The possible states for the pointer corre-
spond to different symmetry-broken configurations of the
system. The pointer states could be different positions
along a dial of an actual pointer, they could be different
configurations of text on a computer screen displaying
measurement outcomes, or they could be any other set of
classically distinguishable configurations. To be specific,
we will here consider an antiferromagnet whose pointer
states consist of different orientations of the spins making
up the antiferromagnet.

In fact, it suffices to consider only initial states of the
antiferromagnet superposed over two states, with oppo-
site staggered magnetisation. If the objective collapse
theory does not reproduce all aspects of measurement for
two-state superpositions, it follows by induction that it
can also not work for any more complicated initial state.
Formulating collapse dynamics for two-state superposi-
tions thus provides a minimal model for an objective col-
lapse theory. Moreover, we will focus only on the pointer
states of the antiferromagnet and ignore all of its internal
degrees of freedom because these are the only degrees of
freedom involved in spontaneous symmetry breaking [23].

To be specific, we consider a Heisenberg antiferromag-
net, with positive isotropic coupling J between neigh-
bouring quantum spins of size 1/2: HAF = Zjvzl JS;-

S;+1. The spins on neighbouring sites will anti-align,
forming two sub-lattices A (even sites) and B (odd sites)
with opposite spins. Upon taking the Fourier transform
it becomes clear that the collective parts of the Hamilto-
nian Hy (with & = 0, 7) decouple from the internal spin
wave degrees of freedom (with k # 0, 7) [35]:

. 4J
HO — HAF _ Hmternal —_ FSA . SB- (2)

Hy is the so-called Lieb Mattis Hamiltonian [36].

Notice that in the thermodynamic limit, all states with
different values of the total spin S = S, + Sp become
degenerate with the ground state, while maintaining only
a vanishing contribution to the free energy of the antifer-
romagnet [35].

The usual theory of spontaneous symmetry breaking
(SSB) describes the emergence of stable states that are
not invariant under a symmetry of the Hamiltonian.
For the Lieb-Mattis Hamiltonian of Eq. the spin-
rotational symmetry of the antiferromagnet can be bro-
ken by adding an infinitesimal symmetry breaking field
to the Hamiltonian:

H = Ho — B(5% — Sg)- 3)

depending on the sign of B, it represents a magnetic field
that points either up or down along the z-direction on
the A-sublattice, while it points in the opposite direction
on the B-sublattice. The pointer state with staggered
magnetisation S% — S% = £N/2 is singled out in the
thermodynamic limit as the unique ground state by even
a vanishingly small field B = +|B| [35]. These states are
stable in the limit of vanishing B despite the fact that
they break the spin-rotational symmetry of Hy. They are
the pointer states of the antiferromagnetic measurement
machine considered here.

B. Introducing non-unitary dynamics

Time evolution generated by the Schréodinger equation
is necessarily invertible, but as claimed before [§], it is
also unstable to non-unitary perturbations. Applying
the same principles of equilibrium spontaneous symmetry
breaking, but now in the setting of non-equilibrium time
evolution then generates the spontaneous breakdown of
invertible time evolution in the presence of even a van-
ishingly small non-Hermitian term.

We will explicitly consider a non-Hermitian version
of the symmetry-breaking perturbation given by writing
ieB(S% — S%), with € vanishingly small and B finite. In
addition, we break invertible time evolution on the level
of the collective Hamiltonian by introducing the infinites-
imal Wick rotation: Hy — (14 €i)Hp, with € vanishingly
small. This perturbation can be interpreted as the lead-
ing order contribution arising from a full-fledged non-
unitary theory for physics beyond Schrodinger’s equa-
tion, and we neglect all higher order contributions.



Both of the sublattice spin operators S,,p appearing
in the collective Hamiltonian scale with the system size
N. The total strength of the non-unitary contribution
to the pointer dynamics therefore scales with Ne, and
displays the non-commuting limits typical of spontaneous
symmetry breaking [35]:

lim lim Ne= o0
e—0 N—oo

lim lim Ne = 0. (4)

N—00 e—0

This implies that the speed of the collapse process in-
duced by the non-unitary term depends on the size of
the pointer. If NV is small, the non-unitary part is negli-
gible for any sufficiently small €. In the thermodynamic
limit however, the number of spins making up the col-
lective anti-ferromagnetic state of the pointer is so large
that any infinitesimal coupling suffices to qualitatively
influence the pointer dynamics [8] [29].

C. Introducing an external stochastic field

Once an object in the thermodynamic limit is in a state
with a single, definite value for the order parameter, it
does not unitarily evolve out of that state within any
measurable time, even if the direction of the symmetry-
breaking field changes. There is therefore no reason to
constrain B to be a static external field, and we will allow
it to vary in time. In fact, since it represents an infinites-
imal symmetry breaking field originating from sources
beyond the control of any feasible experiment or obser-
vation, we assume the direction of B(t) to vary randomly
in time, with correlation time 7,. At the start of a mea-
surement process, the direction of the symmetry break-
ing field is then fully random and has equal probability
of being aligned with any particular pointer state.

Notice that at this point we have two different non-
Hermitian contributions to the Hamiltonian. The first
originated from Wick rotating the original symmetric
Hamiltonian, and yields spontaneous non-unitary dy-
namics for the system even without any external influ-
ences. The second term is a non-Hermitian version of a
symmetry breaking field. This is due to the interaction

J

4J ((B)[Sa l(1))
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with an (as yet undefined) external actor and introduces
a stochastic contribution to the evolution. The interplay
between the two non-Hermitian terms will determine the
collapse dynamics and measurement outcomes.

D. Introducing non-linearity

In order to reproduce Born’s rule, the time evolu-
tion operator necessarily needs to contain a non-linear
term [23]'[37] One way to introduce such a non-linearity
is by considering in the Hamiltonian only the effective,
collective influence of all microscopic degrees of freedom
on the order parameter. For general symmetry-breaking
systems taken out of equilibrium it is well-known that
the Gross-Pitavskii equations (a form of dynamical mean
field theory) give a good approximation of the dynamics
of the order parameter [38-42].

In our case, the Gross-Pitaevskii approach consists of
approximating the interaction between sub-lattices by
each spin being exposed to the magnetic field generated
by the spins in the opposing sub-lattice: S4 - Sp =~
(SAa) - Sp + Sa - (Sp). These terms can be evaluated
at each time step, giving a set of differential equations
that define the time evolution starting from a given ini-
tial state.

The Gross-Pitaevskii approach yields a good approxi-
mation for the collective dynamical response seen in iso-
lated systems without ensemble averaging over multiple
experiments [40H42]. Thus the approximate form of the
self-interaction, containing factors like (1| S 4 1), which
have the appearance of expectation values, actually do
not imply ensemble averages or measurements being per-
formed. They can be considered as the instantaneous
collective magnetisation of all spins in one sub-lattice in-
fluencing the spins in the other within a single experi-
ment.

E. Assembling the objective collapse theory

Putting everything together, the time evolution of
equation for the antiferromagnetic pointer state can
be written as:

L0 - | = 1€
ihs (1)) = [ v (1+ie) ( WO ()

As noted before, it is a necessary requirement for any
objective collapse theory to describe the quantum state
reduction of a measurement machine that is initially su-
perposed over just two pointer states. We therefore con-
sider the simplest possible case of a state composed of

GO0 'SA>+ieB<t>-<sA—sB> W) )

(

two eigenstates of the order parameter:

[6(6)) = n()e /2 (072 cos(0(1) 2) 1)
+ e O sin(0(t)/2) 1)) . (6)



Here, n(t) represents the norm of the wave function,
&(t) its overall phase, ¢(t) the relative phase between
pointer states, and € is the angle determining their rel-
ative weights. The states [f}) and ||1) are arbitrarily
chosen to lie along the z-axis.

The direction of the symmetry-breaking field B(¢) in
equation does not necessarily align with direction
of the collective staggered magnetisations in the state
|1(t)). Because of the rigidity associated with the sponta-
neously broken symmetry of the antiferromagnetic state,
however, any components of the field orthogonal to the
magnetisation direction will take a time proportional to
the system size to have any significant effect [35]. With-
out loss of generality, we can therefore approximate the
interaction terms as B - Sy p &~ Bgcos(x)S% 5, with
By the amplitude of the symmetry-breaking ﬁ’eld7 and
X the angle between B and the z-axis. Choosing a ran-
dom direction for the three-dimensional vector B then
corresponds to randomly sampling a value for x from
the probability density function f = sin(x)/2. Follow-
ing the same reasoning, we can also approximate the
Gross-Pitaevskii terms by their projections onto the z-
axis: (Sa.B) -Spa~ S45% A

Inserting all definitions into the Hamiltonian and cal-
culating the time dependence of 6 from equation (5| as
described in appendix [A] finally yields:

_JNe

6= - sin(f) (005(9) - % cos(x(t))) . (N

This equation shows the dynamics of the relative weights
parameterised by 6(t) to be independent of the variables
n(t), £(t), and ¢(t) so that we only need to consider the
relative weights when modelling the objective collapse
process. In particular, it justifies the claim that the over-
all norm n(t) can be safely absorbed into a redefinition
of the expectation value without affecting any of the col-
lapse dynamics.

IV. COLLAPSE DYNAMICS

Having formulated a model for the quantum state re-
duction of a single superposition of pointer states, we will
discuss the collapse dynamics it gives rise to. We will de-
termine the outcomes of the predicted evolution for dif-
ferent regimes of pointer size, the frequencies with which
particular outcomes are obtained, and we will check that
the model meets the minimal requirements for objective
collapse theories formulated above.

A. Microscopic region

In the microscopic limit, the pointer itself is a quan-
tum system that typically consists of a small number of
constituent particles (roughly, fewer than 10 atoms [I]).
Taking the strength e of the non-unitary perturbation to

be infinitesimally small, then renders the entire dynam-
ics described by equation negligible on any measur-
able time scale. As expected, only the regular, unitary
quantum dynamics governed by Schrédinger’s equation
remains in this limit.

B. Macroscopic region

To describe a macroscopic pointer we consider the ther-
modynamic limit N — oco. The collapse dynamics of
equation (7) then dominates the time evolution for any
non-zero value of €, thus satisfying the first requirement
for objective collapse theories. The collapse time 7. in
this limit will be far shorter than any correlation time
of the random variable x(¢). The angle x is therefore
approximately constant during the collapse process, and
the evolution of 6(t) can be depicted in a flow diagram
like the one in figure|l} Here, 0 is depicted as a function
of the instantaneous value of 6 itself, for different values
of the random variable y ranging from zero in black (top
curve) to pi in orange (bottom). The qualitative proper-
ties of the dynamics can be directly seen in the plot. For
positive values of 6 the angle 6 will increase over time.
Since the black (top) line for x = 0 lies entirely above the
0 = 0 axis, the value of # will increase over time regard-
less of its initial value. The state will thus flow towards
[41) and stay there forever. The flow is in the opposite
direction for y = 7, while for intermediate values of x the
outcome of the collapse dynamics depends on the initial
value of 6.

The value of x determines the initial value of 0, and
its sign will not change during time evolution, thus driv-
ing the state towards either of the two components in
the initial superposition, where it remains forever after.
This is the manifestation of the stability of quantum state
reduction in the present model, which was the second re-
quirement for objective collapse theories. We show in
subsection [[V (] that variations in the value of x after
the state has collapsed do not affect this stability, and
the macroscopic antiferromagnet will not spontaneously
evolve into a superposition of pointer states.

To determine the probability of finding the final state
[1)) as the outcome of an individual collapse process, we
integrate the probability density for finding a particular
value of x over all values that lead to the desired mea-
surement outcome. Since the function sin(f) is always
positive for 6 € [0, 7], the sign of 0, and thus the result of
the collapse dynamics, is determined entirely by the sign
of cos(6(0)) — (Bo/J) cos(x). The probability for finding
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FIG. 1. Flow diagram for the pointer state dynamics.
The rate of change 6 is depicted as a function of the instan-
taneous angle 0 for different values of the random variable Y,
ranging from x = 0 (dark, top) to x = = (light, bottom).
Here, we used J = Bg. The arrows show the direction of flow,
while the dots indicate fixed points.

the final state |1]) is thus given by:

Py = /OW Sm2(X) © (608(90) - % COS(X)> dx

_ / " Sn()

rccos (E‘T’O cos(Go)) 2

_ % <1 n Bio cos(oo)> (8)

Here O(x) is the Heaviside step function, and we defined
6(0) = 0. In the second line the step function is con-
verted into a lower bound on the integral. The result in
the final line equals cos®(y/2) if and only if J = By.
This would correspond to Born’s rule and thus the third
requirement on objective collapse theories being satisfied.
We discuss possible physical mechanisms that may result
in such a relation between J and By in section [V]

C. Mesoscopic region

For mesoscopic systems, in which the number of con-
stituent particles is neither small nor approaching the
thermodynamic limit, there will be a range of system
sizes such that the collapse time 7. is larger than the cor-
relation time 7, of the random variable but still finite.
The value of x will then vary in time during the collapse
process.

The probability of obtaining a given measurement out-
come in this regime can in principle be written as a
path integral in a straightforward generalisation of equa-
tion . Here, we take the complementary approach of

By =100
0.5 1

0.5 0.75 Sin2 (00/2) 1.0

FIG. 2. Reproducing Born’s rule. The relative frequency
of evolutions coming within 660 of the state |0) is plotted as
a function of the initial weight sin®(#y/2). Dots represent
calculated values, while lines are included as a guide to the
eye only. The diagonal dashed line indicates Born’s rule, while
the differently coloured data sets show different values of the
parameter By, ranging from By = 1.0 at the top through 2.0,
5.0, 7.0, 10, 50, and By = 100 at the bottom. We set J =1
throughout. For each set of parameter values, 10* instances
of the dynamics are calculated for a maximum of 203 time
steps. Taking 7, small compared to 7. and the size of time
steps, the random variable x € [0, 7] is sampled each time step
from the probability density function sin(x)/2, which yields
a flat distribution for the value of cos(x).

evaluating the probabilities numerically by sampling ran-
dom values for x(t) from a distribution that enforces both
its correlation time 7, and its long-time uniform proba-
bility density profile [43] [44].

Taking very large values for the ratio By/J while keep-
ing 7, /7. finite, the stochastic term in equation dom-
inates the dynamics and the measurement outcome is
determined primarily by the sign of cos(x(t)) at early
times. Since cos(x(t)) starts from a flat distribution, the
probability of finding either pointer state is one half, in-
dependent of the initial state.

In the opposite extreme of very small By/J the
stochastic term becomes negligible and the collapse
statistics is determined entirely by the initial sign of
cos(d). The probability for finding the measurement out-
come |1]) is then one for § < 7/2, and zero otherwise.

For intermediate values of the ratio By/J the collapse
statistics may be expected to smoothly interpolate be-
tween these extreme behaviours, suggesting the possibil-
ity of reproducing Born’s rule for fine-tuned parameter
values, as shown in ﬁgure for the example of small 7,. /7.
Indeed, we numerically established that for any value of
the parameters N, J, and 7, in equation , there is a
value of By which results in Born’s rule being obeyed by
the collapse statistics. For the objective collapse model
of equation the parameters yielding Born’s rule in the



mesoscopic regime are found to approximately follow the
relation:

J ~2B2N7, (9)

Notice that for the macroscopic regime with 7. > 7., we
saw before that Born’s rule is obeyed if J = By. At the
point 7. = 7. = 1/(2JN) connecting the two regimes, the
mesoscopic relation of equation @ connects continuously
to the macroscopic one.

Given the fine-tuned relation between model param-
eters, equation is an objective collapse model that
reproduces Born’s rule, assuming that the final states
obtained are stable. That this is not obvious in the pres-
ence of a time-varying stochastic parameter is clear from
the observation that such a term always destabilises the
solutions of linear time evolution equations [23]. In the
present case, however, the non-linear nature of the col-
lapse dynamics protects the stability of the pointer states.
This can be easily seen by noticing that df/dt near one
of the poles of the Bloch sphere is directed towards the
pole for almost all values of the random parameter.

D. Lower bound on the correlation time

The small but non-zero chance of a state evolving
away from the poles can be used to further constrain
the model parameters. First, approximate the time-
varying stochastic term as a process in which cos(x(t))
is constant for intervals equal to the correlation time 7,
and chosen randomly from a flat distribution in every
new interval. Starting from an equal-weight superposi-
tion, the state of the system then comes within roughly
06 ~ exp(—7,/7.) ~ exp(—JNer,) of a pole of the Bloch
sphere within a single correlation time 7. We can con-
sider the collapse of an object of size N stable if af-
ter collapsing into one of these regions, it may be ex-
pected to stay there for at least the age of the observ-
able universe (7, ~ 4.4 - 1017s). The probability of
finding a value for x that would take the system out
of the interval [0,06] is equal to sin?(6/2). Roughly,
the collapse is stable within a time equal to the age
of the universe if 7,./sin*(00/2) > 7,, or equivalently
it 2JNer, 2 In(r,/(47.)). More generally, observing
an object of size N to remain collapsed for a time 7,
thus provides the value of e7,. with a lower bound. This
allows existing methods constraining objective collapse
theories [27] to be applied to the current model.

Further experimental predictions may be deduced from
the dependence of the predicted collapse time on the sys-
tem size. These can for example result in bounds on
parameter values using experiments similar to those pro-
posed in the context of other theories, which track quan-
tum interference effects for superpositions of ever heavier
or larger objects [45].

V. DISCUSSION

The objective collapse model constructed here for
an antiferromagnet superposed over two pointer states
meets all minimal requirements for a theory of quantum
measurement. It predicts a negligible effect on the dy-
namics of microscopic systems, which thus evolve purely
according to Schrédinger’s equations. At the same time,
it predicts macroscopic systems to instantaneously col-
lapse towards a single classical state. Moreover, owing to
the combination of stochastic and non-linear ingredients,
the classical end states are stable and the frequencies of
outcomes obey Born’s rule.

The construction of the model employed a series of
generic steps that suggest the possibility of construct-
ing similar objective collapse theories in more general
settings. To wit, because the pointer was assumed to
have a spontaneously broken symmetry, the order pa-
rameter dynamics separated from the effects of inter-
nal degrees of freedom and we could focus the model
on only the collective properties of the antiferromagnet.
The required stochastic nature of the collapse process is
included in a natural way by assuming that the infinites-
imal symmetry-breaking field is beyond the control of
any experiment. Finally, its necessary non-unitary char-
acter is introduced in the form of an infinitesimal Wick
rotation of the time axis, while the theory is rendered
effectively non-linear by writing its dynamics in the form
of Gross-Pitaevskii equations.

Although all of the steps above straightforwardly gen-
eralise to any symmetry-breaking pointer state and any
initial state configuration, we find the fine-tuning of pa-
rameter values required for obtaining Born’s rule not to
be straightforwardly reproducible in more general set-
tings. We therefore do not argue that the current model
presents a realistic objective collapse theory. Rather, we
present it as a proof of principle establishing that Born’s
rule can emerge from a consistent objective collapse the-
ory without assuming it in the definition of the model.

This should be contrasted with existing objective col-
lapse models, in which the probability density function
governing the values attained by the stochastic compo-
nent depend on the instantaneous state of the system.
This is done either explicitly by using a probability den-
sity function that coincides with the instantaneous real-
space wave function [34], or implicitly by considering a
Wiener process whose probability density profile is mul-
tiplied by a state-dependent factor [I, [12] 33].

In the well-known QMUPL model for example [T}, [46],
all necessary ingredients for an objective collapse the-
ory —a stochastic term, non-unitarity, and a non-linear
term— are present. But the non-linear term multiplies
the stochastic process and hence renders the probability
density function of the stochastic variable dependent on
the state of the system being measured. The stochastic
term determines the probabilities of measurement out-
comes, and the fact that its distribution scales precisely
with the expectation value that one hopes to find as a re-



sult of the measurement dynamics amounts to introduc-
ing Born’s rule in the definition of the model. Moreover,
assuming the properties of the stochastic influence to de-
pend on the object being measured severely complicates
any physical interpretation for its origin.

In contrast, the model proposed here has separate non-
linear and stochastic terms, which do not depend on one
another in any way. The stochastic variables are there-
fore drawn from a state-independent probability density
profile, and can be interpreted as originating from a uni-

versal, dynamically fluctuating, non-unitary noise field.

In conclusion, we established the possibility of con-
structing a model that satisfies all requirements of an
objective collapse theory, without the presence of Born’s
rule being implied by a state-dependent stochastic term.
We thus provide proof of principle for the possibility of
Born’s rule spontaneously emerging in quantum mea-
surement, and suggest the presented model as a possible
starting point in the search for further objective collapse
theories that do not impose Born’s rule.
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Appendix A: Time evolution on the Bloch sphere

The time evolution of quantum states can be written as:

0 i A
o [w(®) = £ G [0(0) (A1)

with G the (possibly non-Hermitian) time evolution generator. Specializing to the time evolution of the two-state
superpostion of antiferromagnetic states discussed in the main text, we parameterize the state in its most general
form as:

[6(8)) = n(®)e SO/ (9072 cos(0(t) /2) [14) + e O 2 sin(0(t) /2) |41) )

= o b(0) = %(271 cos(8/2) — nsin(8/2) +i(E + H)ncos(8/2) ) /%2 1)

1 . . . ,
+ 3 (21’1 sin(0/2) + nb cos(0/2) +i( — P)n Sin(9/2)) e&/2e710/2 |11 . (A2)
Here, we introduced the time-dependent norm n(t), overall phase £(t), relative phase ¢(t) and the angle 0(t) deter-
mining the relative weights of the wave function components. This expression gives the left hand side of equation

To find the right hand side, we recall the Hamiltonian for the antiferromagnet with non-unitary modifications to
Schrodingers equation introduced in the main text:

HIy(t)) = [‘;’u +ie) (Wf)l Salv(t) g , (W] S5 1¥(1)

WO, 2T WORO)

= —g [J(1 4 i€) cos(#) — ieBg cos(x)] ne't/? (ei¢/2 cos(0/2) [1]) — e7**/2 sin(0/2) |¢T>> , (A3)

5‘51) +ieBy cos(x) (57 — 5%)] [ (t))

where in the second line we again focused on the two-state superposition of equation (A2]), and wrote the non-linear
contributions to the Hamiltonian as (¢(t)| % g [¢(t))/ (4 (t)[¥(t)) = £N/4(cos*(0/2) —sin?(0/2)) = +N cos() /4. We
also used the fact that each sublattice has N/2 spin halves to write 5‘5‘73 [ty = £N/4|1)).

Substituting equation (A2)) for the left hand side and equation (|A3)) for the right hand side of (A1), we can separately
equate the real and imaginary parts of the components for each of the two basis states. This gives four equations,
which can be solved for the four parameters characterising the two-state superposition. The imaginary parts yield:

£=0
¢ = —JN cos()/h. (A4)

These are equal to the usual mean-field expressions fo unitary time evolution a Lieb-Mattis antiferromagnet. The real
parts of equation contain the non-unitary contributions and yield:

n  JNe B
- =5 cos(6) (605(9) - 70 cos(X))
0=— J]};fe sin(6) (cos(é)) - % cos(x)) . (A5)

Notice that the overall phase £ and normalisation n do not appear in the equations for 6 and (;5 They therefore
remain unobservable even under the non-unitary time evolution, and can ignored when analysing the flow of (6, ¢) on
the Bloch sphere.
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