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Abstract

Non-equilibrium steady states are created when a periodically driven quantum system
is also incoherently interacting with an environment – as it is the case in most realistic
situations. The notion of Floquet engineering refers to the manipulation of the properties
of systems under periodic perturbations. Although it more frequently refers to the co-
herent states of isolated systems (or to the transient phase for states that are weakly
coupled to the environment), it may sometimes be of more interest to consider the final
steady states that are reached after decoherence and dissipation take place. In this work,
we demonstrate how those final states can be optimally tuned with respect to a given
predefined metric, such as for example the maximization of the temporal average value
of some observable, by using multicolor periodic perturbations. We show a computa-
tional framework that can be used for that purpose, and exemplify the concept using a
simple model for the nitrogen-vacancy center in diamond: the goal in this case is to find
the driving periodic magnetic field that maximizes a time-averaged spin component. We
show that, for example, this technique permits to prepare states whose spin values are
forbidden in thermal equilibrium at any temperature.
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1 Introduction

Exploring novel materials in search of desired properties and functionalities is one of the most
important tasks of material sciences and engineering, as it can significantly impact fundamen-
tal sciences and practical applications. For example, the conversion efficiency of solar cells has
been significantly enhanced over the past several decades through the discovery of various
types of materials [1–3]. Likewise, thanks to the exploration in a vast materials space, various
superconducting materials have been found [4–7]. In addition to these examples, various ma-
terials explorations have been conducted toward the realization of desired material properties
and functionalities in the equilibrium phase [8–10].

Recently, the exploration and design of material functionalities has been extended to the
nonequilibrium phase of matter under the presence of optical or magnetic drivings. In the
seminal work by Oka and Aoki [11], for example, the light-induced anomalous Hall effect in
graphene has been theoretically studied in terms of the Floquet picture, suggesting the emer-
gence of topological states of matter. Inspired by this work, various groups have investigated
the emergence of new material properties under electromagnetic drivings. The design of ma-
terial functionalities in the nonequilibrium phase has thus become a full new field of research,
that is often called Floquet engineering [12–17].

In most theoretical works about Floquet engineering, the states of the target system have
been investigated by considering the time-periodic solutions of the Schrödinger equation.
However, real materials are surrounded by their environment, and those Floquet states, which
are the time-periodic solutions of the Schrödinger equation, may decay quickly and not be rel-
evant. In fact, recent theoretical and experimental studies suggest that the realization of the
Floquet states can be significantly disturbed by their interaction with the environment [18–22].
For a practical description of such driven systems, a theory of open-quantum systems under
periodic driving has to be considered. However, understanding such driven nonequilibrium
phases is significantly more difficult.

Recently, we have demonstrated [17] an approach to Floquet engineering based on the
use of quantum optimal control theory (QOCT) [23–27]: the idea was to allow for multicolor
periodic driving, rather than the monochromatic ones that are normally assumed, and to use
the tools of QOCT to find the amplitudes of the various frequency components that optimize a
given target property of the system – in that work, the goal was to modify at will the (pseudo)
band structure of graphene.

However, that work also ignored the effect of the environment, and therefore, the found
optimal states would only live in a transient prethermalized phase. To realize the Floquet
control of material properties and functionalities in systems more tightly coupled to an envi-
ronment, going beyond the conventional Floquet analysis for isolated systems, we extend here
that previous concept of Floquet engineering to open-quantum systems. For this purpose,
we first discuss how to apply optimal control theory for nonequilibrium steady states of open-
quantum systems under periodic driving, based on a quantum master equation. We then apply
the introduced optimal-control procedure to a model of the NV center of diamond under peri-
odic driving, demonstrating that, for example, driven open quantum systems under optimized
fields may display exotic properties that are forbidden in the equilibrium phase. Although
to our knowledge, no previous work has attempted the optimization of NESSs with respect
to the external drivings, a related work [28] has recently demonstrated the use of automatic
differentiation to optimize steady states with respect to internal system or bath parameters.
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2 Method

In order to manipulate the nonequilibrium steady states, we solve the following optimization
problem. Our first assumption is to consider, as master equation, a Lindblad-type equation [29,
30] with time-periodic external fields:

ρ̇(t) = −i [H(t),ρ(t)] +
∑

i j

γi j

�

Vi jρ(t)V
†
i j −

1
2
{V †

i jVi j ,ρ(t)}
�

. (1)

Here, the Hamiltonian H(t + T ) = H(t) is periodic with time period T . We consider it to be
composed of a field-free and and a periodic perturbation part: H(t) = H0 + g(u, t)V , where
g(u, t) = g(u, t + T ) is some T -periodic real function parametrized by the set u = u1, . . . , uP
– the control parameters. The incoherent part of the evolution is determined by the set of
Lindblad operators Vi j , which we will assume in the following, without loss of generality, to be
the transition operators Vi j = |Ei〉〈E j|, where |Ei〉 are the field free Hamiltonian eigenvectors.

We should warn that the previous equation is not universally valid. In fact, the problem
of deriving valid master equations for systems with time-dependent Hamiltonians is still an
open research area. The equation of Lindblad can only be rigorously derived if the Hamil-
tonian is time independent – and even then, it rests on several additional conditions, most
notably Markov’s approximation. Various authors have tackled the problem of deriving mas-
ter equations for driven systems [31–34]. In some circumstances, Lindblad-type equations
with time-dependent Hamiltonians such as Eq. (1) are appropriate [35], and have been used
for various purposes [36–38]. The previous equation is a simplified version of the so-called
Floquet-Lindblad equation [39]. We will work with it as working hypothesis; furthermore, the
optimization procedured described below can be easily generalized to more complex master
equations.

A Lindblad equation such as the one above can always be written as a linear equation in
Liouville space:

ρ̇(t) = L(u, t)ρ(t) , (2)

where we now consider ρ(t) to be in vectorized form, i.e it is a N2-dimensional complex vector
vector, where N is the dimension of the underlying Hilbert space [40]. The Lindbladian L(u, t)
is the N2 × N2 dimensional operator that results of transforming Eq. (1) into this space. We
split it as:

L(u, t) = L0 + g(u, t)V . (3)

Let us call ρu(t) to the periodic solution (i.e. ρu(0) = ρu(T )) of Eq. (2) for a set of
parameters u. This solution corresponds to a non-equilibrium steady-state (NESS). Note that,
in principle, there could be more than one steady state, but we will consider here that it is
unique. We then consider the time-average function

F(ρ) =
1
T

∫ T

0

dt Ã(ρ(t)) , (4)

for some function of density matrices Ã – in practice, this will typically be the expectation value
of some operator A: Ã(ρ) = Tr[Aρ]. The problem that we attempt to solve is the optimization
of function:

G(u) = F(ρu) , (5)

subject perhaps to some constraint on the parameters u.
Such class of optimization problems for time-dependent processes that can be controlled

by the manipulation of external handles is the object of (quantum, in this case) optimal control
theory (QOCT). Any function optimization algorithm requires a method for the computation
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of the function; in addition, many efficient algorithms will also require a method for the com-
putation of its gradient. Computing the function G essentially amounts to obtaining the NESS.
In the following, we will show one possible way to do this, and also derive one expression for
the gradient. Note that since

G(u) =
1
T

∫ T

0

dt Tr[Aρu(t)], (6)

the gradient components may then be computed as:

∂ G
∂ uk

=
1
T

∫ T

0

dt Tr[A
∂ ρu

∂ uk
(t)], (7)

and therefore the problem in fact amounts to finding some procedure to compute the deriva-
tives ∂ ρu

∂ uk
.

Let us first rewrite Eq. (2) elementwise:

ρ̇α(t) =
∑

β

Lαβ(u, t)ρβ(t) (8)

and consider the Fourier transform of these objects:

ρα(t) =
∑

n

ρα,neiωn t , (9)

ρα,n =
1
T

∫ T

0

dt e−iωn tρα(t), (10)

Lαβ(u, t) =
∑

n

Lαβ ,n(u)e
iωn t , (11)

Lαβ ,n(u) =
1
T

∫ T

0

dt e−iωn tLαβ(u, t), (12)

where ωn =
2π
T n , n = 0, 1, . . . , N − 1. In the frequency domain, the Lindblad equation,

Eq. (2), can then be rewritten as 1:

∑

β

N−1
∑

m=0

�

Lαβ ,n−m(u)− iδnmδαβωm

�

ρβ ,m = 0. (13)

And, by further defining the following operator

Lαn,βm(u) = Lαβ ,n−m(u)− iδnmδαβωm, (14)

we finally rewrite Eq. (2) as:

∑

β

N−1
∑

m=0

Lαn,βm(u)ρβ ,m = 0. (15)

1These equations are easily reached using the following two formulas:

1
T

∫ T

0

dt ρ̇α(t)e
−iωn t = iωnρα,n,

and
1
T

∫ T

0

dt Lαβ (u, t)ρβ (t)e
−iωn t =

N−1
∑

n=0

Lαβ ,n−m(u)ρβ ,m.
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This is a linear homogeneous equation; the solution (the nullspace or kernel, assuming
that it has dimension one), will be the periodic solution that we are after, the NESS 2. We now
need some procedure to find ∂ ρ

∂ uk
. Taking variations of Eq. (15) with respect to the parameters

u, we get:

L(u)
∂ ρ

∂ uk
(u) = −

∂L
∂ um

(u)ρu. (16)

This is a linear equation that would provide ∂ ρu
∂ uk

. However, note that since L(u) has a non-
empty kernel (given precisely by ρu), it cannot be solved straightforwardly. In fact, it does not
have a unique solution: If x is a solution of

L(u)x = − ∂L
∂ um

(u)ρ(u), (17)

x+µρu is also a solution for any µ. To remove this arbitrariness, we impose the normalization
condition, Trρu = 1 for any u, and therefore:

Tr
∂ ρu

∂ uk
= 0. (18)

To find ∂ ρu
∂ uk

in practice, we may then take the following two steps: First, we compute a solution
of the linear equation, Eq. (17), with the least-squares method, by imposing that the solution
x0 is perpendicular to the kernel, i.e.: x†

0 · ρu = 0. Then, we update the solution with the
condition, Eq. (18). The required solution is obtained as:

∂ ρu

∂ uk
= x0 − (Trx0)ρu. (19)

Once we have ∂ ρu
∂ uk

, we can evaluate the gradient in Eq. (7). Armed with this procedure to
compute this gradient, one can perform the optimization of function G(u) with many efficient
algorithms.

These methods have been implemented in the qocttools code [41], publicly available, and
all the necessary scripts and data necessary to replicate the following results are also available
upon request from the authors.

3 Results

In the following, we will use the previous equations with the following model of the NV center
of diamond [36,42]:

H(u, t) = H0 + V (u, t), (20)

H0 = −BsSz + NzS2
z + Nx y(S

2
x − S2

y), (21)

V (u, t) = −gx(t)BdSx − g y(t)BdSy . (22)

The model definition must be completed with the definition of the dissipative part: we take
γi j = γe−βEi/(e−βEi+e−βE j ) and γii = 0, where β = 1/(kBT ) is the inverse of the temperature,
and γ is a rate constant 3. The reason for choosing this model is the work of Ikeda et al. [36],
who studied the NESSs of this system under circularly polarized light (gx(t) = cos(ωt); g y(t) = sin(ωt)).

2Other procedures could be used to compute the NESS, sometimes also called “asymptotic Floquet states”, such
as for example simply propagating the equation for a long time, as the system should decay to the steady state.

3Notice that this dissipation model ensures the detailed balance condition, γi j e
−βE j = γ ji e

−βEi .
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Figure 1: Thermal average of Sz , as a function of the inverse temperature β = 1
kBT .

The value at β = 3, used in the text for the rest of the calculations, is singled out.
Inset: structure of the Nitrogen vacancy defect in diamond.

In that work, the high-frequency approximation was used in order to derive simplified ex-
pressions for the NESS. Here, the goal would be to parametrize functions gx = gx(u, t) and
g y = g y(u, t), and find the parameters u that result in a NESS that maximizes the time-
averaged value of some observable (for example, Sz).

Following Ikeda et al. [36], we set the units of the model by fixing Nz = 1; the rest of the
parameters of the model are then given by: Nxy = 0.05, Bs = 0.3, Bd = 0.1,γ = 0.2 (see [42]
for a review on the NV diamond centers, this and other models, and the typical values that
these constants may take).

First, let us consider the field-free value of Sz; the thermal average of Sz , 〈Sz〉β , is shown
in Fig. 1 as a function of the inverse temperature β . One can see how at zero tempera-
ture (β →∞), 〈Sz〉β → 0, reflecting the fact that the ground-state value of Sz is also zero:
〈ψ0|Sz|ψ0〉= 0. As the temperature increases, the population of the first excited state grows,
and therefore the thermal average of Sz also grows, since 〈ψ1|Sz|ψ1〉 ≈ 1. However, if the tem-
perature is increased further, the population of the second excited state also starts to grow, and
the thermal average starts to decrease, as 〈ψ2|Sz|ψ2〉 ≈ −1. In the limit of infinite temperature
(β → 0), the thermal average approaches zero again, as that limit involves an equally popu-
lated ensemble of all three states. Note then that a thermal control of Sz , i.e. the manipulation
of the value of Sz via a variation of the temperature, is limited to the range 0< 〈Sz〉β < 0.14.

However, as we will show, if a periodic perturbation is added, this range can be enlarged,
and one may reach NESSs with larger or smaller values of the (time averaged) Sz . In the
following, let us fix β = 3, and seek for the drivings that are capable of producing those
NESSs. The first step is to set a parametrized form for the time-dependent functions gx and
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Figure 2: Left, top: Optimized (red) and initial guess (blue) temporal shapes of the
time-dependent magnetic fields gx (solid) and g y (dashed). Left, bottom: Evolution
of 〈Sz〉when using the initial guess (blue) and the optimal fields (red). The green line
represent the thermal average at β = 3. Right: Trajectories of the spin vector 〈~S(t)〉
during one period T , for the initial guess (blue) and optimized (red) perturbations.

g y used in Eq. (22); the simplest choice is to use Fourier expansions:

gx(u, t) = u0 +
M
∑

n=1

[u2n cos(ωn t) + u2n−1 sin(ωn t)] , (23)

g y(u, t) = u2M+1 +
M
∑

n=1

[u2M+1+2n cos(ωn t) + u2M+2n sin(ωn t)] .

The control parameters are therefore the Fourier coefficients of the temporal shape of the
two magnetic fields, u0, . . . u4M+1. The index M determines the cutoff frequencyωM , whereas
all the Fourier frequencies are ωn = nω0 for n = 1, . . . , M . A choice must then be made on
the fundamental frequency ω0, which is of course related to the period that we choose for the
external field ω0 =

2π
T . In this work, we have chosen ω0 = 0.5 Nz , and M = 4, such that

the cutoff frequency is ωM = 2.0 Nz . By defining the control functions in this parametrized
manner, we effectively constrain the final solution to a given domain of validity – in this case
setting a maximum frequency. This would be consistent with any experimental realization of
this concept, as in practice the time-dependent magnetic fields would also be constrained in
frequencies due to technological limitations.

The optimization of function (6) may then be started using any gradient-based algorithm
– the one that we have used for these calculations is the Sequential Least-Squares Quadratic
Programming (SLSQP) algorithm [43] as implemented in the NLOPT library [44]. Note that
we have not performed an unconstrained maximization for all possible values of parameters
u j , but we have added a constraint on the amplitudes of each frequency component:

|u j| ≤ κ for any j. (24)

Such a constraint would also be present in an experiment. The chosen algorithm permits to
include this constraint.

Fig. 2 shows the results of one optimization; in this case the amplitudes were constrained
using κ = 4.0. The optimization is started with random fields (shown in the left, top panel,
with blue lines), and then proceeds iteratively until the fields that optimize the temporal av-
erage of Sz are found (shown in the left, top panel, with red lines). In the left, bottom panel,
the evolutions in time of Sz are shown, once again for the initial guess and for the optimized
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Figure 3: Maximized (red-orange) and minimized (blue-violet) values of the time-
averaged Sz expectation value, 〈〈Sz〉〉, as a function of the amplitude bound κ. The
various curves correspond to different values of the rate constant γ, which are dou-
bled from γ= 0.025 to γ= 0.8. The shaded region marks the only allowed values of
Sz in thermal equilibrium (thus, for example 〈Sz〉β > 0).

case. It can be seen how the optimized fields lead to significantly higher values of Sz – both
with respect to the initial random fields, and with respect to the thermal value (shown as a
straight green line in the plot). In fact, the time-averaged value of Sz achieved in this way
(≈ 0.38) is higher than the maximum that can be achieved in equilibrium phase by modifyng
the temperature (≈ 0.14, as discussed above). The right part of Fig. 2 shows the full spin vec-
tor 〈~S(t)〉 evolving in time during one Floquet period, both for the initial (blue) and optimized
(red) cases.

The final optimized value of function G (i.e. of the time averaged value of Sz) obviously
depends on how we constrain the periodic functions. For example, on the bound κ that we set
on the amplitudes. Fig. 3 shows the optimal value obtained as a function of that bound (red
curves), for various values of the dissipation constant γ. Obviously, if the bound is set to a very
small value, the presence of the periodic field barely modifies the thermal average (of around
0.09, for the chosen temperature value, β = 3). However, if the bound is relaxed to higher
values, the average can be significantly increased, up to a saturation value that depends on γ:
the higher the γ, the lower the value of the optimized 〈〈Sz〉〉. This can be understood physically,
as a faster dissipation drives with more strength the system towards its thermal equilibrium
state. Finally, we have attempted to minimize the time average of Sz , wondering whether one
can engineer states with the in principle forbidden negative spin values. In Fig. 3 we display
the obtained optimal values, also as a function of the amplitude bound (red curves). It may be
seen how, if sufficiently big amplitudes are allowed, one may actually obtain negative values
– which are forbidden in thermal equilibrium, as it can be seen in Fig. 1.
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4 Conclusions

We have developed an optimal control scheme for the nonequilibrium steady states of open
quantum systems under time-periodic drivings, aiming to control the properties of matter in
nonequilibrium phases. We derived an expression for the gradient vectors of physical observ-
ables in NESSs with respect to the parameters of the external periodic fields, and we employed
these derived gradient vectors for the optimization of observables of the diamond NV center
under external periodic magnetic fields. We confirmed that the time-averaged value of the
spin component, Sz , can be controled with the proposed optimal control sheme. Furthermore,
we demonstrated that this technique can be used to find “exotic” NESSs, such as states that
display properties that are forbidden in equilibrium phases: As shown in Fig. 3, the z-spin
component of the optimized NESS can be outside the range of values allowed in equilibrium
– for example, it may be negative, which is impossible at any temperature.

Having established an optimal control scheme for NESSs under periodic driving, the field
parameters can be added as novel degrees of freedom for material explorations aimed to en-
dow the materials with desired properties and functionalities. This extends the concept of
material exploration, from equilibrium to nonequilibrium situations. Because the present op-
timization scheme is based on the steady state solutions of a master equation, such as Lind-
blad’s equation [Eq. (1)], the relaxation and dissipation effects are naturally included in the
optimization procedure. Hence, the engineering of material properties based on the proposed
scheme can be seen as an extension of the more common Floquet engineering usually based
on the steady solutions of the time-dependent Schrödinger equation without taking into ac-
count the relaxation and dissipation effects. The optimal control of NESSs proposed in this
work shows how the difficulties of Floquet engineering due to the relaxation and dissipation
effects can be overcome, and the natural inclusion of these effects opens a path to the control
of material properties with experimentally realizable fields.
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