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Abstract

Certain spin chains, such as the quantum Ising chain, have free fermion spectra
which can be expressed as the sum of decoupled two-level fermionic systems.
Free parafermions are a generalisation of this idea to ZN -symmetric clock
models. In 1989 Baxter discovered a non-Hermitian but PT -symmetric model
directly generalising the Ising chain, which was later described by Fendley as
a free parafermion spectrum. By extending the model’s magnetic field pa-
rameter to the complex plane, it is shown that a series of exceptional points
emerges, where the quasienergies defining the free spectrum become degener-
ate. An analytic expression for the locations of these points is derived, and
various numerical investigations are performed. These exceptional points also
exist in the Ising chain with a complex transverse field. Although the model is
not in general PT -symmetric at these exceptional points, their proximity can
have a profound impact on the model on the PT -symmetric real line. Further-
more, in certain cases an exceptional point may appear on the real line (with
negative field).
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1 Introduction

The free parafermion model is a quantum spin chain where the spin sites are generalised to
“clocks” with N symmetric states. On a chain of length L with open boundary conditions,
it has the Hamiltonian

H = −
L−1∑
j=1

Z†
jZj+1 − λ

L∑
j=1

Xj , (1)

where X and Z are generalisations of the Pauli matrices given by

Z =


1 0 0 . . . 0
0 ω 0 . . . 0
0 0 ω2 . . . 0
...

...
...

. . .
...

0 0 0 . . . ωN−1

 , X =


0 0 0 . . . 0 1
1 0 0 . . . 0 0
0 1 0 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . 1 0

 . (2)

The parameter λ is a constant assumed to be real and positive in the literature, and
ω = e2πi/N is an Nth root of unity.

When N = 2, the model reduces to the widely studied transverse field Ising model,
with X and Z reducing to the Pauli matrices σx and σz. For N > 2, the model is non-
Hermitian and has a complex spectrum. The energy spectrum is known exactly for all N ,
L and λ, taking the form of free parafermions. This form was first derived by Baxter, who
also formulated the model [1,2], and later explored in detail by Fendley using an algebraic
approach with parafermions defined by the Fradkin-Kadanoff transformation [3]. Some
key elements of Fendley’s approach are described in Section 2.

The free parafermion model is related to the classical τ2 model, in that the transfer
matrix of the classical model commutes with the quantum chain’s Hamiltonian. The τ2
model was essential to the solution of the chiral Potts model [4] and has been further
explored by Baxter [5], and Au-Yang and Perk [6, 7].

In his solution, Fendley developed interesting algebraic techniques which were also
applied to multispin free fermion systems [8]. This approach was later adopted and gen-
eralised by Alcaraz and Pimenta to a class of multispin free fermion and free parafermion
models [9–11].

Free parafermions are a natural generalisation of the concept of free fermions. In a free
fermion system, the energy eigenvalues are a sum of a set of L quasienergies, each of which
is multiplied by a positive or negative sign, giving 2L combinations which determine the
2L eigenvalues of the Hamiltonian. For free parafermions, instead of a positive or negative
contribution, each quasienergy is multiplied by an Nth root of unity, i.e., a power of ω.
Thus a general energy eigenvalue is given by

E = −
L∑

j=1

ωqj ϵj , (3)

where ϵj are the quasienergies, and qj ∈ {0, . . . , N − 1}. Each possible combination of
qj values determines a different eigenvalue, giving all NL states. Figure 1 provides an
illustration of such a spectrum.
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Figure 1: A free parafermion spectrum in the complex plane, for N = 3, L =
4. The black dots are the NL energy eigenstates. The spectrum is built up
by starting at zero and adding each parafermion multiplied by a power of the
root of unity ω, as per Eq. (3). Here the values of ϵj are arbitrary and for
most realistic values the paths would overlap each other, but will have the same
essential branching structure. Algebraic expressions are shown for some example
states, including the ground state E0 = −ϵ1 − ϵ2 − ϵ3 − ϵ4.

The quasienergies ϵj are real and positive for real and positive λ. They were determined
in Baxter’s original paper, and in a number of other ways in the literature. Alcaraz et
al. [12] calculate them in terms of a quasimomentum variable k:

ϵkj = (1 + λN + 2λN/2 cos kj)
1/N , (4)

where kj are the L solutions in the interval (0, π) of

sin ([L+ 1]k) = −λ−N/2 sin(Lk). (5)

This formulation is convenient for the analytic approach used in this work. The quasiener-
gies are equivalently given by the eigenvalues of matrix [13]

M =


1 g
g 1 + g2 g

g 1 + g2
. . .

. . .
. . . g
g 1 + g2

 , (6)

where g = λ−N/2. The quasienergies are then ϵj = λa
1/N
j , where aj is an eigenvalue of

M. Diagonalising M is an efficient way of finding the quasienergies numerically, and is
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used to obtain most of the numerical results found in this paper. Alcaraz et al. [12] also
determined other quantities including the critical heat exponent, and the ground state
energy in the thermodynamic limit:

e∞(λ) = − 2F1

(
− 1

N
,− 1

N
; 1;λN

)
, (7)

where 2F1 is the hypergeometric function.
In Baxter’s and Fendley’s work, more general models with arbitrary real and positive

coefficients on each term in Eq. (1) are considered. These have the effect of changing
the quasienergies but do not change the free parafermion character of the spectrum, and
cannot lead to the simple closed forms shown above. Only uniform models are considered
in this work.

1.1 Periodic systems and non-Hermitian physics

The free parafermion model exhibits substantially different behaviour under periodic
boundary conditions, which are implemented by adding the boundary term −Z†

LZ1 to
Eq. (1). In fact, the free parafermion solution no longer applies, unlike many free fermion
systems where the system breaks into free fermionic momentum sectors. Surprisingly, the
energy of the system depends on the boundary conditions even in the thermodynamic
limit (L → ∞), which is impossible in a Hermitian system [13]. This is an example of a
non-Hermitian skin effect and has recently been observed in a variety of non-Hermitian
systems [14–16].

Recently, there has been extensive activity surrounding non-Hermitian models. In
many cases they have interesting behaviour relating to exceptional points (EPs), which
are isolated points in the parameter space where the Jordan structure of the Hamilto-
nian changes. In the physics literature, EPs refer to a non-trivial block forming, i.e., an
off-diagonal element in the normal form. This is associated with degenerate eigenvalues,
with the corresponding right eigenvectors becoming parallel, and the corresponding left
eigenvectors becoming orthogonal to the right eigenvectors. This is only possible for non-
Hermitian matrices and is leads to a variety of novel physics, including the non-Hermitian
skin effect, generalised geometric phases, the anomalous bulk-boundary correspondence,
and exotic phase transitions. See Bergholtz et al. [17] for a recent review of these devel-
opments, and Ashida et al. [18] for an excellent extensive review of non-Hermitian physics
in general, including thorough introductory material on Jordan block structure and EPs.

1.2 Symmetries

The free parafermion model has a ZN symmetry generated by the operator
∏L

j=1Xj , which
rotates each clock by one place. It also has parity-time (PT ) symmetry, with the action
of the operators P and T being as follows:

PZjP = ZL+1−j , PXjP = XL+1−j , (8)

T ZjT = Z†
j , T XjT = Xj . (9)

The parity operator P inverts or flips the lattice, and the time-reversal operator T
conjugates all numbers, including λ. There has been great interest in PT -symmetric non-
Hermitian systems, beginning with the work of Bender and Boettcher [19]. These systems,
while not Hermitian, have real energy spectra when the PT symmetry is unbroken, while
PT -broken energy states appear in complex conjugates. With an appropriate metric they
have unitary time evolution [20,21], even if the symmetry is broken, and thus most of the
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physics of a standard closed quantum system still applies to them. If the PT symmetry
is broken, some eigenvalues appear in conjugate pairs. In the past two decades, non-
Hermitian and particularly PT -symmetric physics has been applied in a large variety of
novel experiments and theoretical work. Many examples of this are covered in the review
of Ashida et al. [18].

2 Fendley’s solution

Fendley’s solution [3] expresses the Hamiltonian in terms of parafermions given by the
Fradkin-Kadanoff transformation:

ψ2j−1 =

(
j−1∏
k=1

Xk

)
Zj , (10)

ψ2j = ω(N−1)/2ψ2j−1Xj .

The 2L parafermions ψj satisfy a generalised Clifford algebra, which reduces to Majorana
fermions for N = 2:

(ψa)
N = 1, ψ†

a = (ψa)
N−1, ψaψb = ωψbψa (a < b). (11)

The Hamiltonian can then be rewritten as

H = ω(N−1)/2
2L−1∑
a=1

taψa+1ψ
†
a, (12)

where ta = 1 (a odd), ta = λ (a even) for the uniform case. Fendley re-expresses the
Hamiltonian in various forms by using the Clifford algebra. For our purposes one of these
forms is sufficient, which makes the generalisation of free fermions clear. The Hamiltonian
is expressed as a sum of decoupled N -level systems:

H = −
L∑

k=1

Ξk, (13)

where [Ξk,Ξk′ = 0], and each Ξk has N distinct eigenvalues given by ϵk, ωϵk, . . . , ω
N−1ϵk,

where ϵk are the quasienergies defining the spectrum in Eq. (3). This is a simplified version
of a more general form given by Fendley which also covers a series of higher Hamiltonians,
and is not necessary for the analysis given in this work. Since the Ξk commute, states can
be chosen that are simultaneous eigenstates of each Ξk, and thus a state with any energy
of the form of Eq. (3) may be selected.

The operators Ξk only depend on λ through the quasienergies ϵk and through a linear
transformation relating them to the basic parafermion operators ψj , which is common
to all the Ξk. This means that if two ϵk were to become degenerate, so would the cor-
responding Ξk and therefore many of the eigenvectors of H, producing an exceptional
point. Such a degeneracy does not occur for the positive real couplings considered in the
literature. For these values, the model has NL distinct eigenstates and is always diag-
onalisable, despite being non-Hermitian. The essential result of this paper is that such
quasienergy degeneracies can occur for isolated complex values of λ, producing EPs of the
full Hamiltonian.
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3 Motivation from real λ

In our previous work on correlations in the free parafermion model [22], it was noted that

end-to-end correlation functions of the form ⟨⟨Z†
1ZL⟩⟩ diverge as the system size increases.

This behaviour is characteristic of the presence of an EP, but can be examined more
directly by considering the ground state fidelity. Fidelity has various definitions in the
literature, always relating to the overlap of two quantum states with different parameters.
Recently, Tzeng et al. [23, 24] have used a non-Hermitian fidelity to explore EPs, defined
by

F(λ) = ⟨L(λ)|R(λ+ δ)⟩⟨L(λ+ δ)|R(λ)⟩, (14)

where δ is a small parameter, ⟨L| and |R⟩ are the left and right ground states (or any
state of interest), and λ could more generally be replaced by any parameter of the Hamil-
tonian. The fidelity susceptibility χ is the second-order expansion coefficient in δ, which
is approximately

χ ≈ 1−F
δ2

. (15)

The first order coefficient vanishes, i.e., λ+ δ = 1−χδ2 +O(δ3). The key result of Tzeng
et al. is that at a critical point, Re(χ) → +∞, while at an EP Re(χ) → −∞.
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γ

0.00

0.50

1.00

⟨L
0
|R

0
⟩

(a)

0.37 0.50 0.63
γ
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180.00

R
e(
χ
)

(b)

0.37 0.50 0.63
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250.00
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e(
χ
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Figure 2: Overlap and fidelity susceptibility for L = 10 (cyan), 15, 20, 25, 30
(purple). (a) Left-right ground state overlap for N = 3. (b) Fidelity susceptibility
for N = 3. (c) Fidelity susceptibility for N = 2. γ is a rescaled analog of λ, with
λ = γ

1−γ . The critical point is at γ = 0.5.

Figure 2 shows fidelity susceptibility data for the free parafermion model obtained using
the density matrix renormalisation group method, with δ = 10−5. The N = 2 Hermitian
Ising case (c) shows the characteristic behaviour of a critical point: as L increases, Reχ→
∞. The critical point is not reached for any finite L as the gap does not close, so Reχ
remains finite. For N = 3, Reχ → −∞ instead, and the overlap of the left and right
states approaches zero. This is characteristic of the presence of an EP. However, while
Reχ grows rapidly, it remains finite, indicating that the system is not precisely at the
EP for any value of λ. Unlike a critical point which exists only in the limit L → ∞, EPs
typically exist even for finite L. This lead us to the idea that an EP could be somewhere
in the complex λ plane such that it approaches the critical point as L→ ∞.
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Figure 3: Energy spectra (left) and quasienergies (right) for the free parafermion
model with N = 3, L = 4, λ = 1 and various values of ϕ. The energies (left)
show values obtained from the quasienergies (blue dots), and values obtained
from exact diagonalisation of the full Hamiltonian (red crosses).
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4 Complex λ and exceptional points

In previous works, the parameter λ is assumed to be real and positive. Many existing
results, including the free parafermion spectrum, extend directly to any complex value of
λ. This has interesting consequences: the quasienergies ϵj also become complex, and it
becomes possible for two of these quasienergies to coincide, producing an EP. The analysis
of Baxter, Fendley, and Alcaraz et al. [12] which leads to Eqs. (5) and (7) remains valid
for complex λ. Figure 3 provides numerical confirmation of this, and demonstrates the
basic effect of complex λ on the spectrum and quasienergies. Complex values of λ are
parametrised with an angle ϕ as follows:

λ = |λ|e2πiϕ/N . (16)

Due to the model’s ZN symmetry, a rotation of ω has the same spectrum as zero rotation,
corresponding to ϕ = 1. This rotation still permutes the states. More generally, a rotation
with ϕ > 1 has the same spectrum as ϕ (mod 1). All possible spectra can be seen in the
interval ϕ ∈ [0, 1).

The ZN symmetry also implies that any particular quasienergy could be multiplied by
ω to produce an identical spectrum. This is also reflected in the fact that Eq. (4) has N
solutions for a given kj . In the real positive λ case the quasienergies are taken as real, but
could equivalently be be proportional to powers of ω. For complex λ, we generalise this
convention by taking the quasienergies to have arguments in the interval (−π/N, π/N ],
i.e., the choice with the smallest complex argument is taken.

4.1 Complex rotations and PT antisymmetry

Throughout this paper, complex values of λ are introduced directly into Eq. (1). However,
the complex rotation could also be applied to the Z term of H, or partially to each term.
The difference between these choices is an overall rotation in the complex plane, which
has no effect on the location of the EPs and other physics discussed in this work.

For most values of ϕ, H is no longer PT -symmetric, which is reflected in the spectrum
losing its reflection symmetry across the real axis, so the eigenvalues no longer appear
as conjugate pairs (or real). The case ϕ = 0.5 is special, as the quasienergies appear in
conjugate pairs and the symmetry of the spectrum is restored. This can be seen in Figure 3
(bottom row). Interestingly, this is not PT symmetry, as applying PT interchanges the
conjugate pairs of quasienergies, but is symmetric in (PT )2, which may be interpreted as
PT antisymmetry. This special case is not the focus of this work but may warrant further
investigation.

4.2 Quasienergy degeneracies

For real positive λ, the quasienergies ϵj are always positive and distinct. For complex λ,
the quasienergies are complex, and a pair of them may become equal at certain values of
λ, which depend on L and N . This was initially observed using numerical data such as can
been seen in Fig. 4. As described in Section 2, such quasienergy degeneracies necessarily
lead to exceptional points of the full Hamiltonian. As such, we will from now on refer to
quasienergy degeneracies simply as EPs.

The locations of the EPs can be determined analytically by finding repeated roots of
Eq. (5), meaning that both it and its derivative are satisfied:

sin ([L+ 1]k) + λ−N/2 sin(Lk) = 0, (17)
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and

(L+ 1) cos ([L+ 1]k) + Lλ−N/2 cos(Lk) = 0. (18)

The EPs occur at pairs of values kEP and λEP which satisfy these equations simultane-
ously. In other words, the EPs occur only at particular values of λ, and at those values
they appear as a repeated root kEP of Eq. (5), which gives two degenerate quasienergies.
Eliminating λEP determines kEP as the solution to

(L+ 1) sin(LkEP ) cos([L+ 1]kEP )− L sin([L+ 1]kEP ) cos(LkEP ) = 0, (19)

which may be simplified somewhat to

sin([2L+ 1]kEP )− (2L+ 1) sin(kEP ) = 0, (20)

with the corresponding value of λEP given by

λN =

[
− sin([L+ 1]kEP )

sin(LkEP )

]2
. (21)

In fact, all N complex values of λ that solve Eq. (21) for a given kEP are EPs. These
different values occur at rotations of exp (2πi/N) relative to each other, and have identical
spectra. Figures 4 and 5 demonstrate how solutions of Eq. (19) appear in the complex
plane, and how they correspond to quasienergy degeneracies (and hence EPs). The four
complex quadrants of k produce identical values of λEP (and identical quasienergies),
so only one quadrant needs to be considered. There are in general L − 1 solutions to
Eq. (19), giving N(L − 1) EPs. The figures show the relative difference between the
smallest quasienergy and the second smallest, defined as

∆ϵ12 =
L

min
j=2

|ϵ1 − ϵj |
|ϵ1 + ϵj |

, (22)

where ϵ1 is the smallest quasienergy in absolute value. An obvious alternative would be
the smallest difference between any two quasienergies. The above ∆ϵ12 is used because
the EPs are observed numerically to always occur between the two smallest magnitude
quasienergies. Taking the smallest difference between any two quasienergies gives the
same roots in the complex plane, but makes their appearance much less distinct (in,
e.g., Figure 4) because the gaps between higher quasienergies can be smaller than the gap
between the near-degenerate EP quasienergies even quite close to the EP.

4.3 EPs with PT symmetry

If N is odd and L is even, one of the EPs appears on the real line with a negative value
of λ. This is of some interest as for real λ the system remains PT -symmetric and can be
endowed with unitary time evolution. This could serve as an interesting toy model of the
passage of a PT -symmetric system through an EP. If N is even and L is odd, or if N is
divisible by 4, there will also be an EP on the apparently PT -antisymmetric line ϕ = 0.5
described above. Examples of these negative-λ EPs can be seen in Figures 5 and 6.

4.4 The case k = nπ

Equation (5) always has the solution k = nπ where k ∈ Z. This solution is not included
in the analysis of Alcaraz et al. [12] or the work of Lieb et al. [25] on the XY model. It
does not correspond to a quasienergy and does not contribute to the spectrum. However,
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Figure 4: (Top left) Equation (19) evaluated for L = 5. The zeros are marked
with white crosses. Also shown is the relative difference between the smallest and
second-smallest quasienergies ∆ϵ12 for N = 2 (top right), N = 3 (bottom left)
and N = 4 (bottom right). The zeros from the left subfigure are transformed
using Eq. (21) and marked with white crosses in each subfigure. They correspond
to actual zeros of ∆ϵ12 to numerical precision. There are additional zeros in (a)
at k = nπ, n ∈ Z, but these do not correspond to a degeneracy as detailed in
Section 4.4.
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there are values of λ proportional to the Nth roots of unity where a second root at k = nπ
appears. At this point, one of the quasimomenta kj takes the value π, and changes from
being real to complex. This was identified by Alcaraz et al. and earlier by Lieb et al., and
occurs at the values

λN =

(
L

L+ 1

)1/2

. (23)

The corresponding quasienergy approaches 0 as L → ∞ for λ < 1, implementing sponta-
neous breaking of the ZN symmetry. Since the root is repeated, this point satisfies the
quasienergy degeneracy condition Eq. (19). However, since one root is trivial and does
not correspond to a quasienergy, this solution is in a sense spurious and does not produce
a quasienergy degeneracy or EP. It is still of physical interest for the reason stated above.

4.5 The thermodynamic limit

The positions of the EPs can be determined in the thermodynamic limit L → ∞ by
examining the large-L behaviour of Eq. (19). Following Alcaraz et al. [12] and Lieb et
al. [25], kj can be expanded as

kj =
πj

L
− πa

L
+O

(
1

L2

)
, (24)

where j ∈ {1, . . . , L}, and a is determined by inserting the expansion into Eq. (17)
(applying trigonometric sum formulae and discarding vanishing terms):

cot (πa) =
λ−N/2 + cos (πj/L)

sin (πj/L)
. (25)

Note that in Eq. (24), the term πj/L is of order zero in L since j is of order L. The
EPs are given by values of λEP and kEP which satisfy both Eq. (17) and its derivative
Eq. (18), which gives a second equation for a at the EPs:

tan (πa) = −
L

L+1λ
−N/2 + cos (πj/L)

sin (πj/L)
. (26)

Combining the two and setting L/(L+ 1) ≈ 1 gives

− sin (πj/L)

cos (πj/L) + λN/2
=

cos (πj/L) + λN/2

sin (πj/L)
, (27)

which by eliminating a reduces to

0 = 1 + 2λN/2 cos

(
πj

L

)
+ λN . (28)

This has solutions

λN/2 = − cos

(
πj

L

)
± i sin

(
πj

L

)
, (29)

which squares to (using double-angle formulae)

λN = cos

(
2πj

L

)
± i sin

(
2πj

L

)
, (30)

where j ∈ {1, . . . , L} as defined above. These are precisely the Lth roots of unity, with
j = L giving unity, and with each root appearing twice. This repetition results from
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Figure 5: The absolute distance ∆ϵ12 between the smallest two quasienergies for
L = 30, N = 3. The exceptional points found by minimising Eq. (19) are marked
with white crosses. Subfigures show different parameter ranges.

the fact that for any k defining an EP, or generally a quasienergy satisfying Eq. (17),
the conjugate k∗ will give the same energy. Taking all solutions for λ, this gives all the
(NL)th roots of unity. However, N of these correspond to k = 0 and don’t produce EPs,
as described in Section 4.4. Thus the limiting case is the set of (NL)th roots of unity, with
the Nth roots of unity excluded, for a total of N(L − 1) EPs. Figure 5 shows numerical
data for L = 30 which closely reflects this.

4.6 Other degeneracies of H

As per Section 2, quasienergy degeneracies are the only way that EPs of H can appear.
However H may have other degeneracies, where the eigenvalues but not the eigenvectors
become degenerate, and H is still diagonalisable. In Fig. 6 the minimal relative distance
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between any two eigenvalues of H, ∆E, is plotted, defined as

∆E = min
i,j

∣∣∣∣Ei − Ej

Ei + Ej

∣∣∣∣ , (31)

where Ei are the eigenvalues ofH, and i and j range over all NL eigenvalues. This function
has many zeros even for the small value of L = 4. Subfigures (b), (c), and (d) show various
quantities along the real negative λ line, which includes an EP at around λ = −0.75.
Although there are many degeneracies of H along this line (seen in subfigures (a) and
(b)), only the degeneracy at the EP gives rise to orthogonal left and right eigenvectors, as
seen in subfigure (d). Similar numerical tests have been performed for other small values
of L and N and show the same behaviour, providing some numerical confirmation of the
reasoning given in Section 2.

More generally, if the quasienergies are distinct then a degeneracy of H will occur
if some combination of the quasienergies sums to zero when multiplied by appropriate
powers of ω, as is clear from the form of the spectrum in Eq. (3), i.e.,

ωk1ϵj1 + ωk2ϵj2 + · · ·+ ωkmϵjm = 0, (32)

for some m ≤ L. This is much more general than the quasienergy degeneracy condition
ϵi − ϵj = 0. The simplest case of Eq. (32) is one involving only two quasienergies:

ωkϵi + ϵj = 0, (33)

for some i, j, and k, where the second power of ω has been divided out. It may be possible
to evaluate simple conditions like Eq. (33) to find degeneracies analytically, however they
will not satisfy the condition of repeated roots in Eq. (18) which easily allowed the deter-
mination of the EPs. This is a topic for further investigation, although these degeneracies
do not have the same physical significance as the EPs.

5 Conclusion

The main result of this work is the identification of a series of N(L−1) exceptional points
in the complex-λ plane of the free parafermion model, the locations of which are given by
Eq. (19). As L → ∞, these EPs approach the (NL)th roots of unity, with the Nth roots
excluded, i.e., they approach a uniform distribution on the unit circle. For complex values
of λ, the PT symmetry of the model is destroyed. However, for odd N and even L, one
of the EPs exists at a negative real value of λ.

In Fig. 2, the fidelity susceptibility of the ground state was observed to diverge with
increasing system size for real positive λ near the critical point λ = 1. This is characteristic
of the system approaching an EP but could not be explained given real positive λ since
there was no way to achieve a quasienergy degeneracy. The large-L limit of the complex-λ
EPs provides a clear mechanism for this behaviour, since as L increases, infinitely many
EPs approach the real axis at λ = 1.

Each of these EPs is a degeneracy of two of the quasienergies which define the free
parafermion spectrum Eq. (3). This means that at each EP, any pair of energy levels that
differ only by swapping the two degenerate quasienergies becomes degenerate. Thus each
quasienergy degeneracy is in fact a set of NL−NL−1 2-fold degeneracies, or 1

2(N
L−NL−1)

coincident two-level EPs. Such coincident EPs have recently appeared in the literature
and are termed confluent EPs [26,27]. In particular, the passage of a system through such
an EP has interesting physical properties. The free parafermion model may serve as a
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Figure 6: For N = 3, L = 4, (a) Smallest relative difference between any two
eigenvalues of the Hamiltonian ∆E. The EPs obtained from Eq. (21) are marked
with white crosses. Although not clearly visible, these quasienergy EPs corre-
spond to zeros of ∆E. (b) ∆E for negative real values of λ, i.e., a line segment in
subfigure a. (c) Smallest relative difference between the two smallest quasiener-
gies ∆ϵ12 for negative real λ. (d) Overlaps of the left and right eigenvectors of the
Hamiltonian for negative real λ. Each colour shows a different left-right overlap.
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toy model for such a passage, particularly in the PT -symmetric case where unitary time
evolution can be defined.

The EPs also exist in the familiar Ising spin chain, which is the limiting case N = 2
of the free parafermion model. They do not produce unusual behaviour on the real axis
in this case, as the model is Hermitian for real λ. However the existence of these points
appears to be unexplored in the literature, despite the fact that the Ising chain has been
studied extensively. There are examples of non-Hermitian extensions of the Ising model
such as a complex longitudinal field [28], but not to our knowledge of the direct extension
of the transverse field λ (or equivalent) to the complex plane. The behaviour of the EPs
resembles Lee-Yang zeros [29], in that they appear on the unit circle, they appear as a
consequence of making the model parameter complex, and they approach the critical point
as L→ ∞.
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