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Abstract1

We investigate the quantum-critical behavior between the rung-singlet phase with hid-2

den string order and the Néel phase with broken SU(2)-symmetry in quantum spin lad-3

ders with algebraically decaying unfrustrated long-range Heisenberg interactions. To4

this end, we determine high-order series expansions of energies and observables in the5

thermodynamic limit about the isolated rung-dimer limit. This is achieved by extending6

the method of perturbative continuous unitary transformations (pCUT) to long-range7

Heisenberg interactions and to the calculation of generic observables. The quantum-8

critical breakdown of the rung-singlet phase then allows us to determine the critical9

phase transition line and the entire set of critical exponents as a function of the decay10

exponent of the long-range interaction. We demonstrate long-range mean-field behavior11

as well as a non-trivial regime of continuously varying critical exponents implying the12

absence of deconfined criticality contrary to a recent suggestion in the literature.13
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1 Introduction34

While in electromagnetism the interaction between charged particles is long-range decaying as35

a power-law with distance, in condensed matter systems the interaction is typically screened,36

justifying to consider short-range interactions in most microscopic investigations. There are,37

however, notable examples where the long-range behavior persists like in conventional dipolar38

ferromagnets [1, 2] and exotic spin-ice materials [3, 4]. In quantum optical platforms, long-39

range interactions are commonly present and there has been tremendous experimental ad-40

vancements over the past decades. Indeed, among others, ions in magneto-optical traps [5–16]41

and neutral atoms in optical lattices [17–27] have gained vast attention as these platforms can42

realize one- and two-dimensional lattices with adaptable geometries and a mesoscopic num-43

ber of entities offering high-fidelity control and read-out. This makes them viable candidates44

for versatile quantum simulators and scalable quantum computers [28–30]. Both platforms45

realize effective spin interactions which decay algebraically with distance. In neutral-atom46

platforms the decay exponent is fixed while it can be continuously tuned in trapped-ion sys-47

tems. Recent progress ranges from the determination of molecular ground-state energies [15]48

and the realization of equilibrium [5, 25] and dynamical quantum phase transitions [12–14]49

to the direct observation of a topologically-ordered quantum spin liquid [26] and symmetry-50

protected topological phases realized on ladder geometries [22,27].51

The majority of numerical studies has focused on one-dimensional spin chains [31–46,46–52

53] as well as two-dimensional systems directly related to Rydberg atom platforms with quickly53

decaying (∼ r−6) long-range interactions [54–56]. One prominent exception is the long-range54

transverse-field Ising model (LRTFIM), which was recently analyzed on the two-dimensional55

square and triangular lattice with tunable long-range interactions [57–59]. Geometrically un-56

frustrated LRTFIMs in one and two dimensions are known from field-theoretical considerations57

to display three distinct regimes of quantum criticality between the high-field polarized phase58

and the low-field Z2-symmetry broken ground state: For short-range interactions the system59

exhibits nearest-neighbor criticality, for strong long-range interactions long-range mean-field60

behavior, and in-between continuously varying critical exponents [60–65].61

Less is known about the quantum-critical behavior of systems with long-range interac-62

tions possessing a continuous symmetry. The antiferromagnetic spin-1/2 Heisenberg model is63

the most prominent example here where, however, only the one-dimensional chain has been64

investigated microscopically [36, 41, 42, 45, 47, 66]. For the short-range Heisenberg chain,65

the spontaneous breaking of its continuous SU(2)-symmetry is forbidden by the Hohenberg-66

Mermin-Wagner (HMW) theorem for finite temperature [67–70] and for zero temperature67

[71]. Here, one finds quasi long-range order with gapless fractional spinon excitations. The68

HMW theorem can be circumvented when unfrustrated long-range interactions are sufficiently69

strong, giving rise to a quantum phase transition to a Néel state with broken SU(2)-symmetry70

[36, 41, 42, 45, 47, 49, 66]. Interestingly, beyond the chain geometry, a recent work [72] has71

studied an antiferromagnetic quasi one-dimensional two-leg quantum spin ladder with unfrus-72

trated long-range Heisenberg interactions. Here, an exotic deconfined quantum critical point73

between the gapped short-range isotropic ladder with a non-local string order parameter and74

the Néel state with broken SU(2)-symmetry has been suggested [72]. The proposed transi-75
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tion goes therefore even beyond the established scenario of deconfined quantum criticality76

between two ordered phases with local order parameters [49,73–76].77

In this paper, we investigate two types of long-range quantum spin ladders with arbitrary78

ratios λ of nearest-neighbor leg and rung exchange coupling and for arbitrary decay exponent79

1 + σ of the long-range Heisenberg interaction. To this end, we extend the pCUT approach80

developed in Ref. [58] to generic observables and locate the critical breakdown of the rung-81

singlet phase in the σ− λ parameter plane. This allows us to observe long-range mean-field82

behavior as well as a non-trivial regime of continuously varying critical exponents. We stress83

that the model studied in Ref. [72] is contained as one specific parameter line λ= 1 in our two-84

dimensional quantum phase diagram. From our findings and physical arguments we conclude85

that the investigated long-range Heisenberg quantum spin ladders do not show deconfined86

criticality.87

2 Model: Quantum spin ladders with long-range interactions88

We consider the spin-1/2 Hamiltonian89

H = J⊥
∑

i

~Si,1~Si,2 −
∑

i,δ>0

2
∑

n=1

Jq(δ)~Si,n~Si+δ,n −
∑

i,δ>0

J×(δ)
�

~Si,1~Si+δ,2 + ~Si,2~Si+δ,1

�

, (1)

where the indices i and i + δ denote the rung and the second index n ∈ {1, 2} the leg of the90

ladder. The exchange parameters J⊥ > 0,91

Jq(δ) = Jq
(−1)δ

|δ|1+σ
, J×(δ) = J×

(−1)1+δ

|1+δ|1+σ
, (2)

couple spin operators on the rungs, legs, and diagonals, respectively. The distance-dependent92

coupling parameters Jq(δ) and J×(δ) realize unfrustrated algebraically decaying long-range93

interactions which induce antiferromagnetic Néel order for sufficiently small σ. This decay94

exponent σ can be tuned between the limiting cases of all-to-all interactions at σ = −1 and95

nearest-rung couplings at σ =∞. Here, we focus on σ ≥ 0 so that the energy of the system96

is extensive in the thermodynamic limit. We restrict to the limiting cases Hq ≡ H|J×=0 and97

H./ ≡ H|J×=Jq illustrated in Fig. 1. In the following, we set J⊥ = 1 and introduce the pertur-98

bation parameter λ ≡ Jq. Note, the Hamiltonian in Ref. [72] corresponds to H./ at λ = 1. In99

the limit of isolated rung dimers λ = 0, the ground state is given exactly by the product state100

of rung singlets101

|s〉=
1
p

2
(|↑↓〉 − |↓↑〉) (3)

and with localized rung triplets102

|t x〉= −
1
p

2
(|↑↑〉 − |↓↓〉),

�

�t y

�

=
i
p

2
(|↑↑〉+ |↓↓〉), |tz〉=

1
p

2
(|↑↓〉+ |↓↑〉) (4)

as elementary excitations. For small λ the ground state is adiabatically connected to this prod-103

uct state and the system is in the rung-singlet phase. The associated elementary excitations104

of the rung-singlet phase are gapped triplons [77] corresponding to dressed rung-triplet ex-105

citations. For σ =∞ this holds for both spin ladders for any finite λ and only at λ =∞106

the system decouples into two spin-1/2 Heisenberg chains with gapless spinon excitations and107

a quasi long-range ordered ground state. The ground states at any finite λ break a hidden108

Z2 ×Z2 symmetry and can be characterized by a non-local string order parameter [78–82].109
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Figure 1: Illustration of the two quantum spin ladders with Heisenberg interaction
on rung dimers (∼ J⊥), between rung dimers along the legs (∼ Jq) and along the
diagonals (∼ J×). In the first row the common nearest-neighbor limit (σ =∞) of
both ladder models is shown while in the second row the two distinct spin ladders
Hq (left) and H./ (right) with long-range interactions σ�∞ are sketched.

Previous studies of the spin-1/2 Heisenberg chain [41, 42, 45, 49] and the two-leg lad-110

der H./ for λ = 1 [72] with unfrustrated long-range interactions deduced a quantum phase111

transition towards Néel order with broken SU(2)-symmetry and thus circumventing the HMW112

theorem [67–71]. Further, Goldstone’s theorem states that the spontaneous breaking of a113

continuous symmetry gives rise to massless Nambu-Goldstone modes [83–85], however, the114

same restriction applies and the theorem loses its validity in the presence of long-range inter-115

actions. Indeed, in the extreme case of an all-to-all coupling the ground-state energy becomes116

superextensive and the elementary excitations are gapped via a generalization of the Higgs117

mechanism [86].118

119

3 Approach: High-order series expansions with pCUT120

Our aim is to investigate the quantum critical breakdown of the rung-singlet phase. To this121

end, we extend the pCUT method [87, 88] to long-range Heisenberg interactions and deter-122

mine high-order series expansions of relevant energies and observables in the thermodynamic123

limit about the limit of isolated rungs. It is then convenient to consider rung dimers as super-124

sites and to reformulate the Hamiltonian (1) in terms of hard-core bosonic triplet creation and125

annihilation operators on rung dimers.126

The pCUT method transforms the original Hamiltonian H, perturbatively order by order127

in λ, into an effective Hamiltonian Heff conserving the number of quasiparticles (QPs) which128

correspond to spin-one triplon excitations [77] – dressed rung triplets – in the rung-singlet129

phase. The same transformation has to be applied to observables, however, the quasiparticle-130

conserving property is lost. We can exploit the linked-cluster property [89] and perform the131

numerical calculations on finite topologically distinct graphs. In the end, the contributions on132

the finite graphs must be embedded on an infinite system to obtain the bulk properties which is133

4



SciPost Physics Submission

equivalent to evaluating high-dimensional infinite sums that can be efficiently done by Monte134

Carlo integration [58].135

Here, we investigate the zero- and one-triplon properties. The 0QP block of the effective136

Hamiltonian corresponds to the ground-state energy Ē0 while the 1QP block allows the calcula-137

tion of the one-triplon gap ∆ located at the critical momentum kc = π. Further, we extended138

the pCUT approach for long-range interactions [58] to generic observables and determined139

the one-triplon spectral weight S1QP(kc). The latter corresponds to the one-triplon part of the140

Fourier transformed effective observable after the unitary transformation of the antisymmetric141

observable142

Oi,z =
1
2
(Sz

i,1 − Sz
i,2) (5)

on a rung dimer. We calculated high-order series of the control-parameter susceptibilityχ ≡ −d2 Ē0
dλ2143

up to order 10 (6), the one-triplon gap ∆ up to order 10 (7), and the one-triplon spectral144

weight S1QP(kc) up to order 9 (7) in λ for Hq (H./). See Appendix A for details on the pCUT145

approach.146

The introduced quantities allow the extraction of critical exponents via the dominant147

power-law behavior148

χ ∼ |λ−λc|−α, (6)

∆∼ |λ−λc|zν, (7)

S1QP(kc)∼ |λ−λc|−(2−z−η)ν (8)

close to the critical point λc when the rung-singlet phase breaks down. The critical point and149

associated critical exponents can be directly determined from physical poles and associated150

residuals using (biased) DlogPadé extrapolants. The associated error bars should strictly be151

understood as the standard deviation from several extrapolants rather than rigorous errors.152

More detailed information on extrapolations can be found in Appendix B.153

4 Discussion of results154

4.1 Quantum phase diagram155

We determine the phase transition point λc as a function of the decay exponent σ by the156

quantum-critical breakdown of the rung-singlet phase and the accompanied closing of the one-157

triplon gap. The corresponding quantum phase diagram is shown in Fig. 2 for Hq and H./. In158

accordance with the HMW theorem, a quantum phase transition can be ruled out from one-159

loop renormalization group (RG) for σ > 2 [60], since the one-dimensional O(3) quantum160

rotor model can be mapped to the low-energy physics of the dimerized antiferromagnetic161

Heisenberg ladder [90]. At small σ ® 0.7 (σ ® 1.0) for Hq (H./) the critical point λc shifts162

linearly towards larger λ with increasing σ. The gap closes earlier for H./ in agreement with163

expectations since the additional diagonal interactions further stabilize the antiferromagnetic164

Néel order. For larger σ the critical points start to deviate from the linear behavior and bend165

upwards towards larger critical points until eventually DlogPadé extrapolations break down166

when the critical point shifts away significantly from the radius of convergence of the series.167

We complement the pCUT approach with linear spin-wave calculations similar to the ones168

in Refs. [41, 42] . Exploiting the fact that spin-wave theory is expected to work only in the169

Néel ordered phase, we can determine the quantum-critical line from a consistency condition170

for the staggered magnetization (see also Appendix C). Linear spin-wave theory allows us to171

qualitatively determine the extent of the Néel ordered phase in the whole parameter regime.172
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Figure 2: Quantum phase diagrams depicting the critical point λc as a function of the
decay exponent σ for Hq (left) and H./ (right). Crosses are determined by DlogPadé
extrapolations of the one-triplon gap series from the pCUT method while dashed lines
are extracted from the self-consistency condition for the staggered magnetization
within linear spin-wave approximation (SWA). Comparing the left with the right plot,
we observe that the Néel ordered phase sets in at smaller λ or larger σ exponents
extending the Néel regime. The hexagon point at λ =∞ for Hq corresponding to
decoupled Heisenberg chains from Ref. [42] as well the star-shaped point along the
λ= 1 line for H./ from Ref. [72] are consistent with our results.

Indeed, we find for small λ that linear spin-wave theory agrees well with the pCUT findings173

and we also observe that the Néel regime extends to smaller λ and larger σ for H./ due to174

the additional diagonal interactions. In the limit λ = ∞ of decoupled Heisenberg chains175

where the pCUT series expansion does not provide any meaningful results we locate an upper176

critical bound σ∗ inline with the absence of criticality at large enough σ. This upper bound177

corresponds therefore to the lower critical dimension. In fact, for Hq at λ =∞ we recover178

the spin-wave dispersion in Ref. [42] yielding σSW
∗ ≈ 1.46 and for H./ we find σSW

∗ ≈ 1.69.179

Moreover, all our data is consistent with σ∗ = 1.225(25) at λ =∞ from Ref. [42] for Hq180

and with σc ≈ 1.52 at λc = 1 for H./ in Ref. [72] as depicted in Fig. 2. Besides this, the critical181

exponents in the long-range mean-field realm discussed below are in very good agreement with182

field-theoretical expectations. However, the distinct values for σ∗ from spin-wave calculations183

and QMC [42] consistent with the pCUT results for both ladder models are unexpectedly at184

significant smaller values than predicted from the one-dimensional long-range O(3) quantum185

rotor model with σ∗ = 2 [61,62,91,92].186

4.2 Critical exponents187

We extract the critical exponents according to Eqs. (6)-(8) from DlogPadé extrapolants of the188

perturbative series. The exponents are depicted in Fig. 3 as a function of the decay exponent189

σ. The long-range mean-field regime (LRMF) is expected to extend to σuc = 2/3 [60]. The190

extracted exponents agree well with expected long-range mean-field exponents, although the191

presence of multiplicative logarithmic corrections to the dominant power-law behavior at the192

upper critical dimension duc = 3σ/2 negatively affects the accuracy of the deduced critical193

exponents around σ = 2/3 as known from the LRFTIM [38, 58]. Estimates for multiplicative194

logarithmic critical exponents can be found in Appendix B. Excluding the α-exponent the crit-195

ical exponents deviate less than 1.1 % (1.3 %) deep in the long-range regime σ ≤ 0.3 for Hq196
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Figure 3: Critical exponents from Eqs. (6)-(8) determined by the pCUT approach as a
function of the decay exponentσ for both ladder modelsHq andH./. Forσ ≤ 2/3 the
exponents coincide with the expected long-range mean-field values (shaded region).
For σ > 2/3 they become continuously larger and start to diverge. While the critical
exponent for both models match well for σ ® 2.1, they start to deviate from each
other for larger values of σ but this can probably be attributed to the difference in
σ∗.

(H./). For σ > 2/3 we observe continuously varying exponents which seem to diverge for197

σ → σ∗. In terms of the gap closing this can be understood from the nearest-neighbor limit198

where the gap does not close but with the increasingly stronger long-range interactions the199

finite gap is lowered until eventually the gap closes. Further strengthening the long-range in-200

teractions shifts the critical point from infinity to smaller values and thus continuously tuning201

the exponent zν from infinity to smaller values as the gap closes increasingly steep. In the202

region σ ¦ 1.1 for Hq (σ ¦ 1.2 for H./) close to σ∗ it becomes difficult to extrapolate the gap203

series as the critical point starts to shift quickly towards λ =∞. This negatively affects the204

accuracy of the exponent estimates.205

Using the three critical exponents shown Fig. 3, one can apply the scaling relations206

γ= (2−η)ν
γ= β(δ− 1),

2= α+ 2β + γ
(9)
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Figure 4: Canonical critical exponents obtained from (hyper-) scaling relations as
a function of the decay exponent σ. The critical exponents are in good agreement
with expectations in the long-range mean-field regime (shaded region) and show
continuously varying exponents for σ > 2/3. While some critical exponents appear
to diverge others seem to go to a constant value for increasingσ. For some exponents
the error bars become larger for σ ≈ σ∗.
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as well as the hyperscaling relation207

2−α=
�

d
ϙ
+ z
�

ν (10)

with the pseudocritical exponent ϙ. The hyperscaling relation was only recently generalized to208

be valid above the upper critical dimension [40]. This allows us to directly derive all canonical209

critical exponents for any σ (see Appendix D). The canonical critical exponents are depicted210

in Fig. 4 for Hq and H./. In the long-range mean-field regime the exponents agree well with211

the expectations. The exponents β and 1/δ around the upper critical dimension show larger212

deviations which we attribute to error propagation due to the presence of multiplicative loga-213

rithmic corrections. While the critical exponent γ diverges for larger values of σ, the critical214

exponent ν approaches a constant value ν≈ 1. The exponent 1/δ goes to −0.125 in this limit215

and we attribute this to a systematic error arising from the diverging critical exponents close216

to σ∗. Instead, the correct physical limit might be 0 since a sign change of 1/δ is unphysical.217

For the exponents β , z, and η the uncertainty in the regime σ ¦ 1.2 becomes large due to218

error propagation and it is hard to make precise statements in the vicinity of σ∗. Nonethe-219

less, we find that η differs from the linear behavior η = 2 − σ expected by field theory for220

σ < σ∗ [61,91,92] going faster to zero (until unphysically negative values are obtained) but221

in agreement with our previous finding that σ∗ is smaller than expected by the long-range222

O(3) quantum rotor model. Interestingly, also Heisenberg chains with long-range interactions223

differ from the field-theoretical expectation η = 2 − σ. However, in Ref. [42] they observe224

z < 1 and η≥ 2−σ while we find z > 1 and η≤ 2−σ.225

Comparing the above results with Ref. [72] for H./ at λ = 1 we find that the exponent226

ν= 1.8 at about σc ≈ 1.5 is inconsistent with our result ν= 0.97(7) for all σ > 1.0 which ap-227

pears to be particularly well converged compared to other critical exponents. Furthermore, the228

monotonously increasing exponent z > 1 for σ > 1.1 is not in line with a proposed deconfined229

critical point with z = 1 at σ ≈ 1.5. Our finding of continuously varying exponents reminis-230

cent of the criticality of the unfrustrated LRTFIM [38,58,60–65] raises the question why this231

specific point should display deconfined criticality, particularly considering that despite the232

presence of a non-local string order parameter the rung singlet-phase of both models Hq and233

H./ for all relevant λ is not topologically protected but trivially connected to the product state234

of rung singlets [93].235

5 Conclusions236

We investigated the quantum-critical behavior of two unfrustrated two-leg quantum spin lad-237

ders with long-range Heisenberg interactions by applying and extending the pCUT method in238

combination with classical Monte Carlo integration that allows us to determine relevant ener-239

gies and observables in the thermodynamic limit. From the closing of the one-triplon gap we240

determined the phase diagram in the σ−λ plane for both spin ladders. Interestingly, we find241

lower critical dimensions σ∗ < 2 unlike σ∗ = 2 from field-theoretical predictions for the one-242

dimensional long-range O(3) quantum rotor model, but in agreement with known results [42]243

from the isolated chain limit. By generalizing the pCUT approach for long-range systems to244

generic observables, we calculated the ground-state energy and the one-triplon spectral weight245

so that we were able to extract the full set of critical exponents as a function of the decay expo-246

nent using appropriate extrapolation techniques. A non-trivial regime of continuously varying247

critical exponents as well as long-range mean-field behavior was observed. From these find-248

ings and the fact that the rung-singlet phase is not topologically protected we conclude the249

absence of deconfined criticality in the investigated models. However, quantum phase transi-250

tions between phases with local order and non-local string order parameters, where the latter251
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phase is indeed topologically protected, should be investigated in the future as such systems252

might realize exotic properties like deconfined criticality. The spin-one Heisenberg chain with253

unfrustrated long-range interactions should therefore be very interesting to look at. Our ap-254

proach can further be naturally extended to gapped phases of higher-dimensional Heisenberg255

systems with long-range interactions, e.g., bilayer geometries. This opens a completely unex-256

plored playground for future research.257
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A High-order series expansion276

In the following, we provide a description of the high-order series expansions approach using277

the pCUT method along the same lines as in previous studies on the LRTFIM [39,40, 58,94].278

The approach can be generalized to observables which allows us to determine the entire set279

of critical exponents.280

A.1 The pCUT method281

To apply the pCUT method [87,88] it must be possible to describe the problem under consid-282

eration with a Hamiltonian of the form283

H =H0 +V = E0 +Q+
∞
∑

δ>0

λ(δ)V(δ) (11)

with an unperturbed Hamiltonian H0 with equidistant spectrum that is bounded from be-284

low and a perturbation V . We bring the spin-ladder Hamiltonian into this form by inter-285

10
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preting the Hamiltonian as a system of coupled supersites (dimers) and introducing hard-286

core bosonic triplet (creation) annihilation operators t(†)i,ρ (creating) annihilating local triplets287

with flavor ρ ∈ {x , y, z} on rung i [95, 96]. The unperturbed part becomes H0 = E0 +Q288

with E0 = −3/4 Nrung the unperturbed ground-state energy, Nrung the number of rungs, and289

Q =
∑

i,ρ t†
i,ρ t i,ρ counting the number of triplet quasiparticles (QPs). For long-range systems290

the perturbation V can be written as a sum between interacting processes of distance δ with a291

distance-dependent expansion parameter λ(δ). Also, the perturbation must decompose into292

V =
N
∑

m=−N

Tm =
N
∑

m=−N

∑

l

τm,l , (12)

where the operators Tm change the system’s energy by m energy quanta such that [Q, Tm] = mTm.293

For the spin ladder Hamiltonian we have m ∈ {0,±2}. The operator Tm decomposes into a sum294

of local operators τm,l on a link l connecting different sites of the underlying lattice. When the295

above prerequisites are fulfilled the pCUT method unitarily transforms the original Hamilto-296

nian, order by order in the perturbation parameter λ, to an effective, quasiparticle-conserving297

Hamiltonian Heff reducing the complicated many-body problem to an easier effective few-body298

problem. The effective Hamiltonian in a generic form for an arbitrary number of expansion299

parameters λi is then given by300

Heff =H0 +
∞
∑

∑Nλ
j n j=k

λ
n1
1 . . .λ

nNλ
Nλ

∑

dim(m)=k,
∑

i mi=0

C(m) Tm1
. . . Tmk

(13)

where the coefficients C(m) are exactly given by rational numbers and the condition
∑

i mi = 0301

enforces the quasiparticle conservation [Q,Heff] = 0. Analogously, an effective observable is302

given by303

Oeff =
∞
∑

∑Nλ
j n j=k

λ
n1
1 . . .λ

nNλ
Nλ

k+1
∑

i=1

∑

dim(m)=k

C̃(m; i) Tm1
. . . Tmi−1

OTmi
. . . Tmk

(14)

with the rational coefficient C̃(m; i). In contrast to the effective Hamiltonian the effective304

observable is not quasiparticle conserving. The effective Hamiltonian and observables are305

generally independent of the exact form of the original Hamiltonian as long as the pCUT pre-306

requisites are satisfied. To bring Heff and Oeff into normal-ordered form, a model-dependent307

extraction process must be applied. For long-range interactions this is done most efficiently by308

a full-graph decomposition.309

A.2 Graph decomposition310

We apply the effective quantities to finite, topologically distinct graphs to bring them into311

normal-ordered structure. We refer to this approach as a linked-cluster expansion imple-312

mented as a full-graph decomposition. The underlying principle is the linked-cluster theo-313

rem which states that only linked processes have an overall contributions to cluster-additive314

quantities [89]. Since the effective pCUT Hamiltonian and observables are cluster-additive315
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quantities we can reformulate Eqs. (13) and (14) as316

Heff =H0 +
∞
∑

∑Nλ
j n j=k

λ
n1
1 . . .λ

nNλ
Nλ

∑

dim(m)=k,
∑

i mi=0

∑

G,
|EG |≤k

C(m)
∑

l1,...,lk ,
⋃k

i=1 li=G

τm1,l1 . . .τmk ,lk , (15)

Oeff =
∞
∑

∑Nλ
j n j=k

λ
n1
1 . . .λ

nNλ
Nλ

k+1
∑

i=1

∑

dim(m)=k

∑

G,
|EG |≤k

C̃(m; i)
∑

l1,...,lk ,
⋃k

i=1 li∪x=G

τm1,l1 . . .τmi−1,li−1
Oxτmi ,li . . .τmk ,lk ,

(16)

where the sum over G runs over all possible simple connected graphs of perturbative order317

k ≥ |EG |. A graph G is a tuple (EG ,VG) consisting of an edge or link set EG with |EG | edges and318

a set of vertices or sites VG with |VG | vertices. The conditions
⋃k

i=1 li = G and
⋃k

i=1 li ∪ x = G319

arising from the linked-cluster theorem ensure that the cluster made up of active links and320

sites during a process must match with the edge and vertex set of a simple connected graph321

G. Note, we generalized the notation for observables Ox where the index x can either refer322

to a site (local observable) or a link (non-local observable). Thus, we can set up a full-graph323

decomposition applying the effective quantities to a set of finite, topologically distinct, simple324

connected graphs.325

In the standard approach one would identify different expansion parameters with link colors326

which serve as another topological attribute in the classification of graphs. However, this327

approach fails for long-range interactions because every coupling parameter λ(δ) between328

sites of distance δ would be associated to a distinct link color and the number of graphs would329

already be infinite in first order of perturbation. We can overcome this obstacle by introducing330

white graphs [89] where different link colors are ignored in the topological classification of331

graphs and instead additional information is tracked during the calculation on white graphs. In332

particular, every link on a graph is associated with a distinct expansion parameter λGn yielding333

a multivariable polynomial after applying the effective quantities to the graph. Only during334

the embedding on the lattice the proper link color is reintroduced by replacing the expansion335

parameters of the polynomial by the actual coupling strength for each realization decaying336

algebraically with the distance between interacting sites.337

A.3 Monte Carlo embedding338

Since we describe the ladder system in the language of rung dimers as super sites the graph339

contributions from the linked-cluster expansion must be embedded into a one-dimensional340

chain to determine the values of physical quantities κ =
∑

m c(κ)m λm as a high-order series in341

the thermodynamic limit. Due to the infinite range of the algebraically decaying interactions342

every graph can be embedded infinitely many times at any order of perturbation. For each real-343

ization of a graph on the infinite chain the generic couplingsλGn in the multivariable polynomial344

corresponding to distinct edges is substituted by the true coupling strength λ(−1)δ|δ|−1−σ or345

λ(−1)1+δ|1+δ|−1−σ between graph vertices on sites i and i+δ on the chain. For a prefactor346

cm in the high-order series only (reduced) contributions from graphs with up to m links and347

m+ 1 sites can contribute. See Ref. [89] for remarks about reduced quantities. We can write348

explicitly349

c(κ)m =
m+1
∑

N=2

∑

a

fN (a) =
m+1
∑

N=2

S[ fN ], (17)

where the first sum goes over the number of vertices and the second sum over all possible350

configurations excluding embeddings with overlapping vertices. The integrand fN combines all351
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contributions from graphs with the same number of vertices N since the m−1 sums contained352

in the sum
∑

a are identical for graphs with the same number of vertices. The integration of353

these high-dimensional infinite nested sums S[·] quickly becomes very challenging when the354

perturbative order increases. It is essential to use Monte Carlo (MC) integration to evaluate355

these sums since MC techniques are known to be well suited for high-dimensional problems.356

We take a Markov-chain Monte Carlo approach to sample the configuration space [58]. The357

fundamental moves consist of randomly selecting and moving graph vertices on the chain. For358

every embedding the integrands fN are evaluated with the correct couplings and added up to359

the overall contributions [58].360

A.4 Derivation of physical quantities361

After having established the theoretical framework of the pCUT approach, we derive the phys-362

ical quantities used in this communication. We start by stating the normal-ordered effective363

one-triplon (1QP) Hamiltonian given by364

H1QP
eff = Ē0 +

∑

ρ

∑

j,δ≥0

aδ(t
†
j,ρ t j+δ,ρ + h.c.) (18)

with the ground-state energy Ē0 and the 1QP hopping amplitudes aδ. We determine the365

ground-state energy366

Ē0 =
∑

m

c(
Ē0)

m λm (19)

in the thermodynamic limit as a high-order series in the perturbation parameter λ using the367

above described procedure where the general white-graph contributions must by embedded368

into the infinite chain of dimer supersites using Monte Carlo summation yielding estimates for369

c(
Ē0)

m . The control parameter susceptibility can be directly obtained using370

χ = −
d2 Ē0

dλ2
. (20)

To get the one-triplon excitation gap as a high-order series, we remember that Eq. (18) can be371

diagonalized by transforming into momentum space, yielding372

H̃1QP
eff = Ē0 +

∑

k,ρ

ω(k)t†
k,ρ tk,ρ with ω(k) = a0 + 2

∑

δ>0

aδ cos(kδ), (21)

so the one-triplon gap is given by373

∆=min
k
ω(k) =ω(kc) =

∑

m

c(∆)m λm (22)

with the critical momentum kc = π for antiferromagnetic interactions. Analogously to the374

ground-state energy, we determine Monte Carlo estimates for c(∆)m . Last, we introduce the375

dynamic structure factor376

Sρ,ρ(k,ω) =
1

2πN

∑

i, j

∫ ∞

−∞
dt exp{i[ωt − k( j − i)]}〈Oi,ρ(t)O j,ρ(0)〉, (23)

with the observable defined as the antisymmetric combination of spin operators377

Oi,ρ =
1
2
(Sρi,1 − Sρi,2) =

1
2
(t†

i,ρ + t i,ρ) (24)
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of flavor ρ on a rung i. We now follow the steps in Ref. [97]. Integrating out the energy ω,378

one can express the structure factor in the effective basis as a sum over spectral weights SnQP
ρ,ρ379

with fixed quasi-particle number380

Sρ,ρ(k) =
∑

n

SnQP
ρ,ρ (k) . (25)

By changing into the Heisenberg picture we eventually arrive at381

S1QP
ρ,ρ (k) =

�

�

�




tk,ρ

�

�O1QP
eff,ρ(k) |ref〉

�

�

�

2
= |s(k)|2 (26)

for the one-triplon spectral weight, where |ref〉 =
⊗

i |si〉 is the unperturbed rung-singlet382

ground state and
�

�tk,ρ

�

is the one-triplon state with momentum k and flavor ρ. In second383

quantization the effective observable restricted to the one-triplon channel can be expressed as384

385

O1QP
eff,ρ(k) = s(k)(t†

k,ρ + tk,ρ). (27)

Due to the SU(2)-symmetry one has Sx ,x = Sy,y = Sz,z , so we restrict in the following to ρ = z386

and calculate S1QP ≡ S1QP
z,z . When we fix k = kc we can obtain a high order series of387

s(kc) =
∑

m

c(s(kc))
m λm (28)

from the Monte Carlo estimates of c(s(kc))
m and determine one-triplon spectral weight simply by388

calculating the absolute square.389

B DlogPadé extrapolations390

To extract the quantum-critical point including critical exponents from the pCUT method well391

beyond the radius of convergence of the pure high-order series we use DlogPadé extrapola-392

tions. For a detailed description on DlogPadés and its application to critical phenomena we393

refer to Refs. [98, 99]. The Padé extrapolant of a physical quantity κ given as a perturbative394

series is defined as395

P[L, M]κ =
PL(λ)

QM (λ)
=

p0 + p1λ+ · · ·+ pLλ
L

1+ q1λ+ · · ·+ qMλM
(29)

with pi , qi ∈ R and the degrees L, M of PL(x) and QM (x) with r ≡ L + M , i.e., the Taylor396

expansion of Eq. (29) about λ = 0 up to order r must recover the quantity κ up to the same397

order. For DlogPadé extrapolants we introduce398

D(λ) = d
dλ

ln(κ)≡ P[L, M]D (30)

the Padé extrapolant of the logarithmic derivative D with r − 1 = L +M . Thus the DlogPadé399

extrapolant of κ is given by400

dP[L, M]κ = exp

�

∫ λ

0

P[L, M]D dλ′
�

. (31)

Given a dominant power-law behavior κ∼ |λ−λc|−θ , an estimate for the critical point λc can401

be determined by excluding spurious extrapolants and analyzing the physical pole of P[L, M]D.402

If λc is known, we can define biased DlogPadés by the Padé extrapolant403

θ ∗ = (λc −λ)
d

dλ
ln(κ)≡ P[L, M]θ ∗ (32)
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Table 1: Multiplicative logarithmic corrections pθ at the upper critical dimension
σuc = 2/3 associated to the ground-state energy pα, the 1QP excitation gap pzν, and
the 1QP spectral weight p(2−z−η)ν. Expected values from field-theoretical considera-
tion are read of from Refs. [100,101].

Multiplicative correction
pα pzν p(2−z−η)ν

Field-theoretical predictions 1
11 ≈ 0.091 − 5

22 ≈ −0.227 ?
Hq 0.453(6) -0.309(13) 3.94(11)
H./ 0.533(16) -0.374(19) 3.77(12)

In the unbiased as well as the biased case we can extract estimates for the critical exponent θ404

by calculating the residua405

θunbiased = Res P[L, M]D|λ=λc
,

θbiased = Res P[L, M]θ ∗ |λ=λc
.

(33)

At the upper critical dimensionσ = 2/3 multiplicative logarithmic corrections to the dominant406

power law behavior407

κ∼ |λ−λc|
−θ (ln (λ−λc))

pθ (34)

in the vicinity of the quantum-critical point λc are present. By biasing the critical point λc and408

the exponent θ to its mean-field value, we define409

p∗θ = − ln(1−λ/λc)[(λc −λ)D(λ)− θ]≡ P[L, M]p∗
θ
, (35)

such that we can determine an estimate for pθ by again calculating the residuum of the Padé ex-410

trapolants P[L, M]p∗
θ
. Note, for all quantities we calculate a large set of DlogPadé extrapolants411

with L +M = r ′ ≤ r, exclude defective extrapolants, and arrange the remaining DlogPadés in412

families with L −M = const. Although individual extrapolations deviate from each other, the413

quality of the extrapolations increases with the order of perturbation as members of different414

families but mutual order r ′ converge. To systematically analyze the quantum-critical regime,415

we take the mean of the highest order extrapolants of different families with more than one416

member. Here, we use DlogPadé extrapolation for the gap series to determine the critical point417

λc and the critical exponent zν. We then apply biased DlogPadé extrapolation with λc from418

the one-tripolon gap to obtain estimates for α and 2− z −η via the series of the susceptibility419

and the one-triplon spectral weight.420

Multiplicative logarithmic exponents to the power law scaling for both ladder models Hq421

and H./ can be found in Table 1. We find estimates in the correct order of magnitude for pα422

and pzν with better estimates for the logarithmic correction exponent of the gap. For p(2−z−η)423

there are no field-theoretical predictions directly available. Note, it is extremely challenging to424

accurately extract logarithmic corrections since the extracted values are very sensitive on the425

position of the critical point and DlogPadés are known to overestimate the critical value [39].426

C Linear spin-wave calculations427

We supplement the critical behavior determined by the pCUT approach with critical points428

from linear spin-wave approximation. As spin-wave theory considers fluctuations about the429

classical ground state it is certainly valid in the Néel-ordered phase of the long-range Heisen-430

berg ladders. We start by mapping the spin operators to boson creation and annihilation opera-431

tors using the Holstein-Primakoff transformation up to linear order in the boson operators. For432
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the antiferromagnetic Heisenberg spin ladder the system must be divided into two sublattices433

constituting the expected antiferromagnetic Néel order for strong long-range interactions. The434

transformation thus reads435

Sz
i,1 = S − a†

i,1ai,1 S−i,1 ≈
p

2Sa†
i,1 S+i,1 ≈

p
2Sai,1,

Sz
i,2 = b†

i,2 bi,2 − S S−i,2 ≈
p

2Sbi,2 S+i,2 ≈
p

2Sb†
i,2,

Sz
j,1 = b†

j,1 b j,1 − S S−j,1 ≈
p

2Sb j,1 S+j,1 ≈
p

2Sb†
j,1,

Sz
j,2 = S − a†

j,2a j,2 S−j,2 ≈
p

2Sa†
j,2 S+j,2 ≈

p
2Sa j,2

(36)

with i odd and j even rungs. Inserting these identities into the Hamiltonian Hq, neglecting436

quartic terms and Fourier transforming the problem, we arrive at437

HSW
q ≈ const.+ S

∑

k

¦∑

ν

�

(γ− f (k))
�

a†
k,νak,ν + b†

−k,νb−k,ν

�

+ g(k)
�

ak,νb−k,ν + a†
k,νb†

−k,ν

��

+ ak,1 b−k,2 + ak,2 b−k,1 + a†
k,1 b†

−k,2 + a†
k,2 b†

−k,1

©

.

(37)

Incorporating the long-range couplings for an infinite chain into the prefactors we can define438

the quantities439

γ= 1+ 2λ
∞
∑

δ=1

1
(2δ− 1)1+σ

,

f (k) = 2λ
∞
∑

δ=1

cos(2kδ)− 1
(2δ)1+σ

,

g(k) = 2λ
∞
∑

δ=1

cos [(2δ− 1)k]
(2δ− 1)1+σ

.

(38)

This Hamiltonian is quadratic in creation and annihilation operators in quasimomenta and we440

intend to diagonalize the problem employing a Bogoliubov-Valatin transformation. Following441

Ref. [102], we introduce the operator442

~ψ†
k =

�

~c†
k ~cT

k

�

=
�

a†
k,1 b†

−k,1 a†
k,2 b†

−k,2 ak,1 b−k,1 ak,2 b−k,2

�

. (39)

We use this operator to bring the spin-wave Hamiltonian into canonical quadratic form443

HSW
q =

∑

k

�

1
2
~ψ†

�

Ak Bk
B†

k AT
k

�

︸ ︷︷ ︸

≡Mk

~ψ −
1
2

tr Ak

�

, (40)

where Ak and Mk are Hermitian matrices and Bk is a symmetric matrix. To solve the diag-444

onalization problem we must find a transformation ~ψk = T ~ϕk that brings Mk into diagonal445

form and preserves the bosonic anticommutation relations of ~ψk. Xiao [102] proofs that the446

problem can be reformulated in terms of the eigenvalue problem of the dynamic matrix447

Dk =

�

Ak Bk
−B†

k −AT
k

�

(41)

arising from the Heisenberg equation of motion and that the transformation matrix T can448

be constructed using appropriately normalized eigenvectors. A physical solution to the prob-449

lem exists if and only if the dynamical matrix is diagonalizable and the eigenvalues are real.450

Employing this scheme we find451

HSW
q = const.+ S

∑

k,ν

�

ω+(k)α
†
k,ναk,ν +ω−(k)β

†
k,νβk,ν

�

(42)
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in terms of the new boson creation and annihilation operators α(†)k,ν and β (†)k,ν and the spin-wave452

dispersion453

ω±(k) =
q

(γ− f (k))2 − (g(k)± 1)2. (43)

In the limit λ→∞we recover the spin-wave dispersion in Ref. [41] for the long-range Heisen-454

berg spin chain. The staggered magnetization deep in the antiferromagnetic regime can be455

expressed as m = S −∆m where ∆m is the correction induced by quantum fluctuations. We456

start with the expression457

∆m=
2
∑

ν=1

〈a†
j,νa j,ν〉

N→∞
=

1
π

2
∑

ν

∫ π/2

−π/2
dk〈a†

k,νak,ν〉 (44)

and rewriting it in terms of the boson operators α(†)k,ν and β (†)k,ν we find458

∆m=
1
π

∫ π/2

−π/2
dk
�

1
2

�

γ− f (k)
ω+(k)

+
γ− f (k)
ω−(k)

�

− 1
�

. (45)

Introducing the linear Holstein-Primakoff transformation for the Hamiltonian H./ including459

diagonal long-range interactions the linear spin-wave Hamiltonian reads460

HSW
./ = const.+ S

∑

k

¦∑

ν

�

(Γ − f (k))
�

a†
k,νak,ν + b†

−k,νb−k,ν

�

+ g(k)
�

ak,νb−k,ν + a†
k,νb†

−k,ν

��

+ v(k)
�

ak,1 b−k,2 + ak,2 b−k,1 + a†
k,1 b†

−k,2 + a†
k,2 b†

−k,1

�

+w(k)
�

a†
k,1ak,2 + a†

k,2ak,1 + b†
−k,1 b−k,2 + b†

−k,2 b−k,1

�©

,

(46)

where we introduced the multiple prefactors defined as κ= κ1 + κ2, Γ = γ+ κ and as461

κ1 = 2λ
∞
∑

δ=1

1

((2δ)2 + 1)
1+σ

2

,

κ2 = 2λ
∞
∑

δ=1

1

((2δ− 1)2 + 1)
1+σ

2

,

v(k) = 1+ 2λ
∞
∑

δ=1

cos(2δk)

((2δ)2 + 1)
1+σ

2

,

w(k) = 2λ
∞
∑

δ=1

cos [(2δ− 1)k]

((2δ− 1)2 + 1)
1+σ

2

.

(47)

Again employing the same Bogoliubov-Valatin transformation we can derive the spin-wave462

dispersion463

ω±(k) =
q

[Γ − ( f (k)±w(k))]2 − [g(k)± v(k)]2 (48)

and the corrections to the staggered magnetization464

∆m=
1
π

∫ π/2

−π/2
dk
�

1
2

�

Γ − f (k)−w(k)
ω+(k)

+
Γ − f (k) +w(k)

ω−(k)

�

− 1
�

. (49)

For both Hamiltonians Hq and H./ we evaluate the integrals ∆m numerically and use the465

consistency condition ∆m < S in the antiferromagnetic regime to approximate the quantum466

phase transition line.467
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D (Hyper-) scaling relations468

In renormalization group (RG) theory the generalized homogeneity of the free energy density469

is exploited [103]. Connecting the critical exponents of observables with the derivatives of the470

free energy density and exploiting the homogeneity properties, the (hyper-) scaling relations471

γ= (2−η)ν, (Fisher equality) (50)

γ= β(δ− 1), (Widom equality) (51)

2= α+ 2β + γ, (Essam-Fisher equality) (52)

2−α= (d + z)ν for d ≤ duc, (Hyperscaling relation) (53)

can be derived. However, the hyperscaling relation breaks down above the upper critical472

dimension due to dangerous irrelevant variables in the free energy sector since these variables473

cannot be set to zero as the free energy density becomes singular in this limit [104, 105].474

Allowing the correlation sector to be affected by dangerous irrelevant variables for quantum475

systems in analogy to previous works in classical systems [106,107] the hyperscaling relation476

can be generalized to477

2−α=
�

d
ϙ
+ z
�

ν (54)

with the pseudocritical exponent ϙ=max (1, d/duc) [40]. As the one-dimensional O(3) quan-478

tum rotor model can be mapped to the low-energy properties of the dimerized antiferromag-479

netic Heisenberg ladder [90] we can use the long-range mean-field critical exponents480

γ= 1, ν=
1
σ

, z =
σ

2
, η= 2−σ (55)

derived from one-loop RG [60] for the long-range O(3) quantum rotor model at the upper481

critical dimension and insert them into Eq. (52). We find duc(σ) = 3σ/2. It directly follows482

that d > duc in the regime σ < 2/3. Thus, we can rewrite483

ϙ=max
�

1,
2

3σ

�

=

¨

1 for σ ≥ 2/3
2

3σ for σ < 2/3
(56)

which together with Eq. (54) is the generalized hyperscaling relation as derived in Ref. [40].484
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