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Abstract

The generalized Rosenzweig-Porter model with real (GOE) off-diagonal entries arguably
constitutes the simplest random matrix ensemble displaying a phase with fractal eigen-
states, which we characterize here by using replica methods. We first derive analytical
expressions for the average spectral density in the limit in which the size N of the matrix
is large but finite. We then focus on the number of eigenvalues in a finite interval and
compute its cumulant generating function as well as the level compressibility, i.e., the
ratio of the first two cumulants: these are useful tools to describe the local level statistics.
In particular, the level compressibility is shown to be described by a universal scaling
function, which we compute explicitly, when the system is probed over scales of the order
of the Thouless energy. Interestingly, the same scaling function is found to describe the
level compressibility of the complex (GUE) Rosenzweig-Porter model in this regime. We
confirm our results with numerical tests.
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1 Introduction

Quantum non-interacting particles in a disordered potential undergo the Anderson localization
transition as the disorder strength is increased [1]. In one and two dimensions an infinitesimal
amount of disorder is sufficient to localize all eigenstates of the Hamiltonian, while in dimension
larger than two a critical value of the disorder strength separates a metallic phase, where the
eigenstates are similar to plane waves and spread over the whole volume uniformly, from an
insulating phase, where the eigenstates are instead exponentially localized around specific
points in space, and thereby occupy a finite O(1) portion of the total volume. It is well
established that exactly at the Anderson localization critical point the wave-functions are
multifractal [2,3]. This means that they are neither fully delocalized (as in the metallic regime),
nor fully localized (as in the insulating phase), since their support set grows with the system
size but remains a vanishing fraction of the total volume. The multi-fractal character of the
wave functions is due to the fact that the qth moments of their amplitudes decay with the size
N as 〈

∑N
i=1 |ψi|2q〉 ∝ N−(q−1)Dq , with different q-dependent exponents 0≤ Dq ≤ 1.

In the last decade, the Hilbert space localization properties of quantum disordered many-
body systems have attracted much interest. In this context, the emergence of multifractal states
has been discussed as a key and robust feature of their phase diagram and has been invoked to
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explain some of their unconventional properties beyond the single-particle limit. In the many-
body setting, multifractal eigenstates that do not cover the whole accessible Hilbert space may
lead to the violation of the eigenstate thermalization hypothesis (ETH) [4,5]. Therefore, they
are often called partially delocalized but non-ergodic, in contrast to the ergodic fully delocalized
eigenstates, which are supposed to satisfy ETH.

In the context of Many Body Localization (MBL), recent studies indicate that the many-
body eigenstates are in fact multifractal in the whole insulating phase [6–13]. Furthermore,
the seminal work by Basko, Aleiner and Altshuler [14] predicted the existence of a novel
unconventional “bad metal” regime in between the fully ergodic metallic phase at low disorder
and the insulating one at strong disorder. Following the pioneering ideas of [15], the unusual
properties of the bad metal regime have also been put in relation with the possible multifractal
nature of the many-body eigenstates. Recent investigations of the out-of-equilibrium phase
diagram of the quantum random energy model [16–20] and Josephson junction arrays [21,22]
seem to support this scenario. The existence of partially extended but non-ergodic wave-
functions is also believed to have relevant practical and conceptual implications in the efficient
population transfer in the context of quantum computing [19,20,23]. Moreover, recent studies
of the Sachdev-Ye-Kitaev model in high-energy physics and quantum gravity have reported
evidence for the emergence of a non-ergodic, but partially extended phase when the model is
perturbed by a single-body term [24,25].

Matrix models have been an invaluable tool to describe and help understanding complex
physical systems, in particular those with quenched randomness. The physical mechanism
at the origin of the above-mentioned multiftactal eigenstates is one such problem, and spe-
cific matrix models have recently been used as proxies which capture the peculiar spectral
properties associated with them. In this respect, the Rosenzweig-Porter (RP) random matrix
ensemble [26], originally introduced to reproduce the spectral properties of complex atomic
spectra, provides an archetypal illustration of a system in which a partially extended phase
featuring fractal eigenstates (along with other unconventional spectral properties that will be
extensively discussed below) appears in an intermediate region of the phase diagram between
a fully delocalized phase and a fully Anderson localized phase (see Fig. 1). For this reason the
RP model has been the focus of a strong resurgence of attention over the last few years [27–35].
Although one cannot expect that simple random matrix models could capture all the properties
of interacting quantum systems, they provide natural and powerful tools to understand the
deep physical mechanisms behind some of their features, which are often elusive to analytical
treatments in more realistic settings.

The Hamiltonian of the RP model H = A+ c(N)B can be written as the sum of an N × N
diagonal matrix A, whose entries ai ’s are independent and identically distributed (i.i.d.) random
variables drawn from a Gaussian distribution pa(ai), and another N × N random matrix B
belonging to the Gaussian orthogonal (or unitary) ensemble (GOE or GUE, respectively). If the
variances of the matrix elements bi j are chosen of O(1), then the width of the spectrum of B is of
O
�p

N
�

: thus the matrix A (whose spectral width is of O(1)) can produce significant deviations
from the GOE/GUE behavior only if c(N) decays sufficiently fast for large N . The properties of
this model have been extensively studied by using different techniques, such as a mapping to
the Dyson Brownian motion [36], supersymmetry [37,38], resolvent methods [39,40], and
first order perturbation theory [41].

Due to the strong surge of attention towards multifractal states in quantum many-body
disordered systems, a generalized version of the RP model in which the distribution pa(ai) is
not necessarily Gaussian has then been introduced in Ref. [27], and thoroughly investigated by
using the techniques recalled above [28–35] – we will refer to this as the GRP model. In addition,
new connections and applications have been pointed out in disordered elastic systems [42],
many body localization [9,16–18], quantum gravity [24,25], quantum information [19,20,23],
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Figure 1: Sketch of the different phases of the RP model, depending on the value
of the parameter γ in Eq. (1). Considering the average spectral density ρ(λ), a
transition is first observed at γ= 1 which separates a fully delocalized phase where
ρ(λ) = ρGOE(λ) from a partially delocalized phase where ρ(λ) = pa(λ) in the
thermodynamic limit (see the main text). Focusing instead on the local level statistics,
another transition is found at γ = 2 from the partially delocalized phase characterized
by the Wigner-Dyson statistics, to an Anderson-localized phase characterized by the
Poisson statistics. The shaded region 1 < γ < 2 indicates the intermediate phase
studied in this work.

models of theoretical ecology [43], or noise reduction in big data matrices [44].
In this work we revisit the generalized RP model by analyzing some properties of the

energy levels and their correlations which have not been investigated in the literature yet. In
particular, we perform a thorough study of the finite-N corrections to the average spectral
density and compute the level compressibility in the intermediate phase, thereby providing
a deeper understanding of the properties of the intermediate regime. Our analysis uses the
replica method largely exploited in the analysis of spin glass models [45], but not only – for
example, this tool has been recently applied to study the properties of the ground states in
a deformed GOE ensemble [46]. Our replica study is developed for the case in which the
entries of H are real numbers, so that H belongs to a deformed GOE ensemble (where the
deformation is introduced by the addition of the diagonal random matrix A). However, and
quite surprisingly, we show that the exact same behavior of the level compressibility applies to
the crossover regime of the Hermitian GRP model [27] (in which the off-diagonal entries are
complex).

In the rest of this introductory section we will present the RP model and some of its salient
properties (Section 1.1), and we will outline our study and main results (Section 1.2).

1.1 The generalized Rosenzweig-Porter model

We consider the Hamiltonian represented by the N × N matrix

H = A+
ν

Nγ/2
B , (1)

where the matrix B belongs to the GOE ensemble: its elements are Gaussian random variables
with zero mean and unit variance (i.e., 〈b2

ii〉= 1 and 〈b2
i j〉= 1/2 for i ̸= j). With this choice,

the spectrum of B in the limit N →∞ converges to a Wigner semicircle supported within
λ ∈ [−

p
2N ,
p

2N], where we denote hereafter with λ the eigenvalues of H. The parameter
ν is of O(1) and does not scale with N . The deformation matrix A is instead diagonal, with
independent entries ai ’s identically distributed according to a generic distribution pa(a), hence
the name Generalized Rosenzweig-Porter model (GRP).

Following the analogy with disordered quantum many-body systems, each matrix index
can be thought of as a site of the reference Hilbert space, which is connected to every other site
with the transition rates distributed according to the Gaussian law. Different phenomenologies
are expected depending on the value of the parameter γ, which renders one of the two matrices
A or B subleading with respect to the other in the limit of large N . As summarized in Fig. 1,
the model features three distinct phases (and two transition points between them): a fully
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delocalized phase for γ < 1, a fully Anderson localized phase for γ > 2, and an intermediate
fractal phase for 1< γ < 2.

The transition from fully extended to fractal eigenstates at γ = 1 manifests itself as a
transition for the average spectral density ρ(λ), which reproduces the Wigner semicircle law
for γ < 1 in the N →∞ limit, while it reduces to ρ(λ) = pa(λ) if γ > 1 and the same N →∞
limit is taken. At γ = 1, ρ(λ) interpolates between pa(λ) and the Wigner semicircle as the value
of the parameter ν is increased. This transition becomes sharp (i.e., it occurs at a particular
value of ν= νc) provided that pa(a) has a compact support and vanishes sufficiently fast at its
upper edge [42,47].

The value γ = 2 corresponds instead to a genuine Anderson localization transition. Indeed,
the region γ < 1 is characterized by the Wigner-Dyson statistics, meaning that the eigenvectors
of H are uniformly delocalized on N sites in the large N limit, and the average level spacing
follows the Wigner surmise [48], signaling level repulsion. Conversely, in the region γ > 2
the eigenvectors are completely localized over O(1) sites and the mean level spacing exhibits
Poisson statistics.

The intermediate region with 1 < γ < 2 is particularly interesting, because the average
spectral density tends to pa(λ), but the local level statistics remains of the Wigner-Dyson type.
Here the eigenvectors are known to be delocalized over a large number of sites N Dγ , which
represent, however, a vanishing fraction of the total number of sites N in the thermodynamic
limit, their fractal dimension being Dγ = 2− γ < 1 [27].

The simplest and most intuitive way to understand the spectral properties in the intermediate
region is provided by the Fermi golden rule. In the limit in which the off-diagonal matrix B
is absent and all the eigenvectors are trivially localized on a single site, one has |ψi〉 = |i〉,
with corresponding eigenenergies λi = ai. When the GOE perturbation νN−γ/2B is turned
on, the transition probability per unit time from a state i to another state j can be evaluated
perturbatively as

Γi→ j =
2πρ
ħh

4η
N
|bi j|2 ,

where ρ = ρ(λ) and, for future convenience, we have introduced the combination

η≡ N1−γν2/4 . (2)

Hence, the average escape rate per unit time for a “particle” created in site i at time t = 0 reads

Γ =
∑

j ̸=i

〈Γi→ j〉=
2πρ
ħh

4η . (3)

The quantity ħhΓ can thus be interpreted as the bandwidth ∆E that can be reached in a time of
O(1) from a given site i:

∆E ∼ ħhΓ .

This implies that the eigenvectors within this energy window are hybridized by the GOE
perturbation. For 1< γ < 2 such energy band decays with the system size as ∆E∝ N1−γ but
is much larger than the mean level spacing

δN ≃ [Nρ]−1 , (4)

entailing that the system is not Anderson localized; still,∆E remains much smaller than the total
bandwidth, which is of O(1). This signifies that the particle can only explore a sub-extensive
portion of the total volume. The Anderson localization transition thus occurs when∆E becomes
smaller than the mean level spacing, i.e., for γ≥ 2: this implies that the average escape time
from site i (i.e.,∆t ≡ ħh/∆E) grows at least linearly with N , and thus the eigenfunctions remain
localized on O(1) sites. Conversely, the transition to the fully delocalized phase takes place
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when ∆E becomes of the order of the total bandwidth, i.e., for γ≤ 1: this implies that, starting
from site i, the wave-packet can reach any other site in a time of O(1).

In the intermediate phase, 1< γ < 2, the support set of the eigenvectors (i.e., the number
of sites which are hybridized by the perturbation) is simply given by the spreading of the
energy interval divided by the average gap between adjacent energy levels, and thus scales as
∆E/δN ∼ N Dγ , with Dγ = 2− γ. The partially extended but fractal eigenstates are therefore
linear combinations of a bunch of N Dγ localized states associated to nearby energy levels, i.e.,

|ψi〉 ≈
∑

i′ s.t.
|ai−a′i |≤∆E

ci′ |i′〉 ,

with coefficients ci′ of order N−Dγ/2 to ensure normalization. These eigenstates give rise to the
so-called mini-bands in the local spectrum [27]. The width of the mini-bands sets the energy
scale

ET ∼∆E ∼ N Dγ−1 = N1−γ , (5)

often called the Thouless energy [49,50], within which GOE-like spectral correlations (and
in particular level repulsion) have been established. All the moments of the wave-functions’
coefficients (the so-called generalized inverse participation ratios, IPR) behave as

Iq =
∑

i

|〈i|ψ〉|2q∝ N Dγ(1−q) =⇒ Dq = Dγ . (6)

This implies that all the fractal dimensions Dq are degenerate and equal to Dγ for all positive
integer q, i.e., that the intermediate phase of the GRP model is fractal but not multifractal.

As discussed above, the emergence of such fractal phase is particularly relevant in many
physical contexts. Its existence was first suggested in Ref. [27] and then rigorously proven in
Ref. [28]. In recent years several generalizations of the RP model have been put forward and
analysed [51–56], and many other random matrix ensembles have been shown to have an
intermediate partially delocalized phase with similar spectral properties [57–72]. Yet, the GRP
setting is still a very useful playground to analyze the properties of fractal states in a controlled
framework.

1.2 Outline of this work and summary of the main results

As explained above, the GRP model has been intensively investigated over the past few years
with a great variety of analytical and numerical techniques. In this paper we tackle this model
by applying yet another approach, namely the replica formalism [45], which allows us to obtain
new results on the average spectral density, and the statistics of the number of energy levels
within a finite interval.

In Section 2 we start by analyzing the average density of states ρ(λ). When the size N of
the matrix is large, we find the leading order estimate

ρ(λ) = −
1
πη

lim
ϵ→0+

Re C(λϵ) +O(1/N) , (7)

where λϵ = λ− iϵ, the parameter η depends on N and was introduced in Eq. (2), and the
function C(λ) is implicitly defined by the self-consistency equation

C(λ) = iηGa [λ+ 2iC(λ)] . (8)

Here Ga is the resolvent associated to the distribution pa(a) of the entries of A (c.f. Eq. (43)). In
general, it is quite difficult to solve explicitly Eq. (8) for C(λ) for any arbitrary distribution pa(a).
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However, we show in Section 2.4 that it can be solved explicitly for two special cases: (i) when
pa(a) is a Wigner semicircle – which is expected, since it is stable under free-convolution [73] –
and (ii) when it is a Cauchy distribution, which is more surprising.

As we show in Section 2.3, by taking the limit N →∞ with η kept finite, Eqs. (7) and (8)
reduce to the free addition formula [73], sometimes called the “Zee formula” in the physics
literature [74]. However, as we show in Section 2.5, these equations contain more information
and, in the case where η = η(N)≪ 1 defined in Eq. (2) with 1< γ < 2, allow us to obtain the
leading 1/N corrections to the limiting density ρ(λ) = pa(λ) in a controlled way, even when
the resolvent Ga(z) does not admit a closed-form analytic expression. These corrections turn
out to be quite difficult to compute using the standard free addition formula, which in principle
holds only in the limit N →∞.

Next, in Section 3 we analyze the behavior of the level compressibility χ(E), which is a
simple indicator of the degree of level repulsion and is defined as follows1 [78]. We first
introduce the empirical density of the (real) eigenvalues λi of H, defined as

ρN (λ) =
1
N

N
∑

i=1

δ(λ−λi) . (9)

Note that ρN (λ) is normalised to unity. Let

IN [α,β]≡ N

∫ β

α

dλρN (λ) (10)

denote the number of eigenvalues lying in the interval [α,β] ⊆ R, which is a random variable.
Then

χ(E)≡
κ2(E)
κ1(E)

=




I2
N [−E, E]

�

− 〈IN [−E, E]〉2

〈IN [−E, E]〉
=




I2
N [−E, E]

�

c

〈IN [−E, E]〉
, (11)

where κ1 and κ2 are the first two cumulants of IN . For Poisson statistics, one has κ2(E)≃ κ1(E)
for small E, and then χ(E)≃ 1 (see Appendix A). On the contrary, for a rigid spectrum like that
of the GOE matrix B in Eq. (1), the mean number of eigenvalues behaves as 〈IN [−E, E]〉 ∝ Ẽ,
with Ẽ ≡ NρN (0) E and where [NρN (0)]−1 is the mean level spacing close to E = 0, while



I2
N [−E, E]

�

c∝ ln Ẽ for large Ẽ. Hence in the GOE case one finds χ(E)→ 0 for Ẽ→∞, i.e.,
for E≫ [NρN (0)]−1 (but still much smaller than E ∼O(1)).

In Section 3.3 we provide the cumulant generating function of the variable IN [α,β] at
leading order for large N . For a symmetric interval [−E, E] and a symmetric distribution pa(a),
the result reads

F[−E,E](s)≡
1
N

ln



e−sIN [−E,E]
�

= −ms+ ln



e−s f (a)
�

a +O(η/N) , (12)

where

m= −
2η
π

Im
�

Ga

�

−i∆−1
��2

, f (a)≡
1
π

arctan
�

sin 2θ
a2r2 + cos2θ

�

∈ [0, 1] , (13)

and ∆(E) = r(E)eiθ (E) has to be determined by solving the self-consistency equation

∆−1 = ϵ − iE − 2iηGa

�

−i∆−1
�

. (14)

before sending ϵ→ 0. Again, we show that a closed-form solution can be found in some partic-
ular cases. Our results are supported by the comparison with the numerical diagonalization of
large random matrices.

1It is known in statistics under the name of “Fano factor” [75], and it has been studied recently in physics in the
context of extremes and record statistics of time series [76,77].
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The ratio of the first two cumulants of IN [−E, E] gives the level compressibility χ(E)
introduced in Eq. (11). In agreement with the picture presented above for the region 1< γ < 2,
and having identified ET ∝ η∝ N1−γ as the Thouless energy of the system, we explicitly
verify in Section 3.5 that χ(E) ∼ 0 for E ≪ ET – but still much larger than the mean level
spacing δN ∝ N−1 – corresponding to level repulsion, while χ(E) follows the Poisson statistics
for E≫ ET . However, in the scaling limit E = 2πpa(0)η · y with N−1≪ η≪ 1, we show that
χ(E) takes the universal form

χ(E)≃ χT

�

y =
E

2πpa(0)η

�

, χT (y) =
1
πy

�

2y arctan(y)− ln
�

1+ y2
��

, (15)

where the scaling function χT (y) is independent of the specific choice of pa(a). This function
is plotted in Fig. 6: it behaves as χT (y)≃ y/π for small y , while it tends to 1 for large y . Note
that the crossover energy scale 2πpa(0)η coincides (apart from a factor of 4) with the width of
the mini-bands identified in Eq. (3) using the Fermi golden rule, which allows us to put the
intuitive arguments given above on the structure of spectral correlations on a much firmer
basis.

Interestingly, using results from Refs. [27] and [40], we show that the same scaling function
χT also describes the crossover for Hermitian B matrices – while the level compressibilities
for the real and Hermitian GRP ensembles differ outside of this energy regime. We do so by
relating the level compressibility to the 2-level spectral correlation function of the Hermitian
GRP model, previously derived in [27, 40] by means of the Harish-Chandra-Itzykson-Zuber
integral (which notably does not admit a counterpart for matrices with real entries).

In Section 3.6 we finally inspect, using extensive numerical diagonalization of large random
real matrices, the low-energy region where E is chosen on the scale of the Thouless energy.
The scaling form of χ(E) presented in Eq. (15) is thus shown to represent a universal crossover
between the classical GOE result χ(E ∼ N−1) ≃ χGOE(E) for energies of the order of the
mean level spacing (and much smaller than the Thouless energy, see Eq. (E.25)), and the
model-dependent prediction of Eqs. (11) and (12), valid for energies of the order of the total
spectral band-width, i.e., E ∼O(1).

2 Average spectral density

Let us begin by considering the density of states of the matrix H in Eq. (9). Its mean value can
be obtained by means of the Edwards-Jones (E-J) formula [48,79], which we briefly recall here.
One starts from the Plemelj-Sokhotski relation: if f (x) is a complex-valued function which is
continuous on the real axis, and given α < 0< β , then

lim
ϵ→0+

∫ β

α

dx
f (x)

x ± iϵ
= ∓iπ f (0) +P

∫ β

α

dx
f (x)

x
, (16)

where P indicates the Cauchy principal value of the integral. From Eq. (9) we then have

〈ρN (λ)〉=
1
πN

lim
ϵ→0+

Im

® N
∑

i=1

1
λ−λi − iϵ

¸

=
1
πN

lim
ϵ→0+

Im
∂

∂ λ

® N
∑

i=1

ln(λi −λ+ iϵ)

¸

, (17)

where the average is taken over the distribution of the entries of H. In the last step we indicated
by ln(z) the principal branch of the complex logarithm. Using the properties of Gaussian
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integrals, we finally obtain the E-J formula [79]

ρ(λ)≡ 〈ρN (λ)〉= −
2
πN

lim
ϵ→0+

Im
d

dλ
〈lnZ(λϵ)〉 , (18)

Z(λ)≡ det(H−λ1)−1/2 = (2πi)−N/2

∫

RN

dr e−
i
2 rT (λ1−H)r , (19)

where λϵ ≡ λ − iϵ with ϵ > 0. Note that the negative imaginary part of λϵ ensures the
convergence of the integral in Eq. (19). The expectation value of the logarithm can then be
handled by using the replica trick [45]

〈lnZ(λ)〉= lim
n→0

1
n

ln 〈Zn(λ)〉 , (20)

which allows us to trade the quenched average on the left-hand-side for the annealed average
on the right-hand-side. The latter can be evaluated by standard methods (see Appendix B) to
give

〈Zn(λ)〉 ∝
∫

DµDµ̂ eNSn[µ,µ̂;λ] , (21)

where the proportionality holds up to an irrelevant numerical constant, and where we introduced
the action

Sn[µ, µ̂;λ]≡− i

∫

d y⃗ µ( y⃗)µ̂( y⃗)−
η

2

∫

d y⃗ dw⃗µ( y⃗)µ(w⃗) ( y⃗ · w⃗)2

+ ln

∫

d y⃗

∫

da pa(a)exp
�

−
i
2
(λ− a)| y⃗|2 + iµ̂( y⃗)

�

. (22)

The parameter η is defined in Eq. (2), while y⃗ , w⃗ are n-dimensional vectors (one component
for each of the replicas).

The strategy to obtain the finite-N averaged ρ(λ) is the following:

1. For large N , we look for a saddle-point estimate of the path integral in Eq. (21) in the
form

〈Zn(λ)〉 ∝ eNSn[µ∗,µ̂∗;λ]+O(1) , (23)

where the proportionality holds up to aλ-independent (even though possibly N -dependent)
prefactor.

2. Using Eq. (18), we recover the spectral density via

ρ(λ)≃ −
2
π

lim
ϵ→0+

Im lim
n→0

1
n

d
dλ

Sn[µ
∗, µ̂∗;λϵ] (24)

=
1
π

lim
ϵ→0+

Im

¨

lim
n→0

i
n

∫

d y⃗ | y⃗|2
∫

da pa(a)exp
�

− i
2(λϵ − a)| y⃗|2 + iµ̂∗( y⃗)

�

∫

d y⃗
∫

da pa(a)exp
�

− i
2(λϵ − a)| y⃗|2 + iµ̂∗( y⃗)

�

«

.

Indeed, only the third term in the action of Eq. (22) will contribute, because the depen-
dence on λ in the first two terms is only implicit,

d
dλ

Sn[µ, µ̂;λϵ] = ∂λSn +

∫

d y⃗
�

δSn

δµ( y⃗)
dµ( y⃗)

dλ
+
δSn

δµ̂( y⃗)
dµ̂( y⃗)

dλ

�

, (25)

and the term under the integral vanishes at the saddle-point (where the action is stationary
by construction). In turn this implies that, to compute ρ(λ) from Eq. (24), we do not
need to determine µ∗( y⃗), but only µ̂∗( y⃗). Finally, by the ≃ symbol in Eq. (24) we mean
that the corrections are at most of O(1/N).

9
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2.1 Saddle-point equations and rotationally-invariant Ansatz

The leading contribution to Eq. (21) for large N can be found by minimizing the action in
Eq. (22). Omitting (to ease the notations) the superscript ∗ from µ∗( y⃗) and µ̂∗( y⃗), and
understanding the dependencies on λ as computed in correspondence of λϵ, the saddle-point
equations read

0≡
δSn

δµ( x⃗)
= −iµ̂( x⃗)−η

∫

dw⃗µ(w⃗) ( x⃗ · w⃗)2 , (26)

0≡
δSn

δµ̂( x⃗)
= −iµ( x⃗) + i

∫

da pa(a)exp
�

− i
2(λ− a)| x⃗ |2 + iµ̂( x⃗)

�

∫

d y⃗
∫

da pa(a)exp
�

− i
2(λ− a)| y⃗|2 + iµ̂( y⃗)

� . (27)

Substituting the expression for µ( x⃗) obtained from the second equation (27) in the first one
(26), one obtains a closed equation for µ̂( x⃗) which reads

µ̂( x⃗) = iη

∫

d y⃗
∫

da pa(a)exp
�

− i
2(λ− a)| y⃗|2 + iµ̂( y⃗)

�

( x⃗ · y⃗)2
∫

d y⃗
∫

da pa(a)exp
�

− i
2(λ− a)| y⃗|2 + iµ̂( y⃗)

� . (28)

To make progress, we plug in the Ansatz µ̂( x⃗) = µ̂(x), with x ≡ | x⃗ |, which is rotationally
symmetric in the space of replicas (i.e., it is invariant under O(n) transformations). Note that
requiring invariance under O(n) is a stronger request than the mere replica-symmetry (RS):
indeed, the exchange between any pair of components of x⃗ can be obtained by means of a O(n)
transformation2. Stepping to spherical coordinates and using the identity

∫

dΩn ( x⃗ · y⃗)
2 =
(x y)2

n

∫

dΩn , (29)

where dΩn is the differential of the n-dimensional solid angle, we find

µ̂(x) = i
η

n

∫∞
0 dy yn−1

∫

da pa(a)exp
�

− i
2(λ− a)y2 + iµ̂(y)

�

(x y)2
∫∞

0 dy yn−1
∫

da pa(a)exp
�

− i
2(λ− a)y2 + iµ̂(y)

�
. (30)

Let us now introduce the auxiliary function

G(y;λ)≡
∫

da pa(a)exp
�

−
i
2
(λ− a)y2 + iµ̂(y)

�

= exp
�

−
i
2
λy2 + iµ̂(y)

�

ψa(−y2/2) , (31)

where in the second equality we recognized the characteristic function of pa(a) (i.e., its Fourier
transform), namely

ψa(k) =

∫

da pa(a)e
−ika . (32)

Equation (30) can readily be expressed in terms of G(y;λ). We then integrate by parts in the
denominator of Eq. (30), finding that boundary terms disappear at least as long as ϵ > 0 in
G(y;λϵ) – we will check a posteriori that the presence of µ̂(y) does not spoil the convergence.
We thus get

µ̂(x) = −iηx2

∫∞
0 dy yn+1G(y;λ)
∫∞

0 dy ynG′(y;λ)
, (33)

2In the literature, multifractality has sometimes been associated with the breaking of replica-symmetry [80]. As
we stressed in Section 1.1, the intermediate phase of the GRP model is fractal, but not multifractal [28]: it is then
natural to look for, and remain with, a replica-symmetric solution, as we do here.

10
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where G′(y;λ) = ∂y G(y;λ). Under this form, we can now take the limit n→ 0, which yields

iµ̂(x) = x2η

∫∞
0 dy y G(y;λ)
∫∞

0 dy G′(y;λ)
≡ x2C(λ) . (34)

The function C(λ) must now be determined self-consistently via

C(λ) = η

∫∞
0 dy y G(y;λ)
∫∞

0 dy G′(y;λ)
, (35)

where G(y;λ) can be read off from Eq. (31) upon setting iµ̂(y) = y2C(λ).

2.2 General result

We now repeat the same steps at the level of the saddle-point action in Eq. (24): we plug in
the rotationally symmetric Ansatz, we integrate by parts in the denominator and we finally
take the limit n→ 0. This gives

ρ(λ) = −
1
π

lim
ϵ→0+

Re

∫∞
0 dy yG(y;λϵ)
∫∞

0 dy G′(y;λϵ)
+O(1/N) = − 1

πη
lim
ϵ→0+

Re C(λϵ) +O(1/N) . (36)

We then go back to Eq. (35), which contains an exact differential in its denominator. If
Re C(λϵ) ≤ 0, then G(y →∞;λϵ) = 0 and G(0;λϵ) = 1, and we obtain a self-consistency
equation for C(λϵ),

C(λ) = −η
∫ ∞

0

dzψa(−z) e−iλz+2zC(λ) , (37)

where we recall that ψa(x) is the characteristic function associated with pa(a) (see Eq. (32)).
This determines C(λ) implicitly. Equations (36) and (37) represent the main result of this
section.

2.2.1 Limiting cases

Here we briefly check the consistency of the result we just obtained in the limiting cases in
which only one of the two matrices A or B in Eq. (1) are retained.

First, when ν = η = 0 we find H = A, and the level statistics can only be determined by
pa(a). Indeed, from Eq. (26) we read µ̂( x⃗) = 0, and even without invoking a particular Ansatz
we get from Eq. (24), upon sending N →∞,

ρ(λ) = −
1
π

lim
ϵ→0+

Re

∫∞
0 dy yG(y;λϵ)
∫∞

0 dy G′(y;λϵ)
, (38)

where G(y;λ) is given by Eq. (31) with µ̂ = 0. For any ϵ > 0 the function G(y;λϵ) is well
behaved at y → +∞, so that

ρ(λ) =
1
π

lim
ϵ→0+

Re

∫ ∞

0

dy yG(y;λϵ) =
1
π

lim
ϵ→0+

Re

∫ ∞

0

dzψa(−z)e−iλϵz = pa(λ) , (39)

where we changed variable to z = y2/2 in the first step, and in the last one we used
ψ∗a(−z) =ψa(z).

11
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Conversely, the GOE case is formally recovered by setting γ = 1 and ai = 0 identically.3

With this choice, the limiting spectrum of H is supported within λ ∈ [−
p

2ν,
p

2ν], and we set
for simplicity ν= 1 (corresponding to η= 1/4). Using Eq. (35) (without integrating by parts
in the denominator, but really computing G′(y;λ)) one easily finds

C(λ) =
1
4

�

iλ±
p

2−λ2
�

. (40)

We choose the branch with the minus sign, as we assumed above that Re C(λϵ) ≤ 0. Using
Eq. (36) then immediately renders, in the limit N →∞, the semicircle law

ρ(λ)→ ρGOE(λ) =

p
2−λ2

π
Θ(
p

2− |λ|) , (41)

where Θ(x) is the Heaviside step function, with Θ(x) = 1 if x > 0 and Θ(x) = 0 if x ≤ 0.

2.3 Resolvent formulation and connection with the Zee formula

One can observe that, under the same convergence hypotheses as above, the self-consistency
equation (37) which determines C(λ) can be rewritten as

C(λ) = iηGa [λ+ 2iC(λ)] , (42)

where

Ga(z) =

∫

da
pa(a)
z − a

(43)

is the resolvent (or Cauchy-Stieltjes transform) of the distribution pa(a). The resolvent can be
inverted to give back

pa(x) =
1
π

lim
ϵ→0+

ImGa(x − iϵ) , (44)

which can be easily proved by using the Plemelj-Sokhotski formula in Eq. (16).
By comparing Eq. (44) with Eq. (36), one immediately realizes that our function C(λ) is

nothing but
C(λ) = iηG(λ) +O(1/N) , (45)

where we denoted by G(λ) the resolvent of the spectral density ρ(λ) of our model. Choosing
γ = 1 (so that η in Eq. (2) becomes N -independent) and taking the limit N →∞, the correction
in Eq. (45) vanishes, and Eq. (42) takes the form

G(λϵ) = Ga(λϵ − 2ηG(λϵ)) . (46)

This is analogous to Eq. (148) in Ref. [42], which was derived in the case in which the matrix B
belongs to the GUE (and not the GOE) ensemble, and it is consistent with the results of Ref. [44].
Moreover, in Appendix C we show how Eq. (46) can be recovered by direct application of the
Zee formula for the addition of two random matrices derived in Ref. [74].

One may legitimately wonder, at this point, whether our calculation is solely another way
of obtaining Zee’s result [74] for the particular case in which one of the two matrices being
summed is a GOE matrix. In Section 2.4 we will analyze a few cases in which the self-consistency
equation (37) (or (42)) can be solved exactly, so that from Eq. (36) one can find an expression
for ρ(λ) which is correct, up to O(1/N), for any value of η. These cases are in fact the very

3The way we constructed the action in Eq. (22) does not allow us to explore the region γ < 1 where A becomes
subleading for large N (although this could of course be achieved with minor modifications of the calculation
presented in Appendix B).
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(a) (b)

Figure 2: Distribution of the eigenvalues ρ(λ) in the case in which pa(a) is the Cauchy
distribution (see Section 2.4.1). We show a numerical check of Eq. (49) in the regime
of (a) small η (here η= 0.12) and (b) large η (here η= 11.7). The histogram was
built using µ = 0, ω = 1, γ = 1.1 and N = 2000, with ν = 1 in (a) and ν = 10 in (b).

same which could be cracked by applying the Zee formula to the deformed GOE matrix. The
advantage of our framework is that, whenever η is N -dependent and decays slower than 1/N
(as it happens, for instance, in Eq. (2) for 1< γ < 2), then we are still able to keep track of the
finite-N corrections. Moreover, in Section 2.5 we will provide approximate solutions which can
be used whenever the resolvent Ga is not available in closed form, so that the Zee route is not
viable.

2.4 Exactly solvable cases

In some particular cases, the self-consistency equation (37) admits an analytic solution, and we
can access the limiting distribution ρ(λ) for any value of η (i.e., not necessarily small). This
happens whenever the following conditions are met:

(i) the resolvent Ga(z) associated with pa(a) is known analytically, and

(ii) the self-consistency equation for C(λ) resulting from Eq. (37) or Eq. (42) is not transcen-
dental, so that we can solve for C(λ).

Below we present two such examples, which will also prove useful in our discussion of the
level compressibility presented later in Section 3.4.

2.4.1 Cauchy distributed ai

Let us choose pa(a) to be a Lorentzian of width ω and centered at µ,

pa(a) =
1
πω

�

ω2

(a−µ)2 +ω2

�

. (47)

Its characteristic function is an exponential, ψa(z) = exp(−iµz −ω|z|), and then by using
Eq. (37) we can compute C(λ) in closed form:

C(λ) =
1
4

n

ω+ i(λ−µ)±
q

[ω+ i(λ−µ)]2 + 8η
o

. (48)

We choose the branch with the minus sign for which Re C(λ)≤ω/2. Using Eq. (36) then yields

ρ(λ) = −
ω−

¦

4ω2(λ−µ)2 +
�

8η+ω2 − (λ−µ)2
�2©1/4

cos(θλ/2)

4πη
+O(1/N) , (49)
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(a) (b)

Figure 3: (a) Limiting distribution of the rescaled eigenvalues κ = λ/
p

4η, with ρ(λ)
given in Eq. (49) for the Cauchy case (see Section 2.4.1). In this plot we used µ= 0
and ω= 0.5. (b) Distribution of the eigenvalues ρ(λ) in the case in which pa(a) is
the Wigner semicircle distribution (see Section 2.4.2), and numerical check of the
prediction in Eq. (56). The histogram was built using r =

p
2, µ = 1+

p
2, ν = 1,

γ= 1.1 and N = 2000.

with
θλ ≡ arg

�

[ω+ i(λ−µ)]2 + 8η
	

. (50)

In Fig. 2a we plot Eq. (49) against numerical results in the small-η region: we find a good
agreement with the theoretical prediction, as well as visible departures from the Cauchy
distribution, especially in the bulk.

Another interesting limit is the one of large η, i.e., γ= 1 and ν large. It has been shown
in Ref. [42] that, whenever pa(a) is rapidly decaying close to the edge of its finite support,
then the spectral density ρ(λ) interpolates between pa(a) and ρGOE(λ) as the value of ν is
increased. Note, however, that in the present case pa(a) decays algebraically and its support
is not compact, so the outcome is less clear. The correct way of taking this limit is to rescale
the eigenvalues as κ ≡ λ/

p

4η and look for the distribution ρκ(κ) =
p

4ηρ(
p

4ηκ). From
Eq. (48) we see that, if η≫ω,µ, then

C(
p

4ηκ) =
p
η

2

�

iκ−
p

2−κ2
�

+O
�

η0, 1/N
�

, (51)

and for large N we get from Eq. (36) that ρκ(κ)→ ρGOE(κ) (see Eq. (41)). For large but finite
η and N →∞, on the other hand, the bulk distribution of κ looks like a semicircle (as in the
GOE ensemble), but with fat tails whose width grows with ω (see Fig. 3a). Moreover, the
whole distribution shifts rigidly by changing its center µ/

p

4η. Numerical results in the large-η
region are again nicely reproduced by Eq. (49), as shown in Fig. 2b.

Note that one can equivalently get to Eq. (48) by first computing the resolvent associated
with the Lorentzian distribution in Eq. (47), i.e.,

GCauchy(λ) =
1

λ−µ± iω
, (52)

where the ± branches correspond to Im{λ}> 0 or Im{λ}< 0, respectively. This can be obtained
by explicitly performing the complex integral in Eq. (43), which only entails simple poles for a
Cauchy distribution. One can then easily solve the self-consistency equation (42), which turns
out to be quadratic, and thus recover Eq. (48).
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2.4.2 Wigner distributed ai

Another simple case is the one in which pa(a) itself is chosen as the (µ-centered) Wigner
distribution

pa(a)≡
2
πσ2

Æ

σ2 − (a−µ)2 , (53)

whose corresponding resolvent is

Ga(z) =
2
σ2

�

z −µ−
Æ

(z −µ)2 −σ2
�

. (54)

The self-consistency equation (42) is again quadratic and it yields

C(λ) = 2η
i(λ−µ)±

p

σ2 + 8η− (λ−µ)2

σ2 + 8η
, (55)

so that by choosing the branch with the minus sign and using Eq. (36) we find

ρ(λ) =
2
p

σ2 + 8η− (λ−µ)2

π(σ2 + 8η)
Θ
�

σ2 + 8η− (λ−µ)2
�

+O(1/N) . (56)

As expected, this is still a Wigner distribution centered in λ = µ, but its width gets corrected as
σ2→ σ2 + 8η.

2.5 Approximate solutions

For most choices of the diagonal disorder distribution pa(a), Eq. (37) cannot be solved exactly.
However, since η is a small parameter for large N and γ > 1 (which is the case we are mostly
interested in), it may be sufficient to note that C(λ)∼O(η)∼O

�

N1−γ
�

: this can be taken as
a starting point for constructing self-consistent approximations for large N .

By expanding recursively the exponential in Eq. (37) and using that C(λ)∼O(η), one gets

C(λ) =−η
∫ ∞

0

dzψa(−z)e−iλz

+ 2η2

∫ ∞

0

dz

∫ ∞

0

ds zψa(−z)ψa(−s)e−iλ(z+s) +O
�

η3
�

. (57)

Note that
Re C(λϵ) = −η pa(λϵ) +O

�

η2
� N≫1
−−−→
ϵ→0
−η pa(λ)≤ 0 , (58)

in such a way that G(y) is indeed well-behaved at y → +∞, as we had assumed in Section 2.1.
Plugging Eq. (57) into Eq. (36) now gives

ρ(λ) = pa(λ)−
2η
π

Re

∫ ∞

0

dz

∫ ∞

0

ds zψa(−z)ψa(−s)e−iλ(z+s) +O
�

η2, N−1
�

. (59)

Of course this approximation becomes meaningless if γ≥ 2, where the higher order corrections
we neglected when we took the saddle-point approximation mingle with our correction in η.

Alternatively, one can expand the exponential in Eq. (37) as

C(λ)≃ −η
∫ ∞

0

dzψa(−z)e−iλz − 2ηC(λ)

∫ ∞

0

dz zψa(−z)e−iλ , (60)
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Figure 4: Distribution of the eigenvalues ρ(λ) in the case in which pa(a) is Gaussian
with unit variance, and B is a GOE matrix as in Eq. (1). Numerical results are compared
to the first O(η) correction given in Eq. (63), and to the Hartree-Fock approximation
given in Eq. (61). The histogram was built using N = 2000, ν = 1 and γ = 1.1,
corresponding to η= 0.12.

corresponding to a partial resummation of the perturbative series in η: this is the so-called
self-consistent Hartree-Fock approximation [81]. From Eq. (60) we then obtain

C(λ)≃
−η

∫∞
0 dzψa(−z)e−iλz

1+ 2ηΣ(λ)
, (61)

with the self-energy

Σ(λ) =

∫ ∞

0

dz zψa(−z)e−iλz . (62)

An explicit example: the Gaussian case. We finally test both approximations in the case
where pa(a) is chosen to be Gaussian (with zero mean and variance σ2), as in the original
Rosenzweig-Porter model [26]. By using ψa(z) = exp

�

−z2σ2/2
�

in Eq. (59), one finds

ρ(λ) = pa(λ) +

√

√ 2
π

η

σ3
e−λ

2/(2σ2)

�

2
p

2λ
σ

F
�

λ
p

2σ

�

− 1

�

+O
�

η2, N−1
�

, (63)

where F(z) is the Dawson function defined as F(z) ≡ e−z2 ∫ z
0 e y2

dy . The corrected spectral
density is plotted in Fig. 4, and comparison with the eigenvalue spectrum computed numerically
shows a fair agreement. Using instead the Hartree-Fock approximation for C(λ) given in Eq. (61)
results in a better agreement with the numerical data in the central region of the spectrum.

3 Number of eigenvalues in an interval and level compressibility

In this Section we consider the number of eigenvalues IN [α,β] in a finite interval [α,β], as
given by Eq. (10), and compute its cumulant generating function. This, in turn, can be used to
access the level compressibility χ(E) defined in Eq. (11). As we explained in the Introduction,
χ(E) represents a simple measure of the rigidity of the spectrum, which in turn allows us to
distinguish between the phases of the model.

This program can be achieved by following the replica-based procedure introduced and
exploited in Refs. [82,83], which we briefly outline here. Starting from the definition of the

16



SciPost Physics Submission

spectral density in Eq. (9), we first rewrite Eq. (10) as

IN [α,β] =
N
∑

i=1

[Θ(β −λi)−Θ(α−λi)] . (64)

Now we recall that the Heaviside function can be represented in terms of the discontinuity of
the complex logarithm,

Θ(−x) =
1

2πi
lim
ϵ→0+

[ln(x + iϵ)− ln(x − iϵ)] , (65)

so that we interpret
N
∑

i=1

Θ(α−λi) =
1

2πi
lim
ϵ→0+

�

ln det(H−αϵ1)− lndet
�

H−α∗ϵ1
��

, (66)

where we called as before αϵ ≡ α− iϵ with ϵ > 0. This allows us to express IN [α,β] in terms
of the partition function given in Eq. (19), which leads to4

IN [α,β] = −
1
πi

lim
ϵ→0+

ln

�

Z(βϵ)Z(α∗ϵ)
Z(β∗ϵ )Z(αϵ)

�

. (67)

In order to compute the moments of IN , we first address its cumulant generating function

F[α,β](s)≡
1
N

ln



e−sIN [α,β]
�

=
1
N

ln〈e
s
πi limϵ→0+ ln{Z(βε)Z(α∗ε)[Z(β

∗
ε )Z(αε)]

−1}〉 . (68)

Assuming now that one can move the limit ϵ→ 0+ at the front of this expression, we obtain

F[α,β](s) = lim
ϵ→0+

1
N

lnQ[α,β](s) , (69)

where we introduced

Q[α,β](s)≡
¬

�

Z(β∗ϵ )Z(αϵ)
�is/π �Z(βϵ)Z(α∗ϵ)

�−is/π¶
. (70)

The latter can be accessed by first evaluating

Q[α,β](n±)≡

�

Z(β∗ϵ )Z(αϵ)
�n+ �Z(βϵ)Z(α∗ϵ)

�n−� (71)

within the replica formalism with n± integer, and then performing its analytic continuation to

Q[α,β](s) = lim
n±→±is/π

Q[α,β](n±) . (72)

To obtain the level compressibility in Eq. (11), we finally compute the cumulants

κ j[α,β]

N
= (−1) j ∂ j

s F[α,β](s)

�

�

�

�

s=0

, (73)

and we evaluate them at α= −E, β = E.
We note that this calculation involves the product of partition functions and not a logarithm

of them, and thus there is no question of quenched vs annealed averages here (see the discussion
after Eq. (20)).

Moreover, we remark that the average spectral density ρ(E) is formally proportional to
the derivative with respect to E of the first cumulant κ1(E) = 〈I[−E, E]〉 (see Eq. (10)), thus
providing an alternative way to compute ρ(E) which does not rely on the Edwards-Jones
formula in Eq. (18).

4It should be noted that Eq. (67) was obtained by naively adopting the identity ln(ab) = ln a+ ln b, which is
however not satisfied in general by the complex logarithm (whose principal branch is bounded within (−π,π] –
see Ref. [84]). As a result, the right-hand-side of Eq. (67) is not extensive, and thus seemingly unfit to count the
number of eigenvalues in an interval for a single realization of H [83]. The introduction of replicas (see Eq. (71)
and Appendix D.1) is essential in order to restore the extensivity of the ensemble-averaged moments of IN . This
remarkable fact was dubbed folding-unfolding mechanism in Ref. [85].
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3.1 Replica action and saddle-point equations

The details of this derivation are reported in Appendix D.1. In analogy with Section 2, here we
express

Q[α,β](n±)∝
∫

D(iϕ) exp
�

NSn±[ϕ; Λ̂]
	

, (74)

Sn±[ϕ; Λ̂]≡
1

2η

∫

dτ⃗dτ⃗′ϕ(τ⃗)M(τ⃗, τ⃗′)ϕ(τ⃗′)

+ ln

∫

dτ⃗exp

�

−
i
2
τ⃗ Λ̂ τ⃗−

∫

dτ⃗′M(τ⃗, τ⃗′)ϕ(τ⃗′)

�

ψa

�

−
1
2
τ⃗ L̂ τ⃗

�

, (75)

where the replica vectors τ⃗ ∈ Rn live in dimension n = 2(n+ + n−). Each of the four replica
sets corresponds to one sector in the block matrices

Λ̂≡









αϵ1n+
β̄ϵ1n+

βϵ1n−
ᾱϵ1n−









, L̂ ≡









1n+
−1n+

1n−
−1n−









, (76)

where we called ᾱϵ = −α∗ϵ, and similarly for β̄ε. Finally, in Eq. (75) we introduced the function

M(τ⃗, τ⃗′)≡
�

τ⃗ L̂ τ⃗′
�2

, (77)

while we recall that ψa(z) was given in (32). Next, we need to compute the integration over
D(iϕ) in Eq. (74) in the limit of large N . From Eq. (75), the saddle-point equation follows
simply as

ϕ0(τ⃗) =
η

Zϕ
exp

�

−
i
2
τ⃗ Λ̂ τ⃗−

∫

dτ⃗′M(τ⃗, τ⃗′)ϕ0(τ⃗
′)

�

ψa

�

−
1
2
τ⃗ L̂ τ⃗

�

, (78)

with

Zϕ ≡
∫

dτ⃗exp

�

−
i
2
τ⃗ Λ̂ τ⃗−

∫

dτ⃗′M(τ⃗, τ⃗′)ϕ0(τ⃗
′)

�

ψa

�

−
1
2
τ⃗ L̂ τ⃗

�

. (79)

In order to better quantify the finite-size corrections and to make contact with the calculation
performed in Ref. [83] for the pure GOE case, in Appendix D.2 we also compute the Gaussian
fluctuations around the saddle-point ϕ0(τ⃗), leading to

Q[α,β](n±) = exp

¨

NSn±[ϕ0; Λ̂] +
1
2

∞
∑

k=1

(−1)k

k
Tr T k

«

+O
�

1/N2
�

, (80)

with

T (τ⃗1, τ⃗2)≡ ϕ0(τ⃗1)

�

M(τ⃗1, τ⃗2)−
1
η

∫

dτ⃗′M(τ⃗2, τ⃗′)ϕ0(τ⃗
′)

�

. (81)

Note that ϕ0(τ⃗)∼O(η) (see Eq. (78)), so that the function T (τ⃗1, τ⃗2) itself is also of O(η).

3.2 Rotationally-invariant Ansatz

In the pure GOE case (which is recovered, for instance, by setting ψa(z) = 1 identically in the
expressions above), the saddle-point equation (78) suggests to look for a replica-symmetric
solution in the form of a Gaussian, i.e.,

ϕ0(τ⃗) =N exp
�

−
1
2
τ⃗ Ĉ−1 τ⃗

�

, (82)
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where Ĉ is another block-diagonal matrix of the form

Ĉ ≡









∆α1n+
∆̄β1n+

∆β1n−
∆̄α1n−









. (83)

The four parameters ∆α, ∆̄α,∆β and ∆̄β and are to be fixed, together with the prefactor N in
Eq. (82), by substituting the Ansatz in Eq. (82) back into the saddle-point equation (78).

This strategy has proven effective in Ref. [83] and, for completeness, in Appendix E we
sketch the entire calculation for the GOE case. However, in the presence of a nontrivial ψa(z)
in Eq. (78), there is no reason why the Ansatz in Eq. (82) should work: the structure of Eq. (78)
suggests instead to extend it to the form

ϕ0(τ⃗) =N exp
�

−
1
2
τ⃗ Ĉ−1 τ⃗

�

ψa

�

−
1
2
τ⃗ L̂ τ⃗

�

. (84)

This can be plugged into Eq. (78) to first obtain N = η/Zϕ, where

Zϕ =

∫

dτ⃗ϕ0(τ⃗) . (85)

By using Gaussian integration one can then show that
∫

dτ⃗′M(τ⃗, τ⃗′)ϕ0(τ⃗
′) = ητ⃗ K̂ τ⃗ , (86)

where K̂ is a diagonal matrix given by

K̂ = −i L̂ Ga

�

(i L̂Ĉ)−1
�

, (87)

Ga is the resolvent in Eq. (43), and L̂ is given in Eq. (76). The remaining free parameters in
Eq. (82) can be determined by solving the set of four self-consistency equations which follow
from Eq. (78), i.e.,

Ĉ−1 = 2η K̂ + i Λ̂ . (88)

Finally, both the action and its Gaussian fluctuation matrix T (see Eq. (81)) can be computed
by using the saddle-point solution in Eq. (84). First, notice that the action in Eq. (75) takes the
form

Sn±[ϕ0; Λ̂] =
1
2

∫

dτ⃗
�

τ⃗ K̂ τ⃗
�

ϕ0(τ⃗) + ln Zϕ

=
η

2

∑

i

K2
ii + ln

∫ ∞

−∞
da pa(a)exp

§

−
1
2

Tr ln[(i L̂Ĉ)−1 − a]
ª

+ const. . (89)

The constant term vanishes upon taking the analytic continuation n±→±is/π, yielding

S± is
π
[ϕ0; Λ̂] =

isη
2π

�

k2
α + k̄2

β − k2
β − k̄2

α

�

+ ln

∫ ∞

−∞
da pa(a)exp

¨

−
is

2π
ln

�

(∆̄−1
β
+ ia)(∆−1

α − ia)

(∆̄−1
α + ia)(∆−1

β
− ia)

�«

, (90)
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where we introduced for brevity K̂ ≡ diag(kα1n+ , k̄β1n+ , kβ1n− , k̄α1n−). Note that this action
coincides at leading order with the cumulant generating function in Eq. (69), i.e.,

F[α,β](s) = lim
ϵ→0+

S± is
π
[ϕ0; Λ̂] +O(η/N) , (91)

where we used Eq. (80) (the estimate of the large-N correction will soon be justified). In the
next Section we will make this result more explicit in the case of an interval which is symmetric
around the origin.

The Gaussian fluctuations around the saddle-point are studied in Appendix D.2. A closed-
form result is not available in this case (in contrast to the GOE case, see Appendix E), because
the calculation involves increasingly complex generalizations of the resolvent Ga(z) which
encode higher order correlations (see Eq. (D.18)). However, we can show that the Gaussian
fluctuations bring to the leading order term in Eq. (91) a correction of O(η/N) = O

�

N−γ
�

,
which is strongly suppressed for large N in the region γ > 1 which we focus on here.

3.3 General result in the case of a symmetric interval

We consider now the simpler case in which α = −E and β = E, and we take a symmetric
distribution pa(a). From Eqs. (87) and (88) one can deduce that the entries of the matrix Ĉ
are related by the following symmetries:

∆α ≡∆≡ reiθ , ∆̄α =∆
∗
α =∆β , ∆̄β =∆

∗
β . (92)

The same holds for the entries of K̂ (see Eq. (87)), hence we will simply call kα ≡ k. The
problem is then reduced to computing one single unknown, namely∆: from Eqs. (87) and (88),
this amounts to solving the self-consistency equations

¨

∆−1 = ϵ − iE + 2ηk ,

k = −iGa

�

−i∆−1
�

.
(93)

The action in Eq. (90) then takes the form

S[ϕ0; Λ̂] = −
2ηs
π

Im
�

k2
	

+ ln

∫ ∞

−∞
da pa(a)exp

�

−
s
π

arctan
�

sin 2θ
a2r2 + cos2θ

��

, (94)

where the branch of the arctan is chosen so that it returns an angle in [0,π]. From Eq. (69) we
can then read out the leading order contribution to the rate function, namely

F[−E,E](s) = S[ϕ0; Λ̂] +O(η/N) = −ms+ ln



e−s f (a)
�

a +O(η/N) . (95)

Here we used the notation 〈•〉a to indicate an average over pa(a), and we introduced for brevity

m≡
2η
π

Im
�

k2
	

= −
2η
π

Im
�

Ga

�

−i∆−1
��2

, (96)

f (a)≡
1
π

arctan
�

sin2θ
a2r2 + cos 2θ

�

∈ [0, 1] , (97)

where in the first line we used Eq. (93). The cumulant generating function in Eq. (95), together
with the self-consistency equations (93), represent our second main result. As we stressed
above, when η is given by Eq. (2), the correction to Eq. (95) is of O(η/N) =O

�

N−γ
�

, which is
strongly suppressed for large N in the region γ > 1.

Expanding Eq. (95) in powers of s we get

F[−E,E](s)≃ −s
�

m+ 〈 f (a)〉a
�

+
s2

2

�


f 2(a)
�

a − 〈 f (a)〉
2
a

�

+O
�

s3,η/N
�

, (98)
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and by comparison with Eq. (73) we can identify the first two cumulants

κ1

N
= m+ 〈 f (a)〉a +O(η/N) , (99)

κ2

N
=



f 2(a)
�

a − 〈 f (a)〉
2
a +O(η/N) . (100)

From Eq. (11), we finally obtain the level compressibility

χ(E) =




f 2(a)
�

a − 〈 f (a)〉
2
a

m+ 〈 f (a)〉a
+O(η/N) . (101)

We remark that not only the level compressibility, but actually all the moments of IN [−E, E]
can be simply computed starting from Eq. (95): they read (at leading order for large N)

〈(IN [−E, E])m〉 ≃ N〈[ f (a)]m〉a , m≥ 2 . (102)

3.3.1 Limit of a pure diagonal matrix with random i.i.d. entries

It is instructive, at this point, to consider the limit η→ 0. In this case the GOE part of Eq. (1)
is neglected, and the spectral properties are completely determined by the matrix A, whose
entries are independent and identically distributed according to pa(a). The self consistency
equation (88) then reduces to

Ĉ = (i Λ̂)−1 , (103)

whence

∆= ∆α

�

�

�

�

α=−E
=

iE + ϵ
E2 + ϵ2

≡ reiθ , (104)

and there is no need to determine the entries of K̂ since it does not enter the expression of the
saddle point action (94) for η= 0. From Eq. (94) we obtain, for ϵ→ 0+,

S[ϕ0; Λ̂] = ln

∫ ∞

−∞
da pa(a)exp

§

−
s
π

arctan
�

0+

(a/E)2 − 1

�ª

= ln

�

1+ (e−s − 1)

∫ E

−E
da pa(a)

�

, (105)

where we used that the branch of arctan(z) ∈ [0,π] has a discontinuity in z = 0, i.e., it jumps
from π to 0 as z becomes positive. From Eqs. (10) and (95), we can then read out the cumulant
generating function

F[−E,E](s) = ln
�

1+ (e−s − 1)
〈IN [−E, E]〉a

N

�

. (106)

In this way we recover the standard textbook result for the cumulant generating function in the
case of i.i.d. random variables, which we sketch for completeness in Appendix A. In particular,
the level compressibility in Eq. (11) reads in this case

χ(E) = 1−
〈IN [−E, E]〉a

N
, (107)

so that in general χ(E)∼ 1 for small E, and χ(E)→ 0 for large E.
Finally, we note that Eq. (106) is exact, because we have stressed above that the Gaussian

fluctuations around the saddle point are at least of O(η) and so they vanish in the limit η→ 0.
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3.3.2 Limit of a pure GOE matrix

The opposite limit in which A is neglected in Eq. (1) is obtained by setting pa(a) = δ(a), whose
corresponding resolvent is Ga(z) = 1/z (indeed, summing zeros to the matrix B in Eq. (1)
does not change its spectrum). Equation (87) then implies K̂ = Ĉ , where we used L̂2 = 1
(see Eq. (76)). The self-consistency equations (88) are then seen to coincide with Eq. (E.2),
corresponding to the GOE case studied in Ref. [83] and here revisited in Appendix E. From
Eq. (94) we obtain, in terms of r and θ introduced in Eq. (92),

S[ϕ0; Λ̂] = −
2ηr2s
π

sin 2θ −
2sθ
π

, (108)

which is linear in s: we deduce that the cumulants higher than the average 〈IN [−E, E]〉 are
subleading for large N , and they are only accessible by explicitly computing the Gaussian
fluctuations around the saddle-point (see Appendix D.2). Still, the leading order term in the
first cumulant (see Eq. (E.16)) is correctly reproduced by Eq. (108).

3.4 Exactly solvable cases

The cumulant generating function we found in Eq. (95) is formal, in that ∆= reiθ must first
be determined by solving the self-consistency equation (88). In the following, we will present
two cases in which the result can be expressed in closed form, namely those in which pa(a) is
the Cauchy or the Wigner distribution, respectively. While the former presents fat tails and is
thus slowly decaying, the latter has a compact support and a well-defined edge.

3.4.1 Cauchy distributed ai

Let us start from the case in which pa(a) is the Cauchy distribution, see Eq. (47). We set µ = 0,
so that the problem remains symmetric around the origin. Using the expression of Ga(z) in
Eq. (52), K̂ in Eq. (87) reduces to

K̂ =
Ĉ

1+ωĈ
. (109)

Solving the self-consistency equation (88) then yields

∆= ∆α

�

�

�

�

α=−E
= 2

h

ϵ − iE −ω+
q

8η+ (ϵ − iE +ω)2
i−1
≡ reiθ , (110)

where we chose the positive branch of the square root so that Re∆α > 0. After this choice, the
constant ϵ can be safely sent to zero. The resulting cumulant generating function is given in
Eq. (95), where the averages are taken over the Cauchy distribution in Eq. (47), and the first
linear contribution reads

m=
4ηr2 sinθ (rω+ cosθ )

π [1+ (rω)2 + 2rω cosθ]2
. (111)

The resulting level compressibility χ(E) (see Eq. (101)) is plotted in Fig. 5a, and it is
compared to numerical results showing excellent agreement. We show in the same plot the
level compressibility under the hypothesis that the level statistics is of the Poisson type, i.e.,
that the energy levels do not repel each other. This is given by Eq. (107) upon interpreting the
average 〈•〉 as taken over the average eigenvalue density ρ(λ) for the case in which the matrix
A has Cauchy-distributed entries: this has been found previously in Eq. (49). Even for very
small values of η, the behavior at low energies E of the compressibility χ(E) is qualitatively
very different: in the Poisson case we have χ(E)∼ 1, while in the GRP model it is χ(E)∼ 0.
The latter χ(E) increases up to a maximum, whose position Emax(η) grows monotonically (and
sublinearly) with η.
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(a) (b)

Figure 5: Numerical check of the level compressibility χ(E) predicted in Eq. (101)
(solid blue line), for the case in which the elements of the diagonal matrix A belong
to the (a) Cauchy, or (b) Wigner distribution. Numerical data (symbols) are obtained
from the numerical diagonalization of Ntot = 1000 random matrices of size N = 5000.
The (dashed yellow) line denoted by Poisson shows the level compressibility as it
would be in the absence of level repulsion – see the main text. In both plots we used
the parameters µ= 0, γ= 1.1. In (a) we chose ω= 1 and ν= 1, corresponding to
η= 0.125, while in (b) we set σ = 1 and ν= 0.2, yielding η= 0.005.

3.4.2 Wigner distributed ai

Let us now consider the case in which pa(a) is the Wigner distribution, see Eq. (53). Again we
set µ= 0, so that the problem remains symmetric around the origin. Using the expression of
Ga(z) in Eq. (54), the quantity K̂ in Eq. (87) becomes

K̂ = −
2

σ2Ĉ

h

1−
q

1+ (σĈ)2
i

. (112)

Solving the self-consistency equation (88) yields, after choosing the positive branch of the
square root so that Re∆α > 0 and letting ϵ→ 0,

∆= ∆α

�

�

�

�

α=−E
=

iE(σ2 + 4η) + 4η
p

σ2 + 8η− E2

16η2 +σ2E2
≡ reiθ . (113)

The resulting cumulant generating function is again given in Eq. (95), where the averages are
taken over the Wigner distribution in Eq. (53). The analytical expression of the quantity m
in Eq. (96) is cumbersome, but it follows readily from Eq. (112). In Fig. 5b we plot the level
compressibility χ(E) as we did for the Cauchy case, finding a qualitatively similar behavior.

3.5 Scaling limit and Thouless energy

In this Section we focus on the limit in which E = xηδ and η≪ 1, while x ∼ O(1). We can
envision a different behavior depending on whether the exponent δ > 1, δ < 1 or δ = 1. The
latter case turns out to be particularly interesting: we will show that the level compressibility
computed in χ(E = xηδ) assumes for δ = 1 a universal scaling form, which is independent of
the particular choice of the distribution pa(a) of the entries of the diagonal matrix A.

To this end, let us go back to the self-consistency equations (93), which we can rewrite for
δ = 1 and η≪ 1 as

∆−1 = ϵ − i xη− 2iηGa

�

−i∆−1
�

≃ ϵ − i xη− 2iηGa (−iϵ +O(η)) , (114)
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where again ∆ = reiθ . By taking the complex conjugate of Eq. (114) and by summing and
subtracting the two equations, we obtain the two conditions

r−1 cosθ = ϵ + 2η ImGa (−iϵ +O(η))
η≪1
−−−→
ϵ→0+

2πηpa(0) , (115)

r−1 sinθ = xη+ 2ηReGa (−iϵ +O(η))
η≪1
−−−→
ϵ→0+

xη , (116)

where we used the Plemelj-Sokhotski formula recalled in Eq. (16), and the fact that for a
symmetric distribution pa(a) one has

P
∫

da
pa(a)

a
= 0 . (117)

One then easily obtains, at leading order for small η (and with x = E/η),

tanθ ≃
x

2πpa(0)
≡ y , (118)

r−1 ≃ 2πηpa(0)
Æ

1+ y2 . (119)

Note that these manipulations are only possible under the additional assumption that the
distribution pa(a) behaves regularly close to a = 0, and that pa(0) ̸= 0.

We can now estimate the level compressibility in this limit. First, notice that

Ga(−i∆−1) = iπpa(0) +O(η) , (120)

so that from Eq. (96) we read

m= −
2η
π

Im
�

Ga(−i∆−1)
�2
=O

�

η2
�

. (121)

From Eq. (99), the first cumulant κ1 thus reduces to

κ1

N
≃ 〈 f (a)〉a =

∫

da pa(a) f (a)≃
pa(0)

r

∫ ∞

−∞
du f (u/r)

=
pa(0)

r
2y

p

1+ y2
= 2pa(0)xη , (122)

where in the first line we changed variable to u = ra and we used the fact that r−1 ∼ O(η)
(see Eq. (119)), while in the second line we explicitly computed the integral

1
π

∫ ∞

0

du arctan
�

sin 2θ
u2 + cos 2θ

�

=
tanθ

p
1+ tan2 θ

= sinθ , θ ∈
h

0,
π

2

i

, (123)

and we inserted the expression for r found in Eq. (119) (note that f (u/r) is actually r-
independent – see Eq. (97)). One could alternatively compute κ1 by taking the average of
Eq. (10): this leads to the same result upon expanding for small E and η, since

ρ(λ) = pa(λ) +O(η) . (124)

The same steps can be repeated for the second (and possibly any other) cumulant κ2, yielding

κ2

N
≃



f 2(a)
�

a ≃
pa(0)

r

∫ ∞

−∞
du f 2(u/r) . (125)
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(a) (b)

Figure 6: Scaling form of the level compressibility, in the limit in which E ∝ yη
and η ≪ 1. In (a) we compare the universal prediction in Eq. (127) (solid red
line) with the two exactly solvable cases studied in Section 3.4 (symbols), showing a
good agreement at low energies y = E/[2πpa(0)η] (i.e., the condition under which
Eq. (127) was derived). We chose η = 5 · 10−4 and ω = 0.5, σ = 1, so that pa(0)
assumes the same value for the two distributions (see inset). In (b) we exemplify in
the Cauchy case how the curves corresponding to different values of η collapse onto
the same master curve, when plotted as a function of y∝ E/η for η≪ 1.

From Eq. (101) we thus obtain the leading order estimate for the level compressibility when
η≪ 1, which takes the universal scaling form

χ(E) ≃ χT

�

y =
E

2πpa(0)η

�

,

χT (y) ≡
p

1+ y2

π2 y

∫ ∞

0

du
§

arctan
�

2y
u2(1+ y2) + 1− y2

�ª2

, (126)

where we stress that we have chosen the branch arctan(z) ∈ [0,π]. Upon integrating by parts
and performing some algebra [86,87], the integral over u can be computed explicitly to give

χT (y) =
1
πy

�

2y arctan(y)− ln
�

1+ y2
��

. (127)

The function χT (y) grows monotonically from 0 to 1 as we increase y, and it is plotted in
Fig. 6a together with the level compressibility for the two cases explicitly solved above, i.e.,
Cauchy and Wigner. We find a good agreement at low energies y , while we observe a departure
at large energies: here the scaling prediction keeps growing, while the actual compressibility
must hit a maximum and start decreasing – see Fig. 5. The same trend can be observed in
Fig. 6b, where we evaluate the level compressibility for different values of η, and show that
they collapse on a common master curve when they are plotted as a function of y∝ E/η.

The other two cases (δ > 1 or δ < 1) can be easily addressed by the same token. When
δ > 1, by studying the self-consistency equations as in Eq. (114) we obtain at leading order

tanθ ≃ yηδ−1 , (128)

r−1 ≃ 2πηpa(0) . (129)

It can be readily seen that κ1/N ≃ 2pa(0)xηδ and κ2/N ∼O
�

η2δ−1
�

, so that in this limit

χ(E = xηδ)∼O
�

ηδ−1
�

, δ > 1 , η≪ 1 . (130)
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This resembles the behavior of χ(E) in the case of a pure GOE matrix, see Section 3.3.2
and Appendix E. Conversely, for δ < 1 the self-consistency equations (93) reduce to

∆−1 ≃ ϵ − i xηδ , (131)

and, by comparison with Eq. (103), we identify this limit as that in which the eigenvalues
behave as i.i.d. random variables. In particular,

χ(E = xηδ)≃ 1−
〈IN [−E, E]〉a

N
, δ < 1 , η≪ 1 . (132)

The above analysis suggests to interpret the quantity ET ∼ 2πpa(0)η as the Thouless energy
of the system. Indeed, consider again the limit in which η≪ 1, and let E∝ ηδ. For E≪ ET
(i.e., δ > 1), the eigenvalues organize in multiplets (or mini-bands [27]) and they repel each
other as in the GOE ensemble – as a result, the level compressibility is zero at leading order
(see Eq. (130)). For E ≫ ET (δ < 1), on the other hand, the various multiplets no longer
interact, and we recover the Poisson statistics – see Eq. (132). Finally, the case δ = 1 marks a
crossover in which the level compressibility χ(E/ET ) assumes the universal scaling form given
in Eq. (127). Indeed, the asymptotics of the function χT (y) in Eq. (127) can be checked to
give

χT (y)≃











y
π

, y ≪ 1 ,

1−
2(1+ ln y)
πy

, y ≫ 1 ,
(133)

showing that χT (y) interpolates between Wigner-Dyson statistics at low energy, and Poisson
statistics at higher energy.

We finally note that a close relative of the level compressibility, namely the two-level spectral
correlation function C(t, t ′) – see Eqs. (F.1)-(F.3) for its definition – was computed in Ref. [27] for
the Hermitian GRP model. In the latter, the GOE matrix B in Eq. (1) is replaced by a GUE matrix
with complex entries, so that additional analytical techniques (notably the Harish-Chandra-
Itzykson-Zuber integral [88]) are available. In particular, C(t, t ′) is shown in Ref. [27] to assume
a universal scaling form within the fractal region 1< γ < 2, and for large N . In Appendix F we
show that the corresponding scaling form of the level compressibility coincides, in the crossover
regime in which E ∼ ET , with χT (y) in Eq. (127). This is quite remarkable, since these are in
fact two distinct random matrix ensembles – and indeed their level compressibilities do not
coincide for E ≫ ET or E ≪ ET . This identification suggests that χT (y) originates from the
structural properties of the model, rather than from the specific choice of the matrix B (e.g.,
GOE, GUE, but also possibly Wishart or sparse random matrices).

3.6 Behavior for small E

In this final Section we use extensive numerical exact diagonalization of large random matrices
in order to inspect the low-energy behavior of the level compressibility χ(E). Indeed, our
prediction of Section 3.5 is expected to break down for energies of the order of the mean
level spacing δN of the finite-sized matrix H, which is given by δN ≃ [N pa(0)]−1, Eq. (4).
Equivalently, we expect that the leading order term in the saddle-point approximation adopted
in our replica calculation (see Eqs. (69) and (80)) provides the correct result in the N →∞
limit, while for a matrix of size N and for sufficiently small E we should eventually recover
the exact GOE result χGOE(E) [78,88–94], whose derivation is reported in Appendix E.3 – see
Eq. (E.25). The overall picture is thus the one we present in Fig. 7, and which we support by
numerical results. The region E ≲ δN is described by the GOE prediction in Eq. (E.25). For
1 < γ < 2 the Thouless energy ET ∼ N1−γ is such that δN ≪ ET ≪ 1, so that the crossover
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(a) (b)

Figure 7: Behavior of the level compressibility χ(E) at low energies. The symbols
correspond to numerical results, and we indicated with vertical lines the mean level
spacing δN (see Eq. (4)) and the Thouless energy ET ∼ N1−γ. In panel (a), pa(a) is
chosen Gaussian with unit variance or uniform, and N = 216. The region E ≲ δN is
described by the GOE prediction in Eq. (E.25), while the crossover region E ∼ ET is
described by the universal scaling form in Eq. (127). In panel (b), pa(a) is Gaussian,
and we show the approach to the universal curve χT (E) for increasing values of the
matrix size N . We used γ = 1.5 throughout, and the simulations with N = 214, 215, or
216 are averaged over Ntot = 256,64, or 32 samples, respectively.

region with E ∼ ET is described by the universal function χT (E) given in Eq. (127). For larger
E ≳O(1), the level compressibility becomes model dependent and it is described by Eq. (101)
(see also Fig. 5).

The datapoints5 presented in panel (a) of Fig. 7 correspond to the choices of pa(a) Gaussian
or uniform, which supports our claim of universality of χT (E) in the region E ∼ ET . Note, in
fact, that the data follow the predicted curves (up to finite-size effects) with no adjustable
parameters (i.e., no fitting was needed). The datapoints are eventually observed to deviate
from the scaling prediction, as they reach a maximum in correspondence of Emax(η)≫ ET and
start decaying to zero as in Fig. 5. By increasing N , however, this maximum is observed to shift
towards larger values of E, and the plateau around χ(E)∼ 1 broadens accordingly.

4 Conclusions

In this work we used the replica method to study the average spectral density (Section 2) and
the local level statistics (Section 3) of a deformed GOE random matrix ensemble known as the
generalized RP model. We focused on its fractal intermediate phase with 1< γ < 2 [27], which
is conveniently characterized in terms of the level compressibility χ(E) (see Eq. (11)). We
showed that χ(E) assumes a universal form χT (E/ET ) independently of the character pa(a) of
the deformation matrix A (see Eq. (1)), provided that the system is probed over energy scales
of the order of the Thouless energy ET (see Section 3.5).

It is natural to conjecture that this universal regime should persist in structurally similar

5Although the scaling function in Eq. (127) has been derived under the assumption that the spectral density is
symmetric, the numerical results are obtained by averaging the cumulants of the number of eigenvalues within many
energy windows across the whole bandwidth, for which the symmetry with respect to the center of the window is
lost. However, on the scale of the Thouless energy E ≃ ET ∝ η, the corrections due to the fact that pa(−E) ̸= pa(E)
are of O(η), and therefore yield a contribution which is of the same order as the finite-size corrections, and which
can be neglected for sufficiently large N .
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random matrix ensembles (even more so, since we showed that the same scaling function
χT (y) can be recovered for the Hermitian GRP model – see Appendix F). For instance, one
could numerically inspect the case in which the GOE matrix is replaced by a Wigner matrix
(i.e., any real symmetric matrix with i.i.d. random entries taken from a probability distribution
with finite variance), whose limiting average spectral density is still given by the semi-circle
law [95]. Similarly, it would be interesting to study the effect of the diagonal deformation
matrix A on a Wishart matrix [96], or else on a sparse (rather than dense) matrix B, such as
those describing the Erdös-Rényi random graph [97–99], which can still be treated analytically
(at least to some extent); if the average connectivity is chosen to be finite, the spectral density
of Erdös-Rényi is no longer a semi-circle, but the local statistics is still of the Wigner-Dyson
type.

Along our derivation, we heavily relied on the independence of the elements ai characterizing
the diagonal disorder (as usually assumed in standard formulations of the GRP model). However,
the introduction of short-ranged correlations between the levels ai seems within reach of the
replica method. In particular, the analysis of Ref. [100] suggests that changing the power d at
which the distance between sorted diagonal elements an < an+1 grows, e.g., (an+k − an)∝ kd ,
has important implications on the phase diagram. Moreover, in Section 3.5 we assumed a
regular character of pa(a) in correspondence of a→ 0, while it would be interesting to check
the fate of the universal scaling form χT (E) upon choosing a singular (but normalizable)
distribution pa(a). Similarly, the analysis in Section 3.5 suggests that the particular choice of a
distribution pa(a) such that pa(0) = 0 may not be innocent.

Finally, it is worth mentioning that the spectral properties of the intermediate phase of the
generalized RP model are particularly simple: differently from realistic interacting quantum
systems, the mini-bands are compact and the eigenvectors are fractal but not multifractal
(meaning that all the moments of the wave-functions’ amplitudes are described by the same
fractal exponent Dγ = 2− γ). In order to overcome some of these issues, several extensions of
the RP model have been proposed in the last few years, featuring either log-normal [51,52]
or power-law [54] distributed off-diagonal matrix elements. Recent developments suggest,
however, that the only way to obtain multifractality is to introduce correlations between the
matrix elements of H (either the diagonal or the off-diagonal ones [101]). It would therefore
be illuminating to study the behavior of the level compressibility at small energy in these
generalizations of the RP model, and check whether or not the universal form discussed here is
robust with respect to these modifications.
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A Number of i.i.d. variables in an interval

In this Appendix we revise the standard textbook result for the statistics of the number of
eigenvalues in a finite interval, when such eigenvalues behave as independent and identically
distributed random variables. This will help clarifying the behavior of the level compressibility
χ(E) in the case of Poisson level statistics.

Given N random variables ai distributed according to pa(ai) (e.g., the eigenvalues of the
matrix A in Eq. (1)), the number of variables contained in the interval [α,β] can be written as

IN [α,β] =
N
∑

i=1

θi , (A.1)

where we introduced the indicator function

θi ≡ 1[α,β](ai) , 1[α,β](x) =

¨

1 x ∈ [α,β] ,
0 x ̸∈ [α,β] .

(A.2)

Its cumulant generating function can be constructed by noting that

e−sIN [α,β] =
N
∏

i=1

e−sθi =
N
∏

i=1

�

1+ (e−s − 1)θi

�

, (A.3)

and then

ln



e−sIN [α,β]
�

=
N
∑

i=1

ln

�

1+ (e−s − 1)

∫ β

α

da pa(a)

�

= N ln
�

1+ (e−s − 1)
〈IN [α,β]〉

N

�

. (A.4)

Note that this coincides with the limiting case in Eq. (106) of our general result.
By expanding in powers of s the two sides of Eq. (A.4) and comparing with Eqs. (69)

and (73), we can in particular extract the first two cumulants

κ1 = 〈IN [α,β]〉 , κ2 = 〈IN [α,β]〉
�

1−
〈IN [α,β]〉

N

�

, (A.5)

and from Eq. (11) we obtain the level compressibility

χ(E) = 1−
〈IN [−E, E]〉

N
. (A.6)

We thus generically expect χ(E)∼ 1 for small E, and χ(E)→ 0 for large E.

B Details of the replica calculation of the spectral density

In this Appendix we fill in the missing steps which lead from Eq. (20) to Eq. (21) in Section 2.
A replica-based calculation for the pure GOE ensemble can be found in Ref. [48], from which
we partially adopt the notation. We start by expressing the average of the replicated partition
function as

〈Zn(λ)〉 ∝

*

∫

RNn

� n
∏

α=1

drα

�

exp



−
i
2

N
∑

i, j=1

n
∑

α=1

riα(λϵδi j − hi j)r jα





+

A,B

, (B.1)
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where we indicated by hi j ≡ aiδi j + J bi j the elements of the random matrix H given in Eq. (1),
and J = J(N)≡ νN−γ/2. The average symbol means

〈•〉A,B ≡
∫

RN

 

N
∏

i≤ j

dbi j

!

pB({bi j})

� N
∏

i=1

∫

dai pa(ai)

�

(•) , (B.2)

where the probability distribution of the elements bi j of the GOE matrix B reads

pB({bi j}) =
N
∏

i=1

e−b2
ii/2

p
2π

∏

i< j

e−b2
i j

p
π

. (B.3)

Here and henceforth, Latin indices run up to N in real space, while Greek indices run up to n
in replica space. Computing the Gaussian integrals over bi j gives (up to a numerical constant)

〈Zn(λ)〉 ∝
∫

RNn

� n
∏

α=1

drα

�

�

exp

�

−
i
2

N
∑

i=1

n
∑

α=1

(λϵ − ai)r
2
iα

�

�

A

× exp







−
J2

4





1
2

N
∑

i=1

� n
∑

α=1

r2
iα

�2

+
∑

i< j

� n
∑

α=1

riαr jα

�2










, (B.4)

where 〈•〉A indicates the reduced averaged over the entries of A – see Eq. (B.2). The interacting
term in the second line can be usually decoupled by means of the Hubbard-Stratonovich
transformation [45], which is however ineffective in our case, for a generic choice of pa(a).
We introduce instead the normalized density

µ( y⃗)≡
1
N

N
∑

i=1

n
∏

α=1

δ(yα − riα) , (B.5)

where y⃗ ∈ Rn has components ya ∈ R, and we insert into Eq. (B.4) the functional integral
representation of the identity

1= Ndim(µ)

∫

DµDµ̂ exp

¨

−i

∫

d y⃗ µ̂( y⃗)

�

Nµ( y⃗)−
N
∑

i=1

n
∏

α=1

δ(yα − riα)

�«

. (B.6)

Here dim(µ) is the dimension of the field µ, which renders the prefactor on the right hand
side formally infinite – this will be of no consequence in the following calculation, since this
prefactor is λ-independent. Equation (B.6) is useful because it allows us to rewrite

1
2

N
∑

i=1

� n
∑

α=1

r2
iα

�2

+
∑

i≤ j

� n
∑

α=1

riαr jα

�2

=
1
2

N
∑

i, j=1

� n
∑

α=1

riαr jα

�2

(B.7)

=
N2

2

∫

d y⃗ dw⃗µ( y⃗)µ(w⃗)

� n
∑

α=1

yαwα

�2

=
N2

2

∫

d y⃗ dw⃗µ( y⃗)µ(w⃗) ( y⃗ · w⃗)2 ,

so that inserting the identity in Eq. (B.6) into Eq. (B.4) leads to

〈Zn(λ)〉 ∝
∫

DµDµ̂ exp

�

−iN

∫

d y⃗ µ̂( y⃗)µ( y⃗)−
(JN)2

8

∫

d y⃗ dw⃗µ( y⃗)µ(w⃗) ( y⃗ · w⃗)2
�

×
∫

RNn

� n
∏

α=1

drα

�®

exp

�

−
i
2

N
∑

i=1

n
∑

α=1

(λϵ − ai)r
2
iα + i

N
∑

i=1

∫

dw⃗ µ̂(w⃗)
n
∏

α=1

δ(wα − riα)

�¸

A

.

(B.8)
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Staring at Eq. (B.8) for long enough, one realizes that the second line contains N copies of the
same integral,

∫

RNn

� n
∏

α=1

drα

�®

exp

�

−
i
2

N
∑

i=1

n
∑

α=1

(λϵ − ai)r
2
iα + i

N
∑

i=1

∫

dw⃗ µ̂(w⃗)
n
∏

α=1

δ(wα − riα)

�¸

A

=

¨

∫

Rn

d y⃗

∫

da pa(a)exp

�

−
i
2

n
∑

α=1

(λϵ − a)y2
α + i

∫

dw⃗ µ̂(w⃗)
n
∏

α=1

δ(wα − yα)

�«N

=

�∫

Rn

d y⃗

∫

da pa(a)exp
�

−
i
2
(λϵ − a)| y⃗|2 + iµ̂( y⃗)

�

�N

. (B.9)

Note that it was crucial to assume independent entries ai , so that their distribution in Eq. (B.2)
is factorized. Plugging this expression back into Eq. (B.8) allows us to rewrite 〈Zn(λ)〉 as
reported in Eq. (21) of the main text.

C Connection with the Zee formula

In this Appendix we show why Eq. (46) is hiddenly the Zee formula. In Ref. [74], the recipe
for computing the spectrum ρ1+2(λ) of the sum of two random matrices M1 +M2 is given as
follows:

(i) Compute the resolvents (or Green’s functions) associated to ρ1(λ) and ρ2(λ), i.e., G1(z)
and G2(z).

(ii) Compute their functional inverses B1(z) and B2(z), or Blue’s functions, defined by

B(G(z)) = z . (C.1)

(iii) Apply the sum rule
B1+2(z) = B1(z) + B2(z)− 1/z . (C.2)

(iv) Invert the result back (see Eq. (44)) to find

B1+2(z)→ G1+2(z)→ ρ1+2(λ) . (C.3)

Another interesting object is however the R-function, which is simply defined as

R(z)≡ B(z)− 1/z , (C.4)

and which is easily seen to satisfy the free-sum rule [48,73,102]

R1+2(z) = R1(z) + R2(z) . (C.5)

It follows that
B1(x) = B1+2(x)− R2(x) , (C.6)

which we can choose to apply in particular on x = G1+2(z), yielding by construction

B1(G1+2(z)) = z − R2(G1+2(z)) . (C.7)

Applying G1 on both sides finally yields

G1+2(z) = G1(z − R2(G1+2(z))) . (C.8)

The analogy with Eq. (46) is readily established once we recall that, if M2 is a GOE matrix,
then its R-function is simply R2(z) = z [103].
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D Details of the replica calculation of the level compressibility

In this Appendix we provide the technical steps for the derivation of the cumulant generating
function and the level compressibility presented in Section 3. A similar calculation for the pure
GOE/GUE ensemble can be found in Ref. [83], while the derivation in the case of the Erdös-Rényi
graph and the Anderson model on a random regular graph was reported in Ref. [82].

D.1 Functional representation

The target of this Section is to express Q[α,β](n±) given in Eq. (71) within the replica formalism,
as we did in Appendix B. The first step is to choose a suitable representation for the partition
function Z(z) which appears in Eq. (71): indeed, the one we introduced in Eq. (19) is only
appropriate if Im{z} < 0, being the integral not convergent otherwise. If on the contrary
Im{z}> 0, then one should choose instead

Z+(z)≡
�

i
2π

�N/2∫

RN

dr e
i
2 rT (z1−H)r . (D.1)

Since the various prefactors in front of the integral in Eq. (19) will cancel out in Eq. (71) after
we take the analytic continuation to n±→±is/π, we will not need to keep track of them in
the following.

In analogy with the representation in Eq. (B.1), we can still write

Q[α,β](n±)∝

*

∫

RNn

� n
∏

σ=1

drσ

�

exp



−
i
2

N
∑

i, j=1

n
∑

σ=1

riσ(Λσσδi j − Lσσhi j)r jσ





+

A,B

, (D.2)

but now we interpret
n= 2(n+ + n−), (D.3)

because each of the four partition functions in Eq. (71) requires its own set of replicas (here
labelled by the Greek index σ, to avoid confusion with the left boundary α of the interval).
We have also replaced the eigenvalue λϵ by the block matrix Λ̂, which is defined in Eq. (76)
together with the block matrix L̂. Notice that the elements ᾱϵ = −α∗ϵ of the matrix Λ̂ follow
from the representation in Eq. (D.1).

The very same steps which in Appendix B led us to Eq. (21) of the main text now give

Q[α,β](n±)∝
∫

DµDµ̂ exp
�

NSn±[µ, µ̂; Λ̂]
	

, (D.4)

with the action

Sn±[µ, µ̂; Λ̂]≡− i

∫

dτ⃗µ(τ⃗)µ̂(τ⃗)−
η

2

∫

dτ⃗dτ⃗′µ(τ⃗)µ(τ⃗′)
�

τ⃗ L̂ τ⃗′
�2

(D.5)

+ ln

∫

dτ⃗exp
�

−
i
2
τ⃗ Λ̂ τ⃗+ iµ̂(τ⃗)

�

∫

da pa(a)exp
�

i
2

aτ⃗ L̂ τ⃗
�

.

This generalizes the action in Eq. (22), and the vector τ⃗ ∈ Rn plays the same role as the vector
y⃗ but in an extended replica space, with n given in Eq. (D.3). By noting that the action in
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Eq. (D.5) is quadratic in µ, we can evaluate the Gaussian functional integral in Dµ to obtain

Q[α,β](n±)∝
∫

Dµ̂ exp
�

NSn±[µ̂; Λ̂]
	

, (D.6)

Sn±[µ̂; Λ̂]≡−
1

2η

∫

dτ⃗dτ⃗′ µ̂(τ⃗)M−1(τ⃗, τ⃗′)µ̂(τ⃗′) (D.7)

+ ln

∫

dτ⃗exp
�

−
i
2
τ⃗ Λ̂ τ⃗+ iµ̂(τ⃗)

�

ψa

�

−
1
2
τ⃗ L̂ τ⃗

�

,

where ψa(z) was given in Eq. (32), and we introduced the function M(τ⃗, τ⃗′) as in Eq. (77).
We omitted from Eq. (D.6) a Λ̂−independent prefactor coming from the Gaussian integration,
which will in general depend on n. However, one can check that all the prefactors cancel out
smoothly by including the Jacobian of the variable transformations (see later), and after taking
the functional integral over the Gaussian fluctuations in Appendix D.2. We will thus avoid
reporting these prefactors, so as to lighten the notation.

The saddle-point equation follows simply from Eq. (D.7) as

µ̂(τ⃗) = iη

∫

dτ⃗′M(τ⃗, τ⃗′)exp
�

− i
2 τ⃗
′ Λ̂ τ⃗′ + iµ̂(τ⃗′)

�

ψa

�

−1
2 τ⃗
′ L̂ τ⃗′

�

∫

dτ⃗′ exp
�

− i
2 τ⃗
′ Λ̂ τ⃗′ + iµ̂(τ⃗′)

�

ψa

�

−1
2 τ⃗
′ L̂ τ⃗′

� , (D.8)

which is analogous to Eq. (28). In the following, we will look for an explicit rotationally-
invariant solution: to this end, it is useful to introduce the new variable ϕ(τ⃗) defined via

µ̂(τ⃗) = i

∫

dτ⃗′M(τ⃗, τ⃗′)ϕ(τ⃗′) . (D.9)

Changing variables from µ̂ to ϕ in Eq. (D.6) leads to the expression reported in Eq. (75).

D.2 Gaussian fluctuations around the saddle-point

In order to go beyond the saddle-point approximation, we introduce the fluctuation φ(τ⃗)
around the saddle-point ϕ0(τ⃗) in the form

ϕ(τ⃗) = ϕ0(τ⃗) +φ(τ⃗) . (D.10)

Calling for brevity Sn±[ϕ; Λ̂]≡ S[ϕ], we then have up to O
�

N−2
�

Q[α,β](n±)∝ eNS[ϕ0]

∫

D(iφ)exp

¨

N
2

∫

dτ⃗1 dτ⃗2φ(τ⃗1)
δ2S[ϕ]

δϕ(τ⃗1)δϕ(τ⃗2)

�

�

�

�

ϕ=ϕ0

φ(τ⃗2)

«

,

(D.11)
and one can check that we can express

δ2S[ϕ]
δϕ(τ⃗1)δϕ(τ⃗2)

�

�

�

�

ϕ=ϕ0

=
1
η

M(τ⃗1, τ⃗2) [1(τ⃗1, τ⃗2) + T (τ⃗1, τ⃗2)] (D.12)

in terms of the functions M and T given in Eqs. (77) and (81), respectively. Computing the
Gaussian integral in Eq. (D.11) we thus find

Q[α,β](n±) = exp
§

NS[ϕ0]−
1
2

ln det(1+ T )
ª

+O
�

1/N2
�

. (D.13)

Expanding the logarithm in series as

ln(1+ x) = −
∞
∑

k=1

(−x)k

k
(D.14)
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we finally get Eq. (80), where the trace and matrix operations are intended over the replica
vectors as

Tr T =

∫

dτ⃗ T (τ⃗,−τ⃗) , T2(τ⃗1, τ⃗2) =

∫

dτ⃗ T (τ⃗1, τ⃗)T (τ⃗, τ⃗2) . (D.15)

We may try to specialize Eq. (80) to the rotationally invariant Ansatz in Eq. (84). The fluctuation
matrix in Eq. (D.12) becomes

T (τ⃗1, τ⃗2) = ϕ0(τ⃗1)
�

�

τ⃗1 L̂ τ⃗2

�2 −
�

τ⃗2 K̂ τ⃗2

�

�

, (D.16)

and by using Wick’s theorem together with Eq. (86) we obtain, for instance,

Tr T =

∫

dτ⃗ T (τ⃗, τ⃗) = η





∑

i

�

2K(2)ii − K2
ii

�

+
∑

i j

Lii L j jK
(2)
i j



 , (D.17)

where we introduced the matrix

K(2)i j ≡
∫

da pa(a)

�

Ĉ

1− ia L̂Ĉ

�

ii

�

Ĉ

1− ia L̂Ĉ

�

j j
. (D.18)

We recognize in the last expression a generalization of the resolvent (see Eq. (43)) which
encodes higher order correlations. The next terms Tr T k with k > 1 in the series of Eq. (80) will
involve some matrices K(k+1)

i j with increasingly higher order correlations, which are nontrivial

to compute in general. However, it is straightforward to show that Tr T k = O
�

ηk
�

, so that
when η is small the series in Eq. (80) is dominated by its first few terms. To the best of our
efforts, it has not been possible to resum the whole series in Eq. (80), as it happens instead in
the pure GOE case – see Appendix E and Ref. [83].

Specializing to the Cauchy distribution in Eq. (47) with µ= 0, one finds for instance that
Kii is given in Eq. (109) in terms of the matrix elements of Ĉ , while using complex integration
in Eq. (D.18) yields

K(2)i j =
CiiC j j

(ωCii − 1)(ωC j j − 1)

�

1−
2ωCiiC j j

Cii + C j j
Θ(−Lii · L j j)

�

. (D.19)

E Level compressibility in the pure GOE case

In this Appendix we recover the results of Ref. [83] concerning the level compressibility for a
GOE matrix. This allows us to inspect the similarities and the differences with respect to the
GRP case analyzed in this manuscript. In the final section E.3, we will repeat the derivation of
χGOE(E) using more standard techniques in order to address the low-energy region E≪ δN
(see Eq. (4) and Section 3.6).

The pure GOE case can be formally obtained from Eq. (1) by letting the distribution pa(a)
of the diagonal elements of the matrix A tend to a delta function, so that ψa(z) → 1. The
calculation then becomes analogous to that reported in Ref. [83], whose main steps we detail
here for completeness. By replacing the replico-symmetric Ansatz of Eq. (82) into the saddle
point equation (78) one first obtains N = η/Zϕ, where Zϕ is given in Eq. (85). By using
Gaussian integration one can then show that

∫

dτ⃗′M(τ⃗, τ⃗′)ϕ0(τ⃗
′) = ητ⃗ Ĉ τ⃗ , (E.1)
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and thus the remaining free parameters in Eq. (82) can be determined by solving the set of
four self-consistency equations which follow from Eq. (78) as

Ĉ−1 = 2η Ĉ + i Λ̂. (E.2)

Note that this can be recovered from Eqs. (87) and (88) by using the fact that the resolvent
corresponding to pa(a) = δ(a) is Ga(z) = 1/z.

E.1 Action and fluctuations around the saddle-point

Both the action and its Gaussian fluctuation matrix T can now be computed in correspondence
of the saddle-point solution in Eq. (82). By using the definition of the action given in Eq. (75)
together with the saddle-point equation (78) and the property in Eq. (E.1), one can easily
deduce

Sn±[ϕ0; Λ̂] =
η

2

�

n+
�

∆2
α + ∆̄

2
β

�

+ n−
�

∆2
β + ∆̄

2
α

��

+
1
2
(n+ + n−) ln(2π)

+
1
2

n+ ln
�

∆α∆̄β
�

+
1
2

n− ln
�

∆β∆̄α
�

. (E.3)

The computation of Tr T k in Eq. (80) requires more work. First, we rewrite in correspondence
of the Ansatz in Eq. (82)

T (τ⃗1, τ⃗2) = ϕ0(τ⃗1)
�

�

τ⃗1 L̂ τ⃗2

�2 −
�

τ⃗2 Ĉ τ⃗2

�

�

, (E.4)

where we have used the definition of the function M(τ⃗1, τ⃗2) in Eq. (77) and the property in
Eq. (E.1). The first few powers of T can then be computed by applying Wick’s theorem: by
introducing the notation

〈•〉1 ≡
1
η

∫

dτ⃗1 (•)ϕ0(τ⃗1) , (E.5)

it is sufficient to note that



τ1iτ1 j

�

1 = Ci j , (E.6)

so that more complicated averages can be handled as



τ1iτ1 jτ1kτ1l

�

1 = Ci jCkl + CikC jl + Cil C jk . (E.7)

Upon noting that L̂2 = 1n, one can then prove by induction the relation

T k+1(τ⃗1, τ⃗2) = (2η)
kϕ0(τ⃗1)

�

�

τ⃗1 L̂k+1 Ĉk τ⃗2

�2 −
�

τ⃗2 Ĉ2k+1 τ⃗2

�

�

. (E.8)

Using Eq. (D.15) now yields

Tr T k = 2k−1ηk





�

∑

i

Lk
iiC

k
ii

�2

+
∑

i

C2k
ii



 , (E.9)

and inserting the definition of the matrices L̂ and Ĉ given in Eqs. (76) and (83) gives

Tr T k = 2k−1ηk
¦�

n+
�

∆k
α + (−∆̄β)

k
�

+ n−
�

∆k
β + (−∆̄α)

k
��2

+ n+
�

∆2k
α + ∆̄

2k
β

�

+ n−
�

∆2k
β + ∆̄

2k
α

�©

. (E.10)
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Taking the limit n±→±is/π in Eqs. (E.3) and (E.10) then results in

S± is
π
[ϕ0; Λ̂] =

is
2π

�

η
�

∆2
α + ∆̄

2
β −∆

2
β − ∆̄

2
α

�

+ ln

�

∆α∆̄β

∆β∆̄α

��

, (E.11)

Tr T k

�

�

�

�

ϕ=ϕ0

= 2k−1ηk
¦ is
π

�

∆2k
α + ∆̄

2k
β −∆

2k
β − ∆̄

2k
α

�

−
s2

π2

�

∆k
α + (−∆̄β)

k −∆k
β − (−∆̄α)

k
�2 ©

.

(E.12)

Comparing with the definitions of the cumulant generating function and the cumulants in
Eqs. (69) and (73), respectively, we can finally identify

κ1

N
=−

i
2π

�

η
�

∆2
α + ∆̄

2
β −∆

2
β − ∆̄

2
α

�

+ ln

�

∆α∆̄β

∆β∆̄α

��

−
i

4πN

∞
∑

k=1

(−2η)k

k

�

∆2k
α + ∆̄

2k
β −∆

2k
β − ∆̄

2k
α

�

, (E.13)

κ2

N
=−

i
2π2N

∞
∑

k=1

(−2η)k

k

�

∆k
α + (−∆̄β)

k −∆k
β − (−∆̄α)

k
�2

. (E.14)

In the next Section we will specialize these results to the case in which the interval [α,β] is
chosen symmetric.

E.2 Case of a symmetric interval

We consider here the case in which α = −E and β = E. With this choice, solving Eq. (E.2)
gives6

∆α

�

�

�

�

a=−E
=

1
4η

h

−(ϵ − iE)±
q

8η+ (ϵ − iE)2
i

≡ reiθ , (E.15)

where we choose the positive branch of the square root so that Re∆α ≥ 0 for any positive
η (recall that ∆α represents the variance of a Gaussian distribution, see Eq. (82)). Similarly,
from Eq. (E.2) one finds for the entries of Ĉ the same symmetries as in Eq. (92). The first two
cumulants in Eqs. (E.13) and (E.14) are then found to yield

κ1

N
=

x
π

sin2θ +
2θ
π
+

i
2πN

ln

�

1+ xe2iθ

1+ xe−2iθ

�

, (E.16)

κ2

N
=

1
π2N

ln

�

1+
�

2x sin2θ
1− x2

�2
�

, (E.17)

where we called x ≡ 2ηr2. As a first check, one can easily verify that both κ1, κ2→ 0 in the
limit of a vanishing interval E→ 0.

By choosing 2η = 1, we obtain in the N →∞ limit an eigenvalue spectrum distributed
within the interval [−2, 2]. Sending ϵ→ 0+ as prescribed by Eq. (69), one can check that r → 1
(hence x → 1), while

θ −−−→
ϵ→0+

θ0 ≡ arctan
�

E
p

4− E2

�

∈
h

−
π

2
,
π

2

i

. (E.18)

This concludes the calculation of κ1 (see Eq. (E.16)), which includes both the leading order
term and its O

�

N0
�

correction (note that the latter is actually real-valued). However, the

6The angle θ should be compared with θL in Ref. [83].
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second cumulant κ2 is seen to diverge in the limit ϵ→ 0+; the problem is addressed in Ref. [83]
by introducing a N -dependent regularization of the infinite sum which appears in Eq. (E.14).
Nonetheless, we have shown that such infinite sum (and hence κ2 itself in Eq. (E.17)) does not
diverge for any finite value of ϵ. This hints at the well-known fact that the limit ϵ→ 0+ and
that for N →∞ in Eq. (69) are not interchangeable. It is then useful to expand for small ϵ

x = r2 ≃ 1−
2ϵ

p
4− E2

, (E.19)

so as to rewrite

κ2 ≃
2
π2

ln

�p
4− E2 sin2θ

2ϵ

�

. (E.20)

In order to recover the leading order result κ2 ∼ ln N found in previous literature [104–108],
one has to assume some type of functional relation ϵ = ϵ(N), so that the limit ϵ→ 0+ is taken
by controlling the product ϵN [105]. This goes however beyond the scope of the present paper.

E.3 Derivation of the scaling function χGOE(y)

The prediction for χ(E) which we have pursued in the previous Section using the replica
method is in any case expected to fail if E lies below the mean level spacing, i.e., E≪ δN (as
discussed in Section 3.6). In this Appendix, we thus derive in this limit an explicit expression
for the level compressibility for a pure N × N GOE matrix (such as the matrix B in Eq. (1))
using an alternative and more standard technique. We denote by ρB(λ) (defined as in Eq. (9))
the average density of eigenvalues normalized to unity. In the large N limit, ρB(λ) has a finite
support over [−

p
2N ,
p

2N] and it is given by the standard Wigner semi-circle. We focus here on
the number of eigenvalues IN [−E, E] in a symmetric interval [−E, E] in the bulk of the spectrum,
i.e., we choose E of the order of the mean inter-particle spacing [NρB(0)]−1 = O(N−1/2). The
mean number 〈IN [−E, E]〉 is easily obtained as

〈IN [−E, E]〉= N

∫ E

−E
ρB(λ)dλ≈ 2NρB(0)E = 2Ẽ , Ẽ = NρB(0)E . (E.21)

The variance of IN [−E, E] has been studied since the pioneering works of Dyson and Mehta [90].
However, an explicit expression for it, valid for any value of E in the bulk, seems hard to find
in the literature. This observable was recently revisited in the context of full counting statistics
of interacting fermions in Ref. [109], which provides a useful starting point, namely [see
Eqs. (31)-(37) therein]

〈(IN [−E, E])2〉 − 〈IN [−E, E]〉2 = −NρB(0)
2

∫ E

−E
dx

�

∫ −E

−∞
dy +

∫ +∞

E
dy

�

C(x , y) ,

C(x , y) = −NρB(0)
2Y21(NρB(0)|x − y|) , (E.22)

where the “cluster” function Y21(r) is given by [110]

Y21(r) =
�

sin(πr)
πr

�2

−
�

Si(πr)
π
−

1
2

��

πr cos(πr)− sin (πr)
πr2

�

, (E.23)

with Si(z) =
∫ z

0 sin(t)/t dt denoting the sine-integral function. By inserting this explicit
expression (E.23) in Eq. (E.22) and performing explicitly the integrals over x and y, one
obtains for the level compressibility

χ(E) =
〈(IN [−E, E])2〉 − 〈IN [−E, E]〉2

〈IN [−E, E]〉
∼ χGOE(y = NρB(0) E) , (E.24)
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where the function χGOE(y) is given by

χGOE(y) =
1

2π2 y

�

[Si(2πy)]2 − 2 Ci(4πy)−πSi(2πy) (E.25)

+ 2
�

−4πy Si(4πy) + 2π2 y + log(4πy)− cos(4πy) + γE + 1
�	

,

where Ci(z) = −
∫∞

z cos(t)/t dt is the cosine integral function and γE = 0.577216 . . . is the
Euler-gamma constant. Its asymptotic behaviors are given by

χGOE(y) =







1− 2y +O(y2) , y → 0

ln y
π2 y

+O(1/y) , y →∞ .
(E.26)

F Scaling function for the Hermitian GRP model

In this Appendix we consider the case in which the matrix B has complex (rather than real)
entries, i.e., it belongs to the GUE ensemble. In this case, powerful analytical tools such as the
Harish-Chandra-Itzykson-Zuber integral are available [88]. Following the method introduced in
Ref. [40], the authors of Ref. [80] demonstrated that the two-level spectral correlation function
assumes a universal form in the fractal regime 1< γ < 2, and for large N . Our aim here is to
link their result to the level compressibility χ(E), and to show that the latter assumes in the
fractal regime the same universal form as in the real symmetric case (i.e., in the deformed GOE
ensemble studied in this manuscript).

Let us begin by defining, as in Ref. [40] (see Eqs. (2.9) and (3.1) therein),

C1(t)≡
∑

n

ei tλn , (F.1)

C2(t, t ′)≡
∑

n̸=m

ei tλm+i t ′λn , (F.2)

NC(t, t ′)≡ 〈C2(t, t ′)〉 − 〈C1(t)〉 〈C1(t
′)〉 , (F.3)

where C(t, t ′) is the spectral form factor, and the average is intended over the entries of the
matrix H. Inserting the identity in the form of 1 =

∫

dλδ(λ−λn) and using Eq. (9), it is simple
to derive

〈C1(t)〉= N

∫

dλ ei tλ 〈ρN (λ)〉 , (F.4)




C2(t, t ′)
�

= N2

∫

dλ

∫

dλ′ ei tλ+i t ′λ′



ρN (λ)ρN (λ
′)
�

− N

∫

dλ ei(t+t ′)λ 〈ρN (λ)〉 . (F.5)

We now introduce the Fourier transform of the spectral form factor

Ĉ(ω,ω′)≡
∫

dt
2π

∫

dt ′

2π
e−iωt−iω′ t ′C(t, t ′)

= N



ρN (ω)ρN (ω
′)
�

c − 〈ρN (ω)〉δ(ω−ω′) , (F.6)

so that using Eq. (10) we can express

N

∫ E

−E
dω

∫ E

−E
dω′ Ĉ(ω,ω′) =




I2
N [−E, E]

�

c − 〈IN [−E, E]〉 . (F.7)
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Comparing Eqs. (F.6) and (F.7), we deduce that the non-singular part of Ĉ(ω,ω′) determines
the variance of the number of eigenvalues IN [−E, E] lying within the interval [−E, E].

The function C(t, t ′) was computed in Ref. [27] for the Hermitian GRP model with



|Hi ̸= j|2
�

= ν2/(4Nγ), and it reads7

C(t, t ′) = 2πpa(0)δ(t + t ′)
�

S
�

t − t ′

2
ETh

�

− 1
�

, (F.8)

where in the large N limit and for 1< γ < 2 the function S(u) assumes the simple form

S(u) = e−2πΛ2|u| . (F.9)

We have introduced (as in [27]) the quantities

ETh ≡ δN N2−γ =
2ET

π[νpa(0)]2
=

ET

πΛ2
, (F.10)

Λ≡ νpa(0)/
p

2 , (F.11)

where δN ≃ [N pa(0)]−1 is the mean level spacing (see Section 3.6), while ET ≃ 2πpa(0)η is
the Thouless energy as we introduced it in Section 3.5 (with η given in Eq. (2)). It follows that

Ĉ(ω,ω′) =
pa(0)
ETh

Ŝ
�

ω−ω′

ETh

�

− pa(0)δ(ω−ω′) , (F.12)

where

Ŝ(ω) =
1
π

2πΛ2

ω2 + (2πΛ2)2
(F.13)

is the Fourier transform of S(u) in Eq. (F.9). Using Eq. (F.7), we thus obtain




I2
N [−E, E]

�

c =
N pa(0)

ETh

∫ E

−E
dω

∫ E

−E
dω′ Ŝ

�

ω−ω′

ETh

�

=
N pa(0)

ETh

∫ 2E

−2E
dx (2E − |x |) Ŝ

�

x
ETh

�

= 2N Epa(0) ·χT

�

E
πΛ2ETh

�

= 2N Epa(0) ·χT

�

E
ET

�

, (F.14)

where in the second line we changed variables to x = (ω−ω′), z = (ω+ω′ + 2E), and we
integrated out z, while in the third line we used Eqs. (F.10), (F.11) and (F.13) and we recognized
the scaling function χT (y) given in Eq. (127).

The result in Eq. (F.14) should be compared with the one we found in Section 3.5 for the
real GRP model: using Eq. (122) and Section 3.5 yields in fact

κ2(E) =



I2
N [−E, E]

�

c = 2N Epa(0)χT

�

E
ET

�

. (F.15)

Quite interestingly, the same scaling function χT appears both in the deformed GUE and GOE
ensembles.

7Note that in Ref. [27] this function was instead identified with C2(t, t ′) given in Eq. (F.2). A factor of pa(0) was
also missing.
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