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We present an exact formula for the thermal scalar two-point function in four-dimensional holo-
graphic conformal field theories. The problem of finding it reduces to the analysis of the wave
equation on the AdS-Schwarzschild background. The two-point function is computed from the
connection coefficients of the Heun equation, which can be expressed in terms of the Nekrasov-
Shatashvili partition function of an SU(2) supersymmetric gauge theory with four fundamental
hypermultiplets. The result is amenable to numerical evaluation upon truncating the number of
instantons in the convergent expansion of the partition function. We also examine it analytically in
various limits. At large spin the instanton expansion of the thermal two-point function directly maps
to the light-cone bootstrap analysis of the heavy-light four-point function. Using this connection,
we compute the OPE data of heavy-light double-twist operators. We compare our prediction to the
perturbative results available in the literature and find perfect agreement.
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I. INTRODUCTION

In this paper we study the thermal two-point func-
tion in a holographic four-dimensional CFT1 [2–4] us-
ing techniques coming from four-dimensional supersym-
metric gauge theories [5–9]. Above the Hawking-Page
transition [10] this observable is computed by studying
the wave equation on the AdS-Schwarzschild background
[11]. Thermal correlation functions contain a wealth of
fascinating physics related to the richness of the black
hole geometry. For example, two-point functions encode
the transport properties of the system, see e.g. [12, 13],
the approach to equilibrium [14], as well as chaotic dy-
namics via pole-skipping [15, 16]. Thermal four-point
functions serve as an important diagnostic of quantum
chaos [17, 18]. Thermal correlators have also been used
to formulate a version of the information paradox [19],
as well as to look for subtle signatures of the black hole
singularity [20–23].
Finite temperature dynamics of CFTs is particularly

rich in d > 2, where propagation of energy is not fixed
by symmetries. On the gravity side, this is related to the
presence of a propagating graviton in the spectrum of the
theory, namely gravity waves.2 On the field theory side,
it is due to the fact that conformal symmetry is finite-
dimensional in d > 2. This richness comes at a price

1We consider a finite-temperature CFT on the sphere, S1
β ×S3, and

on the plane, S1
β × R3. The former is related to the black hole

geometry, and the latter to the black brane. The requirement of
being holographic implies a large CFT central charge (cT ≫ 1), and
a large gap in the spectrum of higher spin single trace operators
(∆gap ≫ 1) [1].

2Another characteristic feature of black holes in d > 2 is the exis-
tence of stable orbits [24–26].
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that even for the simplest finite temperature observables
no explicit solutions are available in d > 2.3

In this paper we provide the first example of such an
explicit result. The thermal two-point function is com-
puted by studying the wave equation on the black hole
background [29–31]. This equation is of the Heun type
[32–34], and the retarded two-point function is given in
terms of its connection coefficients. Starting with [9], a
growing body of problems of this class have been solved
using the connection to Seiberg-Witten theory and more
precisely the Nekrasov-Shatashvili (NS) functions. These
ideas have been applied to the study of black hole pertur-
bation theory in [35–42]4. In particular this connection
allows us to express the thermal two-point function in
terms of the NS free energy [9] of an SU(2) gauge the-
ory with four fundamental hypermultiplets, and to study
some of its basic properties both analytically and numer-
ically. One particularly interesting regime is the large
spin limit, where the exact formula produces the solu-
tion to the heavy-light light-cone bootstrap [46, 47]. We
reproduce the available perturbative results from the lit-
erature [26, 48–61] and make new predictions.

II. HOLOGRAPHIC TWO-POINT FUNCTION
AT FINITE TEMPERATURE

A. Black hole

We consider a holographic conformal field theory at
finite temperature. Above the Hawking-Page transition
[10], this theory is dual to a black hole in AdS [11]. In
this paper we will specialize to the case of AdS5, where
the black hole metric is

ds2 = −f(r) dt2 + f(r)−1 dr2 + r2dΩ2
3. (1)

Setting the AdS radius to 1, the redshift factor takes the
form

f(r) = r2 + 1− µ

r2

≡
(
1−

R2
+

r2

)
(r2 +R2

+ + 1), (2)

where the Schwarzschild radius is given by

R+ =

√√
1 + 4µ− 1

2
. (3)

The dimensionless parameter µ is related to the black
hole mass M by

µ =
8GNM

3π
. (4)

3Here we refer to the black hole phase. For the thermal AdS phase
some explicit results exist [27]. They are also available in d ≤ 2,
see e.g. [28].

4See also [43–45] for a different approach based on Painlevé equa-
tions.

We are interested in the two-point function of a scalar
operatorO(x) with dimension ∆, dual to a massive scalar
ϕ in the bulk with mass [62]

m =
√
∆(∆− 4). (5)

In order to compute this two-point function, we need to
solve the wave equation on the black hole background,

(2−m2)ϕ = 0. (6)

Expanding the solution into Fourier modes, we have

ϕ(t, r,Ω) =

∫
dω
∑
ℓ,m⃗

e−iωtYℓm⃗(Ω)ψωℓ(r). (7)

Our conventions for spherical harmonics Yℓm⃗ can be
found in Appendix A of [21]. The wave equation then
takes the form (see [63] and references there)(

1

r3
∂r(r

3f(r)∂r) +
ω2

f(r)
− ℓ(ℓ+ 2)

r2
−∆(∆− 4)

)
ψωℓ = 0.

(8)

We are interested in the retarded Green’s function, and
therefore we impose ingoing boundary conditions on the
solution ϕ at the horizon,

ψin
ωℓ(r) = (r −R+)

− iω
2

R+

2R2
+

+1 + . . . (9)

The solution ψin behaves near the AdS boundary r → ∞
as

ψin
ωℓ(r) = A(ω, ℓ)(r∆−4 + . . .) + B(ω, ℓ)(r−∆ + . . .).

(10)

The two-point function is then the ratio of the response
B(ω, ℓ) to the source A(ω, ℓ) [29],

GR(ω, ℓ) =
B(ω, ℓ)
A(ω, ℓ)

. (11)

Our conventions for the thermal two-point function in
the CFT dual are collected in Appendix A.
The wave equation takes a particularly convenient form

under the transformations

z =
r2

r2 +R2
+ + 1

, (12)

ψωℓ(r) =

(
r3f(r)

dz

dr

)−1/2

χωℓ(z) . (13)

We then obtain Heun’s differential equation in normal
form,(

∂2z +
1
4 − a21
(z − 1)2

−
1
2 − a20 − a21 − a2t + a2∞ + u

z(z − 1)

+
1
4 − a2t
(z − t)2

+
u

z(z − t)
+

1
4 − a20
z2

)
χωℓ(z) = 0. (14)
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Here the horizon is at z = t and the AdS boundary is at
z = 1.

In (14) we introduced a set of parameters that acquire
a natural interpretation in the context of gauge theory
that we discuss in the next section. They are defined in
Table I.

Gauge theory t a0 at a1 a∞

Black hole
R2

+

2R2
++1

0 iω
2

R+

2R2
++1

∆−2
2

ω
2

√
R2

++1

2R2
++1

TABLE I. Map from gauge theory to the black hole wave
equation parameters.

Finally, u is given by

u = −
ℓ(ℓ+ 2) + 2(2R2

+ + 1) +R2
+∆(∆− 4)

4(R2
+ + 1)

+
R2

+

1 +R2
+

ω2

4(2R2
+ + 1)

. (15)

The purely ingoing solution behaves near the black
hole horizon as

χin
ωℓ(z) = (t− z)

1
2−at + ... . (16)

Close to the AdS boundary it takes the form

χin
ωℓ(z) ∝ A(ω, ℓ)

( 1− z

1 +R2
+

) 1
2−a1

(17)

+ B(ω, ℓ)
( 1− z

1 +R2
+

) 1
2+a1

+ . . . .

The solutions to Heun’s equation are known as Heun
functions, see e.g. [33], and these can be written as an
infinite series expanded around one of the singular points
z = 0, t, 1,∞. The problem of finding the response func-
tion (11) therefore reduces to finding the so-called con-
nection formulae for the Heun function which express a
given solution around one singular point (16) in terms of
the basis of solutions around another singular point (17).
The corresponding connection coefficients were computed
explicitly in [36], 5 and we use these results in the present
paper.

B. Black brane

The black brane is dual to CFT on S1×R3, and can be
obtained by taking the high-temperature limit T → ∞ of
the black hole, while keeping ω

T ≡ ω̂ and ℓ
T ≡ |k| fixed.

5See also [64–69] for explicit relations between NS functions and the
Heun equation.

Here ω̂ and k are the dimensionless energy and three-
momentum of the resulting theory on S1 × R3 in units
of temperature. Recall that for the AdS-Schwarzschild
black hole [11]

T =
1√
2π

√
1 + 4µ√
1 + 4µ− 1

, (18)

and the high-temperature limit corresponds to µ→ ∞.
In this way we get the map between the gauge the-

ory and gravity parameters for the black brane (to avoid
clutter we switch from ω̂ to ω), see Table II.

Gauge theory t a0 at a1 a∞

Black brane 1
2

0 iω
4π

∆−2
2

ω
4π

TABLE II. Map from gauge theory to the black brane wave
equation parameters.

For u the relation takes the following form,

u =
ω2 − 2k2

8π2
− 1

4
(∆− 2)2. (19)

Finally, we define the two-point function as follows,

Gbrane
R (ω, |k|) = lim

T→∞

GR(ωT, |k|T )
T 4a1

, (20)

see Appendix B for the detailed derivation.

III. EXACT THERMAL TWO-POINT
FUNCTION

Heun’s equation coincides with the quantum Seiberg-
Witten curve describing the gauge theory with four fla-
vors (Nf = 4) and therefore it can be solved exactly
using the Nekrasov-Shatashvili (NS) functions [9]. An-
other way of understanding this connection is by using
the AGT correspondence and the fact that Heun’s equa-
tion corresponds to the semiclassical limit of the BPZ
equation satisfied by the five-point function with one de-
generate insertion, see for instance [65–68]. For a review
and a detailed list of references see [71].
Let us review the basic idea behind the exact solution

of the connection problem. We consider a five-point func-
tion in the Liouville theory where one of the fields has
been analytically continued to have degenerate quantum
numbers. This five-point function satisfies the BPZ equa-
tion, which expresses the shortening of the Verma module
of the degenerate field [72]. The BPZ equation reduces
to the Heun equation in the semi-classical (large central
charge) limit of the Liouville theory. The four singular
points in the Heun equation correspond to insertions of
the four operators (the fifth operator being the degener-
ate field). Crossing symmetry of the five-point function
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FIG. 1. We plot the retarded two-point function Gbrane
R (ω, |k|), given by (26) and (28), for |k| = 1, ∆ = 5/2, as a function of

ω and the maximal number of instantons nmax in the truncated sum (29). a) The real part of the retarded two-point function
Re Gbrane

R (ω, 1). b) The imaginary part of the retarded two-point function Im Gbrane
R (ω, 1). We set T = 1. We also compare

our results with the direct numerical solution of the differential equation (we used NDSolve in Mathematica), see e.g. [70], and
find beautiful agreement between the two methods. An analogous plot can be generated for the |k|-dependence as well, and
again we observed perfect agreement between our formulas and the direct numerical solution of the differential equation.

leads to crossing relations between the Virasoro blocks in
different OPE channels. In the semi-classical limit these
descend to the connection formulae for the solutions of
the Heun equation. Thanks to the DOZZ formula [73, 74]
the three-point functions that enter the crossing relations
are explicitly known. Similarly, via the AGT correspon-
dence [8] the relevant Virasoro blocks are expressed in
terms of the partition function of the four-dimensional
gauge theory which enters our final result. On the gauge
theory side, the semi-classical limit corresponds to the
so-called Nekrasov-Shatashvili limit [9]. The resulting
expression for the connection coefficients can be found in
[36].

From the gauge theory point of view, the parameters
a0, a1, at, a∞ are related to the masses of the hypermul-

tiplets, t ∼ e−1/g2
YM is the instanton counting parameter,

and u parameterizes the moduli space of vacua. The lat-
ter is related to the VEV a of the scalar in the vector
multiplet via the (quantum) Matone relation [75, 76]

u = −a2 + a2t −
1

4
+ a20 + t∂tF, (21)

where F is the instanton part of the NS free energy de-
fined in (C2). The dictionary (21) requires a careful
treatment close to the points 2a = Z, where the NS func-
tion exhibits non-analyticity, see e.g. [77, 78]. We leave
a more detailed discussion of this region for future work.

In particular this hidden connection between Heun’s
equation and supersymmetric gauge theory makes it pos-
sible to compute the connection coefficients A and B in
(10) using the NS free energy, as done in [36].

Let

χ
(t),in
ωℓ (z) = (t− z)

1
2−at + ... (22)

be the ingoing solution6 of the wave equation (14) at the
horizon (z ∼ t) and let

χ
(1),±
ωℓ (z) = (1− z)

1
2±a1 + ... (23)

be the two independent solutions at infinity (z ∼ 1). The
connection formula reads

χ
(t),in
ωℓ (z) =

∑
θ′=±

(∑
σ=±

M−σ(at, a; a0)M(−σ)θ′(a, a1; a∞)

tσae−
σ
2 ∂aF

)
t
1
2−a0−at(1− t)at−a1

e
1
2 (−∂at−θ′∂a1)Fχ

(1),θ′

ωℓ (z) , (24)

where

Mθθ′(α0, α1;α2) = (25)

Γ(−2θ′α1)

Γ
(
1
2 + θα0 − θ′α1 + α2

) Γ(1 + 2θα0)

Γ
(
1
2 + θα0 − θ′α1 − α2

) ,
and F is the instanton part of the NS free energy defined
in (C2).
The exact formula for the retarded two-point function

(11) then reads

GR(ω, ℓ) =
(
1 +R2

+

)2a1
e−∂a1

F∑
σ′=± M−σ′(at, a; a0)M(−σ′)+(a, a1; a∞)tσ

′ae−
σ′
2 ∂aF∑

σ=± M−σ(at, a; a0)M(−σ)−(a, a1; a∞)tσae−
σ
2 ∂aF

(26)

6Here we have chosen the ingoing solution since we are interested
in computing the retarded Green’s function. Alternatively, the ad-
vanced Green’s function can be computed by choosing the outgoing
solution, resulting in a minor modification of (26).
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where the parameters t, a0, at, a1, a∞, u were defined in
terms of ω, ℓ and the mass of the black hole µ in Table I
and equation (15). The instanton part of the free en-
ergy F depends on all parameters, F (t, a, a0, at, a1, a∞).
Finally, we can eliminate a from the problem using the
Matone relation (21). In this way the right hand side of
(26) is fully fixed in terms of ω, ℓ and µ.

Based on general grounds, GR(ω, ℓ) should be an-
alytic in the upper half-plane (causality), it satisfies
Im GR(ω, ℓ) = −Im GR(−ω, ℓ) (KMS), and finally
Im GR(ω, ℓ) ≥ 0 for ω > 0 (unitarity), see e.g. ap-
pendix B in [79]. In fact from the standard dispersive
representation of GR(ω, ℓ) it follows that

[GR(−ω, ℓ)]∗ = GR(ω, ℓ), ω ∈ R. (27)

In this paper we mostly limit our analysis to ω ∈ R and
it is easy to check that (26) indeed satisfies (27). The
argument for this goes as follows. First, we notice that
for real ω and ℓ, the relevant a is either purely imaginary
or purely real. Second, we notice that (26) is invari-
ant under the change a → ±a, a∞ → ±a∞. Finally,
the instanton partition function for real t is a real an-
alytic function of its parameters, F ∗(a, a0, at, a1, a∞) =
F (a∗, a∗0, a

∗
t , a

∗
1, a

∗
∞). The property (27) then follows.

For the black brane, upon taking the limit (20) the
result takes the form

Gbrane
R (ω, |k|) = π4a1

GR(ω, ℓ)(
1 +R2

+

)2a1
, (28)

where GR(ω, ℓ) is taken from (26), but ai, t, and u are
now mapped to (ω,k) according to Table II and equation
(19). In (28) the temperature for the theory on S1 × R3

is set to 1.
The exact expressions presented above involve in a cru-

cial way the NS free energy. As explained in Appendix C,
the NS free energy is computed as a (convergent) series
expansion in the instanton counting parameter t,

F =

∞∑
n≥1

cn(a, a0, at, a1, a∞)tn . (29)

The coefficients cn(a, a0, at, a1, a∞) in this series have a
precise combinatorial definition in terms of Young dia-
grams. Hence in principle we can determine all of them.
Given (29) one can straightforwardly solve the Matone
relation (21) as a series in t as well.

We can also write the above equation in a compact
way by using the full NS free energy FNS (C6), which
is the sum of the instanton part F , the one-loop part
F 1−loop, and the classical term F p = −2a log t. The
formula becomes

GR(ω, ℓ) = (1 +R2
+)

2a1
Γ (−2a1)

Γ (2a1)

G(t, a, a0, a1, a∞, at)
G(t, a, a0,−a1, a∞, at)

(30)
with

G(t, a, a0, a1, a∞, at) = e−
1
2∂a1F

NS

sinh

(
∂aF

NS

2

)
.

(31)

This is the typical form of the Fredholm determinant in
this class of theories [80, eq. 8.12], [81, eq. 5.6], see also
[82, 83]. Note that the result for the two-point function
has the following simple property: under ∆ → 4 − ∆
we have GR → 1

GR
. This property is manifest in (30)

after noticing that under this transformation a1 → −a1.
It is also expected on general grounds because sending
∆ → 4 − ∆ switches the boundary conditions [84], so
that the source and response are interchanged.
One case where the exact Green’s function (26) be-

comes analytically tractable is the limit where ℓ is the
only large parameter. On the gauge theory side this
means that the VEV of the scalar a is much larger than
all other parameters. In this limit one can use Zamolod-
chikov’s formula for the Virasoro conformal blocks [85]
and the AGT correspondence [8] to show that [86]

F = a2
(
log

t

16
+ π

K(1− t)

K(t)

)
(32)

+

(
a21 + a2t −

1

4

)
log(1− t)

+ 2

(
a20 + a2t + a21 + a2∞ − 1

4

)
log

(
2

π
K(t)

)
+O(a−2) .

Here K(t) is the complete elliptic integral of the first
kind. Solving the Matone relation (21) for a, we find

a = − (ℓ+ 1)
√
1− 2tK(t)

π
+O(ℓ−1). (33)

In Appendix F we use (33) to show that the imaginary
part of GR is exponentially small at large ℓ.
Let us conclude this section with a practical comment.

When doing the actual computations we truncate the se-
ries in t at some maximal instanton number nmax. Given
nmax and the corresponding Fnmax , we then solve (21)
for a as a function of u perturbatively in t. This step
requires solving a linear equation at every new order in
t. Finally, we plug both Fnmax and anmax(u) in (30) and
evaluate Gnmax

R (ω, ℓ). We present an example of this pro-
cedure for nmax ≤ 7 and the case of the black brane
in Figure 1.7 We find a beautiful agreement between
our result and the direct numerical solution of the wave
equation.
With the methods we used, going to higher nmax gets

computationally costly rather quickly. For example, in
the case of the Nf = 4 theory that we are interested in,
going beyond 5-10 instantons appears challenging on a
laptop. Hence to fully exploit the power of our method
it would be important to identify the range of parame-
ters for which GR(ω, ℓ) can be reliably computed with a

7Alternatively, we can use (26) to compute GR(ω, a) and we can
use (21) to evaluate the map ℓ(ω, a) (or k(ω, a)). This is possible
because the dependence on spin ℓ (or momentum k) enters the
problem only through the parameter u, which does not appear in
the exact formula (26).
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few instantons. It would also be desirable to develop a
more efficient way of computing the NS functions (either
analytically or numerically).8

IV. RELATION TO THE HEAVY-LIGHT
CONFORMAL BOOTSTRAP

The thermal two-point function computed in the previ-
ous section is directly related to the four-point correlation
function of local operators ⟨OHOLOLOH⟩ [88, 89]. Here
OL is the light or probe operator of dimension ∆L from
the previous section,9 and OH is a heavy operator with
∆H ∼ cT that is dual to a black hole microstate, where
cT parameterizes the two-point function of canonically
normalized stress tensors. For the precise relationship
between µ ∼ ∆H

cT
, ∆H and cT see e.g. [48].

More precisely, we define the four-point function as
follows

G(z, z̄) ≡ ⟨OH(0)OL(z, z̄)OL(1, 1)OH(∞)⟩, (34)

where all operators for simplicity are taken to be real
scalars. The insertion at infinity is given by OH(∞) =
limx4→∞ |x4|2∆HOH(x4). We also used conformal sym-
metry to put all four operators in a two-dimensional
plane with coordinate z = x1 + ix2.

We choose the normalization of operators such that in
the short distance limit z, z̄ → 1 we have

G(z, z̄) =
1

(1− z)∆L(1− z̄)∆L
+ ... . (35)

This four-point function admits an OPE expansion in
various channels, see e.g. [90]. We focus on the heavy-
light channel, in which the expansion of the four-point
function takes the form

G(z, z̄) =
∑
O∆,ℓ

λ2H,L,O∆,ℓ

g
∆H,L,−∆H,L

∆,ℓ (z, z̄)

(zz̄)
1
2 (∆H+∆L)

, (36)

where ∆H,L ≡ ∆H − ∆L, and λH,L,O∆,ℓ
∈ R are the

three-point functions. Finally, the expressions for the

conformal blocks g
∆H,L,−∆H,L

∆,ℓ (z, z̄) can be found for ex-

ample in [91, 92].
We next consider the ∆H , cT → ∞ limit of the expan-

sion of G(z, z̄) above with µ = 160
3

∆H

cT
kept fixed. In this

limit the spectrum of operators becomes effectively con-
tinuous and the contribution of descendants is suppressed
[90].10 Specializing to d = 4, we get the following expres-

8For example using TBA-like techniques as in [87] and references
there.

9In this section we switch from ∆ to ∆L to make the distinction
between the light and heavy operators more obvious.

10This requires an extra assumption on which operators dominate
the OPE, see e.g. the discussion in [26].

sion for the OPE expansion,

G(z, z̄) =

∞∑
ℓ=0

∫ ∞

−∞
dω gω,ℓ(zz̄)

ω−∆−ℓ
2

zℓ+1 − z̄ℓ+1

z − z̄
, (37)

where we introduced ω = ∆′
H − ∆H , and gω,ℓ for the

product of the three-point functions λ2H,L,O∆
H′ ,ℓ

and the

density of primaries. Thanks to unitarity we have gω,ℓ ≥
0 and KMS symmetry implies that

g−ω,ℓ = e−βωgω,ℓ . (38)

We can now state the precise relationship between
the heavy-light four-point function and the thermal two-
point function [26],

gω,ℓ =
ℓ+ 1

2π(∆L − 1)(∆L − 2)

Im GR(ω, ℓ)

1− e−βω
, (39)

where β and ∆H are related in the standard way, β =
∂S(∆H)
∂∆H

. In this formula S(∆H) is the effective den-
sity of primaries of dimension ∆H . This relation is the
combination of the eigenstate thermalization hypothesis
[88, 89, 93, 94] and the standard relations between var-
ious thermal two-point functions [79]. The factor ℓ + 1
originates from summing over m⃗ of the spherical harmon-
ics Yℓm⃗, see Appendix A of [21] for details.
There is a natural limit in which the general expres-

sion (39) simplifies: it is the large spin limit ℓ → ∞.
As explained in detail in [25, 26], in this limit the rele-
vant states are orbits which are stable perturbatively in
1
ℓ . These states manifest themselves in GR(ω, ℓ) as poles
(also known as quasi-normal modes) with imaginary part
which is non-perturbative in spin ℓ. Therefore, pertur-
batively in ℓ, Im GR(ω, ℓ) effectively becomes the sum of
δ(|ω|−ωnℓ), where ωnℓ = ∆L+ ℓ+2n+γnℓ and γnℓ → 0
at large spin. Notice that for |ω| ∼ ℓ, [(1 − e−βω)−1]pert
becomes a step function θ(ω), and in this way gω,ℓ re-
duces at large spin to the expected sum over heavy-light
double-twist operators OH2n∂ℓOL .
We can summarize this as follows

gpertω,ℓ = θ(ω)
ℓ+ 1

2π(∆L − 1)(∆L − 2)
Im Gpert

R (ω, ℓ)

=

∞∑
n=0

cnℓδ(ω − ωnℓ) , (40)

where the relation holds for all the terms which con-
tribute as powers at large spin ℓ, namely 1

ℓ#
. We signified

this by writing Im Gpert
R (ω, ℓ) (see also Section V for a

more precise definition). Here cnℓ is the square of the
OPE coefficients of double-twist operators. In writing
(40) we also used the fact that at fixed ω, Im GR(ω, ℓ)
is nonperturbative in spin at large ℓ.11 We establish this
fact in Appendix F.

11In principle, non-perturbative in spin effects are accessible to the
light-cone bootstrap [95] thanks to the Lorentzian inversion formula
[96–98]. However, such effects have not been yet explored in the
context of the heavy-light bootstrap.
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The large spin expansion of the heavy-light four-point
function was actively explored in the last few years [48–
61]. One of the basic observations of these works is that
in d > 2 the effective expansion parameter is µ

ℓ
d−2
2

. We

can therefore equivalently study the small µ expansion of
the exact results. This is what we do in the next section.

V. SMALL µ EXPANSION

In the previous section we explained how to compute
the dimensions and OPE data of heavy-light double-twist
operators using the exact two-point function (26). Now
we would like to carry out this procedure perturbatively
in 1/ℓ. Note that the expected perturbative parame-
ter is µ

ℓ [48–61], so that instead of taking the large spin
limit, we can equivalently consider the limit of small black
holes. This is a natural limit from the point of view of
the Nekrasov-Shatashvili functions, which are defined as
a perturbative expansion in t ∼ µ for small µ.

A. Exact quantization condition and residues

In the small µ and large spin expansion, the Green’s
function (26) simplifies considerably. To see this, note
that at small µ the Matone relation (21) becomes

a = ±ℓ+ 1

2
+O(µ), (41)

where we plugged in the dictionary from Table I. Since
the Green’s function is invariant under a → −a, it does
not matter what sign we pick in (41). Choosing the minus
sign in (41), the ratio of the σ = −1 term to the σ =
1 term in both the numerator and the denominator of
(26) scales as µℓ+1, which is exponentially small in spin.
Neglecting this nonperturbative correction, we find

Gpert
R (ω, ℓ) = (1 +R2

+)
2a1e−∂a1

F

Γ(−2a1)Γ(1/2− a+ a1 − a∞)Γ(1/2− a+ a1 + a∞)

Γ(2a1)Γ(1/2− a− a1 − a∞)Γ(1/2− a− a1 + a∞)
.

(42)

In a sense, this expression is a generalization of the
semi-classical Virasoro vacuum block [99, 100] to d = 4.
Indeed, via (40) it encodes the contribution of the iden-
tity and multi-stress tensor contributions in the light-
light channel, schematically OL ×OL ∼ 1 + T + T 2 + ...
. The effects non-perturbative in spin (which are inti-
mately related to the presence of the black hole horizon)
are, on the other hand, encoded in the contribution of
the double-twist operators OL ×OL ∼ OL2n∂ℓOL.

We can now explicitly read off the poles and residues
of (42). There are poles in the function Γ(1/2 − a +
a1−a∞) at positive energies ω = ωnℓ, which are nothing
but the dimensions of the double-twist operators. The

locations of these poles are determined by the following
quantization condition,

ωnℓ : n = a+ a∞ − a1 − 1/2, n ≥ 0. (43)

Geometrically this corresponds to the quantization of the
quantum A-period associated to the Seiberg-Witten ge-
ometry. The relation (43) implicitly defines the scal-
ing dimensions of the double-twist operators ωn,ℓ via the
black hole to gauge theory dictionary in Table I and (15),
along with the Matone relation (21). Computing the
residues of the two-point function (42) and using (40)
and Table II then gives

cnℓ =
(ℓ+ 1)Γ(∆ + n− 1)Γ(2a∞ − n)

Γ(∆)Γ(∆− 1)Γ(n+ 1)Γ(2a∞ − n−∆+ 2)

×
(1 +R2

+)
∆−2e−∂a1

F

2

(
d(a+ a∞)

dω

)−1 ∣∣∣
ω=ωnℓ

.

(44)

Note that, since F is defined by a power series in µ whose
coefficients are rational functions, it is straightforward to
invert (43) to any desired order in µ by perturbing around
the µ = 0 result. In this sense, (43) and (44) represent
an exact solution for the bootstrap data.

B. Anomalous dimensions and OPE data

To organize the perturbative series, let us define

ωnℓ = ω
(0)
nℓ +

∞∑
i=1

µiγ
(i)
nℓ ,

cnℓ = c
(0)
nℓ

(
1 +

∞∑
i=1

µic
(i)
nℓ

)
.

(45)

We then plug these expansions into (43) and (42), using
the dictionary in Table I and (15), the Matone relation
(21), and the definitions in Appendix C. At zeroth order
in µ, we reproduce the OPE coefficients in generalized
free field theory, see e.g. [49, 59],

ω
(0)
nℓ = ∆+ ℓ+ 2n , (46)

c
(0)
nℓ =

(ℓ+ 1)Γ(∆ + n− 1)Γ(∆ + n+ ℓ)

Γ(∆)Γ(∆− 1)Γ(n+ 1)Γ(n+ ℓ+ 2)
, (47)

namely we have the following identity

∞∑
n,ℓ=0

c
(0)
nℓ (zz̄)

ω
(0)
nℓ

−∆−ℓ

2
zℓ+1 − z̄ℓ+1

z − z̄
=

1

(1− z)∆(1− z̄)∆
.

(48)

Now let us go to first order in µ. We find

γ
(1)
nℓ = −∆2 +∆(6n− 1) + 6n(n− 1)

2(ℓ+ 1)
, (49)

c
(1)
nℓ =

1

2

(
3(∆− 2)− 3(∆ + 2n− 1)

ℓ+ 1
+ (50)

(3(ℓ+ 2n+∆)− 2γ1)(ψ
(0)(2 + ℓ+ n)− ψ(0)(∆ + ℓ+ n))

)
,
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where ψ(m)(x) = dm+1 log Γ(x)/dxm+1 is the polygamma
function of order m. These results agree with the light-
cone bootstrap computations [52, 59, 61].

At second order O(µ2) the answers become more com-
plicated, and are displayed explicitly in Appendix D. Al-
ready at this order only O(1/ℓ2) results are available in
the literature, which is the leading term in the large spin
expansion. We find complete agreement with the result
of [59].

At k-th order O(µk) we find the following structure

γ
(k)
nℓ =

2k+1∑
j=0

R
(k)
j (n, ℓ)∆j , (51)

where R
(k)
j (n, ℓ) are polynomials of degree k− j in n and

are meromorphic functions of ℓ. The singularities occur
at ℓsing ∈ Z and −k− 1 ≤ ℓsing ≤ k− 1. These singulari-
ties are however spurious and occur because for ℓ < k it
is not justified to drop the σ = −1 term when going from
(26) to (42).

For the three-point functions c
(k)
nℓ the structure is very

similar, the main difference being that the analogs of

R
(k)
j (n, ℓ) can also depend on ψ(m)(∆+n+ ℓ)−ψ(m)(2+

n + ℓ) with m ≤ k − 1 We refer the interested reader
to the text files attached to the submission for the full
expressions of γ

(k)
nℓ (gammas.txt) and c

(k)
nℓ (cs.txt) to

order k ≤ 5.

C. The imaginary part of quasi-normal modes

Until now, in computing the position of the poles of
GR(ω, ℓ), we have neglected the imaginary part, which
is exponentially suppressed at large spin.12 This ex-
ponential suppression of the imaginary part means that
the large spin quasinormal modes thermalize very slowly,
so they give the leading contribution to the late time
Green’s function to leading order in the 1/cT expansion.
Let us now compute the leading behavior of the imag-

inary part, for which we must consider the exact Green’s
function (26). In the large spin expansion, the numerator
of (26) is finite, so the poles arise when the denominator
vanishes. Therefore we must solve

0 =
∑
σ=±

M−σ(at, a; a0)M(−σ)−(a, a1, a∞)tσae−
σ
2 ∂aF .

(52)

We make an ansatz

Im ωnℓ = i

∞∑
k=1

f
(k)
nℓ µ

ℓ+1/2+k, (53)

12Physically, this is related to the fact that classically stable orbits
can decay quantum-mechanically due to tunneling, see e.g. [24].

where f
(k)
nℓ are real. Note that the imaginary part be-

haves as µℓ at large ℓ, as expected from the tunneling
calculation in [26]. The first contribution to the imag-
inary part is at order µℓ+3/2, which is consistent with
numerical evidence [101]. As shown in Appendix E, the
explicit form of the leading contribution to the imaginary
part is

f
(1)
nℓ = − 2−4ℓπ2

(ℓ+ 1)2
ω
(0)
nℓ

Γ(∆ + n+ ℓ)

Γ(∆ + n− 1)

Γ(n+ ℓ+ 2)

Γ(n+ 1)Γ( ℓ+1
2 )4

.

(54)

It should be possible to check this expression using the
techniques of [102]. Note that Im ωnℓ < 0 as expected
from causality.

VI. CONCLUSIONS AND FUTURE
DIRECTIONS

In this paper we have computed the holographic ther-
mal scalar two-point function ⟨OO⟩β . Via the AdS/CFT
correspondence, the problem reduces to the study of wave
propagation on the AdS-Schwarzschild background. To
solve the problem we used the connection between the
wave equation on the AdS-Schwarzschild background and
four-dimensional supersymmetric gauge theories. The
result for the two-point function for a four-dimensional
holographic CFT on S1×S3 dual to a black hole geome-
try is the formula (26). For a holographic CFT on S1×R3

dual to a black brane geometry the result is (28). A key
ingredient that enters into our formulae is the Nekrasov-
Shatashvili instanton partition function F of an SU(2)
supersymmetric gauge theory with four fundamental hy-
permultiplets.
We analyzed the exact formulas analytically in three

different regimes:

• Large ω, fixed spin ℓ/momentum k limit. This limit
is controlled by the OPE between the probe oper-
ators, O×O = 1+ ... [103, 104]. To leading order
the result is identical for the black hole and black
brane and takes the form (B13). Although we were
not able to obtain a complete analytic understand-
ing of this limit, we showed that the exact result
reduces to (B13) up to an overall constant. We
then checked using the instanton expansion that
this constant approaches 1 as we increase the in-
stanton number.

• Fixed ω, large spin ℓ/large momentum k limit. As
reviewed in Appendix F, the NS partition function
can be computed exactly in this limit [86]. For
the black hole the large spin asymptotic behavior
is given by (F1) and (F3), and for the black brane
the result is given by (F4). Our results for the
imaginary part of the black brane two-point func-
tion agree with those previously computed in [29].
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• Small µ
ℓ /light-cone bootstrap expansion. In this

limit the spectrum becomes effectively discrete and
our formulas reduce to a sum over double-twist
heavy-light operators. The all-order solution to
the light-cone bootstrap is encoded in formula (42).
At order O(µ1) we reproduced the known results.
At order O(µ2) only leading at large spin data
is publicly available and agrees with our results.
As a supplement to our submission we provide ex-
plicit formulas for the double-twist data up to or-
der O(µ5). We also derived the leading small µ
asymptotic behavior of the imaginary part of quasi-
normal modes, see (49).

We also analyzed the exact formulas numerically by
truncating the instanton sum (29) to some finite value
nmax. In this work we only limited ourselves to nmax ≤ 7.
An example of a result that cannot be derived by any
known analytical methods is shown in Figure 1. We have
found an excellent agreement with the direct numerical
solution of the differential equation.

Our paper only embarks upon an exploration of a fasci-
nating connection between finite-temperature correlators
and supersymmetric gauge theories. There are many fu-
ture directions to explore and we end our paper with
naming an obvious few.

• In this paper we have restricted our analysis to
d = 4 and a black hole with zero charge and spin.
It would be very interesting to generalize our anal-
ysis to general d, and to consider spinning and
charged black holes, as well as spinning and charged
probes. In the latter case, considering the two-
point function of conserved currents ⟨JµJν⟩β and
stress-energy tensors ⟨TµνTρσ⟩β is particularly in-
teresting due to their relation to transport and hy-
drodynamics, see e.g. [105–107]. The correspond-
ing stress-tensor OPE expansion was analyzed in
[108].

• Another obvious extension is to consider thermal
higher-point functions, e.g. the out-of-time-ordered
four-point function [18], as well as to study gravita-
tional loop effects for the two-point function [109].
In the bulk such computations correspond to going
beyond linear order, and they require knowledge of
the bulk-to-boundary and bulk-to-bulk propagators
on the black hole background. In the language of
[36] these are given in terms of the Virasoro confor-
mal blocks and via the AGT correspondence can be
again expressed in terms of the instanton partition
functions.

• To make the exact formulas particularly useful it is
important to develop efficient numerical algorithms
to evaluate them approximately. The most obvious
approach is to truncate the number of instantons
at some value nmax. This is the approach that we
adopted in this paper and we obtained accurate
results, see Figure 1. We have not systematically

explored the space of parameters that can be effec-
tively probed using the truncated instanton number
sum and we leave this for the future work.

• From the point of view of conformal bootstrap our
results concern the heavy-heavy-light-light four-
point function viewed from the heavy-light chan-
nel, see Section IV. In the same sense the all-
order formula (42) solves the light-cone bootstrap
in the heavy-light channel. Intriguing structures
have been recently observed in the light-light chan-
nel [51, 53, 56], which is related to our work by
crossing. It would be very interesting to bridge the
results of our work and these recent developments.

• At zero temperatures there is a simple correspon-
dence between perturbative solutions to crossing
equations and effective field theories in AdS [1]. A
similar connection was explored in [27] in the ther-
mal AdS phase, thanks to the fact that the relevant
“unperturbed” finite temperature generalized free
field solution is explicitly known, see e.g. [110]. An
exciting problem in this context is to understand
a similar connection between crossing and effective
field theories in AdS in the black hole phase. Here
our exact formula provides an unperturbed seed so-
lution, around which perturbations can be studied.
It would be very interesting to explore this pos-
sibility and more generally explore consistency of
holographic conformal field theories at finite tem-
peratures.

• In [20, 21] the two-point function was used to ana-
lyze subtle signatures of the black hole singularity.
It would be very interesting to revisit this problem
given the exact two-point function, and to identify
what the black hole interior corresponds to on the
instanton partition function side.
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Appendix A: Conventions

Here we collect our conventions for various thermal two-point functions. Let us start with the case of the black
hole. This is dual to a holographic CFT on S1 × S3, with the radius of S1 being β and the radius of S3 set to 1. We
have for the retarded two-point function

iθ(t)⟨[O(t, n⃗),O(0, n⃗′)]⟩β =
1

4π(∆− 1)(∆− 2)

∫ ∞

−∞
dω e−iωt

∞∑
ℓ=0

(ℓ+ 1)GR(ω, ℓ)
sin(ℓ+ 1)θ

sin θ
, (A1)

where n⃗ · n⃗′ = cos θ and n⃗2 = n⃗′2 = 1, so that n⃗, n⃗′ ∈ S3. GR(ω, ℓ) is given by (26). We also used for partial waves

C
(1)
ℓ (cos θ) = sin(ℓ+1)θ

sin θ .
For the Euclidean two-point function we have

⟨O(τ, n⃗)O(0, n⃗′)⟩β =

∫ ∞

−∞
dω e−ωτ

∞∑
ℓ=0

gω,ℓ
sin(ℓ+ 1)θ

sin θ
, 0 < τ < β, (A2)

where gω,ℓ is given in (39) and τ is the Euclidean time. KMS symmetry or invariance under τ → β − τ holds thanks

to (38). We normalize the operators such that the unit operator contributes as e−τ∆

([1−e−τ+iθ][1−e−τ−iθ])∆
. The Wightman

function can be obtained through Wick rotation by taking τ → ϵ+ it and then ϵ→ 0.
For the black brane, or holographic CFT on S1 × Rd−1 with the radius of S1 set to 1, we have for the retarded

two-point function

iθ(t)⟨[O(t,x),O(0, 0)]⟩β=1 =
1

(4π)2(∆− 1)(∆− 2)

∫ ∞

−∞
dω e−iωt

∫ ∞

−∞
d3k eik·xGbrane

R (ω,k). (A3)

Gbrane
R (ω,k) is given by (28).
For the Euclidean two-point function we have

⟨O(τ,x)O(0, 0)⟩β=1 =
1

4π

∫ ∞

−∞
dω e−ωτ

∫ ∞

−∞
d3k eik·xgω,k, 0 < τ < 1, (A4)

where τ is the Euclidean time and gω,k is given by (B2). We normalize operators such that the unit operator contributes
as 1

(τ2+x2)∆ . KMS symmetry or invariance under τ → 1 − τ holds thanks to (B5). The Wightman function can be

obtained through Wick rotation by taking τ → ϵ+ it and then ϵ→ 0.

Appendix B: From black hole to black brane

Let us describe in a bit more detail the infinite temperature limit that takes us from the black hole to the black
brane. This is one example of the so-called macroscopic limits considered in [90] and we simply apply the formulas of
that paper to our case.

First of all, we introduce the limiting retarded two-point function as follows,

Gbrane
R (ω, |k|) = lim

T→∞

GR(ωT, |k|T )
T 4a1

, (B1)

where GR(ω, |k|) is the retarded thermal two-point function for a CFT on S1 ×R3 with (ω, |k|) measured in units of
temperature on S1. Let us also introduce

gbraneω,k =
1

2π(∆− 1)(∆− 2)

Im Gbrane
R (ω, |k|)
1− e−ω

. (B2)

At the level of the two-point function we consider the following limit

Gbrane(w, w̄) ≡ lim
T→∞

T−2∆G
(
z = 1− w

T
, z̄ = 1− w̄

T

)
. (B3)
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Plugging this formula in the OPE expansion (37) we get

Gbrane(w, w̄) = lim
T→∞

T−4

∫ ∞

0

d|k||k| × T 2

∫ ∞

−∞
dω × T gω,ke

− (w+w̄)
2 (ω−|k|) e

−w|k| − e−w̄|k|

w̄ − w
× T

=

∫ ∞

0

d|k||k|
∫ ∞

−∞
dω gω,ke

− (w+w̄)
2 (ω−|k|) e

−w|k| − e−w̄|k|

w̄ − w
, (B4)

where we converted the sum to an integral,
∑

ℓ → T
∫
d|k|.

The KMS symmetry becomes

g−ω,k = e−ωgω,k. (B5)

We next consider the two-point function on S1 × Rd−1,

⟨O(τ,x)O(0, 0⟩β = Gbrane
(
τ + i|x|, τ − i|x|

)
. (B6)

In terms of these variables we get

⟨O(τ,x)O(0, 0⟩β =

∫ ∞

0

d|k| |k|
∫ ∞

−∞
dω gω,ke

−ωτ sin |k||x|
|x|

=
1

4π

∫ ∞

−∞
d3k

∫ ∞

−∞
dω eik·xe−ωτgω,k. (B7)

The result is indeed invariant under KMS symmetry τ → 1 − τ (recall that we have set β = 1). By analytically
continuing to Lorentzian time we see that gω,k is the Fourier transform of the Wightman two-point function.
Note that taking the limit (B3) does not change the normalization of the scalar operator, since

lim
T→∞

T−2∆ 1(
1− (1− w

T )
)∆(

1− (1− w̄
T )
)∆ =

1

(ww̄)∆
=

1

(τ2 + x2)∆
. (B8)

In other words if the operator was unit-normalized it will continue to be unit-normalized after taking the limit.
Let us finish with a few formulas for the vacuum correlators. In Fourier space, the vacuum Wightman two-point

function ⟨O(t,x)O(0, 0)⟩0 = 1
(−(t−iϵ)2+x2)∆ takes the form∫ ∞

−∞
dt d3x eiωt−ik·x 1

(−(t− iϵ)2 + x2)∆
= θ(ω)θ(ω2 − k2)

2π3

Γ(∆)Γ(∆− 1)

(ω2 − k2

4

)∆−2

. (B9)

It is expected that (B9) controls the large ω asymptotics of the thermal correlators [103, 104].
From (B7) we get that

gω,k = lim
ϵ→0

1

4π3

∫ ∞

−∞
d3k

∫ ∞

−∞
dω e−ik·xeitω⟨O(ϵ+ it,x)O(0, 0)⟩β . (B10)

Formulas (B9), (B5) together with (B2) imply that

lim
|ω|≫1,|ω|≫|k|

Im Gbrane
R (ω, |k|) ≃ − sinπ∆

Γ(2−∆)

Γ(∆− 2)
sign(ω)

( |ω|
2

)2(∆−2)

. (B11)

Via dispersion relations for Gbrane
R (ω, |k|) this leads to the following asymptotic behavior for the real part,

lim
|ω|≫1,|ω|≫|k|

Re Gbrane
R (ω, |k|) ≃ cosπ∆

Γ(2−∆)

Γ(∆− 2)

( |ω|
2

)2(∆−2)

, (B12)

where everywhere we tacitly assumed that ∆ is not an integer. For the black hole case (t < 1
2 ) we get in the same

way

lim
|ω|/T≫1,ℓ

GR(ω, ℓ) ≃ e−πi∆sign(ω)Γ(2−∆)

Γ(∆− 2)

( |ω|
2

)2(∆−2)

. (B13)
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We can also derive the large ω and fixed ℓ behavior of the Green’s function directly from our exact expression (26).
Let us start with the black hole case. By solving the Matone relation (21) order by order in the instanton expansion,
one finds in this limit ∂aF = ic1(t)ω+O(ω0), ∂a1

F = c3(t)(∆−2)+O(ω−1), and a = ic2(t)ω+O(ω0), with ci(t) ∈ R.
Since the Green’s function (26) is invariant under a→ −a, we can choose c2 > 0 without loss of generality. With this
specification, the σ = 1 term in (26) dominates over the σ = −1 term. Expanding the gamma functions at large ω
and using the dictionary in Table I, we find

GR(ω, ℓ) ≈ (1 +R2
+)

2a1e−∂a1F
Γ(−2a1)

Γ(2a1)
(a∞ − a)2a1(−a− a∞)2a1

≈ Γ(2−∆)

Γ(∆− 2)

(
|ω|
2

)2(∆−2)

e−πi∆sign(ω)
(
c(t)
)∆−2

, (B14)

where

c(t) =
e−c3(t)(1− t)(4c2(t)

2 + 2t2 − 3t+ 1)

1− 2t
. (B15)

The OPE predicts that c(t) = 1.
We do not have complete analytic control over the constants c2(t) and c3(t), but we checked that (B15) approaches

1 by computing the first few orders in the instanton expansion, see Figure 2. Hence we recover (B13). The black
brane results (B11) and (B12) correspond to t→ 1

2 in Figure 2.
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FIG. 2. c(t) defined in (B15) as a function of the black hole mass (here parameterized by t), and the maximum instanton
number nmax. Based on the OPE we expect that c(t) is independent of t and is equal to 1.

Appendix C: The Nekrasov-Shatashvili function

We denote by Y = (ν1, ν2, ...) a partition (or Young tableau) and by Y t = (νt1, ν
t
2, ...) its transpose. We also use

Y⃗ = (Y1, Y2) to denote a vector of Young tableaux. The leg-length and the arm-length are defined by hY (s) = νj − i
and vY (s) = νti − j, where s = (i, j) is a box. We define

zh

(
a⃗, Y⃗ , µ

)
=
∏

I=1,2

∏
s∈YI

(
aI + µ+ ϵ1

(
i− 1

2

)
+ ϵ2

(
j − 1

2

))
,

zv

(
a⃗, Y⃗

)
=

2∏
I,J=1

∏
s∈YI

1

aI − aJ − ϵ1vYJ
(s) + ϵ2(hYI

(s) + 1)

∏
s∈YJ

1

aI − aJ + ϵ1(vYI
(s) + 1)− ϵ2hYI

(s)
.

(C1)

In this paper we always take a⃗ = (a,−a) and ϵ1 = 1. The instanton part of the NS function is defined as
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F = lim
ϵ2→0

ϵ2 log

(1− t)−2ϵ−1
2 ( 1

2+a1)(
1
2+at)

∑
Y⃗

t|Y⃗ |zv

(
a⃗, Y⃗

) ∏
θ=±

zh

(
a⃗, Y⃗ , at + θa0

)
zh

(
a⃗, Y⃗ , a1 + θa∞

) . (C2)

Physically, a corresponds to the VEV of the scalar in the vector multiplet, ϵi are two Ω-background parameters
regulating the infrared divergence in the localization computation, and a0, a∞, a1, at are related to the masses mi of
the hypermultiplets via

m1 = at + a0, m2 = at − a0, m3 = a1 + a∞, m4 = a1 − a∞ . (C3)

This function takes the form of a convergent series expansion in t,

F =

∞∑
n≥1

cn(a, a0, at, a1, a∞)tn, (C4)

where the cn coefficients are rational functions defined via (C2). For example we have

c1(a, a0, at, a1, a∞) =

(
4a2 − 4a20 + 4a2t − 1

) (
4a2 + 4a21 − 4a2∞ − 1

)
8− 32a2

. (C5)

The full NS function FNS includes, on top of the instanton part F , the classical and one-loop parts. We have

FNS =F − a2 log t− ψ(−2)

(
−a− a0 − at +

1

2

)
− ψ(−2)

(
a− a0 − at +

1

2

)
− ψ(−2)

(
−a+ a0 − at +

1

2

)
− ψ(−2)

(
a+ a0 − at +

1

2

)
− ψ(−2)

(
−a− a1 − a∞ +

1

2

)
− ψ(−2)

(
a− a1 − a∞ +

1

2

)
− ψ(−2)

(
−a− a1 + a∞ +

1

2

)
− ψ(−2)

(
a− a1 + a∞ +

1

2

)
+ ψ(−2)(2a+ 1) + ψ(−2)(1− 2a) ,

(C6)

where ψ(−2)(x) is the polygamma function of negative order, ψ(−n)(x) = 1
(n−2)!

∫ z

0
dt (z − t)n−2 log Γ(t) .

Appendix D: O(µ2) OPE data of double-twist operators

Here we display the results for the OPE data at order µ2. These expressions are in full agreement with [59] at order
1/ℓ2, and provide new predictions at higher orders in 1/ℓ. We find
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γ
(2)
nℓ = −

(
(∆− 1)∆ + 6(∆− 1)n+ 6n2

)2
8(ℓ+ 1)3

− n(∆ + n− 2)(∆ + 2n− 2)2

2(ℓ+ 2)
− (n+ 1)(∆ + n− 1)(∆ + 2n)2

2ℓ

+
(∆− 1)∆(8∆ + 1) + 65n4 + 130(∆− 1)n3 + (3∆(27∆− 43) + 133)n2 + (∆− 1)

(
16∆2 +∆+ 68

)
n

16(ℓ+ 1)

− (n− 1)n(∆ + n− 3)(∆ + n− 2)

32(ℓ+ 3)
− (n+ 1)(n+ 2)(∆ + n− 1)(∆ + n)

32(ℓ− 1)
, (D1)

c
(2)
nℓ =

1

8
(∆− 2)(9∆− 44)− (2n+ 3)(∆ + n− 1)(∆ + n)

32(ℓ− 1)
−

3(∆ + 2n− 1)
(
(∆− 1)∆ + 6n2 + 6(∆− 1)n

)
4(ℓ+ 1)3

+
(∆+ 2n− 1)

(
∆(16∆− 71) + 130n2 + 130(∆− 1)n+ 212

)
32(ℓ+ 1)

− (∆ + n− 1)(∆ + 2n)(∆ + 4n+ 2)

2ℓ

− (n− 1)n(2∆ + 2n− 5)

32(ℓ+ 3)
− n(∆ + 2n− 2)(3∆ + 4n− 6)

2(ℓ+ 2)
+

1

4
(ψ(0)(n+ ℓ+ 2)− ψ(0)(n+ ℓ+∆))

×
(
9∆2 − 89∆

2
+

(
(∆− 1)∆ + 6n2 + 6(∆− 1)n

)2
2(ℓ+ 1)3

−
3(∆ + 2n− 1)

(
(∆− 1)∆ + 6n2 + 6(∆− 1)n

)
(ℓ+ 1)2

+
(∆− 1)(∆(4∆− 73) + 36)− 65n4 − 130(∆− 1)n3 + (3(67− 27∆)∆− 493)n2 − (∆− 1)(∆(16∆− 71) + 428)n

4(ℓ+ 1)

+ (18∆− 89)n+
2n(∆ + n− 2)(∆ + 2n− 2)2

ℓ+ 2
+

2(n+ 1)(∆ + n− 1)(∆ + 2n)2

ℓ
+

(n− 1)n(∆ + n− 3)(∆ + n− 2)

8(ℓ+ 3)

+
(n+ 1)(n+ 2)(∆ + n− 1)(∆ + n)

8(ℓ− 1)
+

(
9∆− 71

2

)
ℓ+ 9

)
+
(
∆(∆+ 2) + 6n2 + 6n(∆ + ℓ) + 3ℓ2 + 3(∆ + 1)ℓ

)2
× (ψ(0)(n+ ℓ+ 2)− ψ(0)(n+ ℓ+∆))2 + ψ(1)(n+ ℓ+∆)− ψ(1)(n+ ℓ+ 2)

8(ℓ+ 1)2
. (D2)

Similar expressions up to order µ5 can be found in the supplemental files.

Appendix E: The imaginary part of quasi-normal modes

In this appendix we spell out some details for the computation of (54). The condition for a pole in GR(ω, ℓ) follows
from (26) and reads

t−2ae∂aF

(
Γ(2a)Γ

(
−a− at +

1
2

)
Γ(−2a)Γ

(
a− at +

1
2

))2

−
Γ
(
a+ a1 − a∞ + 1

2

)
Γ
(
a+ a1 + a∞ + 1

2

)
Γ
(
−a+ a1 − a∞ + 1

2

)
Γ
(
−a+ a1 + a∞ + 1

2

) = 0 . (E1)

By using the ansatz (53) as well as the dictionary in Table I and the perturbative solution for the real part (45), we
obtain

Im

(
Γ
(
a+ a1 − a∞ + 1

2

)
Γ
(
a+ a1 + a∞ + 1

2

)
Γ
(
−a+ a1 − a∞ + 1

2

)
Γ
(
−a+ a1 + a∞ + 1

2

)) = µℓ+1/2

(
Γ(n+ 1)Γ(n+∆− 1)

Γ(ℓ+ n+ 2)Γ(ℓ+ n+∆)

(−1)ℓ

3ω
(0)
nℓ − 2γ

(1)
nℓ

f
(1)
nℓ +O(µ)

)

Im

t−2ae∂aF

(
Γ(2a)Γ

(
−a− at +

1
2

)
Γ(−2a)Γ

(
a− at +

1
2

))2
 = −µℓ+1/2

(
Γ
(
ℓ
2 + 1

)4
Γ(ℓ+ 1)2Γ(ℓ+ 2)2

(−1)ℓω
(0)
nℓ

3ω
(0)
nℓ − 2γ

(1)
nℓ

+O(µ)

)
, (E2)

leading to (54).
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Appendix F: The large ℓ/large k, fixed ω limit

Using the asymptotic behavior (33), we can investigate the behavior of GR at large ℓ. We start with the real part
of GR, for which the leading behavior comes from the σ = 1 terms in (26). Expanding at large a, we find

Re GR(ω, ℓ) ≈ (1 +R2
+)

∆−2Γ(2−∆)

Γ(∆− 2)
e−∂a1F (−a)4a1 ≈ Γ(2−∆)

Γ(∆− 2)

(
ℓ

2

)2(∆−2)

(F1)

Note that this is independent of the temperature.
Now let us turn to the imaginary part. The leading contribution comes from expanding to first order in the σ = −1

term in both the numerator and denominator of (26). We find

Im GR(ω, ℓ) ≈ −
2(1 +R2

+)
2a1e∂aF−∂a1

F t−2a sin(2πa) sin(2πa1)

cos(2π(a− a1)) + cos(2πa∞)

Γ(2a)2Γ(−2a1)Γ
(
1
2 − a+ a1 − a∞

)
Γ
(
1
2 − a+ a1 + a∞

)
Γ(−2a)2Γ(2a1)Γ

(
1
2 + a− a1 − a∞

)
Γ
(
1
2 + a− a1 + a∞

)
× Im

(
Γ
(
1
2 − a− at

)2
Γ
(
1
2 + a− at

)2
)

≈ −Γ(−2a1)

Γ(2a1)
(1 +R2

+)
2a1e∂aF−∂a1

F t−2a28a+1(−a)4a1 sin(2πa1) sinh(2π|at|), (F2)

where in the second equality we took the large a limit. Plugging in the asymptotic behavior (33) and the dictionary
given in Table II gives

Im GR(ω, ℓ) ≈
2π sinh(πω

√
t(1− 2t))

Γ(∆− 1)Γ(∆− 2)

(
ℓ

2

)2(∆−2)

exp
(
−2(ℓ+ 1)

√
1− 2tK(1− t)

)
. (F3)

We see that the imaginary part decays exponentially with spin.
To compute the large |k| behavior for the black brane, we can take the infinite temperature limit of (F1) and (F3).

Using the definition (20) of the brane two-point function, we find

Gbrane
R (ω, |k|) ≈ Γ(2−∆)

Γ(∆− 2)

(
|k|
2

)2(∆−2)

+ i
2π sinh

(
ω
2

)
Γ(∆− 1)Γ(∆− 2)

(
|k|
2

)2(∆−2)

exp

(
−
√
π

2

|k|
Γ
(
3
4

)2
)
. (F4)

The rate of exponential decay of the imaginary part matches the result from [29].
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