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It is universally accepted that noise may bring order to complex nonequilibrium systems. Most
strikingly, entirely new states not seen in the noiseless system can be induced purely by including
multiplicative noise—an effect known as pure noise-induced transitions. It was first observed in
superfluids in the 1980s. Recent results in complex nonequilibrium systems have also shown how
new collective states emerge from such pure noise-induced transitions, such as the foraging behavior
of insect colonies, and schooling in fish. Here we report such effects of noise in a quantum-mechanical
system. We find that multiplicative quantum noise can induce a classically forbidden transition.
We use a minimal model of a nonlinearly damped oscillator in a fluctuating environment that is
analytically tractable, and whose microscopic physics can be understood. When environmental noise
is included, the system is seen to transition to a limit-cycle state. The noise-induced quantum limit
cycle exhibits genuine nonclassical traits such as Wigner negativity and number-parity sensitive
circulation in phase space. Such quantum limit cycles are also conservative. These properties are
in stark contrast to those of a widely used limit cycle in the literature, which is dissipative and
loses all Wigner negativity. Our results establish the existence of a pure noise-induced transition
that is nonclassical and unique to open quantum systems. They illustrate a fundamental difference
between quantum and classical noise.

I. INTRODUCTION

Understanding the influence of noise on nonequilib-
rium dynamical systems is indispensable to several sci-
entific endeavors, from climate science [1–6] to biological
processes [7–14], from ecosystems and population dynam-
ics [15–21] to their emergent behavior [22–26]. Knowl-
edge of the interplay between noise and deterministic el-
ements in a nonequilibrium system provides invaluable
insight into many complex processes. To capture this
interaction between noise and deterministic motion, sci-
entists often use random processes that are system de-
pendent, called multiplicative noise. Examples abound
[27–33], dating back to more than a half century when
Kubo first applied multiplicative noise to a linear sys-
tem [34]. A simple consequence of multiplicative noise
which is also of contemporary interest is effective drifts
(also known as noise-induced drifts) [35]. New work in
complex systems has also shed light on the role of multi-
plicative noise in collective phenomena (see Ref. [36] and
the references therein).

A recurrent message from the past several decades
of research on nonlinear nonequilibrium systems is that
noise can bring about states with structure, or order
[30, 36–40]. The most astonishing feature of multi-
plicative noise in nonlinear nonequilibrium systems is
their ability to induce structured states, or “phases,”
which without noise are completely absent. The occur-
rence of this phenomenon in macroscopic systems sub-
ject to a fluctuating environment has been designated a

pure noise-induced (phase) transition by Horsthemke and
Lefever (see Fig. 1), who pioneered the field known sim-
ply as noise-induced transitions [42–45].1 However, not
all multiplicative noise lead to such a drastic effect. In
general, multiplicative noise might only induce a transi-
tion to a state that merely modifies a preexisting prop-
erty in the system. An example of particular interest
for this less dramatic type of noise-induced transition is
a classical system with a limit cycle. In these systems,
multiplicative noise shifts the Hopf bifurcation point (see
Refs. [49–52] and similar results cited within). We shall
see later in this work that multiplicative noise can have
a more profound effect than just shifting the Hopf bi-
furcation point if the system is inherently quantum me-
chanical. That is, we will show how noise in quantum
mechanics can induce a limit cycle in a system without
one, thus achieving a pure noise-induced transition in
contrast to its analogous classical system.

Pure noise-induced transitions were first observed in
experiments using superfluid turbulence in the 1980s
[53, 54]. A more modern example appears in chemistry,
where a pure noise-induced transition was shown to ex-
plain important properties of an enzymatic reaction [55].

1 To avert a potential confusion, we mention that a different kind
of noise-induced phase transitions has also been proposed [46],
which also covers pure noise-induced phase transitions [47]. This
is beyond the scope of our work but the interested reader should
consult Ref. [48] for a discussion of the differences.
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FIG. 1: A potential-landscape picture [41] showing the difference between a system with additive noise and one that experiences
a pure noise-induced transition with multiplicative noise. In the top row we depict a simple deterministic system with only
one stable state (represented by the green ball at the bottom of the potential landscape). Upon introducing additive noise into
the system, the motion of the system becomes stochastic. In this example, additive noise simply pushes the system around its
deterministic fixed point at the bottom of the potential well. Depending on the realization of the noise, the system may be
pushed in either direction with different strengths. We depict such stochastic motion using two-way arrows in red. Additive
noise has been studied in both classical and quantum systems as discussed in the main text (also indicated here by the two
green ticks on the right). In the bottom row we depict a pure noise-induced transition which relies on multiplicative noise.
Multiplicative noise can induce completely new states which are absent in the noiseless system. This is shown here by the
creation of a new double-well potential which now has two stable states. In this case the noise may even push the system over
the middle barrier so that each stable state is only occupied for a finite time before the system jumps again to the other stable
state. Note that a pure noise-induced transition refers to the change in the steady-state behavior when a noiseless system
becomes stochastic (here going from the single-well to double-well potential). Our paper studies how a pure noise-induced
transition occurs in a quantum system, which to the best of our knowledge has not been considered up to now.

New developments in collective dynamics have extended
pure noise-induced transitions to systems of finite size.
Internal noise in such systems can lead to multiplicative
noise in collective variables which indicate emergent be-
havior [36, 56, 57]. This has been demonstrated in a
model of foraging colonies with two food sources [56].
If the population falls below some threshold, the for-
agers change from being “undecided” to collective alter-
nation between the two food sources [56]. Very recently,
a pure noise-induced transition was also shown to explain
schooling in fish [57].

In this work we show that pure noise-induced transi-
tions can also occur in a microscopic system where quan-
tum effects are essential. Our system is a nonlinearly
damped oscillator coupled to a heat bath at temperature
T , previously explored in the context of a linear system
[58]. For T > 0, thermal fluctuations entering the os-
cillator can induce it to transition to a limit-cycle state
which is otherwise absent at T = 0. When T > 0, our
system resembles a Stuart–Landau oscillator on average.
The transition to a limit cycle from the T = 0 case, may
then be seen as a pure noise-induced Hopf bifurcation
(the T = 0 case being akin to the noiseless system in the
classical theory). Our focus on a system in a fluctuating
environment mirrors the original theory of Horsthemke
and Lefever [45]. This is especially suited to quantum
systems as they are highly susceptible to environmental

noise [59, 60].

The noise-induced limit cycle of the microscopic os-
cillator has truly nonclassical traits. The transition to
a limit-cycle state is shown to be unique to the micro-
scopic oscillator, i.e. an analogous macroscopic oscillator
subjected to multiplicative noise cannot be induced to
undergo limit-cycle oscillations whatsoever. Moreover,
the noise-induced limit cycle can sustain negative Wigner
functions. This is in contrast to the conventional quan-
tum Stuart–Landau oscillator in the literature for which
Wigner negativity is always lost [61, 62]. In phase space,
the rotational flow of the microscopic oscillator is seen
to have both classical and quantum contributions. The
classical part can be explained by the macroscopic ana-
log, but the quantum contributions are without any such
classical roots. We then find the underlying probability
flux responsible for the noise-induced limit cycle to be
purely conservative, again in stark contrast to the con-
ventional quantum Stuart–Landau model which is driven
by a dissipative probability current. One may find a pre-
view of our results in Table I, which of course will not be
referred to till later.

There has also been some recent results on noise-
induced oscillations and transitions, including quantum
systems, but in a different sense [63–66]. These results,
which we shall discuss now, do not qualify as pure noise-
induced transitions because they investigate phenomena
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whereby additive noise (which are system independent)
induces the system to jump in and out of preexisting
states. We illustrate this in Fig. 2 with a bistable system.
Well known examples from classical theory are coher-
ence resonance [67–75] and stochastic resonance [76–80].
These effects have in common the mechanism of noise-
activated escape [81, 82]. The role of noise is simply to
destabilize a system around a local basin of attraction,
occasionally providing enough energy for the system to
escape (if the basin is not globally attracting). In the case
of coherence resonance, pulses resembling limit-cycle os-
cillations are produced using noise-activated escape in a
system whose deterministic dynamics already contains
a limit cycle (an excitable system [83]). Such pulsa-
tions have also come under the name of noise-induced or
stochastic limit cycles [67, 68, 84, 85], and was recently
studied in open quantum systems [65, 66]. Some authors
have in fact defined a noise-induced “limit cycle” by us-
ing only a local basin of attraction and the destabilizing
effect of additive noise [63]. For example, a deterministic
system with a spiral sink, such as a damped harmonic
oscillator, is said to have a noise-induced “limit cycle” in
the presence of additive noise under Ref. [63].

For systems with two basins of attraction, additive
noise with sufficient intensity may kick the system back
and forth between the two basins. Such a state change
has been called a noise-induced “transition” in the sense
that noise activates a transition between two preexisting
states, e.g. in Refs. [41, 86] (see Fig. 2). This is essentially
what enables many noisy bistable phenomena, such as
stochastic resonance.2 This is also the case with recent
work showing that additive noise can drive bistability
between two synchronisation states in an open quantum
system [64]. Thus, it is important to distinguish noise-
activated bistability (illustrated in Fig. 2) from the pure
noise-induced bistability in, e.g. Refs. [53, 54, 56], a point
which Ref. [56] has highlighted and illustrated in Fig. 1.

We highlight again that our quantum limit cycle in this
paper is the result of a pure noise-induced transition, and
to achieve such dynamics, multiplicative noise is neces-
sary. One way to see why Refs. [63]–[86] fall short of
a pure noise-induced transition is to appeal to potential
landscapes. If we associate the landscape with the system
state, then additive noise simply pushes a system around
on a preexisting landscape, but multiplicative noise can
play a direct role in creating the potential landscape. We

2 Note that in stochastic resonance a deterministic sinusoidal force
is also included in addition to a random force. However, the
sinusoidal force only changes the height of the middle barrier
relative to the bottom of the two wells in Fig. 2 in time. This
effectively allows the likelihood of a jump occurring between the
two wells in Fig. 2 to be modulated in time. It does not alter the
basic character of additive noise, namely that it simply provides
a random force which can only push the system around on the
potential landscape.
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FIG. 2: An additive-noise effect that has often been la-
belled as noise-induced bistability, but is not a pure noise-
induced transition. It is important to differentiate this case
from the pure noise-induced transition shown in the bottom
row of Fig. 1. Note in this case, the bistability of the system is
already present prior to the introduction of noise in the sense
that two stable states are available to be occupied. Because
additive noise is independent of the system, all it can do is
kick the system back and forth between the two wells. In
the language of noise-induced transitions as defined by Hors-
themke and Lefever [45], no new states have been induced by
the addition of noise that is not already in the deterministic
system. The change from deterministic to stochastic behavior
illustrated here is therefore not a pure noise-induced transi-
tion.

will explain again what makes our noise-induced transi-
tion pure more precisely using equations next, when we
present our quantum model.

II. MODELS

Our nonlinear oscillator is represented by a single
bosonic degree of freedom, described by â and â† sat-
isfying [â, â†] = 1̂. External multiplicative noise in â
arises when two excitations are exchanged at a time with
a heat bath. We interpret the system excitations to be
photons, at frequency ω0, and the bath to be an ensemble
of two-level atoms at temperature T . Exactly this type
of nonlinear interaction had been of interest in quantum
optics, especially in the context of two-photon absorp-
tion [87–96]. However, this body of literature makes no
connection to multiplicative noise. The time-dependent
state of the oscillator ρ(t), may then be described by a
Markovian master equation under standard approxima-
tions given by dρ(t)/dt = L⇑ ρ(t) where [59, 97–99]

L⇑ = − i ω0 [â†â, · ] + κ⇓D[â2] + κ⇑D[â†2] . (1)

Note the dot denotes the position of ρ(t) when acted
upon by L⇑. The parameters κ⇓ and κ⇑ are positive
real numbers, proportional to the atomic ground-state
and excited-state populations respectively. We have also
defined, D[ĉ] = ĉ · ĉ† − (ĉ†ĉ · + · ĉ†ĉ)/2 for any ĉ. We
refer to D[ĉ] as a dissipator, and ĉ a Lindblad operator.
It captures the bath’s influence on the system. When
T −→ 0, all the atoms occupy their ground state and
we find κ⇑ −→ 0. Thus any new physics arising from a
nonzero κ⇑ must be attributed to thermal noise.

The role of (1) is akin to the Fokker–Planck equation
in the macroscopic theory of noise-induced transitions.
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And likewise, the steady state of (1) will be of central
importance to us. It has been derived by noting that (1)
conserves photon-number parity, i.e. d〈(−1)n̂〉/dt = 0,
where n̂ = â†â [89, 91]. Here we express it as,

ρss = ℘+ ρ+ + ℘− ρ− , (2)

where ℘+, ℘− are respectively the probability for ρ(0)
to be in an even or odd Fock state, and ρ+, ρ− are, for
K = κ⇑/κ⇓,

ρ+ = (1− K )

∞∑
n=0

K
n |2n〉〈2n| , (3)

ρ− = (1− K )

∞∑
n=0

K
n |2n+ 1〉〈2n+ 1| . (4)

When the noise is explicitly taken into account by using
stochastic equations (see below), a microscopic under-
standing of (1) in terms of elementary atom-photon inter-
actions can be reached. We summarise this in Fig. 3(a).
Most notably, we find singly-stimulated emissions in the
â†2 dissipator [58, 88]. This is vital to understanding how
a limit cycle is physically possible in a model with only
two-photon processes. In a model with two-photon loss,
conventional wisdom requires that it be supplemented by
one-photon gain if a stable limit cycle is to arise. The con-
ventional model for a quantum limit cycle which has been
widely used in the literature is thus dρ(t)/dt = L↑ ρ(t)
[61, 62], where

L↑ = −i ω0 [â†â, · ] + κ⇓D[â2] + κ↑D[â†] . (5)

In contrast to (1), the one-photon gain is introduced as an
independent process using a second bath (which can be
thought of as a perfectly inverted atomic medium). The
singly-stimulated emission in Fig. 3(a) has a similar effect
as the â† dissipator in (5). This is the first telltale sign
that thermal noise from the two-photon dissipator can
induce a quantum limit cycle which is otherwise absent
at T = 0. As we shall see, the different physics in L⇑ and
L↑ lead to limit cycles with very different characteristics.

The same approximations leading to (1) also gives a
quantum stochastic differential equation in Stratonovich
form [58],

dâ(t) =
[
−i ω0 â(t)− (κ⇓ − κ⇑) â†(t) â2(t)

]
dt

+ â†(t) ◦ dŴ (t) . (6)

External thermal fluctuations are now explicit in (6), rep-

resented by a quantum Wiener increment dŴ (t) (a bath
operator) [100, 101]. Stratonovich equations are denoted
by a circle in system-noise products [45, 102, 103]. The
effect of noise can be made clear by either calculating
the average of (6), or by converting (6) to its Itô form.
Taking the latter approach, we find the Itô equation

dâ(t) =
[
−i ω0 â(t) + 2κ⇑ â(t)− (κ⇓ − κ⇑) â†(t)â2(t)

]
dt

+ â†(t) dŴ (t) . (7)

An inspection of (6) and (7) gives the expectation value

〈â†(t) ◦ dŴ (t)〉 = 2κ⇑ 〈â(t)〉. The 2κ⇑ â(t) in (7) is
thus a quantum noise-induced drift. Noise-induced drifts
are a well-known concept in classical statistical physics
[35, 104], which has just begun to be explored for quan-
tum systems [58, 105].3 The microscopic interpretation
of (6) is shown in Fig. 3(b) [58]. With (7) at hand, we
can now explain what makes our noise-induced transi-
tion pure (with the actual transition being presented in
Sec. III). We can minimize the external thermal noise
entering the system by setting the bath temperature to
zero. Then κ⇑ = 0, and the system reduces to a non-
linearly damped oscillator. In this case one would not
even expect a limit cycle from (7) because without the
linear gain given by 2κ⇑â, there is no counterbalance to
the nonlinear damping given by −(κ⇓ − κ⇑)â†â2, and no
reason why such a system should stabilize to some fi-
nite amplitude in the long-time limit. This highlights a
fundamental difference between multiplicative noise and
additive noise. Multiplicative white noise can induce ad-
ditional terms on the order of dt, which may then gener-
ate a new potential landscape for the system. Additive
noise on the other hand cannot introduce such new pro-
cesses on the order of dt, and hence cannot produce the
kind of drastic modifications which multiplicative noise
is capable of.

Particularly important for us is the quantum (i.e. non-
commutative) nature of noise, as expressed by the quan-
tum Itô rules for ideal white noise [106–109],

dŴ (t) dŴ †(t) = 4κ⇓ dt , dŴ †(t) dŴ (t) = 4κ⇑ dt .
(8)

When T −→ ∞, the atoms occupy their excited and
ground states equally so κ⇓ − κ⇑ −→ 0, and the noise
becomes classical (i.e. commuting). The nonlinearity in
(6) and (7) vanishes in this limit. In the opposite limit
of T −→ 0, the noise becomes most quantum, but the
noise-induced drift vanishes and the distinction between
(6) and (7) disappears. Hence, the thermal noise cannot
be entirely quantum nor entirely classical to induce a
limit cycle. This paper tackles the full nonlinear problem
for which 0 < T < ∞ and 0 < κ⇑ < κ⇓. A pure noise-
induced transition occurs from κ⇑ = 0 (no external noise)
to κ⇑ > 0 (some external noise).

It will also be useful to compare our quantum model to
a classical model which emulates the quantum dynamics
as closely as possible. We thus propose the following
macroscopic model based on (6),

dα(t) =
[
−i ω0 α(t)−∆ |α(t)|2 α(t)

]
dt

+ α∗(t) ◦ dW (t) , (9)

3 See Sec. 4 of Ref. [35], especially the bullet point “quantum noise-
induced drift.” Our results are also closely related to the bullet
points on “effects of multiplicative noise on steady-state distri-
butions,” and “noise-induced bifurcations,” but for a quantum
system.
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FIG. 3: Microscopic view of multiplicative quantum noise in
a rotating frame with frequency ω0. Solid lines represent the
atomic excited and ground states, while dotted lines denote
virtual states (states with vanishing lifetime). Multiplicative
noise induces linear amplification (noise-induced drift). At
the microscopic level, noise comes from spontaneous emis-
sion while amplification comes from stimulated emission. The
multiplicative noise is thus a two-photon emission where one
of the photons is stimulated [58]. (a) The quantum mas-
ter equation (1) interpreted as two-photon processes (top),
and a graphical key for reading the atom-photon interac-
tions (bottom). Note the noise-induced drift is embedded
in D[â†2]. This is the underlying mechanism supporting the
quantum and pure noise-induced limit cycle in this paper. (b)
The Stratonovich quantum stochastic differential equation in
terms of two-photon processes.

where ∆ > 0. We can then show that a noise-induced
drift arises as in the quantum case. The Itô equivalent
of (9) given by

dα(t) =
[
−i ω0 α(t) + 2κα(t)−∆ |α(t)|2 α(t)

]
dt

+ α∗(t) dW (t) , (10)

except now dW (t) is a complex Wiener increment satis-
fying

dW ∗(t) dW (t) = 4κ dt . (11)

We will find that no noise-induced transition to a limit
cycle is possible in this model whatsoever (i.e. for any
value of κ and ∆).

Although our classical model is designed to mimick the
quantum system as closely as possible, there are never-
theless some intrinsic differences. First, one often ex-
tracts the macroscopic limit of an open quantum system
by performing a system-size expansion [97]. However,
this method is only capable of extracting macroscopic
systems with additive noise [61, 97]. Thus it cannot be
employed to investigate whether multiplicative noise can
induce limit cycles in a classical system. The system-size
expansion thus provides the rigorous basis for the lack of
a semiclassical limit (also referred to as the macroscopic
limit) in our quantum oscillator. In this regard, (9) and
(10) should be thought of as commutative versions of
(6) and (7) respectively, and not actually their macro-
scopic limits, because such limits do not exist. Our use
of the word “macroscopic” as a descriptor for the classical
model both is therefore qualified. Second, thermal noise
entering the microscopic oscillator as defined in (8) will
have vacuum fluctuations, which is a quantum property.
That is, the bath cannot be made to produce exactly
zero noise even when all atoms are in their ground state.
This can also be understood from the necessity to pre-
serve the canonical commutation relation for the system
at all times and at all temperatures [58]. If on the other
hand we set κ = 0 in the classical stochastic equations,
they become completely deterministic.

III. NOISE-INDUCED TRANSITIONS

A. Preliminaries and the T = 0 case

To demonstrate noise-induced transitions in quantum
systems we follow a similar approach as the classical
theory [45], whereby the transition is characterized by
the mode of the system’s steady-state probability den-
sity. This is formally known as phenomenological bifur-
cations, or P-bifurcations for short [110–112]. Essentially
the same idea applies for an open microscopic system,
but to their quasiprobability distributions. The idea had
been noted early on in quantum optics [113, 114]. Its
use is now prevalent in physics (often without reference
to P-bifurcations), such as in defining limit cycles near
a Hopf bifurcation [61, 62], relaxation oscillations [115],
amplitude and oscillation death [116–119], and Turing
instabilities [120]. It is important to note here that P-
bifurcations refer to the entire class of bifurcations in-
ferred by looking at qualitative changes in the steady-
state distribution as some system parameter is changed.
It can therefore also be taken as a method for identifying
nonlinear features and bifurcations, and should not be
confused with the Hopf bifurcation which is the focus of
this paper.4

4 An alternative way to define bifurcations in noisy systems is
via dynamical bifurcations, or D-bifurcations for short [112].
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Note the steady state for T = 0 cannot be obtained
from setting K = 0 in (2)–(4), so it is worthwhile to
quickly review this case. In the absence of thermal fluc-
tuations the system reduces to a nonlinearly damped os-
cillator without limit cycles. In this case the steady state
is constrained to a two-dimensional subspace, spanned by
the Fock states |0〉 and |1〉. This is because D[â2] damps
all even Fock states to |0〉, and all odd Fock states to |1〉
[89]. All coherences between |2n〉 and |2n+ 1〉 also ulti-
mately contribute to the coherence between |0〉 and |1〉
[91]. In fact, for κ⇑ = 0, exact expressions for ρ(t) in the
number basis can be derived for all t [89, 91]. Much later
an operator form of ρ(t) was obtained [121]. Interestingly,
the problem was revisited again from symmetry and con-
servation considerations [122]. We will come back to this
briefly in Sec. IV A. For now it suffices to say that it ex-
presses the steady-state solution in terms of conserved
quantities. From this perspective, the κ⇑ = 0 case differs
from the κ⇑ > 0 in that an extra conserved quantity re-
lated to coherences may found in addition to parity (the
Supplementary Material contains more details but is not
necessary until Sec. IV A, where we actually discuss ideas
relevant to conservation and symmetry principles).

Our central result here is that limit-cycle states arise
as a consequence of adding thermal noise to the damped
oscillator and that they are a fundamentally new set of
states absent in the noiseless system. Such steady states
are interesting because they are stable-amplitude oscil-
lations which are only possible with nonlinear dynamics.
That is, we do not consider the steady state of a dynam-
ical system defined only by simple-harmonic motion to
have a limit cycle even if its Wigner function may look
like one.

B. Pure noise-induced limit cycle (T > 0)

1. Classification of transitions

The steady-state Wigner distribution for the noisy ρss

can in fact be derived in closed form. This is of great
value for characterizing how the system behaves as a
function of the external noise. Nontrivial open quantum
systems with an exactly solvable steady-state quasiproba-
bility are few and far between. Indeed, the exact solvabil-
ity had also played an important role in the macroscopic
theory of noise-induced transitions and stochastic bifur-
cations. It is why one-variable systems were initially pre-
ferred by Horsthemke and Lefever [45, 111]. The Wigner
function of (2) for 0 < K < 1 in Cartesian coordinates is

However, this method is mathematically much more demanding
and nontrivial to generalize to quantum theory. This invariably
makes P-bifurcations the preferred method for classifying bifur-
cations and nonlinear features amongst physicists.

given by (see Supplementary Material),

Wss(x, y) = ℘+W+(x, y) + ℘−W−(x, y) , (12)

where x and y also correspond to the quadratures of the
quantum nonlinear oscillator, and

W+(x, y) = γ e−(x2+y2)/2

[
e−η(x2+y2)

1−
√

K
+
eλ(x2+y2)

1 +
√

K

]
,

(13)

W−(x, y) =
γ√
K
e−(x2+y2)/2

[
eλ(x2+y2)

1 +
√

K
− e−η(x2+y2)

1−
√

K

]
.

(14)

For ease of writing we have defined the constants (all
positive),

γ =
1− K

4π
, η =

√
K

1−
√

K
, λ =

√
K

1 +
√

K
. (15)

Note that since ℘− = 1 − ℘+, Wss can be parame-
terized by (K, ℘+) on a unit square. In addition, since
Wss is a function of only x2 + y2, no information is
lost by working instead with the single-variable function
W (r) ≡ 4Wss(2r cosφ, 2r sinφ) (not to be confused with
a change of measure to polar coordinates). Then by P-
bifurcations, the radius of a limit cycle, when it exists, is
given by its mode, r? ≡ argmax W (r). The nonclassical
nature of our oscillator means that its Wigner function
can also be negative. For the specific W (r) defined above,
we find W (r) < 0 if and only if W (0) < 0 (see Sup-
plementary Material). We then find on the unit square
parameterized by (K, ℘+), all steady states to fall under
one of the three phases defined by its r? and W (0) (see
Supplementary Material). We label these phases I, II,
and III, which are defined as follows

I : A stable origin corresponding to r? = 0, W (0) > 0.
Occurs when ℘+ > (3 + K)/4(1 + K).

II : Limit cycle with a positive Wigner function cor-
responding to r? > 0, W (0) > 0. Occurs when
1/2 < ℘+ < (3 + K)/4(1 + K).

III : Limit cycle with a negative Wigner function cor-
responding to r? > 0, W (0) < 0. Occurs when
℘+ < 1/2.

We illustrate the qualitative behavior of Wss for each
phase in Fig. 4. Note the Wigner functions have been
scaled and do not appear according to their (K, ℘+) co-
ordinates in order to make the three-dimensional illus-
tration feasible (see Fig. 4 caption for parameter values
and other information). A more detailed discussion of
the parameter space is provided in Fig. 5.

To capture the steady-state behavior over the entire
parameter space we resort to W (r). Ten samples of W (r)
are shown in Fig. 5, labeled 1 to 10. As can be seen in
phase I, initial states with a sufficiently high population
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FIG. 4: Phase diagram depicting the steady-state Wigner functions of (1) for different values of (K, ℘+) on a unit square
characterized by the three phases explained in the text. The (K, ℘+) coordinates of the K > 0 Wigner functions are indicated
in an inset on the right. The contour plots of each Wigner function are also displayed. For each phase, we have chosen a ρ(0)
(not shown) such that the noiseless steady states are all pure, parameterized by |ψss〉 =

√
℘+ |0〉+

√
℘− |1〉. The noisy steady

states correspond to the same ρ(0) in each phase. We have also scaled the Wigner functions arbitrarily for ease of visualization.
Phase I (red region): No noise-induced transition occurs. The noisy Wigner function has (K, ℘+) = (0.6, 0.9) and represents a
stable origin under P-bifurcations. The noiseless Wigner function in the inset has (K, ℘+) = (0, 0.9). Phase II (yellow region):
A pure noise-induced transition defined by K = 0 −→ K = 0.1 along ℘+ = 0.55. The noisy Wigner function is always positive
and attains the characteristic craterlike form for Stuart–Landau oscillators. Phase III (blue region): A pure noise-induced
transition defined by K = 0 −→ K = 0.2 along ℘+ = 0.4. The shape of the noisy Wigner function remains craterlike, but now
the bottom of the crater can go below zero.

of even Fock states cannot be induced to undergo limit-
cycle oscillations by adding noise (Fig. 4 and 1, 7, 8 in
Fig. 5). Even Fock states have their Wigner-function
modes at the origin, but not odd Fock states. Therefore
for a given K, increasing the occupation of even Fock
states in ρ(0) tends to maximize W (0), preventing the
occurrence of a limit cycle (2 → 1 or 8 → 7 in Fig. 5).
Reducing the population of even Fock states then allows
thermal fluctuations to induce limit-cycle behavior in the
oscillator. In fact, we observe a supercritical Hopf bifur-
cation with respect to ℘+ (1 → 2 → 3 in Fig. 5). This
is a nonclassical trait as photon-number parity is nonex-
istent in classical physics. Although “number parity” is
not a conventional bifurcation parameter, the limit-cycle
size at birth does acquire the characteristic square-root
dependence on parameters (here ℘+ and K) for a super-
critical Hopf bifurcation (see Supplementary Material).

In phase II, W (r) (and hence also Wss) is positive
everywhere (3 and 9 in Fig. 5). Somewhat counter in-
tuitively, the more noise the oscillator experiences, the
more likely it is to be found near the origin (also 1 → 7
in phase I). Thus if the oscillator already has a noise-
induced limit cycle (i.e. is in phase II), then adding more

noise will destroy it (3→ 6 → 8 in Fig. 5). Such delete-
rious effects of multiplicative noise has also been shown
for a classical limit cycle where it has been referred to
as an inverse stochastic bifurcation [52]. Here we see a
quantum analog of this behavior.

Interestingly, the noise-induced transition becomes
truly nonclassical if ℘+ is further reduced to phase III
(3 → 4 → 5 and 9 → 10 in Fig. 5). It can be shown
that initial states with ℘+ < 1/2 have negative Wigner
functions (see Supplementary Material). However, ther-
mal noise cannot destroy this Wigner negativity. Thus in
phase III the noise-induced limit cycle remains nonclassi-
cal. This is in contrast with the conventional limit cycle
obtained from L↑ in (5), whose steady-state Wigner func-
tion is always positive. Moreover, adding more noise to
the oscillator does not induce an inverse stochastic bifur-
cation, i.e. its limit cycle never vanishes and the limit cy-
cle in this sense may be said to be “quantum protected”
(5 → 10 in Fig. 5). However, increasing the noise in-
tensity does smear out the oscillator’s distribution over
phase space, producing a W (r) with a long tail (see Sup-
plementary Material for more on the tail behavior). It is
also worth mentioning here that limit cycles with a neg-
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FIG. 5: Behavior of W (r) at ten different values of (K, ℘+), labeled from 1 to 10. Borderline cases are illustrated by points
2, 4, and 6. Note that point 6 is situated at (0.43, 0.6) (K value rounded to two decimal places), and point 9 is at (0.6, 0.53).
All insets show W (r) from zero and above in the region ℘+ ≥ 0.5. For W (r) in ℘+ < 0.5 (i.e. points 5 and 10), W = 0 is
marked on the vertical axis in the insets. A Hopf bifurcation occurs when I → II along ℘+ (1 → 2 → 3), while an inverse
stochastic bifurcation occurs for II → I along K (3 → 6 → 8). A II → III crossover cannot happen without W (0) becoming
negative. We find for all K values that W (0) is controlled by ℘+ as illustrated in the sequence of changes along K = 0.25
(1 → 2 → 3 → 4 → 5), or along K = 0.6 (7 → 8 → 9 → 10). Phase III is “quantum protected” where the noise-induced
oscillations are robust against thermal noise in retaining both its nonclassicality and limit-cycle behavior.

ative Wigner function have been studied before in the
context of optomechanics [123, 124]. However, the mas-
ter equation for such systems are much more complicated
than (1), and the limit cycles so obtained are not due to
thermal noise.

Even if our pure noise-induced transition falls un-
der phase II, it can still be regarded as nonclassical in
that the macroscopic analog given by (9) and (10) can-
not yield a limit cycle whatsoever. This can be shown
by considering its associated Fokker–Planck equation
∂P (x, y, t)/∂t ≡ LP (x, y, t) and showing that the so-
lution to LPss(x, y) = 0 is given uniquely by (see Sup-
plementary Material)

Pss(x, y) =
∆

8πκ
e−∆(x2+y2)/8κ . (16)

This is a two-dimensional Gaussian centred at the ori-
gin corresponding to two independent processes X(t) and
Y (t) with steady-state variances given by σ2

X = σ2
Y =

4κ/∆. Clearly Pss has a mode at the origin independently

of the initial distribution and (∆, κ).5 Where possible,
we include a comparison of different attributes between
L , L↑, and L⇑ in Table I.

Previous work in noise-induced transitions on limit-
cycle systems have only discovered noise-induced shifts of
Hopf bifurcations, an effect belonging to the more typical
class of noise-induced transitions [49–52] [take e.g. equa-
tion (12) of Ref. [52] and set µ = σ2 = 0]. Our reason for
considering (9) and (10) is to show that even a classical
model which best mimicks (6) and (7) do not show a pure
noise-induced transition.

5 An alternative way to make sense of the stability of the origin is
through nonequilibrium potentials [41, 125, 126] (see also Chap. 7
in Vol. 1 of Ref. [28]). For our macroscopic oscillator this is
given by the exponent of (16). One approach to constructing the
nonequilibrium potential is via the so-called A-type stochastic
differential equations [126–128]. We have used this technique
and shown that it is consistent with P-bifurcations as desired
(not presented in this paper but see Example 2 in Appendix B
of Ref. [129] for a similar classical system to ours).
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2. Dependence on photon-number parity

Since our steady states depend on the initial state
via the photon-number parity, one might wonder if the
Wss(x, y) seen in regions II and III indeed resemble limit
cycles, as opposed to non-isolated orbits (such as the
orbits of an undamped harmonic oscillator, or a simple
Lotka–Volterra model). Here we affirm their interpreta-
tion as a generalization of classical limit cycles to quan-
tum phase space, but some justification is required.

The problem with regarding the steady states in re-
gions II and III as non-isolated orbits is that such an
interpretation only makes sense for the most classical
initial states—i.e. coherent states |α〉. In this case we
can in fact deduce a one-to-one correspondence between
the mean photon number of the steady state 〈n̂〉ss, and
that of the initial state |α|2, given by 〈n̂〉ss = 2K/(1 −
K)+exp(−|α|2) sinh(|α|2) (see Secs. II.B and IV.C of the
Supplementary Material). This result is akin to the non-
isolated orbits of an energy-conserving system like the
undamped harmonic oscillator, where an initial phase-
space point of a given energy will only move in an orbit
of the same energy (though here, |α|2 maps to a differ-
ent energy given by 〈n̂〉ss, and we do not have energy
conservation, but rather number parity). Naturally, this
conformity to classical intuition tempts one to conclude
that our quantum oscillator actually has non-isolated or-
bits instead of a limit cycle (which should be isolated).
However, for limit cycles defined in phase space, as is the
case here (in contrast to limit cycles in Hilbert space), the
classical intuition just described fails for a general initial
state. The Wigner function for an arbitrary initial state
can be highly delocalised in quantum phase space,6 and
even nonclassical. For such general initial states the one-
to-one correspondence between steady-state orbits and
the initial state breaks down.

In fact, our closed orbits conform to the characteristic
property of limit cycles, namely that at least one other
trajectory spirals towards it. We know already that ℘+

divides all initial states into two subsets, one of which
we may identify as a quantum limit cycle (regions II or
III in Fig. 5). For a fixed K, any two initial states with
the same ℘+ in region II or region III will converge to
the same closed orbit represented by the same Wss(x, y).
Two such initial states can be made to have very differ-
ent quasiprobabilities in quantum phase space, e.g. cor-
responding to intial phase-space points concentrated in

6 Of course, one may argue that an ensemble of nonlinear classical
systems initialized in different parts of phase space would also
be delocalized. However, this is quite different to the quantum
evolution of a Wigner function because each initial phase-space
point in the classical ensemble evolves independently of every
other phase-space point. The evolution of the Wigner function
for a nonlinear quantum system on the other hand cannot be
understood as the result of propagating independent initial con-
ditions in quantum phase space.

different areas of phase space.

Fundamentally, photon-number parity has no analog
in classical dynamics as photons do not exist classically.
The classical condition that states near an isolated or-
bit must be attracted to it, or repelled by it, cannot be
sensibly imposed on a quantum oscillator. Trajectories
in phase space are actually ill-defined in quantum sys-
tems. In this regard, our proposed quantum limit cycle
is a generalization of the classical limit cycle to quantum
phase space, where the intrinsically quantum feature of
parity conservation plays a central role.

C. Noise-induced nonclassicality

While the lack of a pure noise-induced transition in
the classical model above already indicates that our pure
quantum noise-induced transition is genuinely quantum,
even in phase II, here we provide an analysis using al-
ternative notions of nonclassicality. Interestingly, we are
able to show that even a subset of states in phase I can be
nonclassical. Physically however, this should not be too
surprising, given the two-photon nature of our quantum
model.

We start by considering the standard definition of non-
classicality from quantum optics. This defines an arbi-
trary density operator to be nonclassical if and only if its
Glauber–Sudarshan quasiprobability distribution is neg-
ative [131]. Using this, we can show that for K > 0,
the quantum channel which maps ρ(0) to ρss actually
generates nonclassicality, not just preserves it. To do
so we consider an initial vacuum state, i.e. ρ(0) = |0〉〈0|,
which is a classical state. Due to parity conservation, it is
mapped to ρss = ρ+, which obviously has 〈n|ρss|n〉 = 0
for any odd n [recall (2)–(4)]. Then expanding ρss in
terms of coherent states |α〉 we have, for odd n,∫

C

d2α P̄ss(α, α
∗) |〈n|α〉|2 = 0 , (17)

where P̄ss(α, α
∗) is the Glauber–Sudarshan quasiproba-

bility distribution of ρss = ρ+. It then follows that (17)
can be true only if P̄ss(α, α

∗) has negative values since
|〈n|α〉|2 is positive (see also footnote 2 of Ref. [132]).
Thus the map ρ(0) −→ ρss generates nonclassicality.
Note that for K = 0, i.e. without thermal noise, ρ(0) =
|0〉〈0| = ρss, so the steady state remains classical. Hence
for K > 0, the nonclassicality in ρss may be aptly said to
be noise induced.

In terms of the phase diagram in Fig. 5, the above ar-
gument shows that all steady states along the line ℘+ = 1
are nonclassical, with the exception of the two end points
(K, ℘+) = (0, 1) and (K, ℘+) = (1, 1) (remember that
K = 1 only if the bath temperature is infinite). Since
we have the exact form of the steady state, it should be
possible to determine, at least in principle, the nonclas-
sicality of more steady states on the phase diagram. To
this end we consider the Mandel Q parameter. This is
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defined in terms of the statistics of n̂ = â†â, by

Q =
〈n̂2〉 − 〈n̂〉2
〈n̂〉 − 1 . (18)

If a given density operator leads to Q < 0, then it is
guaranteed to be nonclassical. Note that like Wigner
negativity, this is only a sufficient condition for nonclas-
sicality, so the negativity of Q is also only a witness. If
Q > 0 then no conclusion about the nonclassicality of the
state can be drawn. Physically, the Mandel Q param-
eter captures nonclassicality by sub-Poissonian photon
statisitics, when the photon-number variance becomes
smaller than the mean. Note that Q has a minimum
value of −1, so the condition for nonclassicality may be
stated as −1 ≤ Q < 0. Using expressions (2)–(4) for ρss

in (18), we find

Qss =
2

1− K
+

2K

1 + K− ℘+(1− K)
+ ℘+ − 3 . (19)

Note that if (K, ℘+) = (0, 0) then Qss = −1, saturating
its lower bound. In this case ρss = |1〉〈1|, which is clearly
nonclassical. We can derive conditions for K and ℘+ in
order for Q < 0. Some calculation gives

0 ≤ K <

√
5− 4℘+(2− ℘+) − 3

1 + ℘+(2− ℘+)
+ 1 , 0 ≤ ℘+ < 1 .

(20)

The set of (K, ℘+) points satisfying (20) then prescribes
a region in Fig. 5 corresponding to nonclassical steady
states. We show this region in Fig. 6. Note however that
Qss −→ ∞ when K −→ 1, so Qss ∈ [−1,∞). This range
of Qss makes it difficult to visualize so we map it to a
finite interval using the sigmoid function, given by

S(Qss) =
(
1 + e−Qss

)−1
. (21)

A contour of S(Qss) is shown in Fig. 6. In terms of
S(Qss), the condition for nonclassicality then becomes
(1 + e)−1 ≤ S(Qss) < 1/2, and all points to the left of
the white line in Fig. 6 satisfy this condition.

The negativity of Qss seen in Fig. 6 is reassuring of
the previous analysis surrounding (16)—namely that the
limit cycles in phase II should be regarded as nonclassi-
cal. Since the negativity of the Mandel Q parameter is
only a sufficient condition for nonclassicality, we would
not expect it to occur for all points in phase II. What
is interesting however, is that it shows a small patch of
phase I to be nonclassical. Also interesting is the proof
of nonclassicality for the ℘+ = 1 line (excluding end-
points) using directly the definition of nonclassicality in
terms of P̄ss(α, α

∗). These two subsets of nonclassical
points, i.e. those with P̄ ss < 0 and those with Qss < 0,
when coupled with the two-photon nature of L⇑, provide
reasons to suspect that all points in our phase diagram
might be nonclassical. However, showing this requires
much more work, and take us away from our theme on

I

II

III
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Qss < 0

FIG. 6: Contour plot of S(Qss) as a function of K and ℘+.
The black dashed lines denote the boundaries for phases I, II
and III. The white solid line corresponds to Qss = 0, and the
region to the left of the white solid line have Qss < 0, which
is guaranteed to be nonclassical.

pure noise-induced limit cycles in quantum theory. We
thus leave the nonclassicality of the entire phase diagram
here as speculation.

IV. NONEQUILIBRIUM PROPERTIES

A. Parity conservation and symmetry

The conservation of photon-number parity is a genuine
nonclassical feature of our microscopic oscillator. The
question is what physical consequences might this have
on the phase-space flow. We find that at steady state,
rotational flow in phase space (or simply circulation) is
more intense for states with a greater occupancy of odd-
number states. We measure the circulation intensity with
orbital angular momentum in phase space, taken to be
(see Supplementary Material)

ϕ ≡
∣∣<[〈x̂L†⇑ ŷ − ŷL†⇑ x̂〉] ∣∣ , (22)

where x̂ = â + â†, ŷ = −i(â − â†). The superoperator

adjoint L†⇑ is defined by Tr[(L⇑Â)†B̂] = Tr[Â†L†⇑B̂], for

any Â and B̂. We have also defined <[z] = (z + z∗)/2.
A classical analog of (22) had been used to measure the
circulation in classical stochastic limit cycles [133, 134].
We have generalised it to open quantum systems. For the
noise-induced oscillator it simplifies to, for an arbitrary
state (see Supplementary Material)

ϕ = ω0

〈
x̂2 + ŷ2

〉
. (23)

Equation (23) is in fact still valid even if we had only
a simple harmonic oscillator. The reason is because the
dissipator contributions to ϕ vanish. This can be un-
derstood by noting that the two-photon dissipators are
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rotationally symmetric. They act solely along the ra-
dial direction in phase space. Hence if ω0 = 0 (or if one
transforms into a frame moving with the circular mo-
tion), then we should not see any rotational flow in phase
space. This is indeed conveyed by (23). As for the ap-
pearance of 〈x̂2 + ŷ2〉 in (23), we can trace it back to the
meaning of ϕ. We have defined ϕ to measure the angular
momentum in quantum phase space, but with its vecto-
rial attribute removed. This means that the farther the
orbital motion is away from the phase-space origin the
larger ϕ should be. Quantum mechanically, the distance
away from the origin shows up as 〈x̂2 + ŷ2〉.

We can now use (23) to obtain the steady-state circu-
lation of L⇑ (see Supplementary Material). The result
is

ϕss = 4ω0

(
2κ⇑

κ⇓ − κ⇑
+ ℘− +

1

2

)
. (24)

The first term in ϕss describes a classical effect, while
the second and third terms are quantum. The first term
can be understood if the rotational flow had been purely
macroscopic. Increasing the amount of noise tends to
increase the average phase-space orbit (i.e. average dis-
tance away from the origin), while increasing the amount
of dissipation should decrease the orbit. The competition
between these two processes is captured by the first term
of (24). Using the classical analog of (22), we find the
macroscopic system of (9) and (10) to have a steady-state
circulation given by (see Supplementary Material)

ϕss = 4ω0

(
2κ

∆

)
. (25)

This matches the first term in (24) with κ playing the role
of κ⇑, and ∆ the role of κ⇓ − κ⇑. This result also shows
that the quantum circulation is further enhanced by a
parity-sensitive term, and constant term. The constant
term of 1/2 is none other than the familiar vacuum fluc-
tuations when the oscillator is in its lowest-energy state.
As long as ω0 6= 0, vacuum fluctuations prevent ϕss from
ever reaching zero in the quantum oscillator, which is al-
lowed classically. We also find that ϕss −→∞ if K −→ 1.
This makes sense since on average the oscillator’s ampli-
tude increases linearly without bound when K −→ 1 [58].

Given the existence of a conserved quantity, it is nat-
ural to ponder if there is also an underlying symmetry.
Since number-parity is a discrete variable, and since our
system is open, there is no unifying principle such as
Noether’s theorem to guide us. Nevertheless, symmetries
and conservation laws have been studied for Markovian
open systems [122, 135, 136], where definitions of sym-
metry analogous to the Hamiltonian case have been pro-
posed [136]. A given L is said to possess strong symmetry,
if there exists a unitary operator which commutes with
its Hamiltonian and Lindblad operators. It then follows
that for number parity, strong symmetry is both neces-
sary and sufficient for its conservation, defined formally

Physical property L↑ L⇑ L
Steady state unique multiple unique
Limit cycle yes yes no

Wigner negativity no yes ∅
Parity conservation no yes ∅
Parity symmetry weak strong ∅
Detailed balance no yes yes
Probability flux dissipative conservative conservative

TABLE I: Comparison of various physical attributes between
the three oscillator models defined by L↑ (conventional Stuart–
Landau model), L⇑ (noise-induced Stuart–Landau model), and L
the classical analog of L⇑ corresponding to (9). Note that Wigner
negativity and probability flux are for the steady state, and parity
refers to photon-number parity. Attributes that do not apply are
denoted by ∅.

by L†(−1)n̂ = 0 [122]. Thus, the preceding discussion
on the consequences of parity conservation on the rota-
tional flow in L⇑ can also be understood as consequences
of parity symmetry. For comparison, we see that L↑ does
not conserve number parity, but it nevertheless has weak
number-parity symmetry [122, 136]. Details and further
discussions of symmetry properties are deferred to the
Supplementary Material. The main points of our discus-
sion are now inducted into Table I.

B. Detailed balance and probability flux

Our noise-induced quantum limit cycle may be said to
be conservative in that it is derived from a conservative
system in the usual sense of nonlinear dynamics [130].
The consequences of this on the steady-state circulation
were derived from (23). Here we go further and show
that our noise-induced quantum limit cycle is driven by
a reversible probability flux in phase space. This also en-
tails a discussion of the closely related notion of detailed
balance. We shall be referring to our results within the
context of a limit cycle, but they in fact apply for a gen-
eral steady state.

It is well known from classical statistical physics that
a nonequilibrium steady state in detailed balance is also
a steady state driven by a reversible or dissipationless
probability current [137–139]. Detailed balance states
that a stationary system moving from (x1, y1) to (x2, y2)
in phase space over a time interval τ , is equally likely to
experience the time-reversed motion from (T[x2],T[y2])
to (T[x1],T[y1]), where the time reversal of some quantity
s is denoted by T[s]. Stated formally, detailed balance is
defined by

Pss(x2, y2, t+ τ ; x1, y1, t)

= Pss(T[x1],T[y1], t+ τ ; T[x2],T[y2], t) . (26)

If the nonequilibrium steady state corresponds to a limit
cycle, then detailed balance says that such a limit cy-
cle must be driven by a conservative probability current
[140]. It can be shown that our macroscopic oscillator
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possesses detailed balance, and indeed, we find its proba-
bility flux at steady state to be purely conservative, given
by (see Supplementary Material)

lim
t→∞

J(x, y, t) =

[
ω0 y
−ω0 x

]
Pss(x, y) . (27)

Note the flux J(x, y, t) is defined by the continuity equa-
tion LP (x, y, t) = −∇·J(x, y, t), and Pss(x, y) is as in
(16). The question now is whether the microscopic oscil-
lator also has detailed balance (and hence a conservative
probability flux, or vice versa). Unfortunately, there is
no direct connection between detailed balance in an open
quantum system and its probability flux. This makes the
same problem in the quantum case more nontrivial than
in the classical case. It turns out that both properties
hold in the microscopic oscillator as well as shown in Ta-
ble I. They are discussed below, with the relevant proofs
left to the Supplementary Material.

In general, a Markovian open quantum system has de-
tailed balance if and only if for any Â and B̂ [141, 142],〈

Â(t+ τ) B̂(t)
〉

ss
=
〈
T
[
B̂(t+ τ)

]
T
[
Â(t)

]〉
ss
, (28)

where T[Â(t)] is the time-reversed Â(t) [143]. One can
then show that L⇑, as defined by (1), indeed satisfies (28)
(see Supplementary Material). It is again worthwhile to
contrast L⇑ with the conventional model of L↑ in (5),
which does not satisfy detailed balance, and may thus be
understood to generate a dissipative limit cycle.

To show that the microscopic limit cycle has a con-
servative probability flux, we refer to its Wigner equa-
tion of motion in phase space, which we write as
∂W (x, y, t)/∂t = L⇑W (x, y, t). From this we may define
a Wigner current J⇑(x, y, t) by the continuity equation
L⇑W (x, y, t) = −∇·J⇑(x, y, t) [144, 145]. The Wigner
current can then be shown to satisfy (see Supplementary
Material)

lim
t→∞

J⇑(x, y, t) =

[
ω0 y
−ω0 x

]
Wss(x, y) , (29)

where Wss(x, y) is as defined in (12)–(14). With this, we
may unambiguously refer to the noise-induced quantum
limit cycle simply as conservative.

V. SUMMARY

Limit cycles are emblematic of regular motion in non-
linear nonequilibrium systems. In this paper we found
that multiplicative quantum noise alone can induce a mi-
croscopic damped oscillator to undergo limit-cycle oscil-
lations. Our results are based on a simple model whose
steady-state Wigner function may be derived and for
which a microscopic interpretation of the multiplicative
noise is possible. Such nonlinear open quantum systems
are rare. This has allowed us to completely classify the
noise-induced transitions, which are summarized in the
phase diagrams of Figs. 4 and 5.

Our central result is the discovery of noise-induced
transitions (going from K = 0 to K > 0 for a given ℘+ in
the phase diagram) which are both pure and genuinely
nonclassical. The possibility of such noise-induced tran-
sitions in an open quantum system is consistent with the
physical interpretation of L⇑ in Fig. 3. We also find such
noise-induced limit cycles to have fundamentally different
traits from the conventional model of L↑ (Table I). Inter-
estingly, when transiting the phase diagram from region
I to II along a fixed K, we also find a Hopf bifurcation
with respect to ℘+, which is a nonclassical parameter.
When ℘+ < 1/2 we then enter phase III where we refer
to the noise-induced limit cycle as “quantum protected,”
owing to their robustness against noise (as opposed to
limit cycles in phase II), and the preservation of Wigner
negativity at all values of K.
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Andronov–Hopf bifurcation, Chaos 24, 043122 (2014).

[64] T. Weiss, A. Kronwald, and F. Marquadt, Noise-
induced transitions in optomechanical synchronization,
New. J. Phys. 18, 013043 (2016).

[65] D. Yu, M. Xie, Y. Cheng, and B. Fan, Noise-induced
temporal regularity and signal amplification in an op-
tomechanical system with parametric instability, Opt.
Express 26, 32433 (2018).

[66] Y. Kato and H. Nakao, Quantum coherence resonance,
New. J. Phys. 23, 043018 (2021).

[67] H. Treutlein and K. Schulten, Noise induced limit cycles
of the Bonhoeffer–van der Pol model of neural pulses,
Ber. Bunsenges. Phys. Chem. 89, 710 (1985).

[68] H. Treutlein and K. Schulten, Noise-induced neural im-
pulses, Eur. Biosphys. J. 13, 355 (1986).

[69] D. Sigeti and W. Horsthemke, Pseudo-regular oscilla-
tions induced by external noise, J. Stat. Phys. 54, 1217
(1988).

[70] H. Gang, T. Ditzinger, C. Z. Ning, and H. Haken,
Stochastic resonance without external periodic force,
Phys. Rev. Lett. 71, 807 (1993).

[71] W.-J. Rappel and S. H. Strogatz, Stochastic resonance
in an autonomous system with a nonuniform limit cycle,
Phys. Rev. E 50, 3249 (1994).

[72] T. Ditzinger, C. Z. Ning, and G. Hu, Resonancelike re-
sponses of autonomous nonlinear systems to white noise,
Phys. Rev. E 50, 3508 (1994).

[73] A. Longtin, Autonomous stochastic resonance in burst-
ing neurons, Phys. Rev. E 55, 868 (1997).

[74] A. S. Pikovsky and J. Kurths, Coherence resonance in a
noise-driven excitable system, Phys. Rev. Lett. 78, 775
(1997).

[75] S.-G. Lee, A. Neiman, and S. Kim, Coherence resonance
in a Hodgkin–Huxley neuron, Phys. Rev. E 57, 3292
(1998).

[76] R. Benzi, A. Sutera, and A. Vulpiani, The mechanism
of stochastic resonance, J. Phys. A 14, L453 (1981).

[77] S. Fauve and F. Heslot, Stochastic resonance in a
bistable system, Phys. Lett. A 97, 5 (1983).

[78] L. Gammaitoni, F. Marchesoni, E. Menichella-Saetta,
and S. Santucci, Stochastic resonance in bistable sys-
tems, Phys. Rev. Lett. 62, 349 (1989).

[79] B. McNamara and K. Wiesenfield, Theory of stochastic
resonance, Phys. Rev. A 89, 4854 (1989).

[80] L. Gammaitoni, F. Marchesoni, and S. Santucci,
Stochastic resonance as a bona fide resonance, Phys.
Rev. Lett. 74, 1052 (1995).

[81] H. A. Kramers, Brownian motion in a field of force and
the diffusion model of chemical reactions, Physica 7, 284
(1970).

[82] P. Hänggi, P. Talkner, and M. Borkovec, Reaction-rate
theory: fifty years after Kramers, Rev. Mod. Phys. 62,
251 (1990).
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I. STEADY-STATE WIGNER FUNCTION

Here we wish to derive the Wigner quasiprobability distribution corresponding to the steady-state density operator

ρss = ℘+ ρ+ + ℘− ρ− , (1)

where

℘+ =

∞∑
n=0

〈2n|ρ(0)|2n〉 , ℘− =

∞∑
n=0

〈2n+ 1|ρ(0)|2n+ 1〉 , (2)

ρ+ = (1− K )

∞∑
n=0

K
n |2n〉〈2n| , ρ− = (1− K )

∞∑
n=0

K
n |2n+ 1〉〈2n+ 1| , K =

κ⇑
κ⇓

. (3)
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Recall that ρss is defined by L⇑ρss = 0 where

L⇑ = −i ω0 [â†â, ·] + κ⇓D[â2] + κ⇑D[â†2] . (4)

A. Derivation in terms of complex variables (α, α∗)

The Wigner function corresponding to an arbitrary ρ is defined by the following integral over the entire complex
plane C [1],

W̄ (α, α∗) =
1

π2

∫
C

d2β eβ
∗α−βα∗ Tr

[
ρ eβâ

†−β∗â] . (5)

Using (1) in (5) we get,

W̄ss(α, α
∗) = ℘+ W̄+(α, α∗) + ℘− W̄−(α, α∗) , (6)

where W+ and W− are Wigner functions corresponding to the states ρ+ and ρ− respectively. Again, W+ and W−
are each a linear combination of Wigner functions of Fock states. It is well known that ρ = |n〉〈n| has the Wigner
function

W̄n(α, α∗) = (−1)n
2

π
e−2 |α|2 Ln(4|α|2) , (7)

where Ln(v) is a Laguerre polynomial in v for each n. We thus have, from (5) and (7),

W̄+(α, α∗) =

∞∑
n=0

K
n W̄2n(α, α∗) =

2

π
(1− K) e−2|α|2

∞∑
n=0

K
n L2n(4|α|2) , (8)

W̄−(α, α∗) =

∞∑
n=0

K
n W̄2n+1(α, α∗) = − 2

π
(1− K) e−2|α|2

∞∑
n=0

K
n L2n+1(4|α|2) . (9)

The sums in (8) and (9) may be derived in closed form by using the generating function for Laguerre polynomials,
given by

G(u, v) =

∞∑
n=0

unLn(v) =
1

1− u
e−uv/(1−u) . (10)

This allows us to establish

G(u, v) +G(−u, v) =

∞∑
n=0

unLn(v) +

∞∑
n=0

(−1)nunLn(v) = 2

∞∑
n=0

u2nL2n(v) , (11)

G(u, v)−G(−u, v) =

∞∑
n=0

unLn(v)−
∞∑
n=0

(−1)nunLn(v) = 2

∞∑
n=0

u2n+1L2n+1(v) . (12)

Rearranging and using (10) gives,

∞∑
n=0

u2nLn(v) =
1

2

[
1

1− u
e−uv/(1−u) +

1

1 + u
euv/(1+u)

]
, (13)

∞∑
n=0

u2n+1L2n+1(v) =
1

2

[
1

1− u
e−uv/(1−u) − 1

1 + u
euv/(1+u)

]
. (14)

These relations can now be used to obtain W+ and W− on letting

u =
√

K , v = 4 |α|2 . (15)

We thus arrive at the steady-state Wigner function

W̄ss(α, α
∗) = ℘+ W̄+(α, α∗) + ℘− W̄−(α, α∗) , (16)
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where

W̄+(α, α∗) =
1− K

π
e−2|α|2

{
1

1−
√

K
exp

[
− 4
√

K |α|2

1−
√

K

]
+

1

1 +
√

K
exp

[
4
√

K |α|2

1 +
√

K

]}
, (17)

W̄−(α, α∗) =
1− K

π
√

K
e−2|α|2

{
1

1 +
√

K
exp

[
4
√

K |α|2

1 +
√

K

]
− 1

1−
√

K
exp

[
− 4
√

K |α|2

1−
√

K

]}
. (18)

We can independently verify (16)–(18) by showing that it is indeed the steady-state solution of corresponding
equation of motion for the Wigner function. Such an equation of motion may be derived by noting that (5) implies
us the following operator correspondences [1]:

â ρ ←→
(
α+

1

2

∂

∂α∗

)
W̄ (α, α∗) , (19)

â†ρ ←→
(
α∗ − 1

2

∂

∂α

)
W̄ (α, α∗) , (20)

ρ â ←→
(
α− 1

2

∂

∂α∗

)
W̄ (α, α∗) , (21)

ρ â† ←→
(
α∗ +

1

2

∂

∂α

)
W̄ (α, α∗) . (22)

The corresponding equation of motion for the Wigner function can then be shown to be

∂

∂t
W̄ (α, α∗, t) ≡ L̄⇑W̄ (α, α∗, t) = i ω0

(
∂

∂α
α− ∂

∂α∗
α∗
)
W̄ (α, α∗, t)

+ κ⇓

[
∂

∂α

(
|α|2 − 1

)
α+

∂2

∂α∂α∗

(
|α|2 − 1

2

)
+

1

4

∂3

∂α2 ∂α∗
α

]
W̄ (α, α∗, t)

+ κ⇓

[
∂

∂α∗
(
|α|2 − 1

)
α∗ +

∂2

∂α∗ ∂α

(
|α|2 − 1

2

)
+

1

4

∂3

∂α∗2 ∂α
α∗
]
W̄ (α, α∗, t)

+ κ⇑

[
− ∂

∂α

(
|α|2 + 1

)
α+

∂2

∂α∂α∗

(
|α|2 +

1

2

)
− 1

4

∂3

∂α2 ∂α∗
α

]
W̄ (α, α∗, t)

+ κ⇑

[
− ∂

∂α∗
(
|α|2 + 1

)
α∗ +

∂2

∂α∗ ∂α

(
|α|2 +

1

2

)
− 1

4

∂3

∂α∗2 ∂α
α∗
]
W̄ (α, α∗, t) .

(23)

We then find explicitly on substituting W̄ss(α, α
∗) into (23) that

L̄⇑ W̄ss(α, α
∗) = 0 . (24)

B. Polar coordinates (r, φ)

It will be convenient to reparameterise W̄ss in terms of polar coordinates for ease of comparison to the classical
steady-state distribution later on. The complex variable α is then related to polar coordinates (r, φ) by

α = r exp(iφ) . (25)

It is then simple to show that∫
C

d2α W̄ss(α, α
∗) =

∫ ∞
0

dr

∫ 2π

0

dφ r W̄ss(re
iφ, re−iφ) = 1 . (26)

Thus the new Wigner measure is

W̃ss(r, φ) = r W̄ss(re
iφ, re−iφ) = ℘+ W̃+(r, φ) + ℘− W̃−(r, φ) , (27)

where

W̃+(r, φ) =
1− K

π
r e−2r2

{
1

1−
√

K
exp

[
− 4
√

K r2

1−
√

K

]
+

1

1 +
√

K
exp

[
4
√

K r2

1 +
√

K

]}
, (28)

W̃−(r, φ) =
1− K

π
√

K
r e−2r2

{
1

1 +
√

K
exp

[
4
√

K r2

1 +
√

K

]
− 1

1−
√

K
exp

[
− 4
√

K r2

1−
√

K

]}
. (29)
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C. Cartesian coordinates (x, y)

The Cartesian coordinates are often the most intuitive for visualizing the dynamics and steady states. Here we
define the Cartesian coordinates (x, y) by

x = 2 r cosφ , y = 2 r sinφ . (30)

It is then simple to show∫ ∞
0

dr

∫ 2π

0

dφ W̃ss(r, φ) =

∫ ∞
−∞

dx

∫ ∞
−∞

dy
1

2
√
x2 + y2

W̃ss(r(x, y), φ(x, y)) = 1 . (31)

where

r =
1

2

√
x2 + y2 , φ = arctan

(
y

x

)
. (32)

As before,

Wss(x, y) =
1

2
√
x2 + y2

W̃ss(r(x, y), φ(x, y)) = ℘+W+(x, y) + ℘−W−(x, y) , (33)

with

W+(x, y) =
1− K

4π
e−(x2+y2)/2

{
1

1−
√

K
exp

[
−
√

K (x2 + y2)

1−
√

K

]
+

1

1 +
√

K
exp

[√
K (x2 + y2)

1 +
√

K

]}
, (34)

W−(x, y) =
1− K

4π
√

K
e−(x2+y2)/2

{
1

1 +
√

K
exp

[√
K (x2 + y2)

1 +
√

K

]
− 1

1−
√

K
exp

[
−
√

K (x2 + y2)

1−
√

K

]}
. (35)

II. CLASSIFICATION OF NOISE-INDUCED TRANSITIONS

Here we derive the different noise-induced transitions when thermal noise is added to the oscillator. Each type
of transition is defined by the steady-state behavior of the Wigner function in the presence of noise. We show how
the (℘+,K) plane can be divided into three different regions, each corresponding to a distinct phase of the Wigner
function.

A. Phase diagram

As can be seen from the steady-state Wigner function in any of the three coordinates above, it is a function of
only the radial distance from the origin. There is no loss of generality in treating the Wigner distribution as a
single-variable function. We thus define the single-variable function W (r) from either (16)–(18) or (33)–(35) to be
the unnormalized Wigner function,

W (r) ≡ W̄ss(re
iφ, re−iφ) = 4Wss(2r cosφ, 2r sinφ) . (36)

Below we work with W (r), for which single-variable calculus applies. For ease of reference we have reproduced Fig. 3
from the main text here along with its caption in Fig. 1. The function W (r) can exhibit different qualitative behaviors
depending on the parameters K and ℘+. Using P-bifurcations, the existence of a quantum limit cycle is defined by
the value of

r? ≡ arg max W (r) . (37)

If r? = 0, the unnormalized Wigner function has a single peak only at the origin, reflecting the stable fixed point at
the origin. If on the other hand r? > 0, the unnormalized Wigner function has a degenerate maxima along a circle
of radius r? in phase space, reflecting stable limit-cycle behaviour. To compute the transition point, we first solve
W ′(r) = 0 for r, where the prime denotes differentiation with respect to the argument. We then find a trivial solution
r = 0, and a nontrivial solution

r2
? =

1− K

8
√

K
ln

{(
1 +
√

K
)4[

1− (1− K)℘+ −
√

K
](

1−
√

K
)4[

1− (1− K)℘+ +
√

K
]} , (38)
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FIG. 1: Behavior of W (r) at ten different values of (K, ℘+), labeled from 1 to 10. Borderline cases are illustrated by points
2, 4, and 6. Note that point 6 is situated at (0.43, 0.6) (K value rounded to two decimal places), and point 9 is at (0.6, 0.53).
All insets show W (r) from zero and above in the region ℘+ ≥ 0.5. For W (r) in ℘+ < 0.5 (i.e. points 5 and 10), W = 0 is
marked on the vertical axis in the insets. A Hopf bifurcation occurs when I → II along ℘+ (1 → 2 → 3), while an inverse
stochastic bifurcation occurs for II → I along K (3 → 6 → 8). A II → III crossover cannot happen without W (0) becoming
negative. We find for all K values that W (0) is controlled by ℘+ as illustrated in the sequence of changes along K = 0.25
(1 → 2 → 3 → 4 → 5), or along K = 0.6 (7 → 8 → 9 → 10). Phase III is “quantum protected” where the noise-induced
oscillations are robust against thermal noise in retaining both its nonclassicality and limit-cycle behavior.

which corresponds to the limit cycle radius. Imposing the condition r2
? > 0 for the limit-cycle solution, we find the

condition for a limit cycle to exist is

℘+ <
3 + K

4 (1 + K)
. (39)

The same result can also be obtained by demanding W ′′(0) > 0. Note the limit-cycle transition occurs for all critical
points (Kc, ℘c

+) satisfying 4℘c
+ = (3 + Kc)/(1 + Kc). The leading order behavior of r? near (Kc, ℘c

+) can be calculated
as

r? ≈
4

1− Kc

√
Kc − K +

2
√

2

2℘c
+ − 1

√
℘c

+ − ℘+ . (40)

The square-root scaling law for the limit cycle amplitude r? is characteristic of a supercritical Hopf bifurcation [2].
The Wigner function W̄ss(α, α

∗) in (16) cannot be negative without it being negative at the origin. To see this, we
use the rotational symmetry of Wss(x, y) and consider Wss(x, 0) for x ≥ 0 without loss of generality. Suppose now
Wss(x, 0) contains negative values for some x∗ > 0, we then have

℘+ − (1− ℘+)/
√

K

1−
√

K
exp

(
−
√

K

1−
√

K
x2
∗

)
+
℘+ + (1− ℘+)/

√
K

1 +
√

K
exp

( √
K

1 +
√

K
x2
∗

)
< 0 . (41)

Upon rearranging gives

exp

(
2
√

K

1− K
x2
∗

)
<

(1− ℘+)/
√

K− ℘+

1−
√

K

[
1 +
√

K

℘+ + (1− ℘+)/
√

K

]
(42)
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for some x∗ > 0. Since the left-hand side is monotonically increasing in x, this condition must also be satisfied for all
0 ≤ x ≤ x∗. Hence W (r) contains negative values if and only if W (0) is negative. From this we obtain the condition
for Wigner negativity to be

℘+ <
1

2
. (43)

Summarizing, we obtain three qualitatively distinct phases of solutions in the (K, ℘+) parameter space (see Fig. 1):

• Phase I: No limit cycle and no Wigner negativity.

• Phase II: Limit cycle with a positive Wigner function.

• Phase III: Limit cycle with a negative Wigner function.

B. Example: Coherent initial state

To illustrate the ideas developed in the previous section, let us consider a specific example of an initial coherent
state |α〉. The even and odd steady-state populations are

℘+ = e−|α|
2

cosh |α|2 , ℘− = e−|α|
2

sinh |α|2 . (44)

Applying the limit cycle condition to coherent states, we obtain

|α|2 > 1

2
ln

[
2(1 + K)

1− K

]
. (45)

From this we learn that if we add an infinite amount of external noise to the system (i.e. K −→ 1), then the oscillator
must also possess an infinite amount of energy (i.e. |α|2) if a limit cycle is to be induced.

Recall that for the Wigner function to exhibit negativity, we must have ℘+ < 1/2. From Eq. (44), it can be
easily seen that ℘+ > 1/2. In other words, it is impossible to induce a negative Wigner function by initializing in
any coherent state. This can actually be extended to any state with a positive Wigner function (including Gaussian
states) as follows: If W̄ (α, α∗) > 0, then W̄ (0, 0) ∝ (℘+ − ℘−) > 0, which implies ℘+ > 1/2. Since number parity is
conserved, the Wigner function at the origin remains positive in the steady state. Moreover, the steady state Wigner
function in (16) precludes any negativity without W̄ (0, 0) < 0, hence the entire Wigner function remains positive in
the steady state. Note the converse is not true, i.e. a ρ(0) with a negative Wigner function may have ℘+ > 1/2. An
example is the even cat state.

C. Tail behavior

At large distances from the origin, the steady-state Wigner function is asymptotic to the unnormalized Gaussian

WG(x, y) =
1−
√

K

4π
√

K

[
1− (1−

√
K )℘+

]
exp

[
− 1−

√
K

2 (1 +
√

K)
(x2 + y2)

]
. (46)

Denoting the total area under WG(x, y) as A, we find that

1 +
√

K

2
≤ A =

1 +
√

K

2
√

K

[
1− (1−

√
K )℘+

]
≤ 1 +

√
K

2
√

K
. (47)

This shows that A −→ 1 as K −→ 1. This implies that the state becomes more Gaussian-like in the high-excitation
limit, which is physically intuitive.

III. CLASSICAL STEADY-STATE PROBABILITY DENSITY

Here we solve for the steady-state probability density function for the classical system defined by the Itô stochastic
differential equation,

dα(t) =
[
− i ω0 α(t) + 2κα(t)−∆ |α(t)|2 α(t)

]
dt+ α∗(t) dW (t) . (48)
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where ω0 is the frequency of the free oscillations and ∆ > 0. As in the main text, dW (t) is a complex Wiener
increment satisfying

dW ∗(t) dW (t) = 4κ dt . (49)

A. Polar coordinates (R,Φ)

A major simplification occurs if we convert from the complex-variable description to polar coordinates.

α(t) = R(t) eiΦ(t) . (50)

With the exception of α, we denote random processes using capital letters and their realizations using the correspond-
ing small letter. The stochastic dynamics of R(t) and Φ(t) may then be derived using standard techniques [3]. They
are given by

dR(t) =
[

3κR(t)−∆R3(t)
]
dt+

R(t)

2
dWR(t) , (51)

dΦ(t) = − ω0 dt+
1

2
dWΦ(t) , (52)

where dWR(t) and dWΦ(t) are independent real Wiener increments obeying the following Itô rules

dWR(t) dWΦ(t) = 0 , (53)[
dWR(t)

]2
=
[
dWΦ(t)

]2
= 8κ dt . (54)

From (51) and (52) we can see that the dynamics of R(t) and Φ(t) are independent processes and our two-dimensional
system simplifies to two one-dimensional systems. This independence of R(t) and Φ(t) means that each process has
its own Fokker–Planck equation. For R(t), it is given by

∂

∂t
PR(r, t) ≡ LR PR(r, t) = − ∂

∂r

(
3κ r −∆ r3

)
PR(r, t) +

1

2

∂2

∂r2
2κ r2 PR(r, t) . (55)

This permits a closed-form solution for the radial steady-state distribution,

℘R(r) ≡ lim
t→∞

PR(r, t) =
∆

κ
r e−∆r2/2κ . (56)

Note this has the form of a Rayleigh distribution. Similarly the phase dynamics in (52) corresponds to the operator
LΦ

∂

∂t
PΦ(φ, t) ≡ LΦ PΦ(φ, t) = − ∂

∂φ
(−ω0)PΦ(φ, t) +

1

2

∂2

∂φ2
2κPΦ(φ, t) . (57)

Imposing periodic boundary conditions (suitable for a circular variable such as Φ) on a 2π interval gives

℘Φ(φ) ≡ lim
t→∞

PΦ(φ, t) =
1

2π
. (58)

Since the radial and phase motions are independent, we have P̃ (r, φ, t) = PR(r, t)PΦ(φ, t) whose evolution can be
obtained by adding the operators LR and LΦ,

∂

∂t
P̃ (r, φ, t) ≡ L̃ P̃ (r, φ, t) = (LR + LΦ)P̃ (r, φ, t) . (59)

The joint steady-state distribution for R(t) and Φ(t) is therefore simply

P̃ss(r, φ) ≡ lim
t→∞

P̃ (r, φ, t) (60)

= ℘R(r)℘Φ(φ) =
∆

2πκ
r e−∆r2/2κ . (61)

We have also numerically verified (61) by simulating the Itô stochastic differential equations (51) and (52). An example
of the sampled distributions are shown in Fig. 2 (see figure caption for parameter values). Note from this result we can
already see a qualitative difference between the classical and quantum systems. The classical steady-state distribution
lacks the exponential growth present in W̃ss(r, φ). A well-known property of the Rayleigh distribution is that it is the
probability density for the modulus of a complex random variable whose real and imaginary parts are independent
and identically distributed Gaussians with zero mean. Thus, the form of (56) already tells us that α(t) is described
by two independent processes in phase space.
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FIG. 2: Histograms from numerical simulations of (51) and (52) for κ = ∆ = 1, ω0 = 10 with 106 samples. Since we are only
interested in the steady state, the transient dynamics in the stochastic simulations are discarded. (a) Radial probability density
(ideally a Rayleigh distribution, shown by the orange line). (b) Phase probability density (ideally uniform on a 2π interval,
orange line).

B. Cartesian coordinates (X,Y )

We can directly convert (61) to Cartesian coordinates. We define here (X,Y ) as earlier

X(t) = 2R(t) cos[Φ(t)] , Y (t) = 2R(t) sin[Φ(t)] . (62)

As with the Wigner function,

R(t) =
1

2

√
X2(t) + Y 2(t) , Φ(t) = arctan

[
Y (t)

X(t)

]
, (63)

and we obtain at once,

Pss(x, y) =
1

2
√
x2 + y2

P̃ss(r(x, y), φ(x, y)) =
∆

8πκ
e−∆(x2+y2)/8κ , (64)

We can verify that this is indeed the correct probability distribution in phase space by directly substituting this back
into the Fokker–Planck equation for X(t) and Y (t). We define here

α(t) =
1

2
[X(t) + i Y (t)] , (65)

so that on taking the real and imaginary parts of (48) we get

dX(t) =

{
ω0 Y (t) + 2κX(t)− ∆

4

[
X2(t) + Y 2(t)

]
X(t)

}
dt+

1

2

[
X(t) dWX(t) + Y (t) dWY (t)

]
, (66)

dY (t) =

{
− ω0X(t) + 2κY (t)− ∆

4

[
X2(t) + Y 2(t)

]
Y (t)

}
dt+

1

2

[
X(t) dWY (t)− Y (t) dWX(t)

]
. (67)

The noise terms in (66) and (67) arise from decomposing dW (t) into its real and imaginary parts in a similar fashion
as α(t),

dW (t) =
1

2

[
dWX(t) + i dWY (t)

]
, (68)

where dWX(t) and dWY (t) are independent real Wiener increments[
dWX(t)

]2
=
[
dWY (t)

]2
= 8κ dt . (69)

The Fokker–Planck equation corresponding to (66) and (67) is

∂

∂t
P (x, y, t) ≡ L P (x, y, t) = − ∂

∂x

[
ω0 y + 2κx− ∆

4
(x2 + y2)x

]
P (x, y, t) +

1

2

∂2

∂x2
2κ (x2 + y2)P (x, y, t)

− ∂

∂y

[
− ω0 x+ 2κ y − ∆

4
(x2 + y2)y

]
P (x, y, t) +

1

2

∂2

∂y2
2κ (x2 + y2)P (x, y, t) . (70)
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FIG. 3: (a) Density plot for the Cartesian probability distribution Pss(x, y) generated from (66) and (67) for κ = ∆ = 1, ω0 = 10
with 106 samples. The transient dynamics is discarded. (b) Density plot for the analytical Gaussian distribution in (64).

We then find from (64) and (70) that

L Pss(x, y) = 0 . (71)

This is also numerically verified in Fig. 3 using (66) and (67) from which we see the sampled Pss(x, y) shows good
agreement with the exact Gaussian distribution. It is worth pointing out here that we have also checked the consistency
between the stochastic differential equations in polar coordinates against those in Cartesian coordinates by plotting
(X,Y ) as (2R cos Φ, 2R sin Φ). The steady-state distribution for the latter is again a Gaussian as expected. It
is generally useful to simulate stochastic differential equations as they provide some intuition for the processes of
interest via direct visualization. Although we have not shown such results here, a good way to proceed is to use (51)
and (52) instead of (66) and (67) as the former pair of equations are decoupled.

IV. ROTATIONAL FLOW IN QUANTUM PHASE SPACE

A. Definition

The goal here is to generalise the measure of circulation from Refs. [4, 5] to an open quantum system. To motivate
the generalisation to quantum mechanics we begin with a deterministic classical system defined by

d

dt
x = f(x, y) ,

d

dt
y = g(x, y) . (72)

If the phase-space point has circular motion then we can expect that it should have a nonvanishing angular momentum
in phase space. It thus makes sense to define an angular momentum in phase space in analogous fashion to the orbital
angular momentum of a mechanical point particle, except now the position and velocity vectors are given by their
phase-space analogues. Using an orthonormal basis {ex, ey} in Cartesian coordinates, we may then define the phase-
space position vector u = x ex + y ey, and phase-space velocity vector v = f(x, y) ex + g(x, y) ey. We then define the
angular-momentum vector as the cross product,

u× v = [x g(x, y)− y f(x, y)] (ex × ey) . (73)

In fact, we will not be interested in u× v as a vector quantity, so we will simply define

ϕ ≡
∥∥u× v

∥∥ =
∣∣x g(x, y)− y f(x, y)

∣∣ . (74)

If the system is noisy, so that x(t) and y(t) become random processes X(t) and Y (t), then an average over the
realisations of X(t) and Y (t) may be performed as a sensible generalisation of (74),

ϕ ≡
∣∣E[X g(X,Y )− Y f(X,Y )

]∣∣ , (75)

where E[f(X,Y )] denotes a classical ensemble average of f(X,Y ) agains P (x, y, t). Note that if we add multiplicative
white noise to (72), then (75) assumes that g(X,Y ) and f(X,Y ) correspond to the Stratonovich forms of (72), either
by directly interpreting (72) as Stratonovich equations or by finding the equivalent Stratonovich forms.
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A further generalisation of ϕ to quantum mechanics is then possible on letting X −→ x̂ and Y −→ ŷ, except that
upon quantization, x̂ and ŷ become canonically conjugate, satisfying

[x̂, ŷ] = 2 i 1̂ . (76)

However, quantization also entails that we choose a particular ordering between x̂ and ŷ in such a way that x̂ and

ŷ remain Hermitian under time evolution. This results in the new functions f̆(x̂, ŷ) and ğ(x̂, ŷ) respectively. By the
same token, we define ϕ in quantum mechanics by the following symmetrized form

ϕ ≡ 1

2

∣∣〈[x̂ ğ(x̂, ŷ) + ğ(x̂, ŷ) x̂
]
−
[
ŷ f̆(x̂, ŷ) + f̆(x̂, ŷ) ŷ

]〉∣∣ . (77)

This ensures that ϕ is real valued, as it should be. If the system has a generator of time evolution given by L,

i.e. dρ(t)/dt = Lρ(t), then we replace f̆(x̂, ŷ) and ğ(x̂, ŷ) by using the adjoint of L, defined with respect to the
Hilbert–Schmidt inner product,

Tr
[
Â†L†B̂

]
= Tr

[
(LÂ)†B̂

]
. (78)

we therefore arrive at

ϕ ≡
∣∣<[〈x̂L†ŷ − ŷL†x̂〉] ∣∣ , (79)

where <[z] = (z + z∗)/2.

B. General formula for the microscopic oscillator

Here we wish to derive ϕ for the noise-induced oscillator defined by

L⇑ = −i ω0 [â†â, · ] + κ⇓D[â2] + κ⇑D[â†2] . (80)

It is straightforward to show that

L†⇑ = i ω0 [â†â, ·] + κ⇓
(
D[â2]

)†
+ κ⇑

(
D[â†2]

)†
, (81)

where (
D[â2]

)†
= â†2 · â2 − 1

2
â†2 â2 ·− 1

2
· â†2 â2 , (82)(

D[â†2]
)†

= â2 · â†2 − 1

2
â2 â†2 ·− 1

2
· â2 â†2 . (83)

The expectation value in (79) becomes〈
x̂L†ŷ − ŷL†x̂

〉
= i ω0

〈
x̂ [â†â, ŷ]− ŷ [â†â, x̂]

〉
+ κ⇑

〈
x̂
(
D[â†2]

)†
ŷ − ŷ

(
D[â†2]

)†
x̂
〉

+ κ⇓
〈
x̂
(
D[â2]

)†
ŷ − ŷ

(
D[â2]

)†
x̂
〉
. (84)

As we explained in the main text, an intuitive understanding of the dissipators in phase space suggests that they do
not contribute to ϕ. This can be shown by writing x̂ and ŷ in terms of â and â†. For the terms proportional to κ⇑
we have, 〈

x̂
(
D[â†2]

)†
ŷ − ŷ

(
D[â†2]

)†
x̂
〉

= − i
〈
(â+ â†)

(
D[â†2]

)†
(â− â†)

〉
+ i
〈
(â− â†)

(
D[â†2]

)†
(â+ â†)

〉
(85)

= i 2
〈
â
(
D[â†2]

)†â†〉− i 2
〈
â†
(
D[â†2]

)†
â
〉
. (86)

Similarly, the terms proportional to κ⇓ follow on replacing â†2 by â2 in the dissipator,〈
x̂
(
D[â2]

)†
ŷ − ŷ

(
D[â2]

)†
x̂
〉

= i 2
〈
â
(
D[â2]

)†
â†
〉
− i 2

〈
â†
(
D[â2]

)†
â
〉
. (87)
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The expectation values in (86) and (87) now contain equal numbers of â and â† which means that ultimately they can
be written in terms of the Hermitian operator n̂ = â†â. They are thus purely imaginary and vanish on substitution
into the definition of ϕ in (79). For the sake of concreteness we state their exact forms here,〈

x̂
(
D[â†2]

)†
ŷ − ŷ

(
D[â†2]

)†
x̂
〉

= i 4 (〈n̂〉+ 1) , (88)〈
x̂
(
D[â2]

)†
ŷ − ŷ

(
D[â2]

)†
x̂
〉

= − i 4 〈n̂〉 . (89)

The expression for ϕ therefore simplifies to

ϕ = ω0

〈
x̂2 + ŷ2

〉
. (90)

C. Steady-state formula for the microscopic oscillator

We can now derive an explicit formula for the steady-state circulation by using our result for ρss. Since the steady
state is diagonal in the number basis, it is more convenient to reexpress (90) as

ϕ = 4ω0

(
〈n̂〉+

1

2

)
. (91)

Note the 1/2 in the parentheses represents a vacuum contribution to the phase-space circulation. The steady-state
average photon number is then, upon using (1),

〈n̂〉ss = 2
(
1− K

) ∞∑
n=0

nK
n + 2℘−

(
1− K

) ∞∑
n=0

K
n , (92)

where we have used ℘+ + ℘− = 1. The second sum is simply a geometric series while it is simple to show that the
first sum is given by

∞∑
n=0

nK
n =

K

(1− K)2
. (93)

Equation (92) therefore becomes

〈n̂〉ss =
2K

1− K
+ ℘− . (94)

Substituting this back into (91) we thus arrive at an expression for the steady-state circulation ϕss

ϕss = 4ω0

(
2K

1− K
+ ℘− +

1

2

)
. (95)

We may also express ϕss as a function of only either ℘0 or ℘1, where ℘n = 〈n|ρss|n〉. Choosing here to write it as
a function of ℘0 we note that ℘− may be written as

℘− =
1− K− ℘0

1− K
, (96)

where we have used (or see Refs. [6, 7]),

℘+ =
℘0

1− K
, ℘− =

℘1

1− K
. (97)

Substituting (96) into (95) then gives

ϕss = 4ω0

[
1 + K− ℘0

1− K
+

1

2

]
. (98)
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D. Steady-state formula for the macroscopic oscillator

The definition of ϕ for a classical system was already discussed en route to the quantum-mechanical definition in
(75). Using the stochastic differential equations in (66) and (67) it is trivial to see that the time-dependent circulation
is

ϕ = ω0 E
[
X2(t) + Y 2(t)

]
. (99)

The steady-state value then follows simply by noting that X2(t) + Y 2(t) = 4R2(t), and that the statistical moments
for the Rayleigh distribution are well documented. For a Rayleigh distribution in the form of (56), the steady-state
mean and variance are

Ess

[
R(t)

]
=

√
πκ

2∆
, Vss

[
R(t)

]
= Ess

[
R2(t)

]
−
{

Ess

[
R(t)

]}2
=

(4− π)κ

2∆
. (100)

We thus have

ϕss = 4ω0

(
Vss

[
R(t)

]
−
{

Ess

[
R(t)

]}2
)

= 4ω0

(
2κ

∆

)
. (101)

V. PARITY SYMMETRY IN THE MICROSCOPIC OSCILLATOR

Arguably no discussion of a conserved quantity can be considered complete without at least mentioning its associated
symmetry. Thus we devote this section to some details and some further discussions related to the symmetry properties
of our microscopic model in (80). For a symmetry operation represented by some unitary operator Û , we can distingush
between two types of symmetries [8]. We begin our discussion by recalling what they are from the literature. The
first is called a strong symmetry. This requires that for a general Lindbladian

L = − i [Ĥ, · ] +

M∑
k=1

γk D[ĉk] , γk ≥ 0 , ∀ k , (102)

Û satisfies

[ Û , Ĥ] = [ Û , ĉk] = 0 , ∀ k . (103)

This can be understood to generalize the symmetry condition for Hamiltonian systems [defined by (102) with γk = 0
for all values of k] to the case when dissipative processes are present. Of course, L is a generator of time evolution

for a Markovian quantum system just as Ĥ is for a closed system. It thus also makes sense to define symmetry for an
open system by requiring that the action of Û commute with the Lindbladian, i.e.

[U ,L ] = 0 . (104)

where U is defined by U ρ = Û ρ Û−1. If we find a Û that satisfies (104), it is said to be a weak symmetry. Strong
symmetry implies weak symmetry but not vice versa [8, 9].

Using the above, we can show that L⇑ possesses a strong symmetry corresponding to photon-number parity, defined

by Π̂ = (−1)n̂ where n̂ = â†â. It is simple to see that Π̂ = Π̂† = Π̂−1. Since Π̂ is a function the number operator it
commutes with the Hamiltonian in (80). The only nontrivial requirements are from (103) with ĉ1 = â2 and ĉ2 = â†2,

[Π̂, â2] = [Π̂, â†2] = 0 . (105)

This is simple to show and has been discussed in the context of two-photon absorption (i.e. κ⇑ = 0) [9]. As noted
in the main text, parity conservation and strong symmetry are equivalent [9]. For a general L, conservation of an

arbitrary quantity represented by Ĉ is defined formally as

L†Ĉ = 0 . (106)

We may thus use the condition of strong symmetry to show that L↑ does not conserve photon-number parity. We
recall for convenience here that L↑ is given by

L↑ = − i ω0 [â†â, · ] + κ⇓D[â2] + κ↑D[â†] . (107)
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This is already intuitive from the appearance of D[â†] in L↑, since one-photon transitions take odd-parity number

states to even-parity ones and vice versa. The corresponding mathematical statement is simply [Π̂, â†] = −2 â† Π̂ 6= 0.
The possibility of L↑ to satisfying weak number-parity symmetry remains open. However, instead of showing this
directly, here we point out that both L↑ and L⇑ satisfy continuous rotational symmetry for which parity symmetry is

a special case of. A continuous rotation has the unitary operator P̂φ = exp(−iφ n̂) where φ is a continuous real-valued
parameter. It is not difficult to show that the operation of a rotation in phase space commutes with either L↑ and
L⇑,

[Pφ,L↑] = [Pφ,L⇑] = 0 . (108)

where Pφ ρ = P̂φ ρ P̂
−1
φ . This property was in fact shown in Ref. [10] for L⇑ but was referred to as phase covariance.

Clearly photon-number parity transformation corresponds to a rotation with φ = π. Thus, both L↑ and L⇑ exhibit a

weak continuous symmetry defined by P̂φ, and consequently a weak discrete symmetry given by P̂π = Π̂ (noting of
course that L⇑ actually exhibits a strong symmetry as well).

Note that we have expressed ρss in (1) deliberately as a linear combination of a state with even parity ρ+, and a
state with odd parity ρ−. This is a very natural decomposition of ρss given that photon-number parity is conserved.
Its form makes the steady state simple to see if the initial state does not contain either even or odd number states.
The normalization of ρss is also trivial to see in when expressed in the form of (1). There is a closely related idea, in
fact a theorem, which decomposes ρss not in terms of states like (1), but in terms of an orthonormal operator basis.
The expansion coefficients in this decomposition are defined by averages of conserved quantities with respect to the
initial state [9]. We complete our discussion of the symmetry and conservation of parity by simply finding this an
expansion for ρss. Given an initial state ρ(0), and an L with no purely imaginary eigenvalues, Ref. [9] has shown that

the steady state may be expanded in terms of D linearly independent conserved quantities {Ĉk}D−1
k=0 in the following

form

ρss =

D−1∑
k=0

Tr
[
Ĉ†k ρ(0)

]
M̂k , (109)

where {M̂k}D−1
k=0 is an orthonormal basis with respect to the Hilbert–Schmidt inner product, i.e. Tr[M̂†j M̂k] = δj,k .

To show that ρss for L⇑ can be put in the form of (109), we note that it has two linearly independent conserved
quantities, namely the parity of even and odd photon numbers. Hence D = 2. The expansion in (109) may then be
achieved with

Ĉ0 =

√
1− K

2

(
1̂ + Π̂

)
, Ĉ1 =

√
1− K

2

(
1̂− Π̂

)
. (110)

These operators are orthogonal since they contain only nonoverlapping projectors in the Fock basis. Orthogonality

then implies linear independence. To see that they are conserved we note that L†⇑ Π̂ = L†⇑ 1̂ = 0. These can be shown

straightforwardly from (81)–(82). It then follows from the linearity of L†⇑ that L†⇑ Ĉ0 = L†⇑ Ĉ1 = 0. The associated
operator basis is then

M̂0 =
√

1− K

∞∑
n=0

K
n |2n〉〈2n| , M̂1 =

√
1− K

∞∑
n=0

K
n |2n+ 1〉〈2n+ 1| . (111)

Clearly M̂0 and M̂1 are clearly orthogonal to each other,

Tr
[
M̂†0M̂1

]
= Tr

[
M̂†1M̂0

]
= 0 . (112)

It is also straightforward to see that they are normalized,

Tr
[
M̂†0M̂0

]
= Tr

[
M̂†1M̂1

]
= 1 . (113)

One may also verify that the steady state written in the form of (109) using (110) and (111) is indeed normalized.

Note that M̂0 and M̂1 are positive and Hermitian operators but do not have unit trace. We mention also that (109)
applies in the case of κ⇑ = K = 0 as well. However, in this case there is an additional conserved quantity arising from
the coherences as discussed in the main text, so that D = 3. As we will not be using this, the reader is referred to
Ref. [9] for the exact expression for the conserved quantity.
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VI. CLASSICAL DETAILED BALANCE

A. Definition

Let us now use the classical model to build some intuition about detailed balance and the nature of the probability
current. A classical stochastic system with two degrees of freedom is said to possess detailed balance if the following
relation is satisfied at steady state,

Pss(x2, y2, t+ τ ; x1, y1, t) = Pss(T[x1],T[y1], t+ τ ; T[x2],T[y2], t) . (114)

Here we are defining T[x] = πXx and T[y] = πY y (also valid on replacing x by X and y by Y ), and πX , πY may be ±1
depending on whether X and Y are even (+1) or odd (−1) variables under time reversal. It can then be shown that
a classical Markovian system given by ∂P (x, y, t)/∂t = LP (x, y, t) satisfies detailed balance if and only if [11, 12]

Pss(x, y) = Pss(T[x],T[y]) , (115)

where T denotes the operation of time reversal and

Pss(x, y) L †(x, y) = L (T[x],T[y])Pss(x, y) . (116)

We have also written out the dependence of L on x and y explicitly in order to define its time-reversed version. For
real functions on R2, the adjoint of L is defined by the inner product∫ ∞

−∞
dx

∫ ∞
−∞

dy f(x, y) L †g(x, y) =

∫ ∞
−∞

dx

∫ ∞
−∞

dy g(x, y) L f(x, y) . (117)

For our macroscopic oscillator, L is defined by a Fokker–Planck equation in terms of drift vector A, and a diffusion
matrix D,

A(x, y) =

[
AX(x, y)
AY (x, y)

]
, D(x, y) =

[
DX(x, y) DXY (x, y)
DYX(x, y) DY (x, y)

]
. (118)

These can be read off from (70), but for the purpose of this section, we work with the general form of L , given by

L = − ∂

∂x
AX(x, y)− ∂

∂y
AY (x, y) +

1

2

[
∂2

∂x2
DX(x, y) + 2

∂2

∂x ∂y
DXY (x, y) +

∂2

∂y2
DY (x, y)

]
. (119)

Note the diffusion matrix is always symmetric so that DXY (x, y) = DYX(x, y). Proving (115) and (116) to be true
using (119) would not add any insight to our understanding of the microscopic oscillator. For us, the significance of
(115) and (116) is that they have counterparts in quantum theory, as will be seen later. In the classical theory, they
are also the necessary and sufficient conditions for the the steady-state probability current to be purely reversible
[11, 12]. In fact, conditions (115) and (116) for a general Markov process are satisfied if and only if at steady state,
the probability flux is reversible and divergenceless, while the diffusion matrix transforms under time reversal as

DX(x, y) = π2
X DX(T[x],T[y]) , DY (z) = π2

Y DY (T[x],T[y]) , (120)

DXY (x, y) = πX πY DXY (T[x],T[y]) . (121)

The separation of the probability current into reversible and irreversible components follow from a formal decomposi-
tion of the drift into reversible and irreversible parts. These depend on the time reversal properties of the drift vector,
which are defined by

↔

A (x, y) =
1

2

[
A(x, y)−ΠA(T[x],T[y])

]
,

→

A (x, y) =
1

2

[
A(x, y) + ΠA(T[x],T[y])

]
. (122)

We have labelled the reversible drift using a bidirectional arrow and the irreversible drift by a unidirectional arrow.
The matrix Π is simply,

Π =

[
πX 0
0 πY

]
. (123)
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The probability current, which we denote by J , is defined by writing the Fokker–Planck equation as a continuity
equation for the probability density,

∂

∂t
P (x, y, t) = −∇ ·J(x, y, t) . (124)

We may then decompose the probability current by using (122) into reversible and irreversible parts,

J(x, y, t) =
↔

J (x, y, t) +
→

J (x, y, t) . (125)

They are simply

↔

J (x, y, t) =
↔

A (x, y)P (x, y, t) ,
→

J (x, y, t) =
→

A (x, y)P (x, y, t)− 1

2

[
∇>D(x, y)P (x, y, t)

]>
, (126)

where S> denotes the matrix transpose of S. As is usual, the steady-state current may be formally defined as

j(x, y) = lim
t→∞

J(x, y, t) . (127)

The condition for the steady-state probability current to be reversible and divergenceless can then be stated as

∇ ·
↔

j (x, y) = 0 ,
→

j (x, y) = 0 . (128)

We may simply use (126) and replace the time-dependent probability density by its steady-state value. As mentioned
earlier, condition (128) along with (120) and (120) are equivalent to (115) and (116).

B. Detailed balance in the macroscopic oscillator

The task of showing that our macroscopic oscillator satisfies (120), (121), and (128) is now a simple matter. Since
we are thinking of the macroscopic variables X and Y as the classical limits of x̂ and ŷ, these would have to be defined
as even and odd variables under time reversal to be consistent with quantum mechanics [13]. Hence,

πX = 1 , πY = −1 . (129)

The drift vector and diffusion matrix from (70) are

A(x, y) =

[
ω0 y + 2κx−∆ (x2 + y2)x/4
−ω0 x+ 2κ y −∆ (x2 + y2)y/4

]
, D(x, y) =

[
2κ(x2 + y2) 0

0 2κ(x2 + y2)

]
. (130)

Clearly, D(x, y) satisfies (120) and (121). Recall that we have also shown in (64) the steady-state distribution of the
macroscopic oscillator to be

Pss(x, y) =
∆

8πκ
e−∆(x2+y2)/8κ . (131)

From these one find (128) to be true, and in particular, with

↔

j (x, y) =

[
ω0 y
−ω0 x

]
Pss(x, y) . (132)

VII. QUANTUM DETAILED BALANCE

A. Definition

A Markovian quantum system defined by dρ(t)/dt = L ρ(t) is said to be in detailed balance if and only if [14, 15],〈
Â(t+ τ) B̂(t)

〉
ss

=
〈
T
[
B̂(t+ τ)

]
T
[
Â(t)

]〉
ss
, ∀ Â, B̂ (133)
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where T denotes the operation of time reversal via an antiunitary and antilinear operator T̂ [13]. It maps operators
to operators,

T(Â) = T̂ Â† T̂−1 , ∀ Â , (134)

and scalars to their complex conjugates, i.e. T̂ z T̂−1 = z∗ for z ∈ C. This condition of quantum detailed balance was
first proposed in Ref. [14], and rigorously justified in Ref. [15]. It is more general than detailed balance in the sense
of a Pauli equation. The latter is a semiclassical condition and is implied by (133). It can then be shown that if the
steady state is time-reversal invariant, i.e.

ρss = T(ρss) , (135)

then (133) is implied by the following superoperator condition

ρss L† = T(L) ρss . (136)

The time-reversed Lindbladian T(L) is another superoperator defined such that,

T(LÂ) = T(L)T(Â) , ∀ Â . (137)

Thus if both (135) and (136) are true for a given L then quantum detailed balance is proven. Conditions (135) and
(136) are analogs of (115) and (116), which is why we are using (133) to prove quantum detailed balance. But note
that unlike (115) and (116) in the classical theory, (135) and (136) are only sufficient conditions for quantum detailed
balance. For the microscopic oscillator given by L⇑, the steady state is diagonal in the number basis, and since number
states are time-reversal invariant, it follows that (135) holds. We thus only need to check (136) which requires the
time-reversed Lindbladian.

B. Time-reversed Lindbladian

Here we derive the time-reversed Lindbladian for the microscopic oscillator of L⇑. Recall for convenience that L⇑
is given by

L⇑ = −i ω0 [â†â, · ] + κ⇓

(
â2 · â†2 − 1

2
â†2 â2 ·− 1

2
· â†2â2

)
+ κ⇑

(
â†2 · â2 − 1

2
â2 â†2 ·− 1

2
· â2â†2

)
. (138)

Using (134), we therefore have for an arbitrary Â,

T(L⇑Â) = − i ω0

[
T(Â)T(â)T(â†)− T(â)T(â†)T(Â)

]
+ κ⇓

[
T(â†2)T(Â)T(â2)− 1

2
T(Â)T(â2)T(â†2)− 1

2
T(â2)T(â†2)T(Â)

]
+ κ⇑

[
T(â2)T(Â)T(â†2)− 1

2
T(Â)T(â†2)T(â2)− 1

2
T(â†2)T(â2)T(Â)

]
. (139)

To work out T(â) and T(â†) we can write â = (x̂+ iŷ)/2 and use the fact that [x̂, ŷ] = i 2 1̂ enforces x̂ to be an even
operator, and ŷ an odd operator under time reversal [13]:

T(x̂) = x̂ , T(ŷ) = −ŷ . (140)

Using (140), the time-reversed annihilation and creation operators are then

T(â) =
1

2

[
T(x̂)− iT(ŷ)

]
= â† , T(â†) =

1

2

[
T(x̂) + iT(ŷ)

]
= â . (141)

We may then simplify (139) further since

T(â2) = T(â)T(â) = â†2 , T(â†2) = T(â†)T(â†) = â2 . (142)

Using (137) we arrive at

T(L⇑)T(Â) = − i ω0

[
T(Â), â†â

]
+ κ⇓D

[
â2
]
T(Â) + κ⇑D

[
â†2
]
T(Â) . (143)

Note that T(L⇑) is not a time-reversed Lindbladian in the sense that it captures time-reversed motion of the micro-
scopic oscillator, which is what time-reversal means in physics. In phase space, the time-reversed motion of L⇑ should
interachange motion in the positive x direction with motion in the negative x direction, and similarly for y. Thus
time-reversed motion should interchange amplification with dissipation, and counterclockwise rotation with clockwise
rotation. Although T(L⇑) as defined by (137) does not correspond to time-reversal in this sense, it is nevertheless
what is required mathematically by quantum detailed balance.
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C. Detailed balance in the microscopic oscillator

We are now in position to prove quantum detailed balance by using (136). Recall also from (81)–(82) that

L† = i ω0 [â†â, · ] + κ⇑

(
â2 · â†2 − 1

2
â2 â†2 ·− 1

2
· â2 â†2

)
+ κ⇓

(
â†2 · â2 − 1

2
â†2 â2 ·− 1

2
· â†2 â2

)
. (144)

Equation (136) can then be written as, using (143) and (144),

ρss L† − T(L)ρss = i ω0 [ρss, â
†â] ·+ 1

2
κ⇑ [â2â†2, ρss] ·+ 1

2
κ⇓ [â†2â2, ρss] ·

+
(
κ⇑ ρss â

2 − κ⇓ â2ρss

) · â†2 +
(
κ⇓ ρss â

†2 − κ⇑ â†2ρss

) · â2 . (145)

Note that since ρss is diagonal in the number basis, it must commute with n̂ = â†â. Now since â2â†2 and â†2â2 may
also be written in terms of n̂, all commutator terms in (145) vanish,

[â†â, ρss] = [â2â†2, ρss] = [â†2â2, ρss] = 0 . (146)

It therefore remains to show that the second line of (145) vanishes. Using ρss = ℘+ρ+ + ℘−ρ− [recall (1)–(3)], we
have

κ⇓ â
2ρss = ℘+

(
1− κ⇑

κ⇓

) ∞∑
n=1

κn⇑

κn−1
⇓

√
(2n)(2n− 1) |2n− 2〉〈2n|

+ ℘−

(
1− κ⇑

κ⇓

) ∞∑
n=1

κn⇑

κn−1
⇓

√
(2n+ 1)(2n) |2n− 1〉〈2n+ 1| (147)

= ℘+

(
1− κ⇑

κ⇓

) ∞∑
m=0

κm+1
⇑

κm⇓

√
(2m+ 2)(2m+ 1) |2m〉〈2m+ 2|

+ ℘−

(
1− κ⇑

κ⇓

) ∞∑
m=0

κm+1
⇑

κm⇓

√
(2m+ 3)(2m+ 2) |2m+ 1〉〈2m+ 3| (148)

= κ⇑ ρss â
2 , (149)

where we have let n = m+ 1 in the second equality. Similarly,

κ⇑ â
†2ρss = ℘+

(
1− κ⇑

κ⇓

) ∞∑
n=0

κn+1
⇑

κn⇓

√
(2n+ 1)(2n+ 2) |2n+ 2〉〈2n|

+ ℘−

(
1− κ⇑

κ⇓

) ∞∑
n=0

κn+1
⇑

κn⇓

√
(2n+ 2)(2n+ 3) |2n+ 3〉〈2n+ 1| (150)

= ℘+

(
1− κ⇑

κ⇓

) ∞∑
m=1

κm⇑

κm−1
⇓

√
(2m− 1)(2m) |2m〉〈2m− 2|

+ ℘−

(
1− κ⇑

κ⇓

) ∞∑
m=1

κm⇑

κm−1
⇓

√
(2m)(2m+ 1) |2m+ 1〉〈2m− 1| (151)

= κ⇓ ρss â
†2 , (152)

where this time we have let n = m − 1 in the second equality. Hence we have shown that (136) holds which implies
the existence of quantum detailed balance as defined by (133).

D. Wigner current in the microscopic oscillator

We have just shown quantum detailed balance in a manner that closely matches classical detailed balance. From
this, one might guess that the underlying probability flux for the microscopic oscillator to also be purely reversible
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as in the macroscpic case. Unfortunately we have no result that directly connects the quantum probability flux in
phase space to detailed balance. Hence the proof that a purely reversible current is responsible for the microscopic
oscillator at steady state has to be carried out independently. We are of course motivated by the intuition developed
from the analyses above.

To find the probability flux in quantum phase space we need the equation of motion for the Wigner function.
Subsequently we will refer to the probability flux as a Wigner current (but keeping in mind that it would not be a
true probability current if the Wigner function becomes negative). Recall that the Wigner equation of motion was
given in (23), but in terms of the complex coordinates. Here we convert this equation as a function of the Cartesian
coordinates. This can be accomplished by noting the correspondence W̄ss(α, α

∗)←→ 4Wss(x, y) on reparameterizing
the Wigner function, and also the following correspondences for differential operators

∂

∂α
←→ ∂

∂x
− i ∂

∂y
,

∂

∂α∗
←→ ∂

∂x
+ i

∂

∂y
, (153)

∂2

∂α∂α∗
=

∂2

∂α∗ ∂α
←→ ∂2

∂x2
+

∂2

∂y2
, (154)

∂3

∂α2 ∂α∗
←→ ∂3

∂x3
+

∂3

∂x ∂y2
− i ∂3

∂y ∂x2
− i ∂

3

∂y3
,

∂3

∂α∗2 ∂α
←→ ∂3

∂x3
+

∂3

∂x ∂y2
+ i

∂3

∂y ∂x2
+ i

∂3

∂y3
, (155)

where we have noted α = (x+ iy)/2. The Wigner equation of motion in terms of Cartesian coordinates is then given
by

L⇑ =
∂

∂x

[
− ω0 y − (κ⇑ + κ⇓)x+

1

4
(κ⇓ − κ⇑)(x2 + y2)x

]
+

∂

∂y

[
ω0 x− (κ⇑ + κ⇓) y +

1

4
(κ⇓ − κ⇑)(x2 + y2) y

]
+

∂2

∂x2

[
1

2
(κ⇓ + κ⇑)(x

2 + y2)− (κ⇓ − κ⇑)
]

+
∂2

∂y2

[
1

2
(κ⇓ + κ⇑)(x

2 + y2)− (κ⇓ − κ⇑)
]

+
∂3

∂x ∂y2

[
1

4
(κ⇓ − κ⇑)x

]
+

∂3

∂x3

[
1

4
(κ⇓ − κ⇑)x

]
+

∂3

∂y ∂x2

[
1

4
(κ⇓ − κ⇑) y

]
+

∂3

∂y3

[
1

4
(κ⇓ − κ⇑) y

]
. (156)

This allows us to write the Wigner equation of motion in the form of a continuity equation. The associated current
shall be denoted by J⇑, and referred to as the Wigner current, defined by [16, 17]

L⇑W (x, y, t) = −∇·J⇑(x, y, t) . (157)

Note that (156) does not give us a Fokker–Planck equation for W (x, y, t) due to the presence of third-order derivatives.
Therefore we have no simple procedure for decomposing the probability current as in the classical theory of detailed
balance. However, we can still use the classical theory as a guide. We thus define

J⇑(x, y, t) =
↔

J⇑(x, y, t) +
→

J⇑(x, y, t) . (158)

The reversible Wigner current is then defined in analogous fashion to the reversible classical current, while the
irreversible Wigner current consists of all the remaining terms not in the reversible part. Although this definition
is phenomenological, it makes sense on physical grounds since all contributions to the Wigner current not in the
reversible component arise from irreversible processes. We thus define,

↔

J⇑ (x, y, t) =

[
ω0 y
−ω0 x

]
W (x, y, t) ,

→

J⇑ (x, y, t) = J⇑(x, y, t)−
↔

J⇑ (x, y, t) . (159)

As in the classical theory, we are interested in the steady-state Wigner current defined as,

j⇑(x, y) = lim
t→∞

J⇑(x, y, t) . (160)

The current j⇑(x, y) is thus defined by the steady-state Wigner function

Wss(x, y) = ℘+
1− K

4π
e−(x2+y2)/2

{
1

1−
√

K
exp

[
−
√

K (x2 + y2)

1−
√

K

]
+

1

1 +
√

K
exp

[√
K (x2 + y2)

1 +
√

K

]}
+ ℘−

1− K

4π
√

K
e−(x2+y2)/2

{
1

1 +
√

K
exp

[√
K (x2 + y2)

1 +
√

K

]
− 1

1−
√

K
exp

[
−
√

K (x2 + y2)

1−
√

K

]}
. (161)
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From this, and noting that K = κ⇑/κ⇓, we can show explicitly that

∇ ·
↔

j⇑(x, y) = 0 ,
→

j⇑(x, y) = 0 . (162)

where

↔

j⇑(x, y) =

[
ω0 y
−ω0 x

]
Wss(x, y) . (163)
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