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Abstract

We investigate the magnetic behavior of finite-temperature repulsive two-component
Bose mixtures by means of exact path-integral Monte-Carlo simulations. Novel algo-
rithms are implemented for the free energy and the chemical potential of the two com-
ponents. Results on the magnetic susceptibility show that the conditions for phase sepa-
ration are not modified from the zero temperature case. This contradicts previous predic-
tions based on approximate theories. We also determine the temperature dependence of
the chemical potential and the contact parameters for experimentally relevant balanced
mixtures.
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1 Introduction

The realization of mixtures of ultracold gases in the quantum-degenerate regime has opened
new interesting directions to study the simultaneous presence of superfluidity in multicom-
ponent systems, which could not be addressed with traditional quantum fluids such as liquid
4He or standard superconductors. The first examples of superfluid mixtures have been pro-
duced both with atoms obeying the same [1, 2] or different statistics [3]. In particular, two-
component mixtures of bosonic species below the Bose-Einstein transition temperature provide
one with the simplest set up to investigate the interplay between quantum magnetism and su-
perfluid properties. This includes novel phenomena such as combined mass and spin superflu-
idity [4], non dissipative spin drag [5], and Bose-enhanced magnetic effects [6]. In the case of
repulsive mixtures, the zero temperature scenario is well described by mean-field theory [7]:
the ground state is paramagnetic if the interspecies coupling constant is below a threshold
set by the strength of interactions within each component, and is instead fully ferromagnetic,
i.e. full phase separation between the two components occurs, if the coupling exceeds this
critical value. This scenario has been also confirmed in a series of experiments [8–11] and
quantum Monte Carlo simulations for trapped mixtures, both at zero [12] and finite temper-
ature [13]. At finite temperatures, perturbative approaches, such as Hartree-Fock (HF) and
Popov theories, predict an intriguing scenario holding for mixtures below the Bose-Einstein
condensation (BEC) temperature: The paramagnetic state at low temperature can turn fer-
romagnetic at higher temperature if the interspecies coupling is close enough to the T = 0
threshold [14–16]. According to these theoretical schemes, the mechanism responsible for the
magnetic transition are beyond mean-field effects induced by temperature, which destabilize
the paramagnetic phase. Similar effects of pure quantum nature have instead a stabilizing role
in attractive mixtures and lead to the formation of self-bound droplets [17–19]. An important
question, which needs to be answered, is whether the predictions of perturbative approaches
are accurate enough to include the relevant role played by fluctuations around the transition
temperature.

In this work we use exact path-integral Monte Carlo (PIMC) simulations to investigate
the magnetic and thermodynamic properties of a repulsive two-component Bose mixture. In
particular, novel algorithms are implemented to obtain precise unbiased predictions for the
chemical potentials of the two separate components and for the total free energy. This pro-
vides us with crucial information on the chemical equilibrium at finite polarization and on
the occurrence of stable free energy minima. We find that the magnetic susceptibility at finite
temperature is well described by the simple zero temperature mean-field prediction and also
that there is no evidence of a temperature-induced ferromagnetic transition. Consequently,
the conditions for phase separation remain unchanged from the T = 0 case. Furthermore, for
the choice of interspecies coupling corresponding to a balanced mixture of sodium atoms, we
calculate chemical potential and contact parameters as a function of temperature, pointing out
their deviations in the critical region from the predictions of perturbative methods. In partic-
ular, the interspecies contact parameter features a suppression at intermediate temperatures
caused by statistical effects which indicates an enhanced repulsive correlation between the
two components.
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2 Methods

We consider the following Hamiltonian describing a system of N = N1 + N2 Bose particles
belonging to two distinguishable components with equal mass m

H = −
ħh2

2m

N1
∑

i=1

∇2
i −
ħh2

2m

N2
∑

i′=1

∇2
i′ +

N1
∑

i< j

v(|ri − r j|)

+
N2
∑

i′< j′
v(|ri′ − r j′ |) +

N1,N2
∑

i,i′
v12(|ri − ri′ |) . (1)

The intraspecies potentials are assumed to be the same, denoted by v(r), and v12(r) describes
interspecies interactions. All potentials are repulsive and modeled by hard spheres, i.e. the po-
tential is infinite inside the diameter of the sphere and zero outside. The two parameters a and
a12 define, respectively, the range of the v and v12 potential and the corresponding value of the
s-wave scattering length. In the dilute regime of interest, interaction effects only depend on

the coupling strengths: g = 4πħh2a
m and g12 =

4πħh2a12
m . To discuss magnetic properties we intro-

duce the component densities n1+n2 = n and the polarization parameter p = (n1−n2)/n. For
such a symmetric mixture, mean-field theory at zero temperature predicts miscibility (p = 0)
if g12 < g and a fully separated state (p = 1) if g12 > g [7]. Furthermore, the same theory
yields the expression χ = 2

g−g12
for the magnetic susceptibility in the paramagnetic phase.

In a PIMC simulation, we use periodic boundary conditions in a box of volume V at fixed
density n = N/V . We work with the well established worm algorithm in continuous space
to efficiently sample bosonic permutations [20]. Recently the method has been further devel-
oped to be fully consistent with periodic boundary conditions and was applied to the study
of the single-component gas [21]. The algorithm is described in details in Ref. [22]. In the
present study, we implemented also the calculation of the total free energy, of the free energy
differences for different polarizations, and of the chemical potentials for both components in
the canonical ensemble, generalizing to mixtures the technique first proposed in Ref. [23]. The
details of the Monte Carlo moves added to the PIMC algorithm can be found in the Appen-
dices A and B. In addition, we use also HF and Popov theories to compare with PIMC results.
Details on the derivation of the free energy and related quantities within the HF and Popov
scheme are given in Appendix C.

3 Magnetic behavior of binary mixtures

We first focus on the magnetic properties of the mixture, analyzing how the chemical potential
and the total free energy depend on the polarization. We choose the value na3 = 10−4 for the
gas parameter which on one side emphasizes the interesting effects due to interactions and
on the other side ensures that the results are universal in terms of solely the gas parameter.
However it is worth pointing out that stronger interactions could be realized in resonantly
interacting gases [24].

In Fig. 1, the chemical potentials of the two components are plotted against polarization
at fixed temperature T = 0.794T0

c , where kB T0
c =

2πħh2

m (n/2ζ(3/2))
2/3 is our reference energy

scale, corresponding to the BEC transition temperature of a balanced (p = 0) non-interacting
mixture. The majority component 1 is Bose condensed for all values of p shown in the figure,
while, at this temperature, the minority component 2 turns normal at the critical polarization
pc ≃ 1− (T/T0

c )
3/2 ≃ 0.292 corresponding to the maximum of the HF and Popov results for

µ2. In panels (b) and (c), referring to g12 > 0, we notice that HF and Popov theories predict
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Figure 1: Chemical potentials µ1 (blue) and µ2 (red) as a function of the polariza-
tion p = (N1 − N2)/N for a system with a total of N = N1 + N2 = 128 particles at
temperature T = 0.794T0

c and with gas parameter na3 = 10−4, for four values of
the couplings ratio g12/g. The dashed lines are the HF predictions, the solid lines
are the Popov predictions. For the minority (red) component, the two coincide for
p > pc . In panel (d) only the HF lines are shown. The vertical lines indicate the
critical polarization pc .
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Figure 2: Free energy as a function of the polarization p = (N1−N2)/N for a system
with a total of N = N1 + N2 = 128 particles at temperature T = 0.794T0

c and with
gas parameter na3 = 10−4, for four values of the couplings ratio g12/g. The dotted
blue lines in the panels (a) and (b) are the parabolas obtained from the mean-field
prediction of the magnetic susceptibility χ = 2/(g − g12), the green dashed lines are
the HF predictions, the red solid lines are the Popov predictions. In panel (d) only
the HF line is shown. The vertical lines indicate the critical polarization pc .

a crossing of chemical potentials at finite polarization p > pc . This crossing corresponds to a
minimum in the free energy F according to the thermodynamic relation µ1−µ2 =

�

∂ F/N
∂ p

�

n,T
.

The minimum signals the phase-separated state where the majority component is Bose con-
densed and in equilibrium with the minority one in the normal phase [15]. This behavior of
the HF and Popov free energies is shown in Fig. 2 [see panels (b) and (c)]. Note that the
chosen value of g12/g = 0.93 corresponds to the |F = 1, mF = 1〉 and |F = 1, mF = −1〉
Bose-Bose mixture of 23Na atoms investigated experimentally in Refs. [4, 25]. According to
HF and Popov theories, this mixture should provide an example of the striking phenomenon of
a paramagnetic state at low temperature which turns ferromagnetic at higher temperatures,
as predicted in Ref. [15]. However, the PIMC results for µ1 and µ2 at g12/g = 0.93, do not
confirm this scenario. The majority component chemical potential µ1 is in good agreement
with the Popov result, but µ2 deviates significantly in the region p > pc and does not exhibit
the peak predicted by HF and Popov theories. As a result, no crossing occurs for p > pc and no
minimum appears in F(p) other than at p = 0. Furthermore, from the thermodynamic relation

F(p) = F(0) + N
2

np2

χ holding at small polarization, we find a good agreement using the zero
temperature mean-field result χ = 2/(g− g12) of the magnetic susceptibility, as can be seen in
panels (a) and (b) of Fig. 2, where the MF prediction, shifted to coincide with the PIMC data
at p = 0, well reproduces the p2 behavior of the PIMC data. Similar results are obtained for
the fully symmetric case g12 = g, where the chemical potentials exactly coincide for p < pc
and separate without crossing for larger polarizations. As a result the free energy is flat as a
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Figure 3: Free energy difference for a mixture with na3 = 10−4, and g12/g = 0.5
and T = 0.794T0

c as a function of the polarization squared. The PIMC results are
compared with the T = 0 mean-field (MF - blue dotted line), HF (green dashed
line) and Popov (red solid line) predictions. The vertical line indicates the critical
polarization pc .

function of polarization and the magnetic susceptibility diverges. Interestingly, this behavior,
which is well understood at T = 0 where the ground state is degenerate with respect to po-
larization, remains valid at finite temperature as long as both condensates are present. The
results shown in panels (a) and (d) of Figs. 1 and 2 are instead in better qualitative agreement
with approximate perturbative approaches. The case g12 = 0 corresponds to no interaction
between the two components: µ2 decreases with p, although without a small peak, and F
monotonically increases following the mean-field magnetic susceptibility. More interesting is
the case g12 = 1.2g, where the mixture is phase separated already at T = 0. Notice that Popov
theory can not be applied here if both condensates are present because spin excitations ac-
quire an unphysical complex energy. The minority chemical potential µ2 displays a maximum,
although not as large as predicted by HF theory, and a crossing point with µ1. As a conse-
quence, the free energy indicates instability at p = 0 and shows a clear minimum at p > pc ,
corresponding to the phase separated state with partial polarization.

We further analyze the magnetic behavior of the mixture in Fig. 3 where we show the free
energy difference ∆F = F(p)− F(0) as a function of p2 for the intermediate value g12 = 0.5g
of the interspecies coupling constant and at T = 0.794T0

c . This choice of parameters empha-
sizes deviations of the magnetic susceptibility with respect to HF and Popov theories. We find
that F depends linearly on p2 over a large range of values extending also beyond the critical
polarization pc . Furthermore, the coefficient of the linear dependence, proportional to χ−1, is
well reproduced by the mean-field result χ−1 = (g− g12)/2 shown in the figure by the MF line.
In contrast, HF and Popov results provide a poor account of the polarization dependence of the
free energy. A possible explanation of this inadequacy involves the role of critical fluctuations
which control the thermodynamics close to the transition point and, in general, can not be
described using perturbative methods such as HF and Popov theories. The width of the critical
region is predicted to shrink as na3 → 0 [26], but for experimentally relevant values of the
gas parameter (na3 ≃ 10−4−10−6) it remains of the same order as the transition temperature
itself.

From these results we conclude that, in contrast to HF and Popov predictions, the magnetic
susceptibility depends very little on the temperature, and the conditions for phase separation
remain the same as at T = 0. If g12 < g the only thermodynamically stable phase is the param-
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Figure 4: Snapshots of particle positions during PIMC simulations at equilibrium.
Blue circles represent the N1 = 4000 particles of the first component, the red squares
represent the N2 = 4000 particles of the second component. A single imaginary-time
slice is considered. The gas parameter is na3 = 10−4. The five panels correspond
to different temperatures T , interspecies couplings g12, or different initial configu-
rations. Panel (a): T/T0

c
∼= 0.238, g12/g = 0.93, components initially separated

(along the vertical direction). Panel (b): T/T0
c
∼= 0.873, g12/g = 0.93, components

initially separated. Panel (c): T/T0
c
∼= 0.238, g12/g = 1.2, components initially

separated. Panel (d): T/T0
c
∼= 0.238, g12/g = 1.2, components initially mixed.

Panel (e): T/T0
c
∼= 0.4762, g12/g = 1.2, components initially separated. Panel (f):

T/T0
c
∼= 0.7937, g12/g = 1.2, components initially mixed.

agnetic state at p = 0. A ferromagnetic state forms when g12 > g and the effect of temperature
is to reduce the equilibrium polarization from the p = 1 value achieved only at zero temper-
ature. Since we have observed that the simple T = 0 scenario is applicable at na3 = 10−4,
we expect it to hold also at lower densities. We checked numerically that for vanishing gas
parameter the free energy difference between the p = 0 state and the stable minimum at finite
p predicted by Popov theory is suppressed as g3/2 and furthermore the minimum is shifted to-
wards higher temperatures. As a consequence, we expect critical fluctuations to play a major
role in the magnetic response of the mixture also in the regime of extremely low densities.

3.1 Particle-position snapshots

Visualizing instantaneous particle positions during PIMC simulations allows us to shed some
light on the ferromagnetic transition. To minimize the effects due to inter-domain interfaces,
we consider large scale simulations comprising N = 8000 particles, with N1 = N2. The gas
parameter is na3 = 10−4. Fig. 4 shows the position snapshots observed after thermalization
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Figure 5: Chemical potential of an unpolarized mixture with na3 = 10−6, and
g12/g = 0.93 as a function of the temperature. The PIMC results in the thermo-
dynamic limit (black points) are compared with the HF (green dashed line) and the
Popov (red solid line) predictions.

is reached. Two initial particle configurations are considered. They feature either vertically
separated or mixed components. In the separated configuration, the first component is uni-
formly randomly distributed in the lower half of the 3D simulation box, while the second
component is in the upper half. In the mixed initial configuration, both components are uni-
formly distributed in the whole box. In panels (a) and (b), the interspecies coupling strength
is g12/g = 0.93, i.e., below the T = 0 MF critical point. In the first panel, the temperature is
relatively low, namely, T/T0

c
∼= 0.238. Here, even Popov theory would predict a paramagnetic

state. In the second, it is closer to the BEC transition temperature, where Popov theory would
predict a ferromagnetic state. The two simulations start in the separated configuration. De-
spite of being initially separated, the two components rapidly mix, indicating a paramagnetic
state, both at low temperature and closer to the BEC transition. In panel (c), the inter-species
interaction strength (g12/g = 1.2) is beyond the critical point predicted by the MF theory. In
this case, the two components keep the initial spatial separation along the vertical direction,
with only minor mixing close to the interface separating the two domains. Interestingly, even
when they start from a mixed configuration [panel (d)], they form two well defined ferromag-
netic domains. This indicates that large-scale PIMC simulations are able to simulate phase
separated states. Chiefly, these observations further corroborate the claim that the finite tem-
perature transition corresponds to the T = 0 MF scenario, in contrast to the HF and Popov
predictions. When the temperature is raised [panel (e)], the interface is less regular and it
looses memory of the initial position. One also notices a larger impurity density, correspond-
ing to a ferromagnetic state with partial polarization. Moving even closer to the BEC transition
temperature T0

c [panel (f)], the two domains can be hardly identified by naked eye. However,
we argue that in the thermodynamic limit one would still observe a (partially) ferromagnetic
state, meaning that the Curie critical temperature where melting occurs is even higher.

4 Thermodynamic properties of balanced mixtures

We now turn our attention to the study of thermodynamic quantities, focusing on the g12 = 0.93g
sodium mixture in the balanced state p = 0. In this case we have chosen the value na3 = 10−6
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Figure 6: Intraspecies (panel (a)) and interspecies (panel (b)) contact parameters
of an unpolarized mixture with na3 = 10−6, and g12/g = 0.93 as a function of
the temperature. The PIMC results in the thermodynamic limit (black points) are
compared with the HF (green dashed line) and the Popov (red solid line) predictions.

for the gas parameter which is closer to experimentally relevant conditions in the absence of
Feshbach resonances. The PIMC results for the thermodynamic quantities shown below are
the extrapolations to the thermodynamic limit of the data computed with up to 512 total par-
ticles. In Fig. 5 we show the chemical potential µ = µ1 = µ2 of the mixture as a function of
temperature below and above the transition point and we compare it with the results of per-
turbative approaches. The results are in good agreement with both HF and Popov predictions
when the temperature is not too close to the critical point. In the critical region around T0

c ,
deviations are sizable. They tend to suppress the maximum, similarly to the results of Fig. 1
for the minority component. We notice that a maximum in the temperature dependence of
the chemical potential should be expected on general grounds from the theory of superfluids
and has been recently observed in a single-component dilute Bose gas [27]. The PIMC results
for µ in a single-component gas are discussed in the appendix as a test study of the chemical
potential algorithm.

In Fig. 6 we show the results for the contact parameters, important thermodynamic quanti-
ties sensitive to short-range correlations. In a symmetric unpolarized mixture one defines two
contact parameters C11 = C22 = C and C12 associated to correlations within each component
and between the two components respectively

C = 16π2a2 ∂ F/V
∂ g

, C12 = 32π2a2
12
∂ F/V
∂ g12

. (2)

The contact parameter C has been measured as a function of temperature in a single-component
gas [28] and in a mixture of a Bose gas with impurities [29]. In our PIMC simulations we have
computed C and C12 from the short-range behavior of the pair correlation function for parti-
cles belonging to the same and to different components [21]. The results for C are in good
agreement with both HF and Popov predictions, showing deviations only in the vicinity of T0

c .
For C12, instead, the HF prediction does not depend on the temperature, while the Popov pre-
diction yields a small minimum. Our PIMC findings show a small minimum around T ≃ 0.7T0

c
which reproduces this. This enhanced repulsive correlation between the two components at
intermediate temperatures has been already discussed in repulsive mixtures [30, 31] and de-
serves further investigation.
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5 Conclusion

We have investigated the magnetic and thermodynamic properties of repulsive Bose mixture
using exact numerical methods. We can rule out a ferromagnetic transition predicted to oc-
cur at finite temperature by perturbative approaches and we find good agreement with the
magnetic susceptibility from simple mean-field theory at zero temperature. This claim is fur-
ther corroborated by the analysis of particle-positions snapshots. Thermodynamic quantities
reveal the role of critical fluctuations close to the BEC transition point and the behavior of the
contact parameters contains important information on short-range correlations in the mixture
that can be measured in future experiments. Our findings indicate the importance of unbiased
simulations for atomic mixtures, in contrast to previous perturbative treatments of repulsive
and attractive two-component Bose gases.
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A PIMC computation of chemical potential and free energy

In this appendix, we present the details of the PIMC algorithm we employ for the computa-
tion of the chemical potential of a Bose gas. The basic idea is to recognize that the chemical
potential can be derived from the ratio of the partition functions for the systems with N + 1
and N particles (at fixed volume and temperature) as

µ(N , T ) = F(N + 1, T )− F(N , T ) = −kB T log
ZN+1

ZN
. (3)

As noted in Ref. [23] the above formula can be leveraged in a canonical PIMC calculation by
enlarging the configurational space to include the sector with one additional particle. The ratio
ZN+1/ZN is then evaluated as the relative time spent by the simulation in the two sectors. The
simulation resembles a grand canonical one, with the difference that it is restricted to states
with either N or N+1 particles, thus providing higher statistics for the computation of µ(N , T ).
Combining the chemical potential with the pressure, we can obtain the free energy

F = Ω+µN = −PV +µN , (4)

where Ω= −PV is the grand canonical potential.

A.1 Details of the algorithm

In order to extend the algorithm described in Ref. [22] and enable the computation of the
chemical potential we work with N + 1 polymers and implement a boolean variable for each

10
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Figure 7: The four sectors interconnected by the web of sector-changing moves.

polymer to activate or deactivate it.
The configurational space is now composed by four sectors: the original ZN and GN to-

gether with the corresponding sectors with one additional particle ZN+1 and GN+1 and one
needs to introduce appropriate Monte Carlo moves to allow the Markov-Chain to visit all the
configurations within these sectors. The four sectors together with the sector-changing moves
are summarized in Fig. 7. In general one can introduce a grand canonical chemical potential
µgc as a simulation parameter to be used to increase the sampling efficiency. In particular it
can be tuned to be close to the expected value e.g. by using the Hartree-Fock approximation,
in order to balance the simulation time spent within the sectors with N and N + 1 particles.
The chemical potential is then evaluated as

µ(N , T ) = µgc − kB T log
t(ZN+1)
t(ZN )

, (5)

where t(ZN+1)/t(ZN ) is the ratio of the simulation time spent in the two sectors ZN+1 and ZN .
We have implemented three sets of particle-number changing moves—Extend/Shorten Worm,
Add/Remove Worm and Add/Remove Ring Polymer—that are briefly described below using the
notation of Ref. [22] and indicating with∆U the variation in the potential energy between the
new proposed configuration and the old one. Within the primitive approximation we would
have ∆U = β

M

∑

j

�

V ′j − Vj

�

, where M is the total number of imaginary-time slices and V ′j (Vj)
is the sum of the two-body potentials over all pairs of particles at the slice j after (before) the
Monte Carlo update. Note that, when in the sectors with N particles, one must be careful to
exclude the deactivated polymer from the computation.

Extend/Shorten Worm These moves connect the sectors GN and GN+1 by adding or remov-
ing a polymer at the end of the worm. To extend the worm we first check if sector is GN , then
we activate the extra polymer and we put it in permutation with the worm’s head. We then
use the staging algorithm to redraw the last polymer as in move head. The move is accepted
with probability

AEX =min
�

1, eβµgc−∆U
	

. (6)

To shorten the worm we first check if sector is GN+1 and if the worm is at least two polymers
long. Then we deactivate the last polymer of the worm. The move is accepted with probability

ASH =min
�

1, e−βµgc−∆U
	

. (7)
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Add/Remove Worm These moves connect the sectors ZN and GN+1 by adding or removing a
one-polymer worm. To add the worm we first check if sector is ZN , then we activate the extra
polymer, we uniformly sample its first bead in the volume and we use the staging algorithm
to sample the rest of the polymer as in move head. The move is accepted with probability

AAW =min
�

1, Ceβµgc−∆U
	

, (8)

where C is the open/close parameter. The complementary move consists in removing a one-
polymer long worm from the GN+1 sector by deactivating it. The move is accepted with prob-
ability

ARW =min
�

1, C−1e−βµgc−∆U
	

. (9)

Add/Remove Ring These moves connect the sectors ZN and ZN+1 by adding or removing a
ring polymer (i.e. a polymer in permutation with itself and with zero winding). To add the
ring we first check if sector is ZN , then we activate the extra polymer and we uniformly sample
its first bead in the volume. The last bead M of the polymer is then set to be equal to the first
and we use the staging algorithm to sample the rest of the polymer. The move is accepted with
probability

AAR =min

�

1,
V

(N + 1)λD
T

eβµgc−∆U

�

. (10)

The complementary move consists in removing a one-polymer ring with zero winding from
the ZN+1 sector by deactivating it. The move is accepted with probability

ARR =min

�

1,
(N + 1)λD

T

V
e−βµgc−∆U

�

. (11)

A.2 Benchmarks

Following the strategy of Ref. [22]we carefully check our implementation by running a number
of tests. First of all, we verify that we correctly recover the values of the chemical potential
for the ideal Bose gas for each system size N . In Fig. 8 we show the PIMC results at the
temperature T = 1.5T0

c compared with the exact values (obtained via the recursion formulas
as in Refs. [32,33] and reviewed in Ref. [22]) and with the result in the thermodynamic limit
given by

µIBG = kB T log(z) , (12)

where z is an effective fugacity that determines the total density of the gas via the equation
nλ3

T = g3/2(z) with gν(z) the usual special Bose functions. The agreement between the PIMC
data and the expected values is perfect at any size and does not depend on the number of
imaginary-time slices used in the simulation. Moreover we verify that below T0

c the PIMC
results are compatible with a zero chemical potential.

We then benchmark the interacting gas, where the repulsive interaction is modeled by
a hard sphere potential. As in Ref. [21], we use the pair-product ansatz [34] for the com-
putation of the potential energy ∆U . In Fig. 9 we compare the PIMC results for the chem-
ical potential and the free energy with the perturbative predictions. The PIMC data are ex-
trapolated to the thermodynamic limit using a linear fit in 1/N of the results for four sizes
N = 128, 256, 384, 512. The number of imaginary-time slices is 16 for all sizes. For the
chemical potential, we also compare our results with the predictions from the universal rela-
tions of Ref. [26], using their data for the density shift λ(X )∝ n− nc to extract the reduced
temperature t = T/T0

c and then mapping it to the corresponding chemical potential using the
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Figure 8: Chemical potential of an ideal Bose gas with N particles at temperature
T = 1.5T0

c . The PIMC values (black diamonds) are compared with the exact results at
fixed N (connected by the blue dotted line) and with the result in the thermodynamic
limit (green horizontal line). Inset: the difference between the PIMC and the exact
values.

data for the chemical potential shift X ∝ µ−µc . In particular, expressing the relations in our
units, we find that each value of λ(X ) can be mapped to a value of t solving the equation

16π3

ζ(3/2)
an1/3 (λ(X )− C) t2 + t3/2 = 1 , (13)

in the region where the universal relations can be applied, namely t ∼ 1. The numerical
constant C is determined as C = 0.0142(4). From the corresponding values of X we then
determine the chemical potential shift as

µ−µc

kB T0
c
=

32π3a2n2/3

ζ(3/2)2/3
t2X . (14)

Finally, to get the sought-after values of µ, we need to add the values of µc as obtained from
Ref. [35]

µc

kB T0
c
= 4an1/3ζ(3/2)2/3 t3/2 −

32πa2n2/3

ζ(3/2)2/3
t2 log

�

K ζ(3/2)1/3

an1/3
p

32π3 t

�

, (15)

where K = 0.673(1) is a numerical constant 1. The data for µ obtained from the universal are
represented by the blue dots in the left panel of Fig. 9 and show a good agreement with the
PIMC data for T < T0

c , while, for T > T0
c , a discrepancy builds up for increasing temperatures,

since the universal relations are valid only in the regime of large occupation numbers for single-
particle modes. In that regime, the PIMC data nicely reproduce the HF predictions. With the
benchmarks shown so far, we are now confident that the PIMC algorithm correctly reproduces
the physics of a single-component Bose gas both in the non-interacting and in the interacting
case. In the following section we show how to extend the algorithm for Bose mixtures.

B PIMC algorithm for a binary Bose mixture

Extending the PIMC algorithm to the case of multicomponent gases is pretty straightforward:
one just needs to restrict the swap move to involve only particles of the same species and, in

1We warn the reader that the expression for µc that can be found in Ref. [26] is not correct. We thank the
authors for clarifying the issue.
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Figure 9: Results for an interacting Bose gas with gas parameter na3 = 10−6 as a func-
tion of the temperature. The PIMC values, extrapolated to the thermodynamic limit
(black crosses), are compared with the perturbative results of Hartree-Fock (green
dashed line) and Popov (red solid line) theories. Left panel: Results for the chemical
potential, also compared with the predictions from the universal relations of Ref. [26]
(blue dots). Right panel: difference in freee energy with the ideal Bose gas result.

the interacting case, to take into account the inter-species interaction described by the s-wave
scattering length a12. The computation of the chemical potentials for the two species proceeds
as before via the free energy difference, this time making sure the number of particles of the
other species is kept fixed. For a two-component mixtures we have:

µ1(N1, N2, T ) = F(N1 + 1, N2, T )− F(N1, N2, T ) ,

µ2(N1, N2, T ) = F(N1, N2 + 1, T )− F(N1, N2, T ) .
(16)

where the differences are numerically computed as the ratios of Monte Carlo times spent in
the different sectors. The simulation now lives in a configurational space made by 4× 4= 16
sectors. Several consistency checks where made on the algorithm. In Fig. 10 we show the
results for two non-interacting ideal Bose gases, where we recover the known exact result as a
function of the polarization. The chemical potential µ1 for the majority component is consis-
tent with zero, while the chemical potential µ2 for the minority component becomes non-zero
above the critical polarization, where it becomes normal.

Using the above method for computing the chemical potentials, one can obtain the value
of the free energy of the mixture via the thermodynamic relation

F = −PV +µ1N1 +µ2N2 . (17)

Notice that, while this quantity contains valuable information and it represents our main test-
bench for the perturbative predictions, it comes at the cost of a cancellation between the pres-
sure term and the chemical potential terms, that amplifies its final statistical error. However,
when we focus on the magnetic properties of a binary mixture, we are only interested in the
free energy difference among mixtures at different values of the polarization p = (N1 − N2)/N ,
where N = N1 + N2 is the total number of particles. Such a difference can be evaluated more
efficiently by devising an algorithm that directly samples configurations with different values
of the polarization, while keeping N fixed. Denoting with ZN ,p the partition function with N
total particles and polarization p, the free energy difference ∆F(N , p) between the state at
polarization p and the unpolarized state with p = 0 can be computed as

∆F(N , p) = F
�

N(1+ p)
2

,
N(1− p)

2
, T
�

− F
�

N
2

,
N
2

, T
�

= −kB T log
t(ZN ,P)

t(ZN ,0)
. (18)
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Figure 10: Chemical potentials µ1 (blue) and µ2 (red) for a non-interacting mixture
of ideal Bose gases as a function of the polarization. The temperature is kept fixed
at T = 0.5T0

c and the total number of particles is N = 128. The PIMC points are
compared to the exact results connected by the dotted lines. The critical polarization,
at which the minority component becomes normal, is signaled by a gray vertical line.
Inset: the difference between the PIMC data and the exact results.

where the ratio t(ZN ,P)/t(ZN ,0) is the ratio between the time spent in the sector with polar-
ization p and the time spent in the sector with zero polarization. There are many possible
ways to implement such an algorithm: One possibility is, for example, to combine the moves
of Sec. A.1 for the two species in such a way that each time a particle of one species is created
a particle of the other species is removed. In the following we mention another possibility,
which is slightly more sophisticated.

B.1 Details of the algorithm for free energy differences in a mixture

An efficient algorithm that spans the configurations with different polarizations, while keeping
N fixed can be devised by taking close inspiration from the original grand canonical implemen-
tation of Refs. [20, 36]. The Monte Carlo moves have been adapted in such a way that both
the total number of polymers and the total number of beads are kept constant throughout the
simulation. Within this algorithm, the worms for the two species might be present simulta-
neously, also in a configuration where the beads of one polymer are shared between the two
worms. For example, the polymer i0 might be filled by the species 1 up to the imaginary-time
slice j0 (corresponding to the head of the worm 1), while the rest of the slices are filled by
the worm of the species 2 (that has its tail at the imaginary-time slice j0 + 1 of the polymer
i0). We briefly describe below a minimal pair of moves, called Advance/Recede, that allows
the simulation to span the configurations at different values of polarization (except the case at
p = 1). Other moves can be included in order to improve the ergodicity of the Markov chain
across the sectors, for example by combining Advance/Recede with Open/Close. The details
of these combined moves will not be given here; instead we just outline the aforementioned
minimal addition that can be used for small values of the polarization.

The Advance and Recede moves change the relative lengths of the worms and can only be
performed when both worms are present. In the Advance move the head of the worm of species
s is advanced in imaginary time from the slice j to the slice j +∆ j, by sampling the new ∆ j
beads with the staging algorithm as in move head. The tail of the worm of the other species
s′ is advanced as well by deleting all the beads between the slice j and the slice j +∆ j. Note
that we must reject the move if the worm of species s′ is completely deleted by the proposed
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update. The move is then accepted with probability

Aadvance =min
�

1, eβ∆µ∆ j/M−∆U
	

, (19)

where∆µ= µs
gc−µ

s′
gc is the difference between the grand canonical chemical potentials of the

two species. The complementary Recede move is completely symmetric and can be obtained
as the Advance move with negative values of∆ j. It consists in receding the head of the species
s by deleting ∆ j beads, while simultaneously creating ∆ j new beads for the species s′. The
move is accepted with probability

Arecede =min
�

1, e−β∆µ∆ j/M−∆U
	

. (20)

This pair of moves can change the species of whole polymers, thus allowing the algorithm
to sample configurations with different polarizations. We have checked that the free energy
differences computed directly through Eq. (18) reproduce those obtained from the full com-
putation of the free energy, but deliver smaller statistical errors.

C Hartree-Fock and Popov theories

The Hartree-Fock and Popov theories of repulsive binary Bose mixtures at finite temperature
are described in details in Refs. [15, 16]. Here we report the results for the Helmholtz free
energy obtained in the two approaches from which all thermodynamic quantities discussed in
the main text can be derived.

Within the HF approximation one finds

FHF

V
=

g
2

�

n2
1 + n2

2

�

+ g12n1n2 + gn0
T

2

+
1
βV

∑

k

�

ln
�

1− e−β(εk+gn1,0)
�

+ ln
�

1− e−β(εk+gn2,0)
��

, (21)

holding when both condensates are present, i.e. in the polarization range p < pc set by the
critical polarization pc = 1 − (T/T0

c )
3/2 at which the minority component 2 turns normal.

Here εk = ħh2k2/(2m) is the single-particle kinetic energy and n0
T = ζ(3/2)/λ

3
T is the non-

interacting thermal density written in terms of the thermal wavelength λT =
Æ

2πħh2/mkB T
and ζ(3/2) ≃ 2.612. Furthermore, ni,0 (i = 1,2) correspond to the condensate density of the
two components calculated to lowest order in the interaction strength: ni,0 = ni − n0

T . When
p > pc and the density n2 of the minority component does not exceed the thermal density n0

T ,
the above expression for free energy becomes

FHF

V
=

g
2

�

n2
1 + 2n2

2 + n0
T

2
�

+ g12n1n2 +µ
IBG
2 n2

+
1
βV

∑

k

�

ln
�

1− e−β(εk+g(n1−n0
T ))
�

+ ln
�

1− e−β(εk−µIBG
2 )
��

, (22)

where the effective chemical potential µIBG
2 is fixed by the normalization condition of the mi-

nority component n2 = g3/2(eβµ
IBG
2 )/λ3

T , with g3/2(z) the usual special Bose function. Notice
that expressions (21) and (22) coincide at p = pc where n2 = n0

T and µIBG
2 = 0.

The Popov theory includes the contribution from collective excitations (density and spin
waves) into the thermodynamics of the mixture yielding the following expression for the free
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energy:

F
V
=

g
2

�

n2
1 + n2

2

�

+ g12n1n2 + gn0
T

2

+
1
βV

∑

±

∑

k

ln
�

1− e−βE±k
�

+
�

m

2πħh2

�3/2 4
15
p
π

∑

±
(2Λ±)

5/2 , (23)

valid when both components are in the condensed state (p < pc). The first term in the second
line collects the thermal contribution from the excitation spectrum in the density and spin
channel E±k =
q

ε2
k + 2Λ±εk whereas the last term survives also at T = 0 yielding the Lee-

Huang-Yang beyond mean-field corrections to the ground-state energy. Both terms involve the
effective chemical potentials

Λ± =
1
2

�

gn0 ±
q

(g2 − g2
12)n2p2 + g2

12n2
0

�

, (24)

where n0 = n − 2n0
T is the condensate density calculated to lowest order in the interaction

strength. In the regime of high polarization (p > pc) the above expression reduces to

F
V
=

g
2

�

n2
1 + 2n2

2 + n0
T

2
�

+ g12n1n2

+
�

m

2πħh2

�3/2 4
15
p
π

�

2g(n1 − n0
T )
�5/2
+µIBG

2 n2

+
1
βV

∑

k

h

ln
�

1− e−β
q

ε2
k+2εk g(n1−n0

T )
�

+ ln
�

1− e−β(εk−µIBG
2 )
�
i

, (25)

where similarly to the HF case the effective chemical potential µIBG
2 is determined by the nor-

malization condition n2 = g3/2(eβµ
IBG
2 )/λ3

T .
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