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Abstract

In this paper, we construct an exactly solvable lattice Hamiltonian model of two topolog-
ical phases separated by a gapped domain wall via anyon condensation. To be specific,
we study the properties of this model in the case of the doubled Ising phase and Z2 toric
code phase with a gapped domain wall in between. Our model is a concrete spatial coun-
terpart of the phase transition triggered by anyon condensation, in the sense that the
algebraically understood phenomena, such as splitting, identification, and confinement,
in anyon condensation can be manifested in the spatial wavefunctions of our model. Our
model also helps generalize the characteristic properties of a single topological phase: We
find that the ground-state degeneracy of two topological phases separated by two gapped
domain walls on the torus is equal to the number of quasiparticle types in the gapped
domain walls; we also find the S and T matrices of our model.

Contents
1 Introduction 2

2 A brief review of the extended Levin-Wen model 4

3 The lattice model with a gapped domain wall between the doubled Ising and Z2
toric code phases 5

4 The spectrum of the elementary excitation states 7
4.1 Review of the elementary excitation states in the doubled Ising phase 7
4.2 The elementary excitation states of our model 9

4.2.1 The elementary excitation states with quasiparticle pairs in the toric
code domain 9

4.2.2 The elementary excitation states with interdomain quasiparticle pairs 12
4.2.3 The elementary excitation states with domainwall quasiparticle pairs 13
4.2.4 The elementary excitation states with doubled-Ising-domainwall quasi-

particle pairs 14

1



SciPost Physics Submission

4.2.5 The elementary excitation states with toric-code-domainwall quasi-
particle pairs 15

5 Correspondence with anyon condensation 15
5.1 Splitting 17
5.2 Identification 18
5.3 Confinements 19

6 The bases of the ground states on the torus 19
6.1 The domainwall basis of the ground-state subspace 19
6.2 The interdomain basis of the ground-state subspace 21
6.3 Ground-state degeneracy on the torus 21

7 The S and T matrices 22
7.1 The S matrix on the torus 22
7.2 The T matrix on the torus 23

8 Conclusion 24

A Gauge transformations of the positions of tails 26

B The matrix elements of the doubled-Ising ribbon operators 26
B.1 Matrix elements of shortest ribbon operators 26
B.2 Concatenating shorter ribbon operators to a longer ribbon operator 28

C Proof of the commutation in Heff of Peff and the doubled-Ising ribbon operators 28

D The components of z tensors 29
D.1 Nonzero components of zJDI tensors in the doubled Ising domain 29
D.2 Nonzero components of zJTC tensors in the toric code domain 30
D.3 Nonzero components of zJDW tensors in the gapped domain wall 31

E Measuring elementary excitation states by local operators 31
E.1 Local operators in the doubled Ising phase 31
E.2 Measurement operators in the doubled Ising phase 32
E.3 Local operators and measurement operators in the toric code domain and

the gapped domain wall 33

F The algebra of the noncontractible loop operators 33
F.1 The multiplications of noncontractible loop operators 33
F.2 Generating the entire ground-state subspace 35

References 36

1 Introduction

Relations between topological phases can be established via phase transitions [1–11] and
via domain walls [9,12–22]. An interesting type of phase transitions between a topological
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phase (the parent phase) and another (possibly trivial) topological phase (the child phase)
is triggered by certain anyon condensation in the parent phase. As has been extensively
studied [1, 6, 8], interesting phenomena occur during such a phase transition: 1) Certain
anyons, including the condensed ones, may split into a few sectors, so more precisely
speaking, a condensed anyon may not fully condense but only one or more sectors in
its splitting condense. This is analogous to the Higgs boson condensation in breaking
the electroweak symmetry, where only a one-dimensional subspace of the two-dimensional
space the Higgs boson lives in condenses. 2) Since the condensed sectors become the
new vacuum, two types of sectors related by fusing with a condensed anyon in the parent
phase can no longer be distinguished in the child phase and thus are identified as the
same type of anyons. 3) The anyons that have trivial (nontrivial) braiding statistics with
the condensed anyons are unconfined (confined) in the child phase. 4) The child phase
is a symmetry-enriched topological phase, with a hidden global symmetry. The hidden
symmetry has been made precise in Ref. [11], which also proves a generalized Goldstone
theorem of anyon condensation. Therefore, the phase transition from a parent topological
phase to its child phase also belongs to the Landau-Ginzburg paradigm, however in a more
general sense [8, 9, 11,23].

Such a phase transition is temporal and is believed to correspond to a spatial gapped
domain wall between the parent and child phases [9, 18]. Such domain walls have been
studied algebraically via category theories [13,16]. Since the Levin-Wen (LW) model [24],
more specifically its extended version [25,26] 1, is the most general model of 2-dimensional
topological orders, can we possibly build a model that describes a parent phase and child
phase with a gapped domain wall in between, based on the extended LW model? Such a
Hamiltonian model would make it easy to study the properties of the gapped domain wall,
the combined system, and the counterparts of the aforementioned phenomena in anyon
condensation in the domain-wall picture dynamically, in terms of concrete wavefunctions.

On the other hand, it is profound to see whether the properties of a single topological
phase would retain or how they would adapt to a system with two topological phases
separated by a gapped domain wall. For example, the number of anyon species in a
2-dimensional topological phase coincides with the ground-state degeneracy of the topo-
logical phase on the torus [24,27,28]; the S and T matrices of the topological phase relates
the basis transformations in the ground-state space to the mutual and self statistics of
the anyon species [29–36]. Can we see similar properties in the case of a gapped domain
wall?2 The question can be answered if we have an explicit lattice Hamiltonian model of
two topological phases separated by a gapped domain wall.

In this paper, we shall begin with an extended LW model describing a parent phase,
and trigger the anyon condensation in half of the system to construct an exactly solvable
lattice model describing the parent phase and its child phase separated by a gapped domain
wall. We can certainly do this in a generic extended LW model. Nevertheless, to make
various properties of the model specific and explicit, we shall only write down the model in
the case of the doubled Ising and Z2 toric code topological phases with a gapped domain
wall in between, since our discussion is easy to be generalized to general cases.

Our model has the same input data of the extended LW model that describes the
parent phase, without using any extra categorical data, and is thus as simple as the
original extended LW model.

1For our purpose to formulate the anyon condensation, we need the full spectrum of the elementary
excitation states including the charge excitations that can not be defined in the original LW model but
only in the extended version.

2A special case — topological phases with gapped boundaries — with these questions has been studied
before [15,37].
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2 A brief review of the extended Levin-Wen model

Since our model is based on the extended LW model, we first briefly review the extended
LW model. To be specific and for our purposes, we only consider the model that describes
the doubled Ising phase.

The extended LW model is defined on a 2-dimensional honeycomb lattice (see Fig. 1a).
Associated with each vertex is a tail, presented as a dangling edge near the vertex. It is
arbitrary to choose the edge incident at the vertex to which to attach the tail because all
choices are equivalent up to gauge transformations (see Appendix A).

The input data of the extended LW model describing the doubled Ising phase is a
set LDI = {1, σ, ψ}, equipped with three functions N : L3

DI → N, d : LDI → R, and
G : L6

DI → C. Each edge and tail of the lattice is labeled by an element in LDI.
The function N sets the fusion rule and satisfies Nk

ij = Nk
ji = N j

ik, whose nonzero
independent elements are

N1
11 = N1

ψψ = N1
σσ = Nψ

σσ = 1. (1)

The Hilbert space H is spanned by all possible assignments of the labels on the edges
and tails, subject to the constraint Nk

ij 6= 0 on any three incident edges (tails) labeled by
i, j, k ∈ LDI.

The function d returns the quantum dimensions of the elements in LDI,

d1 = dψ = 1, dσ =
√

2. (2)

The function G has the symmetry Gijmkln = Gmijnkl = Gklmijn . The nonzero independent
elements are

G111
111 = G111

ψψψ = G1ψψ
1ψψ = 1, G1σσ

1σσ = G1σσ
ψσσ = −Gψσσψσσ = 1√

2
, G111

σσσ = G1ψψ
σσσ = 1

4√2
. (3)

The Hamiltonian of the extended LW model describing the doubled Ising phase reads

HDI := −
∑
V

QV −
∑
P

BDI
P . (4)

The vertex operator QV acts on the tail associated with vertex V as

QV p

V

= δp,1 p

V

, (5)

where δ denotes the Kronecker delta function that δp,q = 1 if p = q else δp,q = 0.
The plaquette operator BDI

P acting on plaquette P is a sum:

BDI
P = d1B

1
P + dσB

σ
P + dψB

ψ
P

4 , (6)

where Bs
P , s ∈ LDI is defined by

Bs
p

i0
k0
l0

i1 i2

i3
i4
i5

i6i7
e0

e1
e2

e3

e6
e7

p

q e4

e5
= δp,1 δq,1

∑
j0j1j2j3j4j5j6j7∈LDI

( 7∏
n=0

√
dindjn

)(
Ge0i0i7
sj7j0

×
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(a)

Doubled Ising domain Toric code domain

Domain wall

(b)

Figure 1: (a) The extended LW model describing the doubled Ising topological
phase. (b) Our model of the doubled Ising and Z2 toric code topological phases
separated by a gapped domain wall.

Ge1i1i0
sj0j1

Ge2i2i1
sj1j2

Ge3i3i2
sj2j3

Ge4i4i3
sj3j4

Ge5i5i4
sj4j5

Ge6i6i5
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Ge7i7i6
sj6j7

) j0
j0
j0

j1 j2

j3
j4
j5

j6j7
e0

e1
e2

e3

e4
e5

1
1 e4

e5
. (7)

The doubled-Ising Hamiltonian (4) is exactly solvable because all the summands QV
and BDI

P therein are commuting projectors.

3 The lattice model with a gapped domain wall between the dou-
bled Ising and Z2 toric code phases

We now construct our model describing a doubled Ising phase and Z2 toric code phase
separated by a gapped domain wall, via partial anyon condensation explained as follows.
We divide the entire lattice into two halves, left and right. See Fig. 1b. Here, the edges
and tails in the left (right) half are in red (blue); the plaquettes bounded by all red (blue)
edges are in light red (blue); the plaquettes bounded by both red and blue edges are in
gray. Each edge and tail of the entire lattice still take value in LDI, so the Hilbert space
of our model is still H. We shall trigger anyon condensation in the right (blue) half, such
that the doubled Ising phase therein will become the Z2 toric code phase through a phase
transition.

Knowing that the Z2 toric code phase can be obtained by condensing ψψ̄ anyons in the
doubled Ising phase [8,11,12], we are motivated to add to the doubled-Ising Hamiltonian
(4) the gapping term

∆H := −Λ
∑
E∈TC

Wψψ̄;1,1
E , Λ� 1, (8)
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where E ∈ TC represents all the blue edges, and Wψψ̄;1,1
E is the creation operator of the

ψψ̄ anyons (to be defined in Section 4.1). The term ∆H renders the new ground states
of the system the +1 eigenstates of the creation operators Wψψ̄;1,1

E

∣∣∣
E∈TC

, and thus are
the superpositions of the states with arbitrarily many ψψ̄ anyons in the right half of the
lattice. We say that the ψψ̄ anyons in the right half of the lattice are condensed. The
total Hamiltonian now reads

H := −
∑
V

QV −
∑
P

BDI
P +∆H. (9)

By Eq. (88), the creation operators Wψψ̄;1,1
E of ψψ̄ quasiparticle pairs can be written

as

Wψψ̄;1,1
E

jE

i

k

= (−1)δjE,σ jE

i

k

, (10)

where δ is the Kronecker delta function. Hence, any blue edge has to overcome a great
energy barrier (∝ Λ) to take value σ. For Λ → ∞, the blue edges in the right half of the
lattice effectively take value only in the input data LTC = {1, ψ} ⊂ LDI, equipped with
the same δ, d, and G functions as that of LDI but restricted to LTC:

δ111 = δ1ψψ = 1, d1 = dψ = 1, G111
111 = G111

ψψψ = G1ψψ
1ψψ = 1. (11)

The right half of the system therefore describes the Z2 toric code phase [24, 26, 27], as a
result of ψψ̄ condensation.

Due to ψψ̄ condensation, the effective Hilbert space Heff of the model is the subspace
of H in which all the blue edges can take value only in LTC = {1, ψ}:

Heff := PeffH, (12)

where Peff is the projector on the blue edges

Peff :=
∏

E∈TC
(1− δjE ,σ) =

∏
E∈TC

I +Wψψ̄;1,1
E

2 . (13)

Hereafter, we refer to the red (blue) edges/plaquettes the DI (TC) edges/plaquettes.
The gray plaquettes, bounded by both DI and TC edges, turn out to comprise the domain
wall between the doubled Ising phase and Z2 toric code phase, and are thus called the
DW plaquettes. Since PeffBσ

PPeff = 0 if P is a TC/DW plaquette, the effective plaquette
operators acting on the DW and TC plaquettes in Heff become

BDW
P := PeffB

DI
P Peff = B1

P +Bψ
P

4 , (14)

BTC
P := PeffB

DI
P Peff = B1

P +Bψ
P

4 . (15)

The effective Hamiltonian is the projection of the doubled-Ising Hamiltonian (4):

Heff := PeffHDIPeff = −
∑
V

QV −
∑
P∈DI

BDI
P −

∑
P∈DW

BDW
P −

∑
P∈TC

BTC
P , (16)

which is exactly solvable. The model describes the doubled Ising phase on the left, the
Z2 toric code phase on the right, and a gapped domain wall in between. We shall refer to
Heff as the Hamiltonian of our model from now on.
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(JDI, p)

(JDI, q)

(a)

(JDI, p)

(JDI, q)

(b)

Figure 2: Two ribbon operators in the doubled Ising phase. The two ribbon
operators both create quasiparticles (J, p) and (J, q) at the ends of their paths,
which are homotopic. Hence, they are the same operators although they take
very different paths.

4 The spectrum of the elementary excitation states

We now study the spectrum of our model. We assume the sphere topology, in which our
model has a unique ground state |Φ〉; nevertheless, the results in this section apply to
other topologies. The ground state |Φ〉 is defined by

QV |Φ〉 = BDI
P |Φ〉 = 2BTC

P |Φ〉 = 2BDW
P |Φ〉 = |Φ〉 , (17)

where the factors 2 arise from the projection. In the ground state |Φ〉, all the tails have
to take value 1 ∈ LDI.

An excited state |ϕ〉 is an eigenstate, in which QV |ϕ〉 = 0 or BD
P |ϕ〉 = 0 at one or

more vertices V or plaquettes P . In such a state, there are quasiparticles at vertices V or
plaquettes P . Here, the superscript D refers to either DW, TC, or DI. We also dub the
ground state |Φ〉 the trivial excited state, in which there are trivial quasiparticles.

For our purposes, it suffices to study the excited states with at most two quasiparticles,
which we call elementary excitation states. Since in an elementary excitation state, all
tails take value 1 except the ones where the two quasiparticles are, we can omit the tails
irrelevant to these quasiparticles.

4.1 Review of the elementary excitation states in the doubled Ising phase
Since our model stems from the extended LW model describing the doubled Ising phase, we
first focus on the elementary excitation states in the parent doubled Ising phase described
by Hamiltonian HDI (4). The doubled-Ising ground state |Φ〉DI ∈ H satisfies

QV |Φ〉DI = BDI
P |Φ〉DI = |Φ〉DI (18)

for all vertices V and plaquettes P . Each doubled-Ising elementary excitation state |ϕ〉DI
can be obtained by acting a ribbon operator WL on the ground state |Φ〉DI [24, 26]:

|ϕ〉DI = WL |Φ〉DI . (19)

The ribbon operator WL is defined along a path L, which crosses one or more edges in the
lattice, and creates a pair of quasiparticles at the two ends of L (see Fig. 2). The path L
of a ribbon operator can be homotopically deformed, with its two ends fixed.
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Quasiparticle Anyon species Charge

(11, 1) 11 1

(1σ, σ) 1σ σ

(1ψ,ψ) 1ψ ψ

(σ1, σ) σ1 σ

(σσ, 1)
σσ

1

(σσ, ψ) ψ

(σψ, σ) σψ σ

(ψ1, ψ) ψ1 ψ

(ψσ, σ) ψσ σ

(ψψ, 1) ψψ 1

Table 1: The anyon species and charges of quasiparticles in the doubled Ising
phase.

We start with the elementary excitation states with a pair of quasiparticles in the
two adjacent plaquettes with a common edge E. This state can be generated by ribbon
operator W JDI;p,q

E along the shortest path that crosses only one edge E. This shortest
ribbon operator creates in the two adjacent plaquettes a pair of quasiparticles (JDI, p) and
(JDI, q), where JDI labels the anyon species of the quasiparticles, while p and q label the
charges of the quasiparticles. Namely

|JDI; p, q〉DI = (JDI, p) (JDI, q)
E := W JDI;p,q

E |Φ〉DI . (20)

We only consider the action of ribbon operator W JDI;p,q
E on the ground state |Φ〉DI. The

action reads

W JDI;p,q
E

jE =
∑
k∈LDI

√
dk
djE
· zJDI;kpqjE

jE

jE
kp

q
, (21)

where jE ∈ LDI is the label on edge E. The matrix elements zJDI;upqs are the components of
the tensor zJDI , and are listed in Appendix D.1. The tensor zJDI satisfies [26]

δj,tN
t
rs

dt
zJDI;wpqt =

∑
ulv∈LDI

dudvz
JDI;v
lqr zJDI;upls GrstpwuG

srj
qwvG

sul
rvw, (22)

where the anyon species JDI labels different minimal solutions zJDI that cannot be the
sum of any other nonzero tensors. There are 9 anyon species:

11, 1σ, 1ψ, σ1, σσ, σψ, ψ1, ψσ, ψψ̄. (23)
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(σσ, 1) (σσ, 1)

(a)

(σσ, 1) (σσ, ψ)

(b)

(σσ, ψ) (σσ, 1)

(c)

(σσ, ψ) (σσ, ψ)

(d)

Figure 3: The doubled-Ising elementary excitation states with anyon species σσ.
The charges of quasiparticles can take value arbitrarily in {1, ψ}.

Crossing any edge E in the doubled Ising phase, for each JDI 6= σσ̄, there is only one
such ribbon operator W JDI;p,q

E with p = q. For JDI = σσ̄, the corresponding charges p and
q both can take values in {1, ψ} (see Table 1); hence, there are four different such ribbon
operators W σσ̄;p,q

E with p, q ∈ {1, ψ}. All told, crossing any edge E, there are 12 shortest
ribbon operators.

There are four degenerate elementary excitation states |σσ̄; p, q〉DI = W JDI;p,q
E |Φ〉DI

with p, q ∈ {1, ψ}, as shown in Fig. 3. Each state has two quasiparticles, each of which
can be either (σσ̄, 1) or (σσ̄, ψ). While σσ̄ is the topological observable of these states, the
degenerate charges 1 and ψ cannot be distinguished experimentally [26], as they can be
transformed into each other by local operators B1σψσ

P and Bψσ1σ
P (defined in Eq. (111)).

The elementary excitation states in the doubled Ising phase hence are characterized by
their anyon species.

Then we study the states with two quasiparticles in two nonadjacent plaquettes, gen-
erated by ribbon operators along longer paths. These ribbon operators result from con-
catenating shorter ribbon operators. For example, in Fig. 4, the two shortest ribbon
operators create in plaquette P two identical quasiparticles (JDI, q), which are then an-
nihilated, resulting in a longer ribbon operator W JDI;p,r

L , which generates an elementary
excitation state W JDI;p,r

L |Φ〉DI with two quasiparticles at the end of path L. The matrix
elements of such ribbon operators are also given by zJDI tensors (see Appendix B.2).

4.2 The elementary excitation states of our model
Now we study the elementary excitation states of our model. These states are eigenstates
of the effective Hamiltonian Heff (16) in the effective Hilbert space Heff (12).

According to Appendix C, the projector (13), Peff, commutes with any doubled-Ising
ribbon operator W JDI;p,q

L in the effective Hilbert space Heff:

Peff
[
W JDI;p,q
L , Peff

]
= 0. (24)

Then, together with Eq. (19), Peff projects the elementary excitation states |ϕ〉DI and
the ribbon operators W JDI;p,q

L of the doubled Ising phase to those of our model. While in
the doubled Ising phase, elementary excitations states do not discern the locations of the
quasiparticles but only their anyon species, in our model, nevertheless, locations of the
quasiparticles do matter because of the domain wall (see Fig. 5). In what follows, we shall
study the elementary excitation states of our model in the cases of different quasiparticle
locations.

4.2.1 The elementary excitation states with quasiparticle pairs in the toric code domain

Here, we study the elementary excitation states of our model with a pair of quasiparticles
in two adjacent plaquettes completely in the toric code domain. These states result from

9
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(JDI, p)
(JDI, q)

(JDI, q)
(JDI, r)

P

(a)

(JDI, p) (JDI, r)
P

(b)

(JDI, p) (JDI, r)
L

P

(c)

Figure 4: Concatenating two shortest ribbon operators to a longer one. (a)
The state generated by two shortest ribbon operators. (b) Annihilating the two
quasiparticles (JDI, q) in plaquette P results in (c): the state generated by the
longer ribbon operator W JDI;p,r

L .

Peff

(JDI, p)

(JDI, q)

(JDI, p)

(JDI, q)

(a)

Peff

(JDI, p)

(JDI, p)

(JTC, p)

(JTC, p)

(b)

Peff
(JDI, p) (JDI, q) (JDI, p) (JTC, q)

(c)

Peff

(JDI, p)

(JDI, p)

(JDW, p)

(JDW, p)

(d)

Peff
(JDI, p) (JDI, q)

(JDI, p) (JDW, q)

(e)

Peff(JDI, p)
(JDI, p) (JDW, p)

(JTC, p)

(f)

Figure 5: Projecting the doubled-Ising elementary excitation states results in
the elementary excitation states in our model. (a) The two quasiparticles in
our model are all in the doubled Ising domain. (b) The two quasiparticles are
all in the toric code domain. (c) The two quasiparticles are respectively in the
doubled Ising domain and the toric code domain. (d) The two quasiparticles are
all in the gapped domain wall. (e) The two quasiparticles are respectively in the
doubled Ising domain and the gapped domain wall. (f) The two quasiparticles
are respectively in the toric code domain and the gapped domain wall.
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Quasiparticle Anyon species Charge

(1, 1) 1 1

(e, ψ) e ψ

(m, 1) m 1

(ε, ψ) ε ψ

Table 2: The anyon species and charges of quasiparticles in the toric code domain.

projecting the elementary excitation states |JDI; p, q〉DI (20) in the doubled Ising phase:

|1; 1, 1〉 := Peff
∣∣11̄; 1, 1

〉
DI = Peff

∣∣∣ψψ̄; 1, 1
〉
DI
,

|ε;ψ,ψ〉 := Peff
∣∣ψ1̄;ψ,ψ

〉
DI = Peff

∣∣∣1ψ̄;ψ,ψ
〉
DI
,

|m; 1, 1〉 := Peff |σσ̄; 1, 1〉DI ,

|e;ψ,ψ〉 := Peff |σσ̄;ψ,ψ〉DI , (25)

where we define the four nonvanishing states after the projection as |JTC; p, p〉, with
JTC ∈ {1, ε, e,m} the anyon species and p ∈ {1, ψ} the charges of the quasiparticles.
See Fig. 5b. But not all doubled-Ising elementary excitation states are projected to states
in Heff:

Peff |σσ̄;ψ, 1〉DI = Peff |σσ̄; 1, ψ〉DI = 0,
Peff

∣∣σ1̄;σ, σ
〉
DI = 0,

Peff
∣∣∣σψ̄;σ, σ

〉
DI

= 0,

Peff |1σ̄;σ, σ〉DI = 0,
Peff |ψσ̄;σ, σ〉DI = 0. (26)

These states are infinitely (Λ→∞) gapped by ∆H, and should not appear in Heff.
The four elementary excitation states |JTC; p, p〉 are precisely the known four elemen-

tary excitation states in the Z2 toric code phase. These states are generated by the ribbon
operators W JTC;p,p

E acting on the ground state (17) |Φ〉 of our model

|JTC; p, p〉 = (JTC, p) (JTC, p) = W JTC;p,p
E |Φ〉 , (27)

where the ribbon operators are the projections

W 1;1,1
E := PeffW

11̄;1,1
E Peff = PeffW

ψψ̄;1,1
E Peff,

W ε;ψ,ψ
E := PeffW

ψ1̄;ψ,ψ
E Peff = PeffW

1ψ̄;ψ,ψ
E Peff,

Wm;1,1
E := PeffW

σσ̄;1,1
E Peff,

W e;ψ,ψ
E := PeffW

σσ̄;ψ,ψ
E Peff. (28)

Note that the two plaquettes sharing edge E must lie within the toric code domain.

11
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Elementary excitation state Doubled-Ising quasiparticle Toric-code quasiparticle∣∣11 -1; 1, 1
〉

(11, 1)
(1, 1)∣∣∣ψψ - 1; 1, 1

〉
(ψψ, 1)∣∣ψ1 - ε;ψ,ψ

〉
(ψ1, ψ)

(ε, ψ)∣∣∣1ψ - ε;ψ,ψ
〉

(1ψ,ψ)

|σσ -m; 1, 1〉 (σσ, 1)
(m, 1)

|σσ -m;ψ, 1〉 (σσ, ψ)

|σσ -e; 1, ψ〉 (σσ, 1)
(e, ψ)

|σσ -e;ψ,ψ〉 (σσ, ψ)

Table 3: The interdomain elementary excitation states.

These ribbon operators W JTC;p,q
E read

W JTC;p,q
E

jE =
∑

k∈LTC

√
dk
djE
· zJTC;k
ppjE

jE

jE
kp

p
. (29)

The components zJTC;k
ppjE

are listed in Appendix D.2 and are precisely those comprising the
ribbon operators in the extended LW model describing the Z2 toric code phase [26].

Ribbon operators defined along longer paths crossing edges in the toric code domain
can be obtained also by concatenating shorter ribbon operators. We shall not dwell on
this.

4.2.2 The elementary excitation states with interdomain quasiparticle pairs

Now we consider what we call interdomain elementary excitation states, each having one
quasiparticle (JDI, p) in the doubled Ising domain and the other (JTC, q) in the toric
code domain. An interdomain state bears two different topological observables, JDI in
the doubled Ising domain and JTC in the toric code domain. See Fig. 5c. We label
interdomain elementary excitation states as |JDI -JTC; p, q〉.

There are 8 distinct interdomain elementary excitation states, as listed in Table 3.
These states can be generated by the ribbon operators along paths L across the gapped

domain wall:

|JDI -JTC; p, q〉 = (JDI, p) (JTC, q)
L

E1

E4

= W JDI - JTC;p,q
L

E1 E4 . (30)
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Quasiparticle Anyon species Charge

(1, 1) 1 1

(e, ψ) e ψ

(m, 1) m 1

(ε, ψ) ε ψ

(χ, σ) χ σ

(χ, σ) χ σ

Table 4: The quasiparticle species and charges of the quasiparticles in the gapped
domain wall.

The ribbon operators W JDI - JTC;p,q
L are projected from the doubled-Ising ribbon oper-

ators along same paths L:

W JDI - JTC;p,q
L := PeffW

JDI;p,q
L Peff, (31)

and are explicitly written as

W JDI - JTC,pq
L

j1

j2
j3

j4

j5

j6

j7

=
∑

j′1j
′
2∈LDI

∑
j′3j
′
4∈LTC

z
JDI;j′1
pqj1

z
JTC;j′4
qqj4

×

√
dj1
dj′1

G
rj4j′4
qj4j′′4

Gj7j3j4qj′4j
′
3
Gj6j2j3qj′3j

′
2
Gj5j1j2qj′2j

′
1

p
q

j1

j′1

j′2 j′3

j′′4
j4

j5

j6

j7

. (32)

4.2.3 The elementary excitation states with domainwall quasiparticle pairs

Now we study the domainwall elementary excitation states, i.e., the elementary excitation
states with a pair of quasiparticles in two adjacent plaquettes within the gapped domain
wall (see Fig. 5d). These states are projected from the doubled-Ising elementary excitation
states with a pair of quasiparticles in the same plaquettes. Namely,

|1; 1, 1〉 := Peff
∣∣11̄; 1, 1

〉
DI = Peff

∣∣∣ψψ̄; 1, 1
〉
DI
,

|ε;ψ,ψ〉 := Peff
∣∣ψ1̄;ψ,ψ

〉
DI = Peff

∣∣∣1ψ̄;ψ,ψ
〉
DI
,

|χ;σ, σ〉 := Peff
∣∣σ1̄;σ, σ

〉
DI = Peff

∣∣∣σψ̄;σ, σ
〉
DI
,

|χ̄;σ, σ〉 := Peff |1σ̄;σ, σ〉DI = Peff |ψσ̄;σ, σ〉DI ,

|m; 1, 1〉 := Peff |σσ̄; 1, 1〉DI ,

|e;ψ,ψ〉 := Peff |σσ̄;ψ,ψ〉DI , (33)

where we define the six nonvanishing states after the projection as |JDW; p, p〉, with
JDW ∈ {1, ε,m, e, χ, χ̄} the quasiparticle species and p ∈ LDI the charges of the quasi-
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particles. Graphically,

|JDW; p, p〉 = (JDW, p) (JDW, p) . (34)

Although there are 6 distinct domain wall elementary excitation states (33), there are
10 different ribbon operators across an edge E in the gapped domain wall:

W 1;1,1
E,1 := PeffW

11̄;1,1
E Peff, W 1;1,1

E,2 := PeffW
ψψ̄;1,1
E Peff,

W ε;ψ,ψ
E,1 := PeffW

ψ1̄;ψ,ψ
E Peff, W ε;ψ,ψ

E,2 := PeffW
1ψ̄;ψ,ψ
E Peff,

Wχ;σ,σ
E,1 := PeffW

σ1̄;σ,σ
E Peff, Wχ;σ,σ

E,2 := PeffW
σψ̄;σ,σ
E Peff,

W χ̄;σ,σ
E,1 := PeffW

1σ̄;σ,σ
E Peff, W χ̄;σ,σ

E,2 := PeffW
ψσ̄;σ,σ
E Peff,

Wm;1,1
E := PeffW

σσ̄;1,1
E Peff,

W e;ψ,ψ
E := PeffW

σσ̄;ψ,ψ
E Peff. (35)

Since E is a DI edge taking value in LDI = {1, ψ, σ},

W JDW;p,p
E,1 6= W JDW;p,p

E,2 (36)

for JDW = 1, ε, χ and χ̄, but

W JDW;p,p
E,1 |Φ〉 = W JDW;p,p

E,2 |Φ〉 = |JDW; p, p〉 . (37)

Specifically,

W JDW;p,p
E,i

jE =
∑
k∈LDI

√
dk
djE
· zJDW;k
ppjE

jE

jE
kp

p
, (38)

where the coefficients zJDW;k
pqjE

are listed in Appendix D.3. The indices p, q, k ∈ LDI, but
the index jE is restricted to LTC = {1, ψ} because edge E only takes value in LTC in the
ground state (17) |Φ〉.

4.2.4 The elementary excitation states with doubled-Ising-domainwall quasiparticle pairs

We now consider the elementary excitation states with one doubled-Ising quasiparticle
(JDI, p) and one domainwall quasiparticle (JDW, q) in the adjacent plaquettes. See Fig.
5e. These elementary excitation states are defined as

|JDI -JDW; p, q〉 := W JDI;p,q
E |Φ〉 , (39)

whereW JDI;p,q
E is the ribbon operator across a DI edge E between the doubled Ising domain

and the gapped domain wall.

W JDI;p,q
E

jE =
∑
k∈LDI

√
dk
djE
· zJDI;kpqjE

jE

jE
kp

q
. (40)

There are 12 possible distinct elementary excitation states, as in Table 5.
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Elementary excitation state Doubled-Ising quasiparticle Domainwall quasiparticle∣∣11 -1; 1, 1
〉

(11, 1)
(1, 1)∣∣∣ψψ - 1; 1, 1

〉
(ψψ, 1)∣∣ψ1 - ε;ψ,ψ

〉
(ψ1, ψ)

(ε, ψ)∣∣∣1ψ - ε;ψ,ψ
〉

(1ψ,ψ)∣∣σ1 -χ;σ, σ
〉

(σ1, σ)
(χ, σ)∣∣∣σψ -χ;σ, σ

〉
(σψ, σ)

|1σ - χ̄;σ, σ〉 (1σ, σ)
(χ̄, σ)

|ψσ - χ̄;σ, σ〉 (ψσ, σ)

|σσ -m; 1, 1〉 (σσ, 1)
(m, 1)

|σσ -m;ψ, 1〉 (σσ, ψ)

|σσ -e; 1, ψ〉 (σσ, 1)
(e, ψ)

|σσ -e;ψ,ψ〉 (σσ, ψ)

Table 5: The elementary excitation states with one doubled-Ising quasiparticle
and one domainwall quasiparticle.

4.2.5 The elementary excitation states with toric-code-domainwall quasiparticle pairs

We consider the case in Fig. 5f: the elementary excitation states with one toric-code
quasiparticle and one domainwall quasiparticle. These elementary excitation states are
defined as

|JDW -JTC; p, q〉 := W JTC;p,p
E |Φ〉 , (41)

where W JTC;p,p
E is the ribbon operator across TC edge E between the toric code domain

and the gapped domain wall.

W JTC;p,p
E

jE =
∑

k∈LTC

√
dk
djE
· zJTC;k
ppjE

jE

jE
kp

p
. (42)

There are 4 distinct elementary excitation states generated by W JTC;p,q
E , as in Table 6.

Concatenating the ribbon operators in (40) and (42) results in the interdomain ribbon
operators (31).

5 Correspondence with anyon condensation

As mentioned in the introduction, our model of two topological phases separated by a
gapped domain wall can be regarded as a spatial counterpart of the phase transition
(which is temporal) from one phase (the parent phase) to the other (the child phase)
triggered by anyon condensation. See Fig. 6.

An intermediate phase during the phase transition was introduced as merely a method
to study the procedure of anyon condensation [1]. The anyon condensation in a parent
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Elementary excitation state Domainwall quasiparticle Toric-code quasiparticle

|1 -1; 1, 1〉 (1, 1) (1, 1)

|e -e;ψ,ψ〉 (e, ψ) (e, ψ)

|m -m; 1, 1〉 (m, 1) (m, 1)

|ε - ε;ψ,ψ〉 (ε, ψ) (ε, ψ)

Table 6: The elementary excitation states with one toric-code quasiparticle and
one domainwall quasiparticle.

Doubled Ising Domain

JDI

Do
ma
in
W
allJDW

Toric Code Domain

JTC Parent Phase

JDI

Intermediate Phase
JDW

Child Phase
JTC

x

(a)

t

(b)

Figure 6: The correspondence between (a): our model with gapped domain wall
between the doubled Ising domain and toric code domain and (b): the anyon
condensation from the parent doubled Ising phase to the child toric code phase
via an auxiliary intermediate phase.

JDI JDW JTC

σσ̄

11̄

ψψ̄

ψ1̄

1ψ̄

σ1̄

σψ̄

1σ̄

ψσ̄

m

e

m

e

1 1

ε ε

χ

χ̄

Splitting

Identification

Identification

Identification

Identification

(confined)

(confined)

Confinement

Confinement

Figure 7: Relations between the quasiparticle species in different domains
(phases).
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Phenomenon Projection Interdomain states

Splitting
Peff |σσ̄; 1, 1〉DI = |m; 1, 1〉 |σσ̄ -m; 1, 1〉 , |σσ̄ -m;ψ, 1〉

Peff |σσ̄;ψ,ψ〉DI = |e;ψ,ψ〉 |σσ̄ -e; 1, ψ〉 , |σσ̄ -e;ψ,ψ〉

Identification

Peff
∣∣11̄; 1, 1

〉
DI = |1; 1, 1〉

∣∣11̄ - 1; 1, 1
〉

Peff
∣∣∣ψψ̄; 1, 1

〉
DI

= |1; 1, 1〉
∣∣∣ψψ̄ - 1; 1, 1

〉
Peff

∣∣ψ1̄;ψ,ψ
〉
DI = |ε;ψ,ψ〉

∣∣ψ1̄ - ε;ψ,ψ
〉

Peff
∣∣∣1ψ̄;ψ,ψ

〉
DI

= |ε;ψ,ψ〉
∣∣∣1ψ̄ - ε;ψ,ψ

〉

Confinement

Peff
∣∣σ1̄;σ, σ

〉
DI = 0

Peff
∣∣∣σψ̄; 1, 1

〉
DI

= 0 There is no interdomain state

Peff |1σ̄;σ, σ〉DI = 0 with JDI = σ1̄, σψ̄, 1σ̄, ψσ̄.

Peff |ψσ̄;σ, σ〉DI = 0

Table 7: The projection-state correspondence in the phenomena of splitting, iden-
tification, and confinement in the toric code domain.

phase first leads to an intermediate phase where splitting and identification have been
completed, while the confinement occurs during the transition from the intermediate phase
to the child phase. Interestingly, this auxiliary, virtual intermediate phase corresponds
to the physical gapped domain wall between the parent and child phases. For example,
Figure 7 records the relations between the quasiparticles in different domains in our model,
corresponding to different stages in a phase transition induced by ψψ̄ condensation in the
doubled Ising phase. Here, we shall use our model to formulate this correspondence
rigorously.

The three main phenomena — splitting, identification, and confinement — that occur
in a phase transition due to anyon condensation can find their spatial counterparts in the
elementary excitation states of our model. In Eq. (25), the doubled-Ising elementary ex-
citation states |JDI; p, p〉DI in the parent phase are projected to the states |JTC; p, p〉 with
quasiparticles in the toric code domain of our model. On the other hand, any interdomain
elementary excitation state (30) |JDI -JTC; p, q〉 bears a pair of topological observables
JDI -JTC. The allowed pairs JDI -JTC in the interdomain elementary excitation states are
in one-to-one correspondence with the projections from |JDI; p, q〉DI to |JTC; p, q〉. Table 7
records this correspondence. We dub this correspondence the projection-state correspon-
dence. We now exhibit this correspondence from three aspects: splitting, identification,
and confinement.

5.1 Splitting
Seen in Table 7, the originally indistinguishable elementary excitation states |σσ̄; 1, 1〉DI
and |σσ̄;ψ,ψ〉DI are projected to the topological different states |m; 1, 1〉 and |e;ψ,ψ〉 via
ψψ̄ condensation. It appears that the anyon species σσ̄ in the doubled Ising phase ‘splits’
into two anyon species e and m in the toric code domain. This phenomenon is precisely
what is known as splitting in the language of anyon condensation.

The phenomenon of splitting can also be seen spatially in the interdomain elemen-
tary excitation states under the projection-state correspondence. The projection from
the doubled-Ising elementary excitation state |σσ̄; 1, 1〉DI to the toric-code state |m, 1, 1〉
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(σσ̄, 1) (m, 1)

(a)

(σσ̄, ψ) (m, 1)

(b)

(σσ̄, 1) (e, ψ)

(c)

(σσ̄, ψ) (e, ψ)

(d)

Figure 8: The interdomain elementary excitation states with doubled-Ising topo-
logical observable σσ.

corresponds to the allowed pair σσ̄ -m in the interdomain elementary excitation states

|σσ -m; 1, 1〉 , |σσ -m;ψ, 1〉 , (43)

while Peff |σσ̄;ψ,ψ〉DI = |e, ψ, ψ〉 corresponds to the allowed pair σσ̄ -e in

|σσ -e; 1, ψ〉 , |σσ -e;ψ,ψ〉 . (44)

These four interdomain states all have JDI = σσ̄, but JTC can be m or e. See Fig. 8. This
phenomenon is the spatial counterpart of the splitting of anyons in anyon condensation.
Namely, an anyon σσ̄ in the doubled Ising domain may hop into the toric code domain by
crossing the gapped domain wall and become either an anyon e or m.

With our model, splitting can also be understood dynamically as follows. The states
|σσ̄; p, q〉DI with p, q ∈ {1, ψ} in Fig. 3 are indistinguishable in the doubled Ising phase,
as they can be transformed into each other by the local operators B1σψσ and Bψσ1σ (111).
The local operators Bpσqσ

P however do not commute with the condensation term ∆H (8)
in Hamiltonian (9). After ψψ̄ condensation, the charges 1 and ψ can no longer transform
into each other by local operators, and are thus associated with individual topological
observables m and e respectively. An infinite energy barrier Λ → ∞ prevents the toric-
code states |m; 1, 1〉 and |e;ψ,ψ〉 from transforming into each other.

5.2 Identification

Seen in Table 7,
∣∣11̄; 1, 1

〉
DI and

∣∣∣ψψ̄; 1, 1
〉
DI

in the parent phase are both projected to

|1; 1, 1〉 in the toric code domain of our model, while
∣∣ψ1̄;ψ,ψ

〉
DI and

∣∣∣1ψ̄;ψ,ψ
〉
DI

are both
projected to |ε;ψ,ψ〉. This phenomenon is called identification in anyon condensation.

The projections from elementary excitation states
∣∣11̄; 1, 1

〉
DI and

∣∣∣ψψ̄; 1, 1
〉
DI

in the
parent phase to |1; 1, 1〉 in our model individually correspond to the interdomain elemen-
tary excitation states ∣∣11̄− 1; 1, 1

〉
,

∣∣∣ψψ̄ − 1; 1, 1
〉
, (45)

which have different doubled-Ising topological obervables 11̄ and ψψ̄ but same toric-code
topological obervable 1. The projections from

∣∣ψ1̄;ψ,ψ
〉
DI and

∣∣∣1ψ̄;ψ,ψ
〉
DI

to |ε;ψ,ψ〉
respectively correspond to the interdomain elementary excitation states∣∣ψ1̄− ε;ψ,ψ

〉
,

∣∣∣1ψ̄ − ε;ψ,ψ〉 (46)

with different doubled-Ising topological observables ψ1̄ and 1ψ̄ but same toric-code topo-
logical observable ε. It appears that the quasiparticles (11̄, 1) and (ψψ̄, 1) in the doubled
Ising domain become the same toric-code quasiparticle (1, 1) when hopping into the toric
code domain, while (ψ1̄, 1) and (1ψ̄, ε) are identified to be (ε, ψ). This phenomenon is the
spatial counterpart of identification in anyon condensation.
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Figure 9: Our model on a torus: Two gapped domain walls (gray) separate the
doubled Ising domain (red) and Z2 toric code domain (blue).

5.3 Confinements

Seen in Table 7, the states
∣∣σ1̄;σ, σ

〉
DI,

∣∣∣σψ̄;σ, σ
〉
DI
, |1σ̄;σ, σ〉DI and |ψσ̄;σ, σ〉DI in the

parent phase are all projected to 0 in Heff of our model via ψψ̄ condensation. This
phenomenon is called confinement in anyon condensation. This is because in the toric
code domain, the edges and tails cannot take value σ in the states in Heff.

Correspondingly, there is no interdomain elementary excitation states |JDI -JTC; p, q〉
with JDI = σ1̄, σψ̄, 1σ̄ or ψσ̄, as the quasiparticles (σ1̄, σ), (σψ̄, σ), (1σ̄, σ) and (ψσ̄, σ) in
the doubled Ising domain cannot hop into the toric code domain unless overcoming infinite
energy barriers Λ → ∞. This phenomenon is the spatial counterpart of confinement in
anyon condensation.

In anyon condensation, the doubled-Ising anyons σ1̄ and σψ̄ in the doubled Ising
phase become the same quasiparticle χ in the intermediate phase, and 1σ̄ and ψσ̄ become
χ̄; however, χ and χ̄ in the intermediate phase are confined in the Z2 toric code phase
because of their nontrivial braiding with the new vacuum in the intermediate phase. Now
that the gapped domain wall is the spatial counterpart of the intermediate phase, we can
see that domainwall quasiparticles χ and χ̄ also have nontrivial braiding with the trivial
quasiparticle 1 in the gapped domain wall (to be defined in Eq. (66)).

6 The bases of the ground states on the torus

The defining properties of a topological phase are usually obtained from the ground states
of the topological phase on the torus [24, 27, 28]. For example, on the torus, a topologi-
cal phase has a ground-state degeneracy, which is a topological quantum number of the
topological phase. For instances, on the torus, the doubled Ising phase has GSD = 9,
while the Z2 toric code phase has GSD = 4. In this section, we shall find two distinct and
typical ground-state bases of our model on the torus (see Fig. 9), using noncontractible
loop operators to be constructed shortly. These two ground-state bases will lead us to the
characteristic properties of our model, as to be shown in Sections 6.3, 7.1 and 7.2.

6.1 The domainwall basis of the ground-state subspace
Sewing the two ends of a ribbon operator results in a loop operator [24, 27]. If the loop
path is noncontractible, we have a noncontractible loop operator. Loop operators preserve
the ground-state subspace because no anyons are created. On the torus, there are two
homotopic classes of noncontractible loops: V loop along the gapped domain wall, and H
loop across the gapped domain wall. Here V stands for “vertical” and H “horizontal”. See
Fig. 10.
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(a)

H-Loop

V -Loop

(b)

Figure 10: (a) Gapped domain walls and noncontractible loops on the torus. (b)
The corresponding lattice picture of (a).

There are 6 loop operators W JDI - JTC
H along H-loop, labeled by the interdomain topo-

logical observable pairs JDI -JTC:

W 11̄ - 1
H = I, Wψψ̄ - 1

H , Wψ1̄ - ε
H , W 1ψ̄ - ε

H , W σσ̄ -m
H , W σσ̄ - e

H . (47)

Similarly, there are 6 noncontratible loop operators along the V -loop, labled by JDW:

W 1
V = I, W ε

V , Wm
V , W e

V , W χ̄
V , Wχ

V . (48)

All these operators are linearly independent. They generate an algebra denoted by A. See
Appendix F.1.

The algebra A generates the entire ground-state subspace H0 of our model given any
ground state:

H0 = A |Φ〉 , ∀ |Φ〉 ∈ H0\{0}. (49)

We leave the full proof of Eq. (49) in Appendix F.2 but sketch the proof as follows. Since
Peff commutes with the loop operators of the parent phase in Heff:

Peff
[
W JDI
H , Peff

]
= Peff

[
W JDI
V , Peff

]
= 0, (50)

it projects the doubled-Ising loop operators W JDI
H and W JDI

V to W JDI - JTC
H and W JDW

V of
our model, and projects the ground-state subspace HDI

0 of the parent phase to H0 of our
model. Now that the doubled-Ising loop operatorsW JDI

H andW JDI
V can generate HDI

0 given
any ground state of the parent phase, A can generate H0 of our model given any ground
state of our model.

We shall construct a ground-state basis using W JDW
V as follows. There exists a unique

ground state |Φ〉V ∈ H0, such that

W JDI - JTC
H |Φ〉V = dJDI - JTC |Φ〉V (51)

for all operators W JDI - JTC
H , which generate a largest commutative subalgebra of A. Here

dJDI - JTC = 1 for all pairs JDI -JTC are the only positive eigenvalues of W JDI - JTC
H . This

common eigenstate can be obtained up to factors by

|Φ〉V = PH |ϕ〉 (52)

given arbitrary |ϕ〉 ∈ Heff, where

PH =I +Wψψ̄ - 1
H

2
I +Wψ1̄ - ε

H

2
I +W 1ψ̄ - ε

H

2
I +Wψψ̄ - 1

H + 2W σσ̄ -m
H

4 ×
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I +Wψψ̄−1
H + 2W σσ̄ - e

H

4 P0. (53)

Here,
P0 =

∏
P∈DI

BDI
P

∏
P∈DW

BDW
P

∏
P∈TC

BTC
P

∏
V

QV , (54)

such that P0Heff = H0, where BDI
P , BDW

P , BTC
P and QV are the plaquette operators and

vertex operators in the Hamiltonian Heff (16) of our model.
Since |Φ〉V is the common eigenstate of all W JDI - JTC

H , according to Eq. (49),

H0 = span
{
W JDW
V |Φ〉V

}
. (55)

The states W JDW
V |Φ〉V are orthonormal and thus form a basis of H0. We define

|JDW〉V := W JDW
V |Φ〉V . (56)

We call this basis the domainwall basis, depicted in Fig. 11a.

6.2 The interdomain basis of the ground-state subspace
The algebra A has more than one largest commutative subalgebra. The 6 V -loop operators
W JDW
V also generate a largest commutative subalgebra of A and determine another unique

ground state |Φ〉H , such that

W JDW
V |Φ〉H = dJDW |Φ〉H , (57)

where d1 = dε = dm = de = 1, dχ = dχ̄ =
√

2. This common eigenstate can be obtained
up to factors as

|Φ〉H = PV |ϕ〉 , ∀ |ϕ〉 ∈ Heff, (58)

where

PV = I +W ε
V

2
I +Wm

V

2
I +W e

V

2
I +W ε

V +
√

2W χ̄
V

4
I +W ε

V +
√

2Wχ
V

4 P0. (59)

Hence, we obtain what we call the interdomain basis of H0:

|JDI − JTC〉H := W JDI−JTC
H |Φ〉H , (60)

as depicted in Fig. 11b.

6.3 Ground-state degeneracy on the torus
According to the domainwall basis |JDW〉V (56) or interdomain basis |JDI -JTC〉H (60) of
the ground-state subspace on the torus, our model of the doubled Ising and Z2 toric code
phases separated by two gapped domain walls on the torus has

GSDtorus = 6. (61)

This GSD agrees with the number of the domainwall quasiparticle species JDW, as well as
the number of interdomain topological observable pairs JDI -JTC. This is a generalization
of the correspondence between the GSD of a topological phase on the torus and the number
of anyon species of this topological phase. We can simply replace the input data of our
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V -Loop

JDW

(a)

S

H-Loop

JTCJDI

(b)

Figure 11: The S matrix: the basis transformation from (a) the domainwall basis
{|JDW〉V } to (b) the interdomain basis {|JDI − JTC〉H}.

model with that of any other parent and child phases: for any two domain-wall-separated
topological phases related by anyon condensation, the following correspondence holds.

GSD on the torus

The number of domain
wall excitation states

The number of inter-domain
topological observable pairs

(62)

Note that the GSD in Eq. (61) has also been obtained before by algebraic methods [16].

7 The S and T matrices

Besides the ground-state degeneracy, another fingerprint of the topological phase consists
of the S and T matrices, which generate the basis transformations in the ground-state
Hilbert space H0 on the torus. We shall construct the S and T matrices of our model and
show their physical significance.

7.1 The S matrix on the torus
We define the S matrix as the basis transformation (see Fig. 11):

SJDW,JDI−JTC := V〈JDW|JDI − JTC〉H , (63)

which up to phase factors reads

S =
√

2
4



11̄− 1 ψψ̄ − 1 ψ1̄− ε 1ψ̄ − ε σσ̄ −m σσ̄ − e

1 1 1 1 1 1 1

ε 1 1 1 1 −1 −1

m 1 1 −1 −1 1 −1

e 1 1 −1 −1 −1 1

χ̄
√

2 −
√

2
√

2 −
√

2 0 0

χ
√

2 −
√

2 −
√

2
√

2 0 0


. (64)
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The Levin-Wen model of a single topological phase on the torus is invariant under
rotations generated by a π

2 rotation of the lattice [31]; the S matrix of the model represents
the π

2 rotation and is thus symmetric and unitary. Nevertheless, our model on the torus
does not have this rotation invariance due to the gapped domain walls, so the S matrix
(63) has nothing to do with rotations. Since the domainwall basis and interdomain basis
are labeled by different sets of quasiparticle species, our S matrix is neither symmetric
nor unitary.

The S matrix of a single topological phase not only transforms the ground-state bases
on the torus but also characterizes the mutual statistics of the anyons in the topological
phase. This feature of the S matrix is generalized in our model. That is, the matrix
elements of our S matrix (64) can be understood in the following sense of braiding

JDI JTC

JDW

= SJDW,JDI−JTC
S1,11̄−1

. (65)

Note that in Eq. (64), domainwall quasiparticles χ and χ̄ have nontrivial mutual
statistics with the trivial domainwall quasiparticle 1:

Sχ,ψψ̄−1
S1,11̄−1

=
Sχ̄,ψψ̄−1
S1,11̄−1

= −
√

2. (66)

See Section 5.3.

7.2 The T matrix on the torus
Although our model on the torus is not invariant under the π

2 rotation of the lattice, it is
still invariant under the shear, i.e., the T transformation, of the lattice along the vertical
direction.

The T transformation exchanges the positions of two vertically neighboring vertices
in the ovals in Fig. 12. After the T transformation, for any two horizontally adjacent
plaquettes in the original lattice, the one on the right is shifted by one plaquette upward
relative to the one on the left. See for example the plaquettes P1 and P2 in Fig. 12b.

Figure 13 shows how the T transformation acts on the entire lattice. In the lattice, the
number of columns is equal to the number of plaquettes in each column (e.g., the number
is 4 for the lattice in Fig. 13), so the configuration of the lattice on the torus is invariant
and thus the Hilbert space of our model is unchanged under the T transformation. The
T transformation can be represented in this invariant Hilbert space. Note that any loop
remains a loop under the T transformation; hence, the T transformation preserves the
ground-state Hilbert space H0.

To see how the T transformation acts on a basis state of the Hilbert space, we can
zoom in to see how T acts in the vicinity of a dashed oval:

a0

a1

a2

e1

e2
=⇒

√
da1da′1 G

a0e1a1
a2e2a′1

a0

a′1

a2

e1

e2
. (67)

We define the T matrix as a representation of the T transformation over the interdomain
basis:

TJDW−JTC,KDW−KTC := H〈JDI − JTC| T |KDW −KTC〉H , (68)
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(a) (b)

P1

P2E1
E2

E3

T

(c)

P1 P2

E1 E2
E3

(d)

P1

P2

E1

E2

E3

Figure 12: The T transformation and change of perspectives. (a) The original
lattice on the torus. Each oval encircles the vertices to be exchanged under the
T transformation. (b) Two horizontally adjacent plaquettes P1 and P2. (c) The
plaquettes P1 and P2 after the T transformation. (d) is (c) in a more convenient
perspective.

The matrix T is diagonal and reads

JDI − JTC 11̄− 1 ψψ̄ − 1 ψ1̄− ε 1ψ̄ − ε σσ̄ −m σσ̄ − e

TJDI−JTC,JDI−JTC 1 1 −1 −1 1 1
(69)

The diagonal elements TJDI−JTC,JDI−JTC of the T matrix on the torus are also the topo-
logical spins θJDI = θJTC = TJDI−JTC,JDI−JTC of the anyons JDI and JTC:

JDI JTC = TJDI−JTC,JDI−JTC
JDI JTC

. (70)

The S matrix (63) and T matrix (68) generate all possible basis transformations of
the ground states of our model on the torus.

8 Conclusion

In this paper, we begin with an extended LW model describing a parent phase and trigger
the anyon condensation in half of the system to construct an exactly solvable lattice model
describing the parent phase and its child phase separated by a gapped domain wall. To
make various properties of the model specific and explicit, we focus on the model in the
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(a)

T

(b)

Figure 13: The T transformation on the entire torus. The number of columns
and the number of plaquettes in each column are both 4. (a) The original lat-
tice. (b) The lattice after the T transformation and the change of perspective.
The plaquettes in deeper colors illustrate how the plaquettes shift under the T
transformation.

case of the doubled Ising and Z2 toric code topological phases with a gapped domain wall
in between. Our model leads to the following main results.

1. We obtain the spectrum of the elementary excitation states of the system.

2. We explicitly show the correspondence between the transformations of anyons in
anyon condensation with the elementary excitation states in our model.

3. We find the ground-state bases of our model on the torus, and show that the ground-
state degeneracy (GSD) on the torus equals the number of quasiparticle species in
the gapped domain wall.

4. We construct the S and T matrices that generate the basis transformations of the
ground states on the torus.
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A Gauge transformations of the positions of tails

In the lattice of the extended LW model, each tail associated with vertex V is chosen
to attach to any one of the three edges incident at V . Different choices lead to different
lattice configurations and hence different Hilbert spaces of the extended LW model. Nev-
ertheless, since tails are internal degrees of freedom that cannot be probed, the different
Hilbert spaces underline the same topological phase. Specifically, these Hilbert spaces are
equivalent up to the gauge transformation µ:

µp
p

i

k

l
j

V

=
∑

m∈LDI

√
dldm Gkpljim

p

i

k

m
jV

. (71)

Besides the gauge transformation of the positions of tails, the directions of tails are
also defined up to gauge transformations [26]. For example, the following two states are
equivalent up to a gauge transformation:

p

i

k

l
j

V

p

i

k

l
j

V

. (72)

B The matrix elements of the doubled-Ising ribbon operators

In Section 4.1, we have defined the action of shortest ribbon operators W JDI;p,q
E on the

states where all tails take value 1 ∈ LDI:

W JDI;p,q
E

jE =
∑
k∈LDI

√
dk
djE

zJDI;kpqjE

jE

jE
kp

q
, (73)

where jE ∈ LDI is the label on edge E, and zJDI;kpqjE
are listed in Appendix D.1.

In this appendix, we define the actions of any ribbon operators on any states in H of
the doubled Ising phase.

B.1 Matrix elements of shortest ribbon operators

Here, we define the action of the shortest ribbon operator W JDI;p,q
E on the states, in which

there are nontrivial tails attached on edge E.
We start with the simplest case where the tail is associated with the upper vertex V2

of edge E and carries a charge r and points to the right:

W JDI;p,q
E j0

j2 r

V2

=
∑

ks∈LDI

√
dkds z

JDI,k
pqj0

Grj2j0kqs

j2

j0
kp

s

V2

. (74)

26



SciPost Physics Submission

V1

j0

j1

r

(a)

W̃
JDI;p,q
E

V1

k

j0

j0

j1

p

q

r

(b)

µr

V1

k

j0

l

j1p

q

r

(c)

F

V1

j0

l

j1

p

s

(d)

Figure 14: The action of W JDI;p,q
E on the state where a tail r is associated with

V1.

This action formally is the composition of two operators W̃ JDI;p,q
E and F :

W JDI;p,q
E j0

j2 r

V2

= FW̃ JDI;p,q
E j0

j2 r

V2

. (75)

First, the operator W̃ JDI;p,q
E acts as

W̃ JDI;p,q
E j0

j2 r
V2

=
∑
k∈LDI

√
dk
dj0

zJDI;kpqj0

j0

j0

k

j2

p

q

r
V2

. (76)

Now there are two tails (q and r) associated with vertex V2 on edge E, which can then be
fused by operator F :

F

j0

j0

k

j2

p

q

r
V2

:=
∑
s∈LDI

√
dj0ds G

rj2j0
kqs

j0

k

j2

p

s

V2

. (77)

The result is Eq. (74).
Similarly, when edge E has one tail (r) associated with the lower vertex V1 and pointing

right, W JDI;p,q
E acts on the state as

W JDI;p,q
E j1

j0
r

V1

=
∑

kls∈LDI

dk
√
dlds z

JDI,k
pqj0

Gkpj0j1rl
Gqj0klrs

j0

j1
lp

s

V2

,

(78)
which is also a composition of the actions of two operators:

W JDI;p,q
E j1

j0
r

V1

= FµrW̃
JDI;p,q
E j1

j0
r

V1

. (79)

See Fig. 14.
All other matrix elements of ribbon operators W JDI;p,q

E can be obtained likewise.
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j1

j2 j3

j4

j5
j6

j7

W
JDI;q,r
E4

W
JDI;p,q
E1

j1

j1

j′1

j2 j3

j4

j4

j′4

j5
j6

j7

p

q

q

r (
µ∗q
)4 j′1

j′1
j1

j1

j′2 j′3

j′′4

j4

j5
j6

j7

p

q

q

r

F
j′′1

j1

j′1

j′2 j′3

j′′4
j4

j5
j6

j7

p

s r
BDI
P

j1

j′1

j2 j3

j′′4
j4

j5
j6

j7

p

r

Figure 15: Concatenating shorter ribbon operators to a longer one.

B.2 Concatenating shorter ribbon operators to a longer ribbon operator

Now we define the ribbon operators along longer paths. Consider ribbon operatorW JDI;p,q
L

in Fig. 4c, whose path L crosses two edges labeled by j1 and j4 respectively:

W JDI;p,r
L

j1

j2
j3

j4

j5

j6

j7

=
∑

qj′1j
′
2j
′
3j
′
4j
′′
4∈LDI

z
JDI;j′1
pqj1

z
JDI;j′4
qrj4

×

√
dj1
dj′1

G
rj4j′4
qj4j′′4

Gj7j3j4qj′4j
′
3
Gj6j2j3qj′3j

′
2
Gj5j1j2qj′2j

′
1

p
r

j1

j′1

j′2 j′3
j′′4
j4

j5

j6

j7

. (80)

The operator W JDI;p,r
L can be formally written as

W JDI;p,r
L = BDI

P

∑
q∈LDI

F (µ∗q)4W JDI;q,r
E4

W JDI;p,q
E1

, (81)

see Fig. 15.
All matrix elements of the doubled-Ising ribbon operators taking any paths can be

obtained likewise.

C Proof of the commutation in Heff of Peff and the doubled-Ising
ribbon operators

In this section we prove Eq. (24):

Peff
[
W JDI;p,q
L , Peff

]
= 0. (82)

Obviously, Eq. (24) holds when JDI = 11̄, ψψ̄, ψ1̄, 1ψ̄ and σσ̄ because these anyon
species all have charges in {1, ψ} that are preserved under the projection.
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σ

E2

E1

E3 E4

V1

V2

(a)

σ

E2

E1

E3 E4

V1

V2

(b)

σ

p1

p2
p3 p4

E2

E1

E3 E4

V1

V2

(c)

Figure 16: Two different cases where a tail with charge σ is attached to a TC
edge E2. (a) The tail σ is associated with the vertex V1 with an incident DI edge
E1. (b) is equivalent to (a) up to a µ∗σ gauge transformation. (c) The tail σ is
associated with the vertex V2 with two incident TC edges E3 and E4.

We then consider the ribbon operators W JDI;p,q
L with JDI = σ1̄, σψ̄, 1σ̄ and ψσ̄. These

operators create quasiparticles with charge σ at the ends of path L. Note that Eq. (24)
holds when path L crosses DI edges because Peff only acts on the TC edges, we only need
to consider the projections of states |ϕ〉 = W JDI;p,q

L |Φ〉 with nontrivial tails σ on TC edges.
There are two cases of these states, depicted in Fig. 16a and Fig. 16c.

In the first case, the tail σ is associated with vertex V1 with an incident DI edge E1.
Up to the gauge transformations introduced in Appendix A, this state is equivalent to the
state with tail σ on DI edge E1 (see Fig. 16b) and therefore satisfies Eq. (24).

In the second case, the tail σ is associated with vertex V2 with two other incident TC
edges E3 and E4. Note that

N1
σσ = Nψ

σσ = 1, Nσ
11 = Nσ

1ψ = Nσ
ψ1 = Nσ

ψψ = 0, (83)

one of the labels p1 and p2 on edge E2 must be σ. If p1 = σ, Wψψ̄;1,1
E2

|ϕ〉 = − |ϕ〉;
otherwise, if p2 = σ, one of the labels p3 and p4 must be σ. Since associated with vertex
V there is at most one nontrivial tail that has been on edge E2, we have Wψψ̄;1,1

E3
= − |ϕ〉

or Wψψ̄;1,1
E4

|ϕ〉 = − |ϕ〉. Therefore,

Peff |ϕ〉 = 0, (84)

which leads to
PeffW

JDI;p,q
L Peff = PeffW

JDI;p,q
L = 0. (85)

D The components of z tensors

D.1 Nonzero components of zJDI tensors in the doubled Ising domain
Equation (22)

δj,tN
t
rs

dt
zJDI;wpqt =

∑
ulv∈LDI

dudvz
JDI;v
lqr zJDI;upls GrstpwuG

srj
qwvG

sul
rvw (86)

has 9 minimal solutions zJDI , labeled by the 9 double-Ising anyon species. The nonzero
components of these tensors are

z11̄,1
111 = z11̄,ψ

11ψ = z11̄,σ
11σ = 1, (87)

29



SciPost Physics Submission

zψψ̄,1111 = zψψ̄,ψ11ψ = 1, zψψ̄,σ11σ = −1, (88)

zψ1̄,ψ
ψψ1 = 1, zψ1̄,1

ψψψ = −1, zψ1̄,σ
ψψσ = i, (89)

z1ψ̄,ψ
ψψ1 = 1, z1ψ̄,1

ψψψ = −1, z1ψ̄,σ
ψψσ = −i, (90)

zσσ̄,1111 = zσσ̄,ψψψ1 = zσσ̄,1ψψψ = 1, zσσ̄,ψ11ψ = −1, zσσ̄,σ1ψσ = zσσ̄,σψ1σ = 1, (91)

zσ1̄,σ
σσ1 = 1, zσ1̄,σ

σσψ = i, zσ1̄,1
σσσ = e

iπ
8 , zσ1̄,ψ

σσσ = e−
3iπ

8 , (92)

zσψ̄,σσσ1 = 1, zσψ̄,σσσψ = i, zσψ̄,1σσσ = e−
7iπ

8 , zσψ̄,ψσσσ = e
5iπ

8 , (93)

z1σ̄,σ
σσ1 = 1, z1σ̄,σ

σσψ = −i, z1σ̄,1
σσσ = e−

iπ
8 , z1σ̄,ψ

σσσ = e
3iπ

8 , (94)

zψσ̄,σσσ1 = 1, zψσ̄,σσσψ = −i, zψσ̄,1σσσ = e
7iπ

8 , zψσ̄,ψσσσ = e−
5iπ

8 . (95)

D.2 Nonzero components of zJTC tensors in the toric code domain

The tensors zJTC , JTC ∈ {1, e,m, ε}, are

z1,u
pqs = z11̄,u

pqs = zψψ̄,upqs , zε,upqs = zψ1̄,u
pqs = z1ψ̄,u

pqs , zm,upqs = δp,1z
σσ̄,u
pqs ,

ze,upqs = δp,ψz
σσ̄,u
pqs , p, q, s, u ∈ LTC. (96)

The nonzero components of zJTC tensors are

z1,1
111 = z1,ψ

11ψ = 1, (97)

ze,ψψψ1 = ze,1ψψψ = 1, (98)

zm,1111 = −zm,111ψ = 1, (99)

zε,ψψψ1 = −zε,1ψψψ = 1. (100)

These zJTC tensors are the four minimal solutions to the equation

δj,tN
t
rs

dt
zJTC;w
pqt =

∑
ulv∈LTC

dudvz
JTC;v
lqr zJTC;u

pls GrstpwuG
srj
qwvG

sul
rvw, (101)

with all indices in LTC = {1, ψ}.
Note that although the doubled-Ising tensor zσσ̄ (91) also solves Eq. (101), it is not a

minimal solution but the sum of two minimal solutions ze and zm:

zσσ̄,upqs = zm,upqs + ze,upqs, p, q, r, s ∈ LTC. (102)
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D.3 Nonzero components of zJDW tensors in the gapped domain wall

The tensors zJDW , JDW ∈ {1, e,m, ε, χ, χ̄}, are

z1,u
pqs = z11̄,u

pqs = zψψ̄,upqs , zε,upqs = zψ1̄,u
pqs = z1ψ̄,u

pqs , zm,upqs = δp,1z
σσ̄,u
pqs , ze,upqs = δp,ψz

σσ̄,u
pqs ,

zχ,upqs = zσ1̄1,u
pqs = zσψ̄,upqs , zχ̄,upqs = z1σ̄,u

pqs = zψσ̄,upqs , p, q, u ∈ LDI, s ∈ LTC, (103)

where the nonzero components are

z1,1
111 = z1,ψ

11ψ = 1, (104)

ze,ψψψ1 = ze,1ψψψ = 1, (105)

zm,1111 = −zm,111ψ = 1, (106)

zε,ψψψ1 = −zε,1ψψψ = 1, (107)

zχ,σσσ1 = 1, zχ,σσσψ = i, (108)

zχ̄,σσσ1 = 1, zχ̄,σσσψ = −i. (109)

The tensors zJDW are the 6 minimal solutions to the equation

δj,tN
t
rs

dt
zJDW;w
pqt =

∑
ulv∈LDI

dudvz
JDW;v
lqr zJDW;u

pls GrstpwuG
srj
qwvG

sul
rvw, (110)

with all indices in LDI except that r, s, t ∈ LTC = {1, ψ}.

E Measuring elementary excitation states by local operators

E.1 Local operators in the doubled Ising phase
Since our model stems from the extended LW model describing the doubled Ising phase,
we first focus on the local operators in the doubled Ising phase. In the doubled Ising
phase, the local operators Bpsqu

P are defined by

Bpsqu
P

Pi0

i1

i2 i3

i4

i5i6e0

e2

e3

e4

e5

e6

p′ = δp,p′
∑

j0j1j2j3j4j5j6∈LDI

( 6∏
n=0

√
dindjn

)(
Gsupi0i1j1

Gsuqj1j0i0

)
×

(
Ge2i2i1
sj1j2

Ge3i3i2
sj2j3

Ge4i4i3
sj3j4

Ge5i5i4
sj4j5

Ge6i6i5
sj5j6

Ge0i0i6
sj6j0

) j0

j1

j2 j3

j4

j5j6e0

e2

e3

e4

e5

e6

q . (111)
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The local operators Bpsqu
P preserve the anyon species JDI of the elementary excitation

states |JDI; p, r〉DI but change the charges of the doubled-Ising quasiparticles (JDI, p) in
plaquettes P .

Bpsqu
P

P

(JDI, p′) (JDI, r) ∝ δp,p′
P

(JDI, q) (JDI, r) . (112)

There are in total 12 local operators Bpsqu
P acting on plaquette P :

B1111
P , B1ψ1ψ

P , B1σ1σ
P , B1σψσ

P , Bψ1ψψ
P , Bψψψ1

P ,

Bψσψσ
P , Bψσ1σ

P , Bσ1σσ
P , Bσψσσ

P , Bσσσ1
P , Bσσσψ

P . (113)

E.2 Measurement operators in the doubled Ising phase
Now we define the measurement operators of the elementary excitation states in the dou-
bled Ising phase via the local operators defined above. Since the doubled-Ising elementary
excitation states |JDI; p, q〉DI are determined by quasiparticles (JDI, p) and (JDI, q) therein,
to measure the elementary excitation states, we only need to detect the quasiparticles in
the plaquettes.

The measurement operators ΠJDI,pP of quasiparticles (JDI, p) in plaquette P is a linear
composition of local operators

ΠJDI,pP :=
∑
su

πJDIpsuB
pspu
P . (114)

Here the coefficients πJDIpsu satisfy

πJDIpsu

πJDIp1p
= dsdu

dp
zJDI;upps (115)

where πJp1p is a normalization factor, such that

ΠJDI,pP

P

(J ′DI, p
′) (JDI, r) = δp,p′δJDI,J ′DI

P

(J ′DI, p
′) (JDI, r) . (116)

The measurement operators ΠJDIP of anyon species JDI are thus

ΠJDIP =
∑
p∈JDI

ΠJDI,pP , (117)

where p ∈ JDI are the charges of JDI anyons, i.e., there exist q, s, u ∈ LDI, such that
zJDI,upqs 6= 0.
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E.3 Local operators and measurement operators in the toric code domain and
the gapped domain wall

The local operators in our model are projected from the local operators (111) in the
doubled Ising phase, while the measurement operators of quasiparticles in our model are
projected from the doubled-Ising measurement operators (114).

There are four local operators acting on the TC plaquette P :

PeffB
1111
P Peff, PeffB

1ψ1ψ
P Peff, PeffB

ψ1ψψ
P Peff, PeffB

ψψψ1
P Peff, (118)

which comprise the measurement operators of the four quasiparticles (JTC, p) in the toric
code domain

Π1,1
P = 1

2Peff
(
B1111
P +B1ψ1ψ

P

)
Peff,

Πm,1P = 1
2Peff

(
B1111
P −B1ψ1ψ

P

)
Peff,

Πe,ψP = 1
2Peff

(
Bψ1ψψ
P +Bψψψ1

P

)
Peff,

Πε,ψP = 1
2Peff

(
Bψ1ψψ
P −Bψψψ1

)
P
Peff. (119)

In the gapped domain wall, since s is restricted to LTC, there are 6 local operators:

PeffB
1111
P Peff, PeffB

1ψ1ψ
P Peff, PeffB

ψ1ψψ
P Peff,

PeffB
ψψψ1
P Peff, PeffB

σ1σσ
P Peff, PeffB

σψσσ
P Peff. (120)

They comprise the measurement operators of the domainwall quasiparticles (JDW, p).

Π1,1
P = 1

2Peff
(
B1111
P +B1ψ1ψ

P

)
Peff,

Πm,1P = 1
2Peff

(
B1111
P −B1ψ1ψ

P

)
Peff,

Πe,ψP = 1
2Peff

(
Bψ1ψψ
P +Bψψψ1

P

)
Peff,

Πε,ψP = 1
2Peff

(
Bψ1ψψ
P −Bψψψ1

P

)
Peff,

Πχ,σP =
√

2
2 Peff

(
Bσ1σσ
P + iBσψσσ

P

)
Peff,

Πχ̄,σP =
√

2
2 Peff

(
Bσ1σσ
P − iBσψσσ

P

)
Peff. (121)

Using the measurement operators (114), (119) and (121) in different areas of our model,
we can measure the quasiparticle species of our model. See Table 1, 2, 4, 5 and 6.

F The algebra of the noncontractible loop operators

F.1 The multiplications of noncontractible loop operators

The loop operators W JDI−JTC
H (47) and W JDW

V (48) generate a 36-dimensional algebra A.
Here, we list the multiplications of these loop operators, which completely determine this
algebra.
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The six H-loop operators W JDI−JTC
H are commutative:(

W 1ψ̄−ε
H

)2
=
(
Wψ1̄−ε
H

)2
= W 11̄−1

H = I, Wψ1̄−ε
H W 1ψ̄−ε

H = Wψψ̄−1
H ,

Wψ1̄−ε
H W σσ̄−e

H = W 1ψ̄−ε
H W σσ̄−e

H = W σσ̄−m
H ,

(
W σσ̄−e
H

)2
= W 11̄−1

H +Wψψ̄−1
H

2 . (122)

The six V -loop operators W JDW
V along the gapped domain wall are also commutative:

(W e
V )2 = (Wm

V )2 = W 1
V = I, W e

VW
m
V = W ε

V ,

W e
VW

χ
V = Wm

V W
χ
V = W χ̄

V , (Wχ
V )2 = W 1

V +W ε
D. (123)

MultiplyingW JDW
V andW JDI−JTC

H generate the additional 25 linearly independent sym-
metry operators.

W σσ̄ -m
H Wm

V = Wm
V W

σσ̄ -m
H ,

W σσ̄ - e
H W e

V = W e
VW

σσ̄ - e
H ,

W σσ̄ - e
H Wm

V = −Wm
V W

σσ̄ - e
H ,

W σσ̄ -m
H W e

V = −W e
VW

σσ̄ -m
H ,

W σσ̄ - e
H W ε

V = −W ε
VW

σσ̄ - e
H ,

W σσ̄ -m
H W ε

V = −W ε
VW

σσ̄ -m
H ,

Wψψ̄ - 1
H Wχ

V = −Wχ
VW

ψψ̄ - 1
H ,

Wψψ̄ - 1
H W χ̄

V = −W χ̄
VW

ψψ̄ - 1
H ,

Wψψ̄ - 1
H Wm

V = Wm
V W

ψψ̄ - 1
H ,

Wψ1̄ - ε
H W ε

V = W ε
VW

ψ1̄ - ε
H ,

Wψ1̄ - ε
H Wχ

V = −Wχ
VW

ψ1̄ - ε
H ,

Wψ1̄ - ε
H W χ̄

V = −W χ̄
VW

ψ1̄ - ε
H ,

W 1ψ̄ - ε
H Wχ

V = −Wχ
VW

1ψ̄ - ε
H ,

W 1ψ̄ - ε
H W χ̄

V = −W χ̄
VW

1ψ̄ - ε
H ,

Wψ1̄ - ε
H Wm

V = −Wm
V W

ψ1̄ - ε
H ,

W 1ψ̄ - ε
H Wm

V = −Wm
V W

1ψ̄ - ε
H ,

Wψ1̄ - ε
H W e

V = −W e
VW

ψ1̄ - ε
H ,

W σσ̄ -m
H Wχ

V ,

Wχ
VW

σσ̄ -m
H ,

W σσ̄ - e
H Wχ

V ,

Wχ
VW

σσ̄ - e
H ,

W σσ̄ -m
H W χ̄

V ,

W χ̄
VW

σσ̄ -m
H ,
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W σσ̄ - e
H W χ̄

V ,

W χ̄
DW

σσ̄ - e
H . (124)

All other multiplications of operators are not linearly independent:

Wψψ̄−1
H W e

V = W e
VW

ψψ̄−1
H = Wψψ̄−1

H Wm
V +W e

V −Wm
V ,

W 1ψ̄−ε
H W ε

V = W ε
VW

1ψ̄−ε
H = Wψ1̄−ε

H W ε
V +W 1ψ̄−ε

H −Wψ1̄−ε
H ,

W 1ψ̄−ε
H W e

V = −W e
VW

1ψ̄−ε
H = Wψ1̄−ε

H W e
V +W 1ψ̄−ε

H W e
V −W

ψ1̄−ε
H Wm

V ,

Wχ
VW

σσ̄−e
H Wχ

V = Wχ
VW

σσ̄−m
H Wχ

V = 0. (125)

F.2 Generating the entire ground-state subspace
Finally, we prove Eq. (49): For any given two ground states |Φ〉 ∈ Heff and |Φ′〉 ∈ Heff of
our model on the torus, there exists an operator W ∈ A, such that∣∣Φ′〉 = W |Φ〉 . (126)

Since the ribbon operators in our model are projected from the doubled-Ising ribbon
operators in the doubled Ising phase, the doubled-Ising loop operators in our model on the
torus — the special cases of ribbon operators — are also projections of the doubled-Ising
loop operators along the same paths:

W 1
V = PeffW

11̄
V Peff = PeffW

ψψ̄
V Peff,

W ε
V = PeffW

ψ1̄
V Peff = PeffW

1ψ̄
V Peff,

Wm
V +W e

V = PeffW
σσ̄
V Peff,

Wχ
V = PeffW

σ1̄
V Peff = PeffW

σψ̄
V Peff,

W χ̄
V = PeffW

1σ̄
V Peff = PeffW

ψσ̄
V Peff,

W 11̄−1
H = PeffW

11̄
H Peff,

Wψψ̄
H = PeffW

ψψ̄
H Peff,

W σσ̄−m
H +W σσ̄−e

H = PeffW
σσ̄
H Peff,

Wψ1̄−ε
H = PeffW

ψ1̄
H Peff,

W 1ψ̄−ε
H = PeffW

1ψ̄
H Peff. (127)

Therefore, the algebra A in our model satisfies

A = PeffADIPeff, (128)

where the algebra ADI is generated by all noncontractible loop operators W JDI
D ,W JDI

H in
the doubled Ising phase on the torus along H-loop and V -loop.

On the other hand, in the doubled Ising phase, the projector

PDI
0 =

∏
P

BDI
P

∏
V

QV (129)

projects the total Hilbert space H to the doubled-Ising ground-state subspace HDI
0 :

PDI
0 H = HDI

0 . (130)
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In our model, the projector

P0 =
∏
P∈DI

BDI
P

∏
P∈DW

BDW
P

∏
P∈TC

BTC
P

∏
V

QV (131)

projectes the effecitve Hilbert space Heff to the ground-state subspace H0. Note that
P0 = PeffP

DI
0 Peff, the projector Peff projects HDI

0 to H0:

PeffHDI
0 = PeffHDI

0 . (132)

Therefore, for any two ground states |Φ〉 and |Φ′〉 of our model, there exist doubled-Ising
ground states |Φ〉DI and |Φ′〉DI, such that

|Φ〉 = |Φ〉DI ,
∣∣Φ′〉 =

∣∣Φ′〉DI . (133)

Since HDI
0 is generated by the algebra ADI given any doubled-Ising ground state |Φ〉DI,

there exists a doubled-Ising operator WDI ∈ ADI, such that∣∣Φ′〉DI = WDI |Φ〉DI . (134)

As their projections, ∣∣Φ′〉 =
(
PeffW

DIPeff
)
|Φ〉DI , (135)

where PeffWDIPeff ∈ A. Therefore, the algebra A generates the entire ground-state sub-
space H0 of our model given any ground state |Φ〉.
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