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2 Service de Physique Théorique, Université Libre de Bruxelles, Boulevard du Triomphe,
CP225, 1050 Brussels, Belgium

3 CERN, Theoretical Physics Department, Geneva, Switzerland

February 7, 2023

Abstract

A dark sector with non-abelian gauge symmetry provides a sound framework to justify stable
dark matter (DM) candidates. We consider scalar fields charged under a SU(N) gauge group,
and show that the centre of SU(N), the discrete subgroup ZN also known as N -ality, can ensure
the stability of scalar DM particles. We analyse in some details two minimal DM models of
this class, based on SU(2) and SU(3), respectively. These models have non-trivial patterns of
spontaneous symmetry breaking, leading to distinctive phenomenological implications. For the
SU(2) model these include a specific interplay of two DM states, with the same interactions but
different masses, and several complementary DM annihilation regimes, either within the dark
sector or through the Higgs portal. The SU(3) model predicts dark radiation made of a pair
of dark photons with a unique gauge coupling, as well as regimes where DM semi-annihilations
become dominant and testable.
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1 Introduction

In the Standard Model (SM) the four stable particles (photon, electron, lightest neutrino and proton)
are all stable as a result of Lorentz and gauge invariance. The possibility that dark matter (DM)
particles are stable for a similar reason has been extensively studied in the recent years. This can
be achieved either introducing a large (fermion or scalar) representation of the weak gauge group
[1], or assuming the existence of a new gauge interaction in a dark sector. For fermion DM, the
simplest hidden sector consists in nothing but a copy of QED, with a new U(1)D gauge symmetry
[2, 3] which may or may not be spontaneously broken. For vector DM, the simplest example is
provided by a SU(2)D gauge symmetry spontaneously broken by a scalar doublet, so that the
three gauge bosons are stable due to a remnant, accidental SO(3) custodial symmetry [4, 5]. The
analogous construction for a U(1)D gauge symmetry can also lead to a stable gauge boson DM,
but only assuming a somewhat ad hoc charge-conjugation symmetry, to forbid kinetic mixing with
the hypercharge gauge boson [4, 6, 7]. For scalar DM, the simplest possibility is to assume a
scalar DM field χ charged under a new U(1)D symmetry (with for definiteness unit charge), and
that spontaneous symmetry breaking is induced by a second scalar field Φ with charge n, with n
for instance an integer larger than unity. In this case a Zn subgroup of U(1)D is unbroken and
preserves the χ stability. Note it is straightforward (but not necessary) to make Φ and the gauge
boson parametrically heavy, leaving χ as the lightest dark particle. This ‘abelian’ possibility has
been considered e.g. in [8, 9].

Here we focus on the alternative possibility of scalar DM stabilised by a non-abelian gauge
symmetry of the dark sector, GD. The non-abelian nature of the group GD comes with some
theoretical advantages, such as asymptotic freedom and charge quantisation, as well as with a much
richer phenomenology. Previous works [10, 11] considered various Lie groups for the dark gauge
symmetry, assuming a single scalar representation, either fundamental or with two indices. Various
possible DM candidates were identified, due to the existence of some remnant gauge symmetry,
or global accidental symmetry. When the SSB of GD preserves a non-abelian subgroup (or even
when the entire GD is unbroken), the theory may confine in the infrared. In such case some of the
resulting bound states may be stable DM candidates [5, 10, 11]. There is also the possibility to have
stable scalar glueballs from the GD confinement, without assuming any dark scalar field [12, 13].
On the other hand, a dark scalar allows for a Higgs portal interaction between the dark sector and
the SM.

In this paper we call attention on a different possibility to realise scalar DM from a non-abelian
gauge symmetry. We take advantage of the ‘N-ality’ symmetry of SU(N) gauge theories, which
corresponds to the existence of a non-trivial group centre ZN , formed by those transformations
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which commute with all SU(N) elements. The idea is quite simple: when SU(N) is spontaneously
broken by a scalar representation Φ which is invariant with respect to ZN , the centre subgroup
remains unbroken. In this case, the lightest particles charged under the centre will be stable, and
potential DM candidates. In particular, any scalar multiplet transforming non trivially with respect
to ZN could provide in this way one or several DM candidates. Note that the SU(N) centre may
have other phenomenological applications in different contexts. For example the role of the centre
of a SU(N) gauge symmetry was explored in axion models, in connection with the quality of the
Peccei-Quinn symmetry [14, 15]. A recent paper [16] also studied the center of discrete symmetry
groups, and pointed out the possibility to use it to stabilise DM.

We will analyse two simple models of scalar DM protected by N -ality, based on an SU(2)
and SU(3) gauge symmetry respectively, which have interesting theoretical properties and rich
phenomenologies. On the theory side, the SSB pattern of these models preserves U(1) gauge
symmetries, as well as accidental global symmetries beside the center ZN . In addition the scalar
potential of the SU(3) model turns out to have a vacuum manifold with an interesting structure.
As for the dark sector phenomenology, its richness results mainly from the non-abelian structure
which leads to multi-component DM with specific interplay between the various components. For
the SU(3) case the preserved triality symmetry Z3, inherited from the non-abelian group, also
allows for processes with an odd number of DM particles. To account for the observed DM relic
density, we will mainly focus on the usual thermal freeze-out regime. Several freeze-out production
regimes will be considered with specific phenomenology. Other production mechanisms will also be
considered briefly.

The paper is structured as follows. In section 2 the properties of N -ality are reviewed and
the scalar DM models based on N -ality are introduced. In section 3 the scalar potential for each
model is introduced, and its minimisation is studied, while in section 4 we present the resulting
set of dark-sector masses and couplings. While the discussion for the SU(2)D model is relatively
compact, the analysis of the SU(3)D model is theoretically instructive, but technically involved: the
reader mostly interested in DM phenomenology can skip the corresponding subsections. In section
5 we study the phenomenology of our models: the constraints on dark radiation, the computation
of the DM relic density in various regimes, and finally the role of DM semi-annihilations.

2 SU(N) dark sector and N-ality

We will assume a single gauge group GD in the dark sector with coupling strength gD. In the case
GD = SU(N), a natural candidate for the symmetry stabilising DM is the so-called N -ality, that is,
the ZN subgroup which constitutes the centre of SU(N): each irreducible SU(N) representation,
with n upper and m lower indices, is assigned a ZN charge given by (n − m) mod N . Defining
ω = exp(2iπ/N), e.g. the fundamental representation transforms as ω, the anti-fundamental as
ωN−1, the adjoint as ω0, et cetera.

While SU(N) invariance guarantees that the Lagrangian is ZN invariant, spontaneous symmetry
breaking may or may not preserve such symmetry. For our program, the simplest possibility is to
introduce two scalar fields, χ in the fundamental and Φ in the N -index symmetric representation,
which is ZN -invariant. Assuming that Φ acquires a VEV while χ does not, one obtains that ZN

remains unbroken, and χ is automatically stable. With this choice of representations, the ZN

symmetry is especially manifest in the coupling Φ∗
i1...iN

χi1 . . . χiN , which is non-vanishing as the N
indices of Φ are symmetrised and the scalars are commuting fields.

In the case of SU(2), Φ ∼ 3 coincides with the adjoint, the potential includes a cubic coupling
Φijχ

iχj , and the discrete DM symmetry is Z2, the so-called SU(2) ‘duality’. In the case of SU(3),
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Φ ∼ 10 is a 3-index symmetric tensor, the potential includes a quartic coupling Φ∗
ijkχ

iχjχk, and
the DM symmetry is Z3, the SU(3) ‘triality’.

We will not consider SU(N) for N > 3. Note the coupling of Φ to N copies of χ is non-
renormalisable for N ≥ 4. Moreover, the SU(N) gauge theory with one scalar Φ in the N -index-
symmetric representation loses asymptotic freedom already for N ≥ 5: the relevant Dynkin index
is T (Φ) = (2N)!/[2(N + 1)!(N − 1)!]. We do not need to confront with these complications, since
the DM phenonomenology is very rich already for the cases N = 2 and N = 3.

It is worth remarking that analogous SU(N) DM models could be built by changing the repre-
sentation of χ and/or Φ, provided the former carries a non-trivial N -ality while the latter does not.
For example, one can (partially) break SU(N) by the VEV of an adjoint scalar Φi

j . For N = 2, the
adjoint coincides with the two-index symmetric, and we will study this model in details below. For
N > 2, the adjoint scenario is qualitatively different, and it allows an easier extrapolation to large
N , in comparison to the case of Φ in the N -index symmetric. However, the role of N -ality is not
manifest in the adjoint scenario, as there is no coupling of Φ to N copies of χ. The coupling χ∗

i Φ
i
jχ

j

leads to a more traditional DM phenomenology, thus we will not further consider this possibility in
this paper.

3 Spontaneous symmetry breaking in the dark sector

We are interested in a gauge group GD = SU(N)D with a set of scalar fields in specific representa-
tions. The most general SU(N)D-invariant, degree-four polynomial in the scalar fields defines the
renormalisable scalar potential V of the dark sector. Its minimisation determines the SSB pattern of
the gauge symmetry, the mass spectrum of scalar and vector bosons, as well as the set of unbroken
global symmetries.

3.1 The dark SU(2) model

In the case of a dark SU(2)D with charge gD, let us consider a real scalar triplet φa where a = 1, 2, 3
is an index in the adjoint representation. The latter is equivalent to the two-index symmetric
representation, as one can define a 2 × 2 symmetric matrix Φ with components

Φij ≡
√

2φa(τa)ikϵ
kj , (1)

where τa ≡ σa/2 are the SU(2) generators and our convention for the Levi-Civita tensor is
ϵ12 = −ϵ12 = 1. Notice that the reality condition reads (Φij)∗ = Φij ≡ ϵikΦklϵlj , and the nor-
malisation is chosen such that ΦijΦji = φaφa. The isospin eigenstates are given by (ϕ+, ϕ0, ϕ−) =
[(φ1 − iφ2)/

√
2, φ3, (φ1 + iφ2)/

√
2] = (−Φ11,

√
2Φ12,Φ22).

The most general renormalisable Lagrangian can be written as

L(Φ) =
1

2
DµΦijDµΦij − V (Φ) , V (Φ) = −µ2

2
ΦijΦji +

λ

4
(ΦijΦji)

2 . (2)

The case of a SU(2) gauge symmetry broken by a real scalar triplet is well known. For µ2 > 0 and
λ > 0, the SSB pattern is SU(2)D → U(1)D, driven by a VEV ⟨ΦijΦji⟩ = µ2/λ ≡ v2D. One can
choose the VEV in the τ3 direction without loss of generality, and thus write φ3 = vD + ρ. The
radial mode ρ acquires mass m2

ρ = 2µ2, the gauge boson W±
D charged under U(1)D receives mass

m2
WD

= g2Dµ
2/λ, while the neutral gauge boson AD remains massless.

We recall that such SSB pattern has a non-trivial second homotopy group, π2[SU(2)/U(1)] = Z,
corresponding to the existence of topologically stable monopoles. These may be produced in the
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early Universe, during the phase transition occurring at temperature Tc ∼ vD. In the case of a second
order phase transition, the monopole relic density produced through the Kibble-Zurek mechanism
can be estimated as Ωmonh

2 ∼ 1/gD(Tc/150TeV)2, where we followed [17]. This sets an upper
bound on the scale vD, in order not to overclose the Universe, and actually opens the possibility
of monopole DM. On the other hand, the monopole relic density is negligible for e.g. gD ∼ 1 and
vD ∼ 10 TeV, and it might be further diluted by monopole annihilations and/or later entropy
injections; also, it would be extremely smaller in the case of first-order phase transition. We will
neglect monopoles in the following.

Let us remark that the unbroken symmetry U(1)D is an accident due to the choice of a minimal
scalar sector. It is conceivable that additional scalar multiplets may also acquire a VEV and
complete the SSB of SU(2)D, by making AD massive as well. Still, if only scalars with an even
number of SU(2)D indices acquire a VEV, the Z2 duality symmetry remains unbroken. For example
one could consider a scalar sector formed by two real adjoints Φij

1,2, or by a four-index-symmetric

representation Φijkl, a real quintuplet.
Let us now introduce a Z2-odd scalar multiplet, that will provide a candidate for DM. The

simplest possibility is a scalar χi in the fundamental representation of SU(2)D, with potential

V (χ) = µ2
χχ

iχ̃i + λχ(χiχ̃i)
2 , (3)

where we defined χ̃i ≡ (χi)∗. Here too we adopt the usual convention to lower and raise tensor
indices, i.e. χi ≡ ϵijχ

j and χ̃j ≡ ϵjkχ̃k. The most general couplings between χi and a real adjoint
scalar Φij read

V (Φ, χ) =
1

2
(κ1χ

iΦijχ
j + h.c.) − κ2χ

iΦijχ̃
j +

1

2
λχΦ(ΦijΦji)(χ

iχ̃i) . (4)

Since there are no couplings linear in χ, a vanishing VEV ⟨χ⟩ = 0 is automatically an extremum
of the potential. In a large portion of the parameter space, ⟨χ⟩ = 0 is also a minimum.1 As a
consequence, the Z2 symmetry χ → −χ is unbroken and protects its stability. In this region of
parameters the VEV of Φ is determined by V (Φ) only, according to the discussion above.

A recent paper [18] considered a dark sector with the same gauge symmetry and scalar multiplets,
but focusing on the region where also χ acquires a VEV, so the DM candidate and the symmetry
responsible for its stability are different from ours. We note that vector (spin-one) DM is also
possible in a dark sector with SU(2)D symmetry. Indeed, this is the case in minimal models with a
single scalar multiplet: when SU(2)D is broken by one fundamental scalar χi, the custodial triplet
of gauge bosons W a

D is degenerate and stable [4]; when SU(2)D is instead broken by one adjoint
scalar Φij , DM can be constituted by the complex gauge boson W±

D charged under the residual
U(1)D symmetry [19]. Another model with vector DM, and also possibly additional scalar DM,
from a dark SU(3) gauge symmetry can be found in [20, 21].

Let us further understand the symmetries of our model. In the limit where the couplings κ1,2
are neglected, the potential is separately invariant under a global SU(2)DΦ acting on Φ only, and a
global SU(2)Dχ acting on χ only. Actually, similarly to what happens in the SM, χ enjoys a larger,
custodial symmetry, SU(2)Dχ×SU(2)χ, acting on the 2×2 matrix X ≡ (χ̃ χ) as X → UDχX(Uχ)†:
indeed χiχ̃i = tr(X†X)/2. To understand the impact of κ1,2 on these global symmetries, it is worth
considering a redefinition of the χ field, according to

χ′ ≡ cos θχ + sin θχ̃ , cos 2θ =
κ2√

κ21 + κ22
, sin 2θ =

κ1√
κ21 + κ22

, (5)

1The (tree level) condition on the potential parameters to guarantee ⟨χ⟩ = 0 cannot be written in closed form, for
the most general potential. In the limit of small cubic couplings, κ1,2 → 0, one can show that such condition is given
by 2λµ2

χ > λχΦµ
2. Note we also require the potential to be bounded from below, which corresponds to the region

λ > 0, λχ > 0 and λχΦ > −2(λλχ)
1/2.
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where we chose κ1 real by appropriately rephasing the χ field, with no loss of generality. In
components,

χ′ ≡
(

χ+

χ−

)
=

(
cos θ χ1 + sin θ χ2∗

cos θ χ2 − sin θ χ1∗

)
. (6)

Then, the potential (4) becomes (dropping the prime from χ′ for notational convenience)

V (Φ, χ) = −κχiΦijχ̃
j +

1

2
λχΦ(ΦijΦji)(χ

iχ̃i) , (7)

where κ ≡
√
κ21 + κ22 is positive definite. Firstly, this shows that there is only one physical cubic

coupling κ. Secondly, κ breaks SU(2)DΦ × SU(2)Dχ to a single SU(2)D, corresponding to the
gauged group we started from. Thirdly, κ also breaks SU(2)χ to the subgroup generated by τ3,
which simply acts as χ → eiα3/2χ, χ̃ → e−iα3/2χ̃. Thus, the model has an accidental U(1)χ global
symmetry, which contains the Z2 duality as a subgroup. Note that SSB by ⟨Φ⟩ ̸= 0 leaves U(1)χ
unbroken.

Finally the dark-sector scalars can communicate with the SM sector through the usual Higgs
portal interactions,

Vportal =

(
λχHχiχ̃i +

1

2
λΦHΦijΦji

)
H†H . (8)

Note that the VEVs of Φ and H, v2D ≡ ⟨ΦijΦji⟩ and v2 ≡ 2⟨H†H⟩, are shifted by the coupling λΦH ,
but the VEV directions are not affected, therefore the pattern of SSB remains the same.

3.2 The dark SU(3) model

In the case of a dark SU(3) gauge symmetry, let us consider a scalar Φijk in the three-index
symmetric representation 10. Here i, j, k = 1, 2, 3 are indices in the fundamental representation of
SU(3)D. The conjugate Φ∗

ijk transforms in the 10, with indices in the anti-fundamental.2 Since the
10 is invariant with respect to the centre of SU(3)D, its VEV always preserves the triality Z3.

The possible SU(3)-invariant polynomials are obtained by contracting indices with the invariant
tensors δij , ϵijk and ϵijk. The resulting, most general, renormalisable potential reads

V (Φ) = −µ2 Φ∗
ijkΦijk + λ

(
Φ∗
ijkΦijk

)2
+ δ Φi1j1k1Φ∗

i1j1k2
Φi2j2k2Φ∗

i2j2k1

+
(
η ϵi1i2i3ϵj1j2j3Φi1j1k1Φi2j2k2Φi3j3k3Φ∗

k1k2k3
+ h.c.

)
+

(
σ ϵi1j2k3ϵi4j1k2ϵi3j4k1ϵi2j3k4Φi1j1k1Φi2j2k2Φi3j3k3Φi4j4k4 + h.c.

)
.

(9)

The terms on the first line are also invariant under an overall U(1), Φ → eiαΦ: if such U(1)D
symmetry is also gauged, the quartic couplings η and σ are forbidden. Let us first focus on the
limit η, σ → 0, and note that in this case the potential can be rewritten as

V (Φ) = −µ2Ai
i + λ

(
Ai

i

)2
+ δ Ai

jA
j
i , Ai

j ≡ ΦiklΦ∗
jkl , (10)

where a sum over repeated indices is always understood. The traceless part of Ai
j transforms in

the adjoint of SU(3)D, while Ai
i is a singlet. Such potential for a 10 representation of SU(3) was

considered in [22], where a few remarkable properties were pointed out, in connection with the

2This SU(3) representation is reminiscent of the flavour ten-plet of baryons in QCD, formed by the ten symmetrised
combinations of the u, d and s quarks.
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residual discrete symmetries after SSB. Here we present a more systematic analysis of the potential
minimisation.

Note that the SU(3)D invariance allows to choose a basis where the matrix A is diagonal,
A = diag(D1, D2, D3), with Di ≡

∑
kl |Φikl|2 ≥ 0. This basis choice amounts to non-trivial relations

among the ten independent components of Φ, that is, A1
2 = A1

3 = A2
3 = 0. With this trick, it becomes

relatively straightforward to analyse SSB. Firstly, the potential V is bounded from below if and
only if the quadratic form λ(

∑
iDi)

2 + δ
∑

iD
2
i is copositive-definite, that is, positive for all values

Di > 0. This occurs for
λ + δ > 0 and 3λ + δ > 0 . (11)

The extrema of the potential must satisfy the equation ∂V (Φ)/∂Φ∗
abc = 0, for all a, b, c. By carefully

accounting for the multiplicity of the Φ components (e.g. Φ112, Φ121 and Φ211 are one and the same
field), one can derive the extremality condition,

0 = Φabc

[
−µ2 + 2λ(D1 + D2 + D3) +

2

3
δ(Da + Db + Dc)

]
, for all a, b, c , (12)

where we adopted the basis with A diagonal.
For µ2 < 0 there is only one extremum at the origin, Φabc = 0, which is of course a global

minimum with SU(3)D × U(1)D unbroken. In this case the SU(3)D confines at low energy, and
possible DM candidates can be found among the lightest bound states. We do not investigate this
possibility in this paper; various DM candidates in the confined phase of a dark gauge symmetry
are discussed e.g. in [5], [10], [11].

For µ2 > 0 one can check there are various extrema, and their nature depends on the sign of δ.
For δ < 0, the global minimum is obtained for D1 = D2 = 0 and D3 = µ2/[2(λ+ δ)], or equivalently
for permutations of the indices 1, 2, 3. This corresponds to all Φ components vanishing except for
|Φ333|2 = D3. The SSB pattern is SU(3)×U(1) → SU(2)×U(1). There are 5 massive gauge bosons
and 15 massive real scalars. Here it is the remnant SU(2) group which confines at low energy, with
some potentially stable bound states.

We will rather focus on the region µ2 > 0 and δ > 0, where the unbroken gauge group turns out
to be abelian. In this case the global minimum is obtained for

D1 = D2 = D3 = D ≡ µ2

2(3λ + δ)
. (13)

At the minimum the field Φ satisfies the matrix equation ΦiklΦ∗
jkl = Dδij . This amounts to 9 real

conditions on 20 real degrees of freedom, so that the vacuum manifold is 11-dimensional. Quite
surprisingly, this number is larger than the number of generators in SU(3)D ×U(1)D. It is possible
to show3 that the potential (10) has no accidental continuous symmetries, beside SU(3)D ×U(1)D,
therefore there are at most 9 Nambu-Goldstone bosons (NGBs). Thus, remarkably, there are at
least two flat directions in the vacuum manifold, which do not correspond to a gauge transformation.

Indeed, one can check that different points in the vacuum manifold correspond to different
physical mass spectra, therefore they are not gauge-equivalent to each other. Let us present two
relevant examples. (i) One solution is |Φ123|2 = D/2 with all other Φ components vanishing. In
this case the SSB pattern is SU(3) × U(1) → U(1)3 × U(1)8, where the subscript stand for the
two Cartan generators λ3,8 in the SU(3) algebra. Thus, there are 7 massive gauge bosons and 2
massless ones. Among the 20 real scalars contained in Φ, 7 are the would-be NGBs eaten via the
Higgs mechanism, 7 others are massive, and the remaining 6 are massless. (ii) Another solution is

3We thank Felix Brümmer for providing an explicit proof of that statement.
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|Φ111|2 = |Φ222|2 = |Φ333|2 = D with all other components vanishing. In this case SU(3) × U(1) is
fully broken, with 9 massive gauge bosons. Among the remaining 11 real scalars, 9 are massive and
2 are massless. Clearly, these two configurations are physically not-equivalent, even though they
have the same (minimal) energy. One can also show that there are flat directions in the vacuum
manifold connecting (i) to (ii), which correspond to scan over intermediate, not-equivalent field
configurations.

To recapitulate, in the case µ2 > 0 and δ > 0, the minimisation of Eq. (10) does not determine
uniquely the physical minimum. There are various approaches to lift this degeneracy and identify
the true minimum. One can go beyond the classical, renormalisable approximation: compute radia-
tive corrections to be added to the tree-level potential, and/or add non-renormalisable operators.
Alternatively, one can drop the gauged U(1)D symmetry, and restore the second and third lines
of Eq. (9). Here we pursue the latter option, as our initial aim was to stabilise scalar DM with a
purely non-abelian gauge symmetry.

Notice that, adding the η and/or σ quartic couplings, the potential is no longer a function of Ai
j

only, therefore the full characterisation of the extrema becomes a much harder task. Still, in the
light of the previous discussion, one can make some ansatzes. If one considers the special point (ii),
where Φ111,222,333 ̸= 0 only, one finds it is no longer an extremum, as soon as η ̸= 0 or σ ̸= 0. Let
us focus, therefore, on the special point (i), with Φ123 ̸= 0 only. It is laborious but straightforward
to check that, even when η ̸= 0 and/or σ ̸= 0, the extremality condition ∂V (Φ)/∂Φ∗

abc = 0 is still
satisfied for all abc ̸= 123. For abc = 123, the extremality condition reads

0 = 6Φ123
[
−µ2 + 2|Φ123|2(6λ + 2δ + 8σ∗e−4iα + ηe2iα + 3η∗e−2iα)

]
, (14)

where α is the VEV phase, Φ123 = |Φ123|eiα, and the couplings σ and η are complex in general. Let
us assume for simplicity both σ and η to be real, and |η| > |2σ|. In this region Eq. (14) has four
solutions for the VEV of Φ123 (in addition to the trivial solution ⟨Φ123⟩ = 0):

R : ⟨Φ123⟩ = ±

√
µ2

4(3λ + δ + 4σ + 2η)
, I : ⟨Φ123⟩ = ±i

√
µ2

4(3λ + δ + 4σ − 2η)
. (15)

The sign ambiguity corresponds to a residual Z2 symmetry of the potential, Φ → −Φ, which implies
that extrema come in degenerate pairs. In contrast, the solutions R and I are not degenerate, and
they are related by the transformation η → −η and Φ → iΦ.

Next, let us prove that a VEV for Φ123 not only provides an extremum, but also a minimum.
The SSB pattern is SU(3) → U(1)3×U(1)8, therefore there are 6 massive gauge bosons and, in the
limit η, σ → 0, 7 real scalars with positive mass and 7 massless ones. When one introduces η ̸= 0,
one can show that in the extremum R the 7 massless scalars acquire a positive mass for η < 0 (when
η > 0, these states have positive masses at the extremum I instead). At the same time, the other
7 scalars retain a positive mass, as long as |η| is not too large w.r.t. λ and δ. By continuity, all
masses will remain positive also when σ ̸= 0 is introduced, as long as the latter is sufficiently small.
Therefore, either the extremum R or I is a minimum of the potential, in an appropriate interval
of the parameters. For definiteness, we will study the phenomenology for η < 0, corresponding to
a minimum in the extremum R, and we define v2D ≡ 12|⟨Φ123⟩|2.4 The case with η > 0 and the
minimum in the extremum I is physically equivalent.

We just proved that a scalar Φ in the 10 representation of SU(3)D may break the latter to
U(1)3 × U(1)8. As in the SU(2)D model, there are monopoles, since π2[SU(3)/U(1)2] = Z × Z is

4The normalisation Φ123 = (vD + ρ+ iθ)/
√
12 guarantees that the real scalars ρ and θ are canonically normalised,

given the kinetic term Lkin ≡ (DµΦ
∗
ijk)(D

µΦijk).

8



non-trivial, but we will neglect their relic density, according to the discussion of section 3.1. We
will see in section 4.2 that the two massless gauge bosons form a doublet with respect to a residual
discrete symmetry, and in section 5.1 that such ‘dark photon’ is compatible with cosmological
constraints. Alternatively, one can conceive adding additional scalar multiplets to complete the
SU(3)D SSB. In order to preserve the Z3 triality, they should transform in representations Φ̂i1...in

ji...jm
with n − m = 0 mod 3. The simplest examples are a second 10, or an adjoint 8. The DM
phenomenology could be considerably different with and without massless dark photons, as it will
be apparent by our analysis of the minimal model with a single 10 representation.

Let us now introduce a DM candidate protected by the triality Z3. The simplest possibility
is to consider a multiplet in the fundamental representation, χi ∼ 3. The latter has potential
V (χ) = µ2

χχ
iχ∗

i + λχ(χiχ∗
i )

2, where χ∗
i ∼ 3̄ is simply the hermitian conjugate of χi. The most

general Φ − χ couplings read

V (Φ, χ) = (κΦijkχ∗
iχ

∗
jχ

∗
k + h.c.) + λχΦ(ΦijkΦ∗

ijk)(χiχ∗
i ) + λ′

χΦ χ∗
i Φ

ijkΦ∗
jklχ

l . (16)

In an appropriate, large region of the potential parameters, χ does not acquire VEV, and the VEV
of Φ determined above is not perturbed by the interactions with χ. There is no χ−Φ mass mixing,
the VEV of Φ preserves the triality Z3, the χ stability is protected by its Z3 charge, and χ is a good
DM candidate.

All χ interactions preserve χ-number, that is, they involve the same power of χ and χ∗ fields,
except for the quartic coupling κ, which involves three powers of χ. Replacing Φ by its VEV, this
corresponds to a DM cubic self-interaction χ3. In the limit where Φijk masses are heavier than mχ,
one can integrate out Φ and induce additional DM self-interactions, such as χ3χ∗3 or χ4χ∗. The
DM has also gauge interactions with the SU(3)D gauge bosons, both the massive ones and the dark
photons.

In section 4.2 we will derive explicitly the masses of all dark sector particles, as well as the
relevant DM couplings. We will show that, after the SU(3)D SSB, a residual non-abelian symmetry
is preserved. In particular, (χ1 χ2 χ3) transform as a triplet under such symmetry. This implies
that the three χ components carry one and the same mass, and share the same physical properties.

Finally, both SU(3)D scalars χ and Φ can communicate with the SM sector through the Higgs
portal interactions,

Vportal = λχHχiχ∗
iH

†H + λΦHΦijkΦ∗
ijkH

†H . (17)

The VEVs of Φ and H, v2D ≡ 2⟨ΦijkΦ∗
ijk⟩ and v2 ≡ 2⟨H†H⟩, are shifted by the coupling λΦH , but

the VEV directions and the SSB pattern remain unchanged.

4 Mass spectrum

4.1 The SU(2)D masses and couplings

Let us describe in detail the mass spectrum of the SU(2)D model defined by Eqs.(2)-(8). As already
mentioned, the three gauge bosons split into the unbroken U(1)D gauge boson AD, corresponding
to the τ3 generator, and a complex gauge boson W±

D with unit dark charge, with masses

m2
AD

= 0 , m2
WD

= g2Dv
2
D . (18)

The real triplet scalar Φij contains the two would-be NGBs, plus a radial mode ρ, neutral under
U(1)D. The latter mixes with the SM Higgs radial mode h, via the coupling λΦH in Eq. (8).
Adopting the SM conventions V (H) = −µ2

HH†H + λH(H†H)2 with HT = [0 (v + h)/
√

2] and
v ≃ 246 GeV, the ρ− h mixing angle reads sin θm ≃ λΦHvDv/[2(λHv2 − λv2D)]. The physical Higgs
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corresponds to the mass eigenstate hphys ≃ h − sin θm ρ. Since the latter appears to be SM-like
at the LHC, one needs roughly | sin θm| ≲ 0.2, see e.g. [23]. Thus, in good approximation we can
neglect order sin2 θm corrections to the mass eigenvalues, and simply obtain

m2
ρ ≃ 2λv2D , m2

h ≃ 2λHv2 . (19)

Coming to the scalar doublet of Eq.(6), its two complex components are distinguished by their
U(1)D × U(1)χ charges,

χ+ ∼
(

+
1

2
,+

1

2

)
, χ− ∼

(
−1

2
,+

1

2

)
. (20)

We recall from section 3.1 that these symmetries are a remnant of the custodial SU(2)D × SU(2)χ
symmetry of the complex doublet χ: SU(2)D is broken spontaneously to U(1)D by the VEV of the
triplet Φ, while SU(2)χ is broken explicitly to U(1)χ by the cubic coupling κ defined by Eq. (7).
The χ components acquire masses

m2
χ± = µ2

χ +
1

2
λχΦv

2
D +

1

2
λχHv2 ± 1√

2
κvD . (21)

Note the accidental U(1)χ prevents a mass mixing between χ+ and χ∗
−. The coupling κ is defined

to be positive, it has mass dimension one, and it controls the mass splitting between χ+ and χ−,

δm2
χ ≡ m2

χ+
−m2

χ− =
√

2κvD . (22)

In summary, the masses mWD
, mρ, mχ+ , mχ− , and mh depend on different couplings, and

therefore they are independent, with the only constraint mχ+ ≥ mχ− .
Having derived the dark-sector mass spectrum, let us discuss the stability of the dark states.

The massless dark photon AD is obviously stable, but not a DM candidate. The massive gauge
boson W+

D carries unit charge with respect to U(1)D, while it is neutral with respect to U(1)χ. As
a consequence, its only possible decay channel is W+

D → χ+χ
∗
−..., where dots stand for a set of

particles which is neutral under U(1)D × U(1)χ. Therefore, WD is stable for mWD
≤ mχ+ + mχ− .

Coming to scalars, the radial mode ρ is neutral with respect to all unbroken symmetries, and
it has linear couplings both to other dark particles and to the Higgs boson. In particular, ρ can
always decay into SM particles through the Higgs portal.

Finally, let us discuss the stability of χ±, which are the states odd under the SU(2)D duality
Z2. They carry opposite U(1)D charge but the same U(1)χ charge, according to Eq. (20). These
symmetries highly restrict their couplings. In particular, one can check that the scalar potential
only involves the combinations χ±χ

∗
±.5 The combination χ+χ

∗
− only appears in the cubic coupling

to W−
D ,

L ⊃ i√
2
gD(χ∗

−∂
µχ+ − χ+∂

µχ∗
−)W−

Dµ + h.c. . (23)

Since all decays should preserve U(1)D×U(1)χ, the lightest state χ− is always stable, and therefore
a good DM candidate. Indeed, this was guaranteed from the start, since χ− is the lightest odd
particle under the Z2 duality. In addition, it is easy to check that any χ+ decay must necessarily
contain W+

Dχ− in the final state. However, such a transition is not kinematically allowed if the
WD mass is larger than the χ mass splitting, mWD

≥ mχ+ −mχ− . Even a virtual WD would have
nowhere to go, therefore χ+ becomes an additional DM candidate in this case.

In summary, there are three possibilities for DM:

5The combination χ+χ
∗
− is not invariant with respect to U(1)D, while χ+χ− is not invariant with respect to U(1)χ.
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• DM content A: χ− and χ+, for mχ+ + mχ− < mWD
;

• DM content B: χ−, χ+ and WD, for mχ+ −mχ− ≤ mWD
≤ mχ+ + mχ− ;

• DM content C: χ− and WD, for mWD
< mχ+ −mχ− .

This simple mechanism to have three different DM contents is a distinctive feature of the model.
In this paper we will concentrate on the phenomenology of the scenario A, i.e. two scalar DM
components, assuming the gauge boson is heavy enough to promptly decay.

Before concluding, we would like to stress that the Z2 duality is sufficient by itself to guarantee
the χ stability, and therefore a suitable DM candidate. As already explained, to preserve Z2 is
sufficient to sit in the ‘half’ of the potential parameter space where ⟨χ⟩ = 0. The additional
unbroken symmetries U(1)D×U(1)χ are due to the minimality of the model. Firstly, they would also
be broken if Z2 were broken by ⟨χ⟩ ≠ 0. Secondly, they can be broken in less minimal models, which
still preserve Z2. As already mentioned in section 3, U(1)D can be broken spontaneously by the
VEV of additional Z2-even scalar multiplets, Φ′. The Φ′ couplings may also break explicitly U(1)χ.
Alternatively, the accidental symmetry U(1)χ might be broken by introducing higher-dimensional
operators, induced by some UV physics.

In the case when the only unbroken symmetry is Z2, all gauge bosons as well as Φ and Φ′

components are massive and Z2-even, therefore unstable. In contrast, the four real components of
χ are Z2-odd and have generically different masses: the lightest one, χD, is a stable DM candidate.
The limit where χD is much lighter than all other dark-sector particles correspond to the well-known
SM-singlet scalar DM model [24–26]. Our gauged dark sector provides a rationale for the Z2 parity,
and predicts additional dark particles beside χD.

4.2 The SU(3)D masses and couplings

Let us study the SU(3)D model around the minimum R defined by Eq. (15). In order to study the
masses and couplings of the physical multiplets, let us identify the relevant, unbroken symmetries
after SSB. The unbroken continuous symmetries, U(1)3 ×U(1)8, act on a fundamental of SU(3) as

Qα ≡ exp(iαλ3) = diag(eiα, e−iα, 1) , Qβ ≡ exp(i
√

3βλ8) = diag(eiβ, eiβ, e−2iβ) . (24)

In addition, there are unbroken discrete symmetries, which correspond to permutations of the three
SU(3)D indices, generated by the matrices

P3 ≡

 0 1 0
0 0 1
1 0 0

 , P2 ≡

 0 1 0
1 0 0
0 0 1

 . (25)

More precisely, P3 generates the Z3 group of even permutations, that are a subgroup of SU(3)D
which leaves ⟨Φ123⟩ invariant. The Z2 group generated by P2 does not belong to SU(3)D, nonetheless
it is accidentally preserved by the most general V (Φ) in Eq. (9).6 This Z2 parity also leaves ⟨Φ123⟩
invariant. Combining P3 and P2 one obtains the non-abelian group S3 of all permutations of three
indices.

6In general, the SU(N) group contains the discrete subgroup AN of even permutations, as their determinant is +1,
while the permutation group SN also contains odd permutations, with determinant −1. Since the covariant tensor
ϵi1...iN changes sign under a odd permutation, the SU(N) invariants which involve an odd number of ϵ’s are not
invariant under SN . In the present case, the most general potential (9) contains only couplings which involve an even
number of ϵ’s, hence it is invariant under the whole S3.
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Interestingly, the combination of Qα,β and P3,2 generates a hybrid non-abelian group K, partly
continuous and partly discrete. The physical states of the model transform in specific representations
of K, which can be simply characterised by the action of Qα,β and P3,2 on each given state.

The SU(3)D gauge bosons transform as Gµ
AλA → UGµ

AλAU
†, for U = Qα,β, P3,2. One can check

that they decompose into a real K-doublet and a complex K-triplet, defined by

Aµ
D =

(
Gµ

3

Gµ
8

)
, Wµ

D =
1√
2

 Gµ
6 + iGµ

7

Gµ
4 − iGµ

5

Gµ
1 + iGµ

2

 . (26)

In particular, AD is neutral under U(1)3 × U(1)8 and transforms as a doublet with respect to S3,
while WD components carry U(1)3 × U(1)8 charges as well. The gauge boson masses are given by

mAD
= 0 , m2

WD
= g2Dv

2
D . (27)

Interestingly, Aµ
D is a massless vector containing four physical degrees of freedom, i.e. a “four-

component photon”!
Coming to the SU(3)D scalar ten-plet Φ, its components transform under the group K according

to Φijk → U i
aU

j
bU

k
c Φabc. One can check that the ten components organise themselves into K-

multiplets according to

Φ123 =
vD + ρ + iθ√

12
, τ =

 Φ111

Φ222

Φ333

 ,

φ =

√
3

2

 Φ133 + iΦ∗
122

Φ112 + iΦ∗
233

Φ223 + iΦ∗
113

 , π =

√
3

2

 iΦ133 + Φ∗
122

iΦ112 + Φ∗
233

iΦ223 + Φ∗
113

 .

(28)

The fields ρ and θ are real K-singlets, while τ , φd and π are complex K-triplets, all normalised to
receive canonical kinetic terms from Lkin(Φ) ≡ (DµΦ∗

ijk)(DµΦijk). More precisely, K has different
triplet representations depending on the U(1)3×U(1)8 charges: the τ -triplet components transform
with phases (3α+3β,−3α+3β,−6β); in contrast, the three components of WD, φ and π transform
with phases (α− 3β, α+ 3β,−2α). As a matter of fact, π is the would-be NGB multiplet, eaten by
the WD multiplet.

The non-Goldstone components of Φ acquire a mass according to

m2
ρ =

2

3
(3λ + δ + 4σ + 2η)v2D , m2

θ = −2

3
(8σ + η)v2D ,

m2
τ = −1

3
(4σ + 5η)v2D , m2

φ =
2

9
(2δ − 12σ − 3η)v2D ,

(29)

which are all positive for appropriate choices of the quartic couplings, see the discussion in section
3.2. Here we adopted again the minimum R defined by Eq. (15), and we neglected the contribution
to these masses from the Higgs VEV, coming from the portal λΦH defined by Eq. (17). In close
analogy with our discussion for the SU(2)D model, this portal induces a ρ−h mixing, which should
be relatively small to respect Higgs constraints, setting an upper bound on λΦH . As the masses in
Eq. (29) are already independent from one another, the Higgs-VEV corrections have no qualitatively
relevant effects.

Finally, the SU(3)D scalar triplet χ transforms under the K generators of Eqs.(24)-(25) as
χi → U i

jχ
j , which corresponds to yet another K-triplet representation. Its mass is given by

m2
χ = µ2

χ +
1

6
(3λχΦ + λ′

χΦ)v2D +
1

2
λχHv2 . (30)
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Unlike for the SU(2)D model, the three components of χ are not split in mass, thanks to the
unbroken K symmetry. It is important to remark that this mass degeneracy is not a tree-level
accident, that could be split e.g. by gauge boson loops. Quantum corrections do shift the various
masses as usual, but all components of a K-triplet are equally shifted, because K is an exact
symmetry of the whole Lagrangian. Beside carrying K-charges, χ is also charged under the triality
Z3, which guarantees its stability and makes it a DM candidate.

By inspecting Eqs.(27), (29) and (30), one notices that WD, the various Φ components and χ
have independent masses, whose ordering is not fixed by the model. We will focus on the regime
where χ is the lightest, and all other states rapidly decay into χ particles. Indeed, the SU(3)D
gauge coupling gD allows for WD → χχ∗, and the scalar potential couplings in Eq. (16) allow for,
respectively,

κ : τ → χ∗χ∗χ∗ , ρ, θ, φ → χχχ, χ∗χ∗χ∗ ;
λχΦ : ρ → χχ∗ ; λ′

χΦ : ρ, φ → χχ∗ .
(31)

On the other hand, if χ were not sufficiently light for these decays to happen, then some of the
states WD, τ and φ might be stable, as they carry K charges (in contrast with ρ and θ which are
singlets). Then, they could provide additional DM components. We do not elaborate further on
this possibility, and assume rapid decays of WD and of all Φ components.

In the limit where WD and Φ are heavy, the dark sector reduces to the triplet DM candidate χ and
the doublet dark photon AD. There are three type of interactions relevant for DM phenomenology.
The χ−AD gauge interactions read

Lkin =
3∑

i=1

∣∣∣∣∂µχi − i

2
gD (Gµ

3λ3 + Gµ
8λ8)

i
j χ

j

∣∣∣∣2 . (32)

The effect of dark radiation on DM phenomenology is similar to the one in the SU(2)D model, up
to the doubling of the dark photon components. The χ self-interactions read

Lself =
√

3κvD(χ1χ2χ3 + χ∗
1χ

∗
2χ

∗
3) + λχ(χiχ∗

i )
2 . (33)

The cubic self-interaction is the most specific feature of this scenario, which follows from Z3 triality,
and we will explore its phenomenological consequences below. Finally, the χ−h portal interactions
read

Lportal = −λχH(χiχ∗
i )

(
vh +

1

2
h2
)

. (34)

Here the Higgs portal phenomenology is completely standard, in contrast with the SU(2)D model
which features two DM candidates with different masses.

5 Dark matter phenomenology

5.1 Dark radiation

The extra dark photons associated to the remnant U(1) gauge symmetries imply extra radiation in
the Universe. This is constrained from both BBN and CMB data. This extra radiation is in general
parameterised in terms of the effective number of extra neutrinos. The dark photons induce

∆Neff =
8

7

(T 0

T 0
ν

)4 ρ0γD
ρ0γ

, (35)
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where T ≡ Tγ and Tν refer to the temperature of photons and neutrinos, ργ,γD refers to the energy
density of photons and dark photons, and the index ‘0’ stands for ‘today’. The observational
constraints on Neff are [27] NCMB

eff = 2.764+0.308
−0.282 and NBBN

eff = 2.878+0.232
−0.226. Subtracting the SM

contribution, NSM
eff = 3.044, one obtain at the 2 sigma level

∆NCMB
eff < 0.336 , (36)

∆NBBN
eff < 0.298 , (37)

∆NCMB+BBN
eff < 0.135 , (38)

where the most stringent upper limit results from a combination of both types of constraint [27].
After the visible and the dark sectors decouple from each other, each sector can be reheated by

particles decoupling,

T 0
D

T 0
=

TD

T

[
g⋆sD (TD)

g⋆sD (T 0
D)

]1/3 [ g⋆sSM (T )

g⋆sSM (T 0)

]−1/3

, (39)

where TD refers to the temperature of the dark sector and g⋆s are the effective number of relativistic
degrees of freedom entering into the entropy density. We will take g⋆sSM (T ) from [28]. Therefore,
using also ρ0γD/ρ

0
γ = (g⋆γD/g

⋆
γ)(T 0

D/T
0)4, one obtains

∆Neff =
8

7

(11

4

)4/3 g⋆γD
g⋆γ

[
g⋆sD (T dec

D )

g⋆sD (T 0
D)

]4/3 [
g⋆sSM (T dec)

g⋆sSM (T 0)

]−4/3

. (40)

Here T dec refers to the temperature of the thermal bath when both sectors decouple from each
other, with T dec

D = T dec, while g⋆γ = 2 and g⋆γD are the number of degrees of freedom in photons and
dark photons, respectively.

In the models we consider one can assume that the dark sector temperature is not reheated after
both sectors decouple from each other,7 so that the first square bracket in Eq. (40) is unity. For
one dark photon, i.e. g⋆D = 2, and using also g⋆γ(T 0) = 2 and g⋆sSM (T 0) = 43/11, one obtains

∆NγD
eff =

8

7

(11

4

)4/3 [ 43

11g⋆sSM (T dec)

]4/3
= 0.0535

[
106.75

g⋆sSM (T dec)

]4/3
. (41)

The reference value g⋆sSM (T dec) = 106.75 holds when the two sectors decouple before the SM particles
have decoupled, i.e. for T dec ≳ 200 GeV. Thus, at the 2 sigma level, the combined CMB and BBN
constraint of Eq. (38) allows up to two dark photons, as long as g⋆sSM (T dec) ∼ 102, that is to say,
as long as the decoupling occurs before the QCD phase transition, i.e. for T dec ≳ 1 GeV. In more
details, requiring ∆Neff not to exceed 0.135, as in Eq. (38), in the presence of one (two) dark
photon(s) one needs8

g⋆sSM (T dec) ≳ 53 → Tdec ≳ 300 MeV (one dark photon) , (42)

g⋆sSM (T dec) ≳ 89 → Tdec ≳ 30 GeV (two dark photons) . (43)

The two cases correspond, indeed, to our minimal SU(2)D and SU(3)D models, respectively. Note
that the future CMB-S4 ground based experiment could reach a precision of ∆Neff = 0.03 at the
1 sigma level [29], which would basically allow to determine the number of dark photons.

Note finally that both in the SU(2)D and SU(3)D models the dark photons do not kinematically
mix with the SM hypercharge gauge boson, as a result of their non-abelian origin.

7This holds if both sectors decouple when the DM particle undergoes its freeze-out, which will be in general the
case if the DM particle is the lightest massive particle in the dark sector. The dark photons are also expected to
decouple at DM decoupling, as they communicate with the SM through the DM only.

8More conservatively, imposing ∆Neff < 0.3 allows up to five dark photons. This requires g⋆sSM (T dec) >
29, 49, 67, 83, 98 and correspondingly Tdec ≳ 0.15, 0.25, 0.6, 9, 65 GeV, for 1, 2, 3, 4, 5 dark photons, respectively.
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Figure 1: Annihilation processes for the DM candidates χ± in the SU(2)D model.

5.2 SU(2)D relic density and constraints

In the following we will determine the relic density for the case where the DM is made of χ− and
χ+. This corresponds to the DM particle content A, as defined in section 4.1, which corresponds
to the region mχ+ + mχ− < mWD

, while the dark scalar ρ could be lighter than χ±, and the dark
photon γD is massless.

The four types of χ interactions which contribute to DM annihilation are the gauge coupling
αD ≡ g2D/(4π) to γD, the cubic coupling κ to ρ, and the λχΦ and λχH quartic couplings to ρ
and h, respectively. Each of these interactions induces a DM annihilation process by itself. The
annihilations proceed into a pair of dark photons (first case), a pair of ρ particles if kinematically
allowed (second and third case), and a pair of SM particles (fourth case). The first three cases are
purely hidden sector processes, whereas the last one relies on the DM Higgs portal interaction with
the SM. Various annihilation processes can also result from a combination of these interactions, as
well as from the fact that the ρ and h scalars undergo a mass mixing induced by the λΦH coupling.
Fig. 1 shows the full list of χ± annihilation diagrams. This also includes the annihilation of χ+

pairs into χ− pairs.
In the following we will limit ourselves to three regimes where the DM annihilation is dominated

by a single type of χ± interaction, namely by αD, λχΦ or λχH . For simplicity, for these three
regimes we will assume a small value of λΦH , so that the effect of ρ-h mixing is negligible. These
limiting cases will allow to illustrate the range of possibilities that the SU(2)D model offers, even
if intermediate regions of parameters exist, where several annihilation channels compete with each
other.
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Figure 2: Values of αD leading to the observed DM relic density, in the dark photon annihilation
regime, as a function of mχ− , for various values of the ratio mχ+/mχ− . The regions forbidden by
the unitarity, extra radiation, and ellipticity constraints are also shown, see text.

5.2.1 DM annihilation into dark photons

If the dark gauge coupling αD dominates over other couplings, the χ± annihilation proceeds dom-
inantly into a pair of dark photons, see the first two diagrams of Fig. 1. The annihilation cross
section for each DM component χ± is given by (keeping the dominant s-wave contribution, see
e.g. [30])

⟨σv⟩± ≡ ⟨σχ±χ∗
±→γDγDv⟩ =

πα2
D

4m2
χ±

. (44)

Imposing that the thermal freeze-out of these processes accounts for the observed DM relic den-
sity, requires in first approximation (⟨σv⟩−)−1 + (⟨σv⟩+)−1 ≃ (⟨σv⟩thermal)

−1, where ⟨σv⟩thermal ≃
3 · 10−26 cm3/s refers to the usual thermal freeze-out cross section for one DM species. As the relic
densities Ω are inversely proportional to ⟨σv⟩, one has Ωχ+/Ωχ− ≃ m2

χ+
/m2

χ− . This also fixes αD

as a function of mχ± , according to α2
D ≃ 3.5 · 10−9(m2

χ+
+ m2

χ−)/GeV2.
A more precise calculation can be obtained by taking into account the fact that xf ≡ mχ/Tf ,

where Tf is the freeze-out temperature, will not be exactly the same for χ+ and χ−, and for a single-
component DM scenario. Taking into account this effect we obtain x−f (⟨σv⟩−)−1 + x+f (⟨σv⟩+)−1 ≃
xf (⟨σv⟩thermal)

−1, where the three values of xf are determined as usual from the decoupling condi-
tion, see for instance Eq. (32) in [3]. Using this relation, Fig. 2 shows, as a function of mχ− and for
various values of the mass ratio mχ+/mχ− , the value of αD which accounts for the observed DM
relic density. Note that we neglected the effect of the annihilation χ+χ

∗
+ → χ−χ

∗
−. We estimated

that it modifies the result in Fig. 2 by at most 0.2%.
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As for a generic thermal candidate, a DM mass of order ∼ TeV is required if the couplings
driving the annihilation are of order unity. The DM mass in this hidden sector freeze-out scenario is
bounded both from above and from below. On the one hand, there is a unitarity constraint on the
cross section, ⟨σv⟩J ≲ 4π(2J +1)/(m2

DMv), where v is the relative velocity [31]. As the partial-wave
expansion of the cross section is dominated by the S-wave, Eq. (44), the relevant bound is obtained
taking J = 0 and v2 = 3x−1

f /2 ≃ (0.3)2 for xf ≃ 20 [32]. When applied to Eq. (44), unitarity
gives a bound on the coupling strength driving the annihilation, αD ≲ 7.3. Together with the
relic density constraint this results in an upper bound on the mass of the heaviest DM component,
mχ+ ≲ 100 TeV.

On the other hand, the dark photons should decouple from the SM at a temperature large enough
to satisfy the extra radiation constraint ∆Neff < 0.135, see section 5.1. Since the decoupling occurs
when the χ− decouples, at T dec = mχ−/x

−
f with x−f ∼ 20, the lower bound is mχ− > T decx−f . We

thus obtain an absolute lower bound mχ− ≳ 6 GeV, see Fig. 2 in the case mχ+/mχ− = 1. For a
larger mass ratio the lower bound is slightly larger, as xf slowly grows. Note that, in the figure,
the ∆Neff bound applies only assuming the observed relic density is reproduced, i.e. only along the
solid line for each given mass ratio.

Note finally that the long range force driven by αD may affect the formation of structures, in
particular galactic scale structures. The ellipticity constraint [33–35] gives an upper bound on the
strength of the long range force, αD ≲ 0.8

√
10−11(mDM/GeV)3 [34, 35]. If one assumes that the

freeze-out process is dominated by the annihilation into dark photons, Eq.(44), this bound leads to
mχ− ≳ 600 GeV, or an even stronger bound when mχ+ > mχ− , see the dashed line in Fig. 2. A
relaxation of this delicate ellipticity constraint by a factor of 3 for αD results in a milder bound,
mχ− ≳ 60 GeV, see the dotted line in Fig. 2.9

5.2.2 DM annihilation into dark scalars

The ellipticity bound discussed above holds only if the DM annihilation is dominated by the coupling
to massless dark photons. If instead a short range interaction dominates, such as the coupling to
the massive dark scalar ρ, the ellipticity constraint becomes irrelevant, since the value of αD can
be small in this case. As a result, smaller DM masses become allowed.

Let us consider, indeed, the regime along which the DM annihilation proceeds dominantly into
a pair of lighter ρ particles. Such annihilation can be induced by the trilinear κ and/or the quartic
λχΦ scalar interactions, see the third, fourth and fifth diagram in Fig. 1. There is also the possibility
to induce χ’s annihilations into ρ’s by a transition into SM Higgs bosons (from the λχH interaction),
which in turn mix into ρ bosons (from the λχΦ interaction).

Here we restrict ourselves to a minimal case where the DM annihilation into a pair of ρ particles
is dominated solely by the λχΦ coupling. Neglecting mρ with respect to the DM masses mχ± , the
relevant cross section reads

⟨σχ±χ∗
±→ρ ρv⟩ =

λ2
χΦ

64πm2
χ±

(
λ2
χΦ

v4D
m4

χ±

− 2λχΦ
v2D
m2

χ±

+ 1

)
. (45)

We assume that the first term in brackets, corresponding to the third diagram of Fig. 1, is domi-
nant,10 which implies Ωχ+/Ωχ− ≃ m6

χ+
/m6

χ− .

9One should indeed be careful with this bound. As noted by the authors of [34], the assumption that the DM
velocity distribution (from which one infers the energy transfer rate) matches the density distribution (from which one
measures the ellipticity) is somewhat fragile, and further simulations are needed to better understand the interplay
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Figure 3: Values of λχΦvD/mχ+ leading to the observed DM relic density in the annihilation into
ρ regime, as a function of mχ− , for various values of the ratio mχ+/mχ− . The regions forbidden by
the unitarity and extra radiation constraints are also shown.

Let us define the dimensionless effective couplings λ± ≡ (λχΦvD)/mχ± . The Fig. 3 shows the
value of λ+ needed to account for the DM relic density, as a function of mχ− .11 The general pattern
is relatively similar to the one of the dark photon annihilation regime of Fig. 2, in particular larger
mχ− and/or larger mχ+/mχ− require larger λ+. The unitarity constraint has nevertheless a different
shape in the two figures, but this is just an artefact of the choice of the coupling on the y-axis in
Fig. 3. Had we plotted λ− instead of λ+, the unitarity constraint would be a horizontal line similarly
to Fig. 2. Such constraint is obtained from the χ− annihilation cross section, as it is larger than
the χ+ one. In virtue of the absence of the ellipticity constraint, we observe that the value of the
DM mass mχ− can be as small as ∼ 10 GeV, see Fig. 3 for mχ+/mχ− = 1.

Note that viability of this scenario requires that, after DM freeze-out, the ρ particles transfer
their energy into the SM thermal bath (not to overclose the Universe). This can be simply achieved
by considering a small value of the λΦH coupling, leading to ρ decays into SM particles through the
ρ-h mixing (with possibly little impact on the DM annihilation cross section).12

between baryonic matter and self-interacting DM in shaping the halo [36, 37].
10In fact we already assumed that λχΦ dominates over other couplings, and that the SSB scale in the dark sector,

vD, is sufficiently large to keep WD heavier than the DM particles χ±. We also take vD sufficiently large to guarantee
that the contribution of the trilinear coupling κ to DM annihilations (proportional to κ4) will be subleading, even
though κ is needed to generate a mass splitting between χ+ and χ−, see Eq. (22).

11In the plot we neglect again the effect of the process χ+χ
∗
+ → χ−χ

∗
− (in this case mediated by a ρ). We estimated

that this process modifies at most by 3% the required value of λ+.
12Note that the decay of ρ, if it happens when it is non-relativistic, can largely reheat the SM thermal bath and

consequently dilute the DM and dark photon number densities, which would relax the ∆Neff constraint, and require
a smaller DM annihilation cross section, in order to have less Boltzmann suppression of its number density [38–40].
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Figure 4: The DM relic density in the Higgs portal regime. The left panel shows the values of
Ωχ±/ΩDM , for mχ+/mχ− = 10 (purple) and for mχ+/mχ− = 1 (orange). The right panel shows the
values of the Higgs portal coupling λχH leading to the observed DM relic density, as a function of
mχ− , for various values of the ratio mχ+/mχ− . We shaded the region where the DM relic density
is too large, independently of the mass ratio. For the sake of comparison we also show the coupling
needed when DM is an SM-singlet real scalar.

5.2.3 DM annihilation through the Higgs portal

The dominant DM annihilation channel could also be into SM particles, driven by the Higgs portal
coupling λχH , with a negligible effect from other dark-sector interactions. The annihilation final
states, in this case, are a pair of Higgs bosons, hh, or a pair of SM particles through h exchange,
see the third to sixth diagrams in Fig. 1 (dropping all ρ particles in these diagrams). This regime
is comparable to ordinary Higgs portal DM setups (see for instance Fig. 1 of Ref. [41] for the relic
density constraint on various Higgs portal couplings), except that, in our SU(2)D model, there
are two complex DM scalars χ±, both contributing to the relic density. Specifically, both states
communicate to the SM through the same Higgs portal interaction λχH .

The analytical form of the cross sections for the various SM final states can be found e.g. in
Eqs. (B.13)-(B.16) of [42].13 In the high energy regime, mχ± ≫ mh, the cross sections scale as
1/m2

χ± . Therefore, the DM relic density is dominated by the χ+ component, similarly to what

happens in the γD and ρ annihilation scenarios discussed above, with Ωχ+/Ωχ− ≃ m2
χ+

/m2
χ− . In

contrast, in the low energy regime, mχ± ≪ mh, the dominant cross section, is into two SM fermions
f and scales as m2

f/m
4
h. As a result, the lightest χ component will tend to dominate the relic density

because, it tends to annihilate to lighter fermions and thus has a smaller annihilation cross section

This would allow for both smaller and much larger values for the DM mass. We will not consider this possibility
further.

13These equations hold for a real scalar DM candidate. For a complex scalar DM particle such as χ+ or χ−, the
combinatorial factors differ, which implies that the cross sections are obtained from the ones of [42] by replacing the
λ Higgs portal coupling of [42] by λχH/2.
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at freeze-out. The left panel of Fig. 4 shows, for an example value of the mass ratio mχ+/mχ− = 10,
how the transition from dominant Ωχ− to dominant Ωχ+ occurs.

In the right panel of Fig. 4 we show the values of λχH one needs to account for the relic density.
For the sake of comparison, we also show the curve for the case where DM is an SM-singlet real
scalar s, with portal Lportal = −(λsH/2)s2H†H. For fixed, large value of mχ− , due to the scaling of
the annihilation cross sections ∝ 1/m2

χ± , as the mass of the dominant state mχ+ increases, a larger
Higgs portal is required. Remarkably, this means that this scenario predicts a light state χ− with a
Higgs portal interaction larger than in the minimal real-scalar-singlet DM model. This is possible
because such light state has a subdominant relic density. In the opposite limit of small mχ− , as
soon as mχ+/mχ− ≫ 1, the exact value of this ratio becomes irrelevant, since the contribution of
χ+ to the relic density is negligible. Note that, for large values of the mass ratio, there is no more
resonant enhancement of the relic density when the DM mass approaches mh/2, as in the ordinary
DM Higgs portal scenario. This is because, when mχ+ ≃ mh/2 it is χ− that dominates the relic
density, and vice versa.14

In Fig. 5 we show the various constraints which hold on the Higgs portal interaction, for three
representative values of the mass ratio, mχ+/mχ− = 1, 10, 100. Below the Higgs resonance, there
is a stringent constraint from the Higgs invisible decay width, i.e. Brinvh < 0.13 at 95% CL [43]. As
can be seen in the case mχ+/mχ− = 10, the invisible-width constraint has a jump when the channel
h → χ+χ

∗
+ becomes kinematically forbidden (and in all cases it disappears when h → χ−χ

∗
− is

kinematically forbidden too). This constraint rules out the possibility that DM annihilation through
the Higgs portal would be dominant below the Higgs resonance.

As already explained, above the resonance and for mχ+/mχ− significantly larger than unity,
the Higgs portal regime predicts a subleading DM component, χ−, lighter than the dominant
component, χ+, with a large Higgs portal interaction. Remarkably, in this case the direct-detection
constraint also relaxes, with respect to a single DM scalar scenario with mass equal to mχ− , because
the χ− DM flux in the detector is suppressed. This is illustrated in Fig. 5, where we show the
Xenon1T [44] as well as the very recent LZ [45] constraints: taking into account the value of
Ωχ+/Ωχ− predicted by the annihilation cross sections, one observes that these constraints, for DM
masses above the Higgs resonance, become rapidly weaker for growing mχ+/mχ− . Note that, above
the resonance, the direct detection bound comes from the non-detection of χ− particles. Even if
the χ− component is subleading, the constraint on the direct detection of the χ− flux is indeed
stronger than on the direct detection of the larger χ+ flux. This is because the DM elastic cross
section on nuclei scales as 1/m2

χ± (see e.g. [46]), and because the direct detection upper limit on the
elastic cross section relaxes when the mass increases. Note also that when the annihilation channel
χ−χ

∗
− → hh opens, the cross section of the subleading χ− component suddenly increases, and thus

the χ− relic density suddenly decreases, which explains why the direct detection constraints become
suddenly weaker.15

Combining these effects, we find that, as the mass ratio varies, the sensitivity of direct detection
searches remains close to the coupling values needed for the correct relic density, see the three panels

14In both panels of Fig. 4 we took into account the process converting χ+ pairs into χ− pairs, which here is
dominated by Higgs-boson exchange (ninth diagram in Fig. 1). This process can largely suppress the χ+ relic density
when mχ+ ≲ mW , because in this case the χ+ conversion into χ− is more efficient than the annihilation into SM
pairs, which is suppressed by small Yukawa couplings. However, this does not affect the value of the Higgs portal
coupling shown in Fig. 4 by more than ∼ 40%, because this process leaves the χ− relic density unchanged, in good
approximation. When mχ+ and mχ− are different but very close (not shown in the figure), the effect could be more
important. We do not explore further this possibility, because the low-mass region is anyway excluded by collider and
direct detection constraints, as described below.

15In a similar vein note also that close to the resonance mχ− ≃ mh/2, the direct detection constraint features a
peak behaviour, because the still dominating χ− component rapidly decreases due to the resonance.
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Figure 5: Constraints holding on the DM annihilation through the Higgs portal, for three values
of the mass ratio mχ+/mχ− = 1 (upper panel), 10 (lower left), and 100 (lower right): Higgs-boson
invisible width [43] (excluding the dark blue shaded region), DM direct detection [44, 45] (light and
dark brown, for Xenon and LZ respectively), perturbativity (purple), and ∆Neff (green), see text.
In each panel, the solid curve (already shown in Fig. 4) indicates the values of λχH which reproduce
the observed DM relic density. For the sake of comparison we also show the coupling needed when
DM is an SM-singlet real scalar (solid grey line) and the corresponding direct detection constraint
[45] (dashed grey line).
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of Fig. 5 in the region mχ− ∼ TeV. In the case mχ+/mχ− = 1 (upper panel), direct detection implies
a DM mass above the TeV scale, mχ− ≳ 2 TeV, while the perturbativity requirement, λχH ≲ 4π,
implies an upper bound mχ− ≲ 30 TeV. The case mχ+/mχ− = 10 (lower left panel) is very close
to be excluded. In the case mχ+/mχ− = 100 (lower right panel) there is a small allowed region
at mχ− ≃ 200 GeV. All in all, as direct detection experiments are expected to make progress in a
near future, they could soon exclude the Higgs portal regime of our SU(2)D model, or observe a
signal at the level of the present sensitivity. In particular the observation of a positive signal in the
mχ− ≃ 200 GeV region just discussed above would, given the Higgs portal coupling of order one it
involves, open the possibility to test this kind of scenario at future colliders in the long term (see
for instance [47, 48]).

5.2.4 Non-thermal DM regimes

The discussion above assumes that the Higgs portal interactions are not tiny, so that the dark sector
and the SM thermalise at high temperatures prior to freeze-out. If this is not the case, othr DM
production regimes can account for the relic density.

The most straigthforward is a freeze-in dominated by the λχH Higgs portal coupling, inducing
a direct χ-pair production from the annihilation of two SM particles. This requires values of the
portal coupling of order 10−11, see for instance Fig. 15 of Ref. [3]. Above the Z threshold, for
mχ− > mZ/2, this leads to Ωχ+ ≃ Ωχ− , as a result of the compensation of two effects: on the one
hand, for mχ− < mχ+ one χ− contributes to ΩDM less than one χ+; on the other hand, more χ−
are created than χ+, since the freeze-in production, which is infrared dominated, stops at about the
mass of the DM particle created.

Another possibility is freeze-in dominated by the λΦH Higgs portal interaction, along which
a pair of SM particles can produce a pair of χ±, WD or ρ particles. Once produced, the dark
sector particles decay to the lightest available final state. As usual, for mχ+ + mχ− < mWD

, one is
left with a DM population made by χ± particles. It is beyond the scope of this paper to analyse
quantitatively this indirect freeze-in possibility, which typically requires a λΦH of order 10−11 as
well.

For values of the Higgs portal couplings larger than for freeze-in, one might create enough
dark particles from the SM to have thermalisation within the dark sector, even though the portals
are still small enough to prevent thermalisation of the two sectors. In this case the relic density
can also be produced, in the secluded freeze-out or in the reannihilation regime, see Fig. 13 of
[3]. Reannihilation of χ± occurs when mχ± is larger than few GeV: the out-of-equilibrium DM
production from a pair of SM fermions (driven by heavy quark Yukawa or gauge couplings) is still
active [3] when the annihilation χχ → γDγD goes out-of-equilibrium, at a dark-sector temperature

T f
D ≃ mχ±/20. For lower χ± masses the secluded freeze-out regime will in general hold: in this

case the Higgs portal DM pair production (suppressed by small SM Yukawa couplings) stops being
active before the annihilations freeze within the dark-sector thermal bath.

5.3 SU(3)D relic density and constraints

5.3.1 General case

In the SU(3)D model the discussion of the relic density is relatively similar to the one for the
SU(2)D model, provided the χ is the lightest stable particle in the dark sector, apart from the dark
photons. In particular, the three thermal regimes considered in sections 5.2.1-5.2.3 for the SU(2)D
model are also reproduced, qualitatively, in the SU(3)D model.
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There are nevertheless important differences. In the SU(3)D case there is no mass splitting
between the three components of the DM multiplet χ. Thus, there is only one annihilation cross
section for the whole DM triplet. Moreover, there are regions of parameters with additional DM
candidates besides χ: the massive gauge boson triplet WD, which can become stable if light enough
(in analogy with the SU(2)D model), as well as other candidates, specific to the SU(3)D model,
i.e. the scalar triplets τ and φ contained in the ten-plet Φ. They could also be stable if light enough,
leading to alternative DM scenarios, that we do not examine in details here.

Even sticking to the minimal case of χ triplet DM, the SU(3)D model allows for additional
processes that can play a role in the DM production, in particular the semi-annihilation process
associated to the Z3 triality symmetry, that we discuss next.

5.3.2 Semi-annihilations from triality and consequences for DM detection

The triality symmetry Z3 of the SU(3)D model has a clear phenomenological signature: DM par-
ticles can undergo semi-annihilations [4, 49], χχ → χ∗X. The crucial interaction is κ in Eq. (16),
which couples three DM χ triplets to one scalar ten-plet Φ. Taking also into account that Φ acquires
a VEV, there are several possibilities for the final-state particle X: it can be either one of the Φ
components, or a dark gauge boson WD or γD (by one insertion of the dark gauge coupling gD), or
a Higgs boson (by one insertion of the portal coupling λΦH or λχH).

If the mass of the X particle is sizeably smaller than mχ, the semi-annihilations lead to a flux
of semi-relativistic DM particles from the Galactic centre, or from the centre of the Sun or the
Earth. As these DM particles are boosted, there is a possibility of DM direct detection in neutrino
telescopes [50], via elastic scattering of the monochromatic flux of DM particles on nucleons or
electrons. So far, to our knowledge, only the Super-Kamiokande experiment reported a search for
such particles [51], setting upper limits on the coupling strength of a specific model. It would be
worth repeating the same analysis at Super-Kamiokande and higher-energy neutrino telescopes, for
the case of a Higgs portal mediated elastic scattering, corresponding to our SU(3)D model.

It is interesting to note that, in the SU(3)D model, there is a regime where the semi-annihilation
process can largely dominate the freeze-out (this was not the case, for example, in the original semi-
annihilation model [4], but can happen in other semi-annihilating frameworks [52]). This can occur
in particular if all couplings are small with respect to the semi-annihilation coupling κ in Eq. (16).
Such situation is interesting because it would not only maximise the flux of boosted DM particles
for direct detection in neutrino telescopes, but it also leads to a definite prediction for the value of
this flux. Note that, since ordinary DM annihilations χχ∗ → SM SM are suppressed in this regime,
the searches for DM scattering on nuclei are correspondingly harder.

To discuss this possibility, let us consider the simple case where DM semi-annihilates only into
a Higgs boson. This applies when DM consists exclusively of the χ triplet, with all other massive
dark-sector particles heavier, and when all couplings are small except for κ and λΦH . In particular
for gD sufficiently small the semi-annihilations into γD during the freeze-out are suppressed.16 In
this case the flux of boosted DM consists of a monochromatic flux of DM particles with energy
Eχ = (5m2

χ −m2
h)/(4mχ). The energy of this ‘DM line’ is therefore fixed by the values of the DM

and Higgs boson masses. Thus, the flux of boosted DM particles crossing the Earth is equal, for
instance, to the flux of monochromatic neutrinos one obtains in scenarios where DM annihilates
into a pair of neutrinos (see e.g. [53–55]).17 The observation of such predicted flux intensity would

16In addition, the semi-annihilation into a dark photon is not expected to lead to any sizeable boosted DM flux
today, because its s-wave amplitude vanishes from conservation of spin.

17For example for Dirac DM annihilating dominantly into νν̄ the (s-wave) annihilation produces two neutrinos,
whereas a semi-annihilation produces only one DM particle, but this factor 2 is (approximately) compensated by a
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Figure 6: Left panel: Values of the trilinear coupling κ leading to the observed DM relic density,
in the regime where the semi-annihilations χχ → χ∗h are dominant, as a function of mχ and for
different values of the h− ρ mixing angle θm. Right panel: The solid (dotted, dashed) curves show
the energy of the χ (blue) and X (green) monochromatic lines as a function of mχ, for X = h with
mh = 125 GeV (X = AD with mAD

= 0, X = ρ with mρ = 1 TeV).

definitely point toward a semi-annihilation origin. Moreover, in this scenario the DM and Higgs
fluxes are equal, so that a characteristic correlated flux of cosmic rays from the Higgs particles
is expected. The energy of the Higgs bosons produced is monochromatic and predicted to be
Eh = (3m2

χ + m2
h)/(4mχ). Its observation would allow to determine that the semi-annihilations

proceed into a Higgs boson, allowing for an additional determination of the DM mass.
In Fig. 6 we show the value of the trilinear coupling κ which leads to the observed relic density, in

the regime described above where the semi-annihilations proceed into a Higgs boson and dominate
the freeze-out process, for different values of the h−ρ mixing angle, sin θm ≃ λΦH(vDv/m

2
ρ), induced

by the Higgs portal interaction λΦH .18 Indeed, in this regime the semi-annihilations into a Higgs
boson are determined by the effective interaction Leff ⊃

√
3κ sin θm(χ1χ2χ3 + χ∗

1χ
∗
2χ

∗
3)h. The

corresponding semi-annihilation cross section is

⟨σijv⟩ ≡ ⟨σχiχj→χ∗
kh
v⟩ =

9κ2 sin2 θm
128πm2

χ

√
1 − 10

9

m2
h

m2
χ

+
1

9

m4
h

m4
χ

, (46)

where we retained only the s-wave contribution, which dominates for mχ well above mh. Summing
over the six possible semi-annihilation channels of DM (with particles or antiparticles in the initial
state) the Boltzmann equation determining the DM number density is

zH(z)

s

dYDM

dz
= −1

6
⟨σijv⟩(Y 2

DM − YDMY eq
DM ) , (47)

where YDM ≡ nDM/s =
∑

i=1,2,3(nχi + nχ̄i)/s, with s the entropy density and z ≡ mχ/T . Note
the factor of 1/6 arising from the fact that there are 6 scalar DM states and 6 semi-annihilation

combinatorial factor arising from the requirement to reproduce the DM relic density.
18See the discussion at the beginning of section 4.1, which is qualitatively valid for the SU(3)D model as well.
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channels. The left panel of Fig. 6 shows the values of κ and sin θm which correspondingly account for
the observed relic density. We also display the naive perturbativity constraint κ < 4π, while current
Higgs measurements require sin θm < 0.2. One observes that these constraints imply mχ ≲ 3.5 TeV.

The right panel of Fig. 6 shows the energies of the monochromatic DM-line and Higgs-line from
the semi-annihilation, according to the formulas above. Note that the model allows for multiple DM
lines if the semi-annihilation does not occur only into a Higgs boson, but also into other dark-sector
particles Xi with energies Ei

χ = (5m2
χ − m2

Xi
)/(4mχ). A couple of examples are also shown in

the figure for illustration. The relative intensities of these lines depend on the mass spectrum and
strength of the associated interactions. At least in principle, these multiple signatures may provide
a great deal of information on the dark sector.

Besides semi-annihilations, the SU(3)D model also predicts other processes involving an odd
number of DM particles, such as 2-to-3 or 3-to-2 processes: for example, a χ4χ∗ vertex with strength
∼ κλχΦvD/m

2
ρ is induced by integrating out the Φ component ρ. These annihilation channels could

be relevant for the relic density in specific regions of parameters, see for instance [56, 57]. In
a somewhat different vein, the inverse semi-annihilations χ∗X → χχ could lead to exponential
production of DM particles [58].

Finally, note that both the SU(3)D and SU(2)D models are suitable to possibly induce a large,
non-perturbative DM self-interaction rate, χχ → χχ, as a result of Sommerfeld enhancement by
multi-exchange of massless dark photons and/or light ρ bosons. This could be relevant for the small
(galactic) scale anomalies, in particular for the core-vs-cusp, too-big-to-fail and diversity problems,
see e.g. [59–63]. The possibility that Sommerfeld enhancement would result from the exchange of
massless mediators, rather than from massive light mediators, is a matter of debate, see e.g. [34].

6 Summary

We considered the simple, yet novel possibility that DM stability relies on the centre of a dark SU(N)
gauge symmetry. When the centre ZN is not broken spontaneously, the lightest state carrying a ZN

charge is automatically stable and a DM candidate. We studied the two simplest possibilities, where
the DM is a scalar χ in the fundamental representation of a SU(2)D or SU(3)D gauge group, and
the gauge symmetry is spontaneously broken by a scalar Φ in the N -index symmetric representation
(a real triplet or a complex ten-plet, respectively).

On the theory side these models are interesting in many respects. Firstly, they provide a
solid ground for the existence and the stability of DM particles, which rely only on a dark gauge
invariance. Secondly, the associated scalar potentials have several intriguing properties. In the
SU(2)D model, beside the duality Z2, there is a residual U(1)D gauge symmetry, as well as an
accidental U(1)χ global symmetry: as a consequence, not one but several particles are stable; in
particular the DM doublet is split into two stable states χ± which have (almost) the same couplings,
but different masses. In the SU(3)D model, beside the triality Z3, one is left with an unbroken
U(1)3×U(1)8 gauge symmetry, plus a global, non-abelian discrete group. The persistence of a non-
abelian symmetry after SSB implies, in particular, that the DM behaves as a triplet, while the dark
photons behave like a doublet, i.e. one predicts a massless gauge boson with four components. Note
that the N -ality mechanism to stabilise DM is robust, and not specific to our minimal realisations:
the DM stability persists in the presence of additional dark gauge symmetries, or additional fermions
or scalars in the hidden sector. The only requirement is that scalar multiplets transforming non
trivially under the center have a vanishing VEV.

Independently of the DM stability motivation, the scalar potential for the scalar Φ in the three-
index symmetric SU(3) representation has a remarkable feature. At tree-level, and in the limit where
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the SU(3) symmetry is promoted to U(3), the vacuum manifold (the set of field configurations
that minimise the potential) is larger than the NGB manifold. This means there are accidental
flat directions, connecting physically inequivalent field configurations: the true physical minimum
and the mass for the flat directions are determined only by departures from the tree-level, U(3)-
symmetric limit. This feature could have other interesting applications.

On the phenomenological side these models have a rich variety of specific implications. The
SU(2)D model predicts the existence of two stable scalars χ± with the same interactions but different
mass. This implies a non-trivial interplay of both states, which significantly affects both the DM
relic density, as well as the experimental constraints on the model. The observed relic density can
be achieved along different regimes: we considered three simple and representative ones, where the
dominant annihilation is into dark photons, dark light scalar bosons, and SM particles, respectively.
The latter annihilation takes place through a Higgs portal interaction. In all regimes, in the viable
region of parameters, the heaviest state χ+ always dominates the relic density, but not necessarily
the various other observables which constrain the model. This implies the existence of a lighter
subleading DM component χ−, with interactions which can be larger than would be allowed if χ−
were dominating the relic density.

In the dark photon annihilation regime the light DM state must have a mass above ∼ 600 GeV
as a result of the ellipticity constraint. For the annihilation into dark scalars, it must lie above
the ∼ 10 GeV scale, as a result of the ∆Neff constraint. For the Higgs portal regime, the direct-
detection constraints allow for a large-mass window, with mχ− ≳ TeV, as long as mχ+/mχ− < 10
or so, as well as for an intermediate-mass window above the Higgs threshold, mχ− ≳ mh, which
opens for larger mass ratios. The non-observation of a positive signal at near future direct-detection
experiments would basically exclude the Higgs portal regime. A positive signal instead would imply
a large Higgs portal interaction which could be possibly tested at future colliders.

In the SU(3)D model, the residual unbroken symmetries imply that the three components of
the DM multiplet χ are degenerate in mass with the same interactions. Thus, there is no interplay
of several DM components as in the SU(2)D model. On the other hand, the SU(3)D model features
a ‘non-abelian’ pair of dark photons, which might have distinctive signatures in Neff and possibly
elsewhere. In addition, the model predicts processes with an odd number of DM particles. This
is associated to the remnant Z3 triality symmetry, which allows vertices with three DM particles.
Remarkably, if the DM cubic interaction is large enough, the associated semi-annihilation process(es)
can dominate the freeze-out, thus fixing the value of the semi-annihilation cross section. As a
consequence, one can precisely predict the position and intensity of the monochromatic flux of
boosted DM, i.e. a ‘DM-line’, from the Galactic centre (or the Sun or Earth centre), which could
be possibly observed in neutrino telescopes.
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